
Intrinsic Reward Driven

Exploration for Deep

Reinforcement Learning

Haitao Xu

a thesis submitted for the degree of

Doctor of Philosophy
at the University of Otago, Dunedin,

New Zealand.

31 August 2020

Abstract

Deep reinforcement learning has become one of the hottest research topics
in machine learning. In reinforcement learning, agents interact with the
environment and try to maximise the expected cumulative reward. The goal
of reinforcement learning is to find a policy to maximise the agent’s total
cumulative rewards. Unfortunately, some environments can only provide
extremely sparse rewards, so the agent needs to learn a strategy to explore
in its environment more efficiently to find these rewards. However, it is
known that exploration in complex environments is a key challenge of deep
reinforcement learning, especially for tasks where rewards are very sparse.

In this thesis, intrinsic reward driven exploration strategies are investigated.
The agent driven by this intrinsic reward can explore expeditiously, so as
to find the sparse extrinsic rewards provided by the environment. Recently,
surprise has been used as an intrinsic reward that encourages systematic and
efficient exploration. We first define a novel intrinsic reward function called
assorted surprise, and propose Variational Assorted Surprise Exploration
(VASE) algorithm to approximate this assorted surprise in a tractable way,
with the help of Bayesian neural networks. Then we apply VASE algorithm
to continuous control problems and large scale Atari video games respec-
tively. Experimental results show that VASE performs well across these
tasks. Then we discover that all surprise based exploration methods will
lose exploration efficiency in areas where the environmental transition is
discontinuous. To solve this problem, we propose Mutual Information Min-
imising Exploration (MIME) algorithm. We show that MIME can explore
as efficiently as surprise based methods in other areas of the environment
but much better in areas with discontinuous transitions.

ii

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor
Prof. Brendan McCane and co-supervisor Dr. Lech Szymanski for forging
my scientific personality. I am truly grateful to them for the freedom they
gave to me and for their continuous support, trust throughout my PhD
study.

I also wish to thank the Department of Computer Science, especially the
technical and administrative staff. They have always been kind to help and
deal with my requests. I am also grateful to Xiping Fu, David Wang, Russel
Mesbah and Tapabrata Chakraborti, who gave me a lot of advice on how
to start a PhD.

Finally, I’m forever indebted to my wife, my parents, my children, for their
support and patience during the past three years.

iii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis statement and contributions . 3
1.3 Limit of scope . 4
1.4 Thesis layout . 5
1.5 Publications . 5

2 Background and related work 7
2.1 Information theory terminologies . 7

2.1.1 Surprisal . 7
2.1.2 Shannon entropy . 8
2.1.3 KL-divergence . 8
2.1.4 Mutual information . 9

2.2 Deep reinforcement learning . 10
2.3 Value-Based methods . 12

2.3.1 Deep Q-Network (DQN) . 13
2.4 Policy-based methods . 14

2.4.1 Policy gradient (PG) algorithm 15
2.5 Variational inference . 22
2.6 Bayesian neural networks . 26
2.7 Intrinsic reward driven exploration . 28

2.7.1 Surprise-driven reinforcement learning 30

3 VASE: Variational Assorted Surprise Exploration 34
3.1 Introduction . 34
3.2 Variational assorted surprise exploration (VASE) 36

3.2.1 Assorted surprise . 36
3.2.2 VASE implementation . 40

3.3 VASE for continuous control tasks with sparse rewards 45
3.3.1 Visualising exploration efficiency 45
3.3.2 Continuous state/action environments 47

3.4 Discussion: uncertainty in VASE . 57
3.5 Conclusions . 62

iv

4 VASE for Large Scale Problems: Playing Atari Video Games 64
4.1 Introduction . 64
4.2 Assorted Surprise for Atari games . 66

4.2.1 Compute assorted surprise . 67
4.3 Experiments and results analysis . 68

4.3.1 Data preparation . 70
4.3.2 Network architecture . 71
4.3.3 Experimental results . 72

4.4 Conclusions . 81

5 MIME: Mutual Information Minimisation Exploration 82
5.1 Introduction . 82
5.2 Background . 83

5.2.1 Surprisal . 83
5.2.2 Random distillation network (RND) 84
5.2.3 Go-Explore . 85

5.3 MIME . 86
5.4 Implementation . 88
5.5 Experiments . 89

5.5.1 2DPlane environment . 93
5.5.2 Passing through a wormhole . 93
5.5.3 Large-scale games . 96

5.6 Discussion and Conclusion . 101

6 Conclusion 104
6.1 Future work . 107

References 109

A Twin Bounded Large Margin Distribution Machine 126
A.1 Introduction . 126
A.2 Notation and related work . 127

A.2.1 Support vector machine (SVM) 128
A.2.2 Twin bounded support vector machine (TBSVM) 129
A.2.3 Large margin distribution machine (LDM) 130

A.3 Twin bounded large margin distribution machine (TBLDM) 130
A.3.1 TBLDM . 131
A.3.2 TBLDM for large scale datasets 134

A.4 Experiments and results analysis . 135
A.4.1 Experiments on regular-scale datasets 136
A.4.2 Experiments on large-scale datasets 136

A.5 Conclusions . 138

v

List of Tables

4.1 Policy network architecture. 71
4.2 Feature Extractor architecture (Frozen weights). 72
4.3 BNN model architecture. 72

5.1 Large-scale games environmental preprocessing. 90
5.2 Hyperparameter setting for two simple experiments. 90
5.3 Hyperparameter setting for three large-scale games. 93

A.1 Statistics of datasets . 136
A.2 Experimental results with regular size datasets 137
A.3 Classification accuracy results on 4 large-scale datasets 137
A.4 Time (seconds) comparison on 4 large-scale data sets 138

vi

List of Figures

2.1 Monotonic improvement iteration . 19
2.2 Surrogate function LCLIP as a function of ratio. 23
2.3 Variational inference. 25
2.4 A Bayesian neural network example with one hidden layer. 27

3.1 Model-free RL vs. model-based/surprise-driven RL with s for state, re
for the extrinsic (environment-driven) reward, a for action, surprise for
intrinsic (agent-driven) reward, the model of the environment makes a
prediction of the next state ŝ′. 37

3.2 VASE-driven RL with s for state, re for the extrinsic (environment-
driven) reward, a for action, surprise for intrinsic (agent-driven) reward,
and ŝ′ the output of BNN model. 41

3.3 Reparameterisation trick. 45
3.4 Exploration efficiency as a heatmap showing the number of states visited

during training in 2DPointRobot environment until chancing upon the
reward state with a) no surprise, b) VASE. 46

3.5 Six continuous control environments, all of which have a sparse reward. 47
3.6 Median performance for the continuous control tasks over 20 runs with

a fixed set of seeds, with interquartile ranges shown in shaded areas.
VIME, NLL and VASE use Bayesian surprise, surprisal, our surprise
respectively (continued on next page). 50

3.6 Median performance for the continuous control tasks over 20 runs with
a fixed set of seeds, with interquartile ranges shown in shaded areas.
VIME, NLL and VASE use Bayesian surprise, surprisal, our surprise
respectively (continued on next page). 51

3.6 Median performance for the continuous control tasks over 20 runs with
a fixed set of seeds, with interquartile ranges shown in shaded areas.
VIME, NLL and VASE use Bayesian surprise, surprisal, our surprise
respectively (continued from previous page). 52

3.7 Running time comparison on six environments. VIME, NLL and VASE
use Bayesian surprise, surprisal, our surprise respectively (continued on
next page). 54

3.7 Running time comparison on six environments. VIME, NLL and VASE
use Bayesian surprise, surprisal, our surprise respectively (continued on
next page). 55

vii

3.7 Running time comparison on six environments. VIME, NLL and VASE
use Bayesian surprise, surprisal, our surprise respectively (continued
from previous page). 56

3.8 Median performance for five sparse reward tasks with different δ cho-
sen from {0, 10−8, 10−6, 10−4, 10−2, 1}, with interquartile ranges shown
in shaded areas (continued on next page). 58

3.8 Median performance for five sparse reward tasks with different δ cho-
sen from {0, 10−8, 10−6, 10−4, 10−2, 1}, with interquartile ranges shown
in shaded areas (continued on next page). 59

3.8 Median performance for five sparse reward tasks with different δ cho-
sen from {0, 10−8, 10−6, 10−4, 10−2, 1}, with interquartile ranges shown
in shaded areas (continued from previous page). 60

4.1 VASE-driven RL with s for state, a for action, f for the state feature
that is extracted from the feature extractor network, and f̂ ′ for the BNN
model prediction of the next state feature f . Note that the extrinsic
reward re is removed. 66

4.2 A block diagram shows how to compute assorted surprise. 68
4.3 Three Atari video games. 69
4.4 Data preparation: RGB image (size: 210x160x3) is resized to grey image

(size: 84x84x1), and then stacked 4 historical observations to the current
observation (size: 84x84x4). 70

4.5 Mean extrinsic returns on Atari games with 3 different seeds, standard
deviation shown in shaded areas. The agents were trained purely by
intrinsic reward, without extrinsic reward or a ’death’ signal. NLL for
surprisal method (continued on next page). 74

4.5 Mean extrinsic returns on Atari games with 3 different seeds, standard
deviation shown in shaded areas.The agents were trained purely by in-
trinsic reward, without extrinsic reward or a ’death’ signal. NLL for
surprisal method (continued from previous page). 75

4.6 Mean episode lengths on Atari games with 3 different seeds, standard
deviation shown in shaded areas. The agents were trained purely by
intrinsic reward, without extrinsic reward or a ’death’ signal. NLL for
surprisal method (continued on next page). 76

4.6 Mean episode lengths on Atari games with 3 different seeds, standard
deviation shown in shaded areas. The agents were trained purely by
intrinsic reward, without extrinsic reward or a ’death’ signal. NLL for
surprisal method (continued from previous page). 77

4.7 Montezuma’s revenge episode return and number of rooms found across
3 seeds, agents are trained by intrinsic plus extrinsic rewards. 80

4.8 Three episodes show surprise rewards at each time step. Episode 1: the
new room has just been found. Episode 2: the new room has been found
for a while. Episode 3: the new room has been found for a long time. . 81

viii

5.1 surprisal-driven V.S. MIME-driven, "Surprise" denotes the surprisal re-
ward, "MIME" denotes the new intrinsic reward we proposed in this
chapter. 84

5.2 Random network distillation method. 85
5.3 Different structures used to compute intrinsic reward. Surprise denotes

the surprisal reward. 89
5.4 Exploration efficiency in 2DPlane environment until chancing upon the

reward state. 92
5.5 Pass through a wormhole: this is a three-dimensional environment with a

sharp circular boundary (the wormhole) between an upper rectangular
planar environment at z = 1000, and a lower second circular planar
environment centred at the origin with radius 0.5. The agent starts
from the origin (x = 0, y = 0, z = 0). When the agent crosses the
boundary, it immediately transitions from one plane to the other. . . . 94

5.6 Pass through a wormhole, 5 million steps (continued on next page). . . 95
5.6 Pass through a wormhole, 5 million steps (continued from previous

page). 96
5.7 Gravitar game . 97
5.8 VizDoom scenario: "find my way home". 97
5.9 Mean episodic return of MIME, surprisal (NLL), and RND on 3 hard

exploration large-scale games. Curves are an average over 3 random
seeds, with standard deviation shown in shaded areas. Horizontal axes
show numbers of frames(continued on next page). 98

5.9 Mean episodic return of MIME, surprisal (NLL), and RND on 3 hard
exploration large-scale games. Curves are an average over 3 random
seeds, with standard deviation shown in shaded areas. Horizontal axes
show numbers of frames (continued from previous page). 99

5.10 If the agent can find the sword in the third room and return to the
second room to kill one skull with the sword, it will obtain a substantial
reward (2000). 101

5.11 Compare results between Eq. 5.9 and Eq. 5.10, where MIME-st-at
denotes the results of Eq. 5.10 and MIME-st denotes the results of Eq.
5.9. 103

ix

Chapter 1

Introduction

Reinforcement learning (RL), especially deep reinforcement learning (DRL) has achieved
many amazing results and can defeat human beings in some fields like playing the
game of Go (Silver, Huang, Maddison, Guez, Sifre, Van Den Driessche, Schrittwieser,
Antonoglou, Panneershelvam, Lanctot, et al., 2016) and playing Atari video games
(Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland,
Ostrovski, Petersen, Beattie, Sadik, Antonoglou, King, Kumaran, Wierstra, Legg, and
Hassabis, 2015). It has become one of the most popular research topics and attracted
more and more interests from researchers recently.

As a type of machine learning (Bishop, 2006; Mohri, Rostamizadeh, and Talwalkar,
2018; Murphy, 2012) technique, reinforcement learning (RL) is a goal-oriented learning
mechanism. The goal of RL is to seek a policy model so that the actions can be taken
to maximise the agent’s total cumulative reward. It tries to train the agent through
many steps of decision-making to achieve this goal. For each step, the agent receives
a reward from the environment (Sutton and Barto, 2018). The decision that is learnt
by an RL agent in each step can be made by maximising the discounted sum of these
rewards. However, it is a challenging problem to design this reward function because
it depends on different environments and sometimes can be extremely sparse.

Deep reinforcement learning (DRL) is a powerful combination of deep learning
(Bengio, Courville, and Vincent, 2013; LeCun, Bengio, and Hinton, 2015; Schmid-
huber, 2015) and reinforcement learning. The "deep" here refers to multiple layers
of artificial neural networks. The rise of deep learning accelerated progress in RL.
With deep learning algorithms, DRL has been applied to different fields and indus-
tries such as resources management in computer clusters (Mao, Alizadeh, Menache,
and Kandula, 2016), large scale traffic light control (Wei, Zheng, Yao, and Li, 2018;

1

Chu, Wang, Codecà, and Li, 2019), robotics (Kober, Bagnell, and Peters, 2013; Levine,
Finn, Darrell, and Abbeel, 2016), chemistry (Zhou, Li, and Zare, 2017), personalised
recommendations (Zheng, Zhang, Zheng, Xiang, Yuan, Xie, and Li, 2018), bidding
and advertising (Jin, Song, Li, Gai, Wang, and Zhang, 2018) and games (Silver et al.,
2016; Silver, Schrittwieser, Simonyan, Antonoglou, Huang, Guez, Hubert, Baker, Lai,
Bolton, et al., 2017; Mnih, Kavukcuoglu, Silver, Graves, Antonoglou, Wierstra, and
Riedmiller, 2013).

1.1 Motivation

Recently, researchers have shown their interests in intrinsic motivation driven explo-
ration in the field of DRL. The agent motivated by intrinsic reward can be trained
to explore efficiently in its environment, even when the environment only provides
sparse rewards. To explain how the intrinsic reward works in reinforcement learning
exploration, the original reward signal r can be rewritten as

r = re + ri, (1.1)

where re represents the extrinsic reward from the environment, ri represents the in-
trinsic reward. If the environment provides extremely sparse rewards, the agent can
only obtain a zero reward (re = 0) at most time steps when it interacts with the en-
vironment. It can be seen that we can still use the intrinsic reward ri to train the
agent.

There are three main techniques for solving the problem of intrinsic reward-driven
deep reinforcement learning exploration: The first evaluates state novelty (Kearns and
Singh, 2002; Bellemare, Srinivasan, Ostrovski, Schaul, Saxton, and Munos, 2016), the
second uses prediction error (Schmidhuber, 1991b,a; Achiam and Sastry, 2017; Pathak,
Agrawal, Efros, and Darrell, 2017) and the third is based on information gain (Deci and
Ryan, 2010; Houthooft, Chen, Duan, Schulman, De Turck, and Abbeel, 2016; Little
and Sommer, 2013). Prediction error can be derived from surprisal (Traibus, 1961),
and information gain method is highly related to Bayesian surprise (Itti and Baldi,
2006; Storck, Hochreiter, and Schmidhuber, 1995). It can be seen that the latter two
types of methods are both related to surprise. Sometimes we collectively call them
surprise-driven learning. This thesis mainly discusses the latter two methods.

There are many interesting but challenging problems that are worthy of study. First,
different forms of surprise (surprisal for prediction error method, Bayesian surprise for

2

information gain method) have been chosen as the intrinsic reward to train the agent.
However, each of them has its own shortcomings. For example, in surprisal method
it is hard to process the stochasticity that happens in the environment. Bayesian
surprise can handle the uncertainty but the proposed algorithms show that they can
only apply to simple environments for the reason of expensive computation. Therefore,
designing or selecting a suitable surprise function to represent intrinsic rewards is a
worthwhile research direction. In addition, the designed intrinsic reward exploration
algorithm should be easily applied to large scale problems like deep neural networks and
complex environments. Furthermore, some environmental transitions are discontinuous
or abrupt, it is difficult for the agent to predict future state and therefore the agent is
continuously surprised by the transition. This results in an agent that gets stuck on the
transition boundary. It is interesting to investigate how to generate an intrinsic reward
when the agent’s model simply tries to learn a representation of the world without
prediction.

1.2 Thesis statement and contributions

The thesis is that it is possible to design intrinsic rewards to drive an agent to explore
an environment where only extremely sparse rewards are provided.

In the case of a continuous environment, it is hypothesised that:

(I) The agent driven by assorted surprise will perform better than those driven by
surprisal.

(II) Training speed of assorted surprise algorithm runs faster than Bayesian surprise
based algorithm.

(III) In the environment where rewards can be obtained at each time step, adding
intrinsic reward will not reduce the agent’s exploration efficiency.

In the case of an environment with boundary transitions, it is hypothesised that:

(IV) Mutual information minimising exploration (MIME) will perform as well as surprise-
based method in normal sparse reward environments.

(V) Mutual information minimising exploration (MIME) will perform better than
surprise-based method in an environment where the transition is discontinuous.

The main contributions of this thesis are:

3

• I propose a new definition of surprise as the intrinsic reward. I also propose
an algorithm VASE (Variational agent’s surprise exploration) to implement this
surprise to train the agent in reinforcement learning settings. VASE is a fast
exploration strategy and solved by variational inference in Bayesian neural net-
works. Because the uncertainty in Bayesian neural network is reduced during
training, VASE is as good as information gain methods in dealing with uncer-
tain environments, such as continuous control environments. The agent driven
by VASE can effectively explore continuous control environments and find sparse
extrinsic rewards given by the environment.

• I applied the VASE algorithm to large scale problems. Let the agent trained
by VASE play Atari video games. VASE works well on most Atari games with
sparse reward. However, a new problem was found that when playing Montezuma
Revenge game, whose transition boundary is not continuous, the agent was also
stuck at the boundary between different rooms.

• I also propose an algorithm named MIME (Mutual Information Minimising Ex-
ploration). The agent trained by surprisal or VASE can be stuck on the en-
vironmental transition boundary. The MIME algorithm solves the problem of
agents getting stuck at sharp boundary transitions. MIME agents learn as well
as surprisal-agents in sparse reward environments and much better in environ-
ments that include sharp boundary transitions.

1.3 Limit of scope

In addition to exploration, there are other ways to use intrinsic rewards in reinforce-
ment learning. Actually, Oudeyer, Kaplan, et al. (2008) have proposed a classifi-
cation for all intrinsic reward methods (later Aubret, Matignon, and Hassas (2019)
proposed a slightly different classification). The first category is the knowledge-based
model (knowledge acquisition), the second category is the competency-based model
(skill learning). Exploration belongs to knowledge acquisition. The method like em-
powerment (Salge, Glackin, and Polani, 2014) is also included in this category. Skill
learning has methods like skill abstraction (Heess, Wayne, Tassa, Lillicrap, Riedmiller,
and Silver, 2016) and curriculum learning (Co-Reyes, Liu, Gupta, Eysenbach, Abbeel,
and Levine, 2018; Sharma, Gu, Levine, Kumar, and Hausman, 2019; Lee, Eysenbach,
Parisotto, Xing, Levine, and Salakhutdinov, 2019). However, it is impossible to cover

4

all these problems during a single PhD. Limit of Scope in this thesis is that we only
discuss "exploration methods" for intrinsic reward-driven reinforcement learning.

1.4 Thesis layout

This thesis consists of six chapters and one appendix. The rest of the thesis is structured
as follows.

Chapter 2 presents related background and important concepts in deep reinforce-
ment learning. These are necessary to understand the remaining chapters of this thesis.

The following three chapters are for different contributions to this thesis. Chapter
3 presents a new form of surprise as the agent’s intrinsic motivation and applied it to
the RL settings by using the VASE algorithm. VASE tries to approximate this surprise
in a tractable way and train the agent to maximise its reward function. The agent is
driven by this intrinsic reward, which can effectively explore the environment and find
sparse extrinsic rewards given by the environment. Empirical results show in Chapter 3
that VASE performs well across various continuous control tasks with sparse rewards.
Chapter 4 shows the results when we apply VASE to large scale environments: in
this case Atari video games. Chapter 5 introduces a novel algorithm, MIME, whose
purpose is to solve the problems we found in Chapter 4. The main difference between
MIME agents and other surprise-driven RL agents is that MIME agents do not try
to predict the future. Rather, they form a measure of how comfortable they are in a
given environment. This is a simple idea, is easy to implement and most importantly
it overcomes the limitations of surprisal getting stuck at transition boundaries.

Chapter 6 concludes the thesis and suggests possible future works.
Before I shifted my research direction to deep reinforcement learning, I initially

started my PhD in the direction of support vector machines. I include this part of
work as an appendix.

The source code for this thesis can be found online1.

1.5 Publications

Some of the techniques mentioned in this thesis have previously been described in
several publications, which are listed below

1https://drive.google.com/open?id=1NRfVdrlqW7vDIgALHCSuIlnpQS0pkHlI

5

https://drive.google.com/open?id=1NRfVdrlqW7vDIgALHCSuIlnpQS0pkHlI

• Xu, H., McCane, B. and Szymanski, L., 2019. VASE: Variational Assorted Sur-
prise Exploration for Reinforcement Learning. arXiv preprint arXiv:1910.14351.

• Xu, H., McCane, B., Szymanski, L. and Atkinson, C., 2020. MIME: Mutual
Information Minimisation Exploration. arXiv preprint arXiv:2001.05636.

I also did some work on support vector machines during my Ph.D. study, the results
are published in

• Xu, H., McCane, B. and Szymanski, L., 2018, December. Twin Bounded Large
Margin Distribution Machine. In Australasian Joint Conference on Artificial
Intelligence (pp. 718-729). Springer, Cham.

6

Chapter 2

Background and related work

In this chapter, I will introduce the background and notations related to this thesis.
I will first introduce some important concepts in information theory, these concepts
can be used to define the intrinsic rewards discussed in this thesis. Since this thesis
mainly discusses the importance of intrinsic reward exploration in deep reinforcement
learning, I will then introduce reinforcement learning and deep reinforcement learning
related algorithms, focusing on policy gradient algorithms like TRPO algorithm and
PPO algorithm that will be used in the following chapters. Next, the variational
inference method and Bayesian neural networks are introduced. They will first be used
in Chapter 3 to derive the variational assorted surprise. At the end of this chapter, I
will introduce and summarise some intrinsic reward exploration algorithms in the field
of reinforcement learning in recent years, so that I can compare my methods to some
of them in Chapter 3 to Chapter 5.

2.1 Information theory terminologies

In this section, I will introduce some terminologies in information theory field. All these
terms will be used in the following chapters and are important to define the intrinsic
reward functions.

2.1.1 Surprisal

Suppose probability distribution P is defined on probability space X , X ∈ X is a
random variable. In information theory (Shannon, 1948; Traibus, 1961), the surprisal

7

(also called information content or self-information)

− logPX(x) (2.1)

quantifies the "surprise" degree of a particular event x that occurs from a random vari-
able X. Through this definition, we can see that if an event x occurs with probability
of 1, it will not bring any surprises or information. If an event that happened is unlikely
to happen, it will generate a lot of information content and bring huge surprises.

2.1.2 Shannon entropy

The Shannon entropy H(X) of the random variable X is defined as

H(X) =
∑
x∈X

−PX(x) logPX(x)

=
∑
x∈X

PX(x)(− logPX(x))

= Ex[− logPX(x)]. (2.2)

It is the average level of "surprise" or "uncertainty" in the possible outcome x of
the random variable X. Different to surprisal which quantifies the degree of surprise
associated with a particular outcome x of a random variable X, entropy quantifies the
average degree of the entire random variable over all its possible outcomes.

2.1.3 KL-divergence

The Kullback-Leibler divergence (also called relative entropy, KL-divergence) is a mea-
sure of how one distribution differs from the other. For probability distributions P and
Q of a discrete random variable X ∈ X , where X is the probability space that P and
Q are defined on. The KL-divergence from Q to P is defined (Kullback and Leibler,
1951) as

DKL[P‖Q] =
∑
x∈X

PX(x) log
PX(x)

QX(x)
. (2.3)

For continuous random variable X, the KL-divergence is defined as

DKL[P‖Q] =

∫
X
p(x) log

p(x)

q(x)
dx, (2.4)

where p(x) and q(x) are the probability density functions of P and Q respectively.
Note that KL-divergence is asymmetric and does not satisfy the triangle inequality.

8

2.1.4 Mutual information

Let (X, Y) be a random vector with value over the space X×Y . The mutual information
(MI, also called information gain) is a measure of the interdependence between the
two random variables X and Y . In other words, mutual information determines how
different the joint distribution of the random vector (X, Y) is to the product of the
marginal distributions of random variable X and random variable Y :

I(X;Y) = DKL[P(X,Y)‖PX ⊗ PY]. (2.5)

In the discrete case, P(X,Y) denotes the joint probability mass function of random
variables X and Y , PX and PY are the marginal probability mass functions of X and
Y respectively, the mutual information can be rewritten as

I(X;Y) =
∑
y∈Y

∑
x∈X

P(X,Y)(x, y) log
P(X,Y)(x, y)

PX(x)PY (y)
, (2.6)

and for continuous case, P(X,Y) is now the joint probability density function of random
variable X and random variable Y , PX and PY are the marginal probability density
functions of X and Y respectively, the mutual information is

I(X;Y) =

∫
Y

∫
X
P(X,Y)(x, y) log

P(X,Y)(x, y)

PX(x)PY (y)
dxdy. (2.7)

Mutual information satisfies the following equations:

I(X;Y) = H(X)−H(X|Y)

= H(Y)−H(Y |X), (2.8)

which is important to derive Bayesian surprise that we will discuss in following chapters.
We show the proof of I(X;Y) = H(Y)−H(Y |X) here, in discrete case:

I(X;Y) =
∑
y

∑
x

P(X,Y)(x, y) log
P(X,Y)(x, y)

PX(x)PY (y)

=
∑
y

∑
x

P(X,Y)(x, y) log
P(X,Y)(x, y)

PX(x)
−
∑
y

∑
x

P(X,Y)(x, y) logPY (y)

=
∑
y

∑
x

PX(x)PY |X=x(y) logPY |X=x(y)−
∑
y

(∑
x

P(X,Y)(x, y)

)
logPY (y)

= −
∑
x

PX(x)H(Y |X = x)−
∑
y

PY (y) logPY (y)

= −H(Y |X) +H(Y)

= H(Y)−H(Y |X). (2.9)

9

There is another concept called pointwise mutual information (PMI):

pmi(x; y) = log
P(X,Y)(x, y)

PX(x)PY (y)
, (2.10)

which is a measure of association of single events. Mathematically, mutual information
is the expected value of pointwise mutual information.

In general, mutual information is symmetric and non-negative. Compared to linear
dependence like the correlation coefficient, mutual information is more general.

2.2 Deep reinforcement learning

Reinforcement learning (RL) is a type of machine learning. Compared with the classic
supervised and unsupervised learning problems of machine learning, the biggest feature
of reinforcement learning is learning in interaction: Reinforcement learning is learning
what to do—how to map situations to actions—to maximize reward signals (Sutton
and Barto, 2018). The protagonist of RL is the agent. The environment is the world
that the agent interacts with. The environment is the world that the agent interacts
with. Currently, the development of deep learning allows reinforcement learning to
solve previously difficult problems, such as learning to play video games directly from
pixels. Deep reinforcement learning (DRL) algorithms are also applied to robotics,
so that robot control policies can be learned directly from real-world camera inputs
(Arulkumaran, Deisenroth, Brundage, and Bharath, 2017).

There are two outstanding success stories in the latest work in the DRL field. The
first was the development of an algorithm that can learn directly from image pixels
to play Atari 2600 (Bellemare, Naddaf, Veness, and Bowling, 2013) video games at
superhuman level (Mnih et al., 2015), which drove the revolution of DRL. This is
the first convincing evidence that RL agents can be trained on raw high-dimensional
observations. The other outstanding success was AlphaGo, which defeated the human
world champion in 2016 (Silver et al., 2016). The DRL algorithm has also been applied
to robotics, and it is now possible to learn the robot’s control policy directly from real-
world camera inputs. (Levine, Pastor, Krizhevsky, Ibarz, and Quillen, 2018; Levine
et al., 2016). In addition, DRL has also used meta-learning algorithms ("learn to
learn"), enabling them to generalize to different environments that they have never seen
before (Duan, Schulman, Chen, Bartlett, Sutskever, and Abbeel, Duan et al.; Wang,
Kurth-Nelson, Tirumala, Soyer, Leibo, Munos, Blundell, Kumaran, and Botvinick,
2016). Currently, DRL has also been used to handle almost all forms of machine

10

learning problems like designing the latest machine translation models (Zoph and Le,
2016; Zhang, Yang, and Başar, 2019) or building new optimization functions (Li and
Malik, 2017).

In RL setup, a finite horizon discounted Markov decision process (MDP) is defined
by a tuple (S,A,P , r, γ, T, ρ0), where: S is a state set contains the state of the world
that the agent can perceive. A is an action set representing all the actions of the agent.
P : S ×A× S → [0, 1] is a transition probability distribution and st+1 ∼ P (·|st, at).
r : S ×A → R is a reward function defines the learning goal of the agent, denoted as
rt = r(st, at). Although sometimes for convenience, it is also denoted as rt = r(st) or
rt = r(st, at, st+1). t ∈ {1, 2, · · · , T} here represents the current step. Each time the
agent interacts with the environment, the environment returns reward, telling the agent
that the action just performed is good or bad. γ ∈ (0, 1] is a discount factor, T the
horizon and ρ0 an initial state distribution. A policy refers to agent’s choice of action
to be taken in state s. It is the core concept of RL problems and can be deterministic
or stochastic. In this thesis, we only discuss stochastic policy. A stochastic policy
π : S ×A → [0, 1] gives the probability with π(a|s) of taking action a in state s.
In deep reinforcement learning frameworks, the policy is often represented by a deep
neural network. The input of this neural network is states and the output is actions.
Let τ = (s0, a0, · · ·) denote the whole trajectory, which is a sequence of states and
actions in the world. s0 ∼ ρ0 the very first state of the world, at ∼ π(at|st). The
goal of an agent is to find a policy π so as to maximises the expected discounted total
return:

Eτ∼π[R(τ)], (2.11)

where τ ∼ π is shorthand for “for each state si in τ , the associated action ai ∼ π(·|si)”,
R(τ) =

∑T
t=0 γ

trt — a discounted sum of all rewards in a fixed horizon T . In this regard,
RL aims to solve an optimisation problem. But in RL, agents need to use trial and
error to learn the consequences of actions in the environment. Each interaction with
the environment generates information that the agent uses to update its knowledge.

The model is a simulation of the environment. The model simulates the response
of the environment after the agent samples the action. In RL, the method of using
model and planning is called model-based, while the method of learning policy by trial-
and-error instead of using model is called model-free. And in DRL, similarly to policy,
the model is represented by a deep neural network too. The following chapters in the
thesis only discuss model-based methods. The agent trained by the algorithms that we
proposed always has a model to help it to learn the environment.

11

There are two main types of techniques for solving the RL problem: methods based
on value function and methods based on policy search, which we call

• Value-Based methods,

• Policy-Based methods.

2.3 Value-Based methods

The value-based method estimates the value (expected return) at a given state. The
value function, different from reward function that defines the quality of immediate
return in an interaction, defines the average return of the action in the long run. Value
function Vπ(s) is a term used to represent the long-term expected return of the strategy
π under state s:

Vπ(s) = Eτ∼π[R(τ)|s0 = s], (2.12)

and action-value function Qπ(s, a) is the long-term expected return of the strategy π
taking action a under state s:

Qπ(s, a) = Eτ∼π[R(τ)|s0 = s, a0 = a]. (2.13)

Both Vπ(s) and Qπ(s, a) value functions obey special self-consistency equations called
Bellman equations:

Vπ(s) = Ea∼π(·|s),s′∼P(·|s,a)[r(s, a) + γVπ(s′)]

Qπ(s, a) = Es′∼P(·|s,a)[r(s, a) + γEa′∼π(·|s)[Qπ(s′, a′)]]. (2.14)

There are two other value functions. One is called the optimal value function, V∗(s),
which gives the expected return when you start in the state s and always act under
the optimal policy:

V∗(s) = max
π

Eτ∼π[R(τ)|s0 = s], (2.15)

the other is called the optimal action-value function, Q∗(s, a), which gives the expected
return for taking action a in state s and thereafter following an optimal policy:

Q∗(s, a) = max
π

Eτ∼π[R(τ)|s0 = s, a0 = a]. (2.16)

12

Both the optimal value function and optimal action-value function also obey Bellman
equations:

V∗(s) = max
a

Es′∼P(·|s,a)[r(s, a) + γV∗(s
′)]

Q∗(s, a) = Es′∼P(·|s,a)[r(s, a) + γmax
a′

[Q∗(s
′, a′)]]. (2.17)

And

V∗(s) = max
a
Q∗(s, a). (2.18)

The Bellman equation is the basis of the Q-learning (Watkins and Dayan, 1992; Arulku-
maran et al., 2017) algorithm, and the core idea of Q-learning is to update the Q-value
iteratively via satisfying optimal Bellman equations.

Qπ(st, at)← Qπ(st, at) + αδ, (2.19)

where α is the learning rate and

δ = rt + γmax
a
Qπ(st+1, a)−Qπ(st, at) (2.20)

is called temporal difference (TD) error. Q-learning approximates Q∗ directly, which
can be achieved by minimizing TD errors from trajectories (See Algorithm 1).

Algorithm 1: Q-learning algorithm

Initialise Q0(s, a) for all s, a
Start from initial s
for k = 0, 1, · · · do

Sample action a, get next state s′

Qk+1(s, a)← Qk(s, a) + αδ

Update s← s′

if s′ is terminal then

Sample new initial state s′

end

end

2.3.1 Deep Q-Network (DQN)

Since deep neural networks (DNN) are universal function approximators, it is natural
to use deep learning to approximate functions for deep reinforcement learning agents.

13

In the beginning, the value-based method in DRL only took simple states as its inputs.
However, the current methods can solve complex environments (Mnih et al., 2015;
Mnih, Badia, Mirza, Graves, Lillicrap, Harley, Silver, and Kavukcuoglu, 2016; Oh,
Chockalingam, Lee, et al., 2016; Schulman, Levine, Abbeel, Jordan, and Moritz, 2015;
Zhu, Mottaghi, Kolve, Lim, Gupta, Fei-Fei, and Farhadi, 2017).

DQN (Mnih et al., 2015; Yang, Xie, and Wang, 2019) has achieved scores compara-
ble to professional video game testers in many classic Atari 2600 video games. When
designing, the final fully connected layer of DQN will output Qπ(s; ·) for all possible
action values in a group of discrete actions. The advantage of DQN is that it can use
DNN to compactly represent high-dimensional observations and Q functions.

One of the most important parts of DQN is the function that approximates the value
of Q. We try to find or approximate the value function first and then extract the policy.
The representative methods based on DQN are: DQN (Mnih et al., 2013), double
DQN (van Hasselt, Guez, and Silver, 2016; Brim, 2020), dueling DQN (Wang, Schaul,
Hessel, Van Hasselt, Lanctot, and De Freitas, 2016) and Rainbow (Hessel, Modayil,
van Hasselt, Schaul, Ostrovski, Dabney, Horgan, Piot, Azar, and Silver, 2018).

Q-learning is a very classic algorithm of RL. Its DQN extensions also have achieved
great success in the Atari game problem. However, the scope of application of DQN is
still in low-dimensional, discrete action space. This is because DQN finds the maximum
Q-value of each action, which is not applicable in continuous space. If the continuous
action space is discretized, the action space will scale exponentially in its dimensionality.
For example, if the dimension of continuous action space is 8, each action is divided
into 10 discrete actions, and the dimension of action space will be expanded to 108

= 100000000. Even if some DQN variants can give a solution of continuous action,
the second problem of DQN is that it can only give a deterministic action, not the
probability value.

From another perspective, the value-based method like DQN is still indirectly seek-
ing policies. A natural question to ask is why we don’t directly seek policy? This is
what policy-based methods do.

2.4 Policy-based methods

Policy-based methods have some advantages compared to value-based methods. For
example, policy-based methods are much more effective in high-dimensional or contin-
uous spaces. Policy-based methods also seek stochastic policies.

14

Policy-based reinforcement learning is an optimization problem. Given a policy π
with the parameter ψ, we try to find best ψ that generates the best policy. This can
be done by maximising the objective function J(πψ)

max
ψ

J(πψ) = max
ψ

Eτ∼πψ [R(τ)], (2.21)

To solve optimisation problem Eq. 2.21, we can use two families of algorithms, one
is called gradient-free algorithms, the other is gradient-based algorithms (Deisenroth,
Neumann, Peters, et al., 2013). The examples of gradient-free algorithms include hill
climbing, simulated annealing (Kirkpatrick, Gelatt, and Vecchi, 1983) and evolutionary
algorithms (Moriarty, Schultz, and Grefenstette, 1999) etc. The gradient-free policy
search method can optimize non-differentiable policies. However, in reinforcement
learning, the most popular policy-based algorithm is gradient-based, which is called
the policy gradient (PG) algorithm.

2.4.1 Policy gradient (PG) algorithm

Given policy function

π(a|s, ψ) = P (at = a|st = s, ψ), (2.22)

The probability of generating a trajectory τ = (s0, a0, s1, · · · , sT+1) is

P (s0, a0, s1, · · · , sT+1) = ρ0(s0)
T∏
t=0

πψ(at|st)P (st+1|st, at). (2.23)

More generally, the probability of generating the trajectory τ under the policy π is
expressed as

πψ(τ) = ρ0(s0)
T∏
t=0

πψ(at|st)P (st+1|st, at). (2.24)

Finding the gradient of Eq. 2.21 gives the policy gradient ∇ψJ(πψ)

∇ψJ(πψ) =

∫
∇ψπψ(τ)R(τ)dτ

=

∫
πψ(τ)∇ψ log πψ(τ)R(τ)dτ

= Eτ∼πψ [∇ψ log πψ(τ)R(τ)]. (2.25)

Take the logarithm of both sides of Eq. 2.24,

log πψ(τ) = log ρ0(s0) +
T∑
t=0

log πψ(at|st) + logP (st+1|st, at). (2.26)

15

Then substitute into the gradient expression Eq. 2.25, the policy gradient becomes:

∇ψJ(πψ) = Eτ∼πψ [(
T∑
t=0

∇ψ log πψ(at|st))(
T∑
t=0

γtr(st, at))]. (2.27)

This is an expectation. We can estimate it using the sample mean:

∇ψJ(πψ) ≈ 1

N

N∑
i=1

[(
T∑
t=0

∇ψ log πψ(ai,t|si,t))(
T∑
t=0

γtr(si,t, ai,t))], (2.28)

where N is the number of trajectories. According to the policy πψ, we can sample
trajectories, and then calculate Eq. 2.28, and update the parameter ψ in one step
according to the gradient ascent:

ψ ← ψ + α∇ψJ(πψ). (2.29)

In summary, if the trajectory produces a high positive reward, we hope to increase the
possibility of policy adoption. Conversely, if policies lead to higher negative rewards,
we want to reduce their likelihood. The simplest policy gradient algorithm is called
REINFORCE (Williams, 1992) or policy gradient with Monte-Carlo roll outs and can
be summarised in Algorithm 2. We can see that REINFORCE algorithm relies on

Algorithm 2: REINFORCE (Policy gradient with Monte-Carlo rollouts)

Initialise policy neural network πψ
Reset the environment getting (s0, r0)

for k = 0, 1, · · · do

Sample each trajectory τ from πψk

Compute ∇ψkJ(πψk) by Eq. 2.28
Update πψk by ψk+1 ← ψk + α∇ψkJ(πψk)

end

an estimated return by Monte-Carlo methods using trajectory samples to update the
policy parameter ψ. i.e. play out the whole trajectory to compute the total rewards.
The basic principle is to use gradient ascent to follow the policy with the largest increase
in rewards. However, first-order optimizers are not very accurate for curved regions.
The agent may become overconfident, make wrong moves and disrupt training progress.
Trust region policy optimization (TRPO) (Schulman et al., 2015) is trying to address
this issue. TRPO updates the policy by taking the largest steps to improve the policy,
while meeting special constraints to allow the old policy to be close to the new one.

16

Trust region policy optimization (TRPO)

The weakness of the policy gradient (PG) algorithm is the step size α. If the learning
rate is not sensitive to the training process, the PG will severely encounter convergence
problems. When the step size is inappropriate, the policy corresponding to the updated
parameter is a worse policy. The updated parameters will be worse, so it is easy to cause
the learning performance to deteriorate and eventually collapse. Therefore, proper step
size is critical for reinforcement learning. What is the appropriate step size? The so-
called appropriate step size means that when the policy is updated, the value of the
return function cannot be worse. This is the problem that TRPO needs to solve. The
idea is to decompose the return function that is relevant to new policy into a return
function relevant to old policy and other terms. If the other terms are not less than
zero, the new policy can guarantee that the return function is monotonic increasing.
Let J(πψ) be decomposed as

J(πψ) = J(πψold) + Eτ∼πψ [
T∑
t=0

γtAπψold (st, at)]. (2.30)

Here we use πψold to denote the old policy, πψ to denote the new policy, and Aπ(s, a) =

Qπ(s, a)− Vπ(s) is called the advantage function.
We know that value function Vπ(s) is the average value of all action-value functions

with respect to the action probability in this state s. The action-value function Qπ(s, a)

is a value function under a single action a. So the advantage function Aπ(s, a) =

Qπ(s, a) − Vπ(s) denotes the advantage of the action-value function over the value
function in the current state. If Aπ(s, a) is greater than zero, it means that the action
is better than the average of actions. Otherwise, the current action a is not good.

Eq. 2.30 can be rewritten as

J(πψ) = J(πψold) +
T∑
t=0

∑
s

P (st = s|πψ)
∑
a

πψ(a|s)γtAπψold (s, a), (2.31)

where P (st = s|πψ)πψ(a|s) is the joint probability of (s, a),
∑

a πψ(a|s) is the marginal
distribution of the action a, that is, summing the entire action space at state s.∑

s P (st = s|πψ) finds the marginal distribution of the state s: the sum of the en-
tire state space. If we define

ρπ(s) = P (s0 = s) + γP (s1 = s) + γ2P (s2 = s) + · · · , (2.32)

then

J(πψ) = J(πψold) +
∑
s

ρπψ(s)
∑
a

πψ(a|s)Aπψold (s, a). (2.33)

17

Note that the distribution of the state s at this time is generated by the new pol-
icy, which means it depends heavily on the new policy. For an improved new pol-
icy πψ, if

∑
a πψ(a|s)Aψold(s, a) ≥ 0, then πψ is better than old policy. However, if∑

a πψ(a|s)Aψold(s, a) < 0, it is hard to optimise J(πψ).
TRPO first ignores the changes in the state distribution and still uses the state

distribution corresponding to the old policy. This technique is the first approximation
of the original cost function. In fact, when the old and new parameters are very close,
it is reasonable to replace the new state distribution with the old state distribution.
The original cost function becomes:

Lπψold (πψ) = J(πψold) +
∑
s

ρπψold (s)
∑
a

πψ(a|s)Aπψold (s, a). (2.34)

Consider that Lπψold (πψ) and J(πψ) are functions of policy πψ, they are matched to
first order (Kakade and Langford, 2002), that is,

Lπψold (πψold) = J(πψold)

∇ψLπψold (πψ)|ψ=ψold = ∇ψJ(πψ)|ψ=ψold . (2.35)

So near ψold, the policy that can improve L can also improve the original return function
J . Kakade and Langford (2002) proposed that the following bound holds:

J(πnew) ≥ Lπold(πnew)− CDmax
KL (πold‖πnew), (2.36)

where C = 4εγ
(1−γ)2

and Dmax
KL (πold‖πnew) = maxsDKL(πold(·|s)‖πnew(·|s)). Here

ε = max
s,a

Aπ(s, a) (2.37)

Eq. 2.36 gives the lower bound of J(π), and if we denote Mk(π) = Lπk(π) −
CDmax

KL (πk, π), then

J(πk+1) ≥Mk(πk+1)

J(πk) = Mk(πk)

J(πk+1)− J(πk) ≥Mk(πk+1)−Mk(πk), (2.38)

which shows that if the new policy πk+1 maximises Mk, then Mk(πk+1)−Mk(πk) ≥ 0,
and J(πk+1) − J(πk) ≥ 0. This new policy is the one we have been searching for. So
the question can be formalized as

max
ψ

Mψold(π) = Lπψold (πψ)− CDmax
KL (πψold,πψ). (2.39)

18

Figure 2.1: Monotonic improvement iteration

In each iteration, we search the best point of M and set it as the current policy. Then,
we re-compute the lower bound M of the new policy and repeat this iteration. The
policy will keep improving until it converges to a global or local optimal solution (See
Figure 2.1).

In practice, if using the coefficient C, the step sizes would be very small. One way
to take bigger steps in a robust way is to use KL-divergence between the new policy
and the old policy, which is the trust region constraint:

maxψ Lπψold (πψ)

s.t. Dmax
KL (πψold , πψ) ≤ δ. (2.40)

From Eq. 2.34 and in practice the average KL-divergence

D̄ρ
KL(πψ1 , πψ2) := Es∼ρ[DKL(πψ1 , πψ2)] (2.41)

is used, then the Eq. 2.40 turns to

maxψ
∑
s

ρπψold (s)
∑
a

πψ(a|s)Aπψold (s, a)

s.t. D̄ρold
KL (πψold , πψ) ≤ δ, (2.42)

We can see that the action a is still generated by new policy πψ. But the parameter
ψ of new policy π is unknown and so cannot be used to generate actions.

Now we need the second trick of TRPO, which processes action distributions using
importance sampling:∑

a

πψ(a|s)Aψold(s, a) = Ea∼πψold

[
πψ(a|s)
πψold(a|s)

Aπψold (s, a)

]
. (2.43)

19

Based on the definition of ρ(s), TRPO also uses 1
1−γEs∼ρπψold [· · ·] instead of

∑
s ρπψold (s)[· · ·].

Then Eq. 2.42 becomes the final theoretical optimization problem of TRPO:

maxψ L̂πψold (πψ) = Es∼ρψold ,a∼πψold

[
πψ(a|s)
πψold(a|s)

Aπψold (s, a)

]
s.t. D̄ρold

KL (πψold , πψ) ≤ δ, (2.44)

To solve 2.44 in practice, Taylor’s expansion is used in both objective and constraint
terms above:

L̂ψk(ψ) ≈ gT (ψ − ψk) g
.
= ∇ψL̂ψk(ψ)|ψk

D̄KL(ψ, ψk) ≈ 1
2
(ψ − ψk)TH(ψ − ψk) H

.
= ∇2

ψD̄KL(ψ, ψk)|ψk , (2.45)

where g is the policy gradient, H is called Fisher Information Matrix (FIM) that can
measure the sensitivity of the policy to the parameter ψ. Now the optimal problem of
Eq. 2.44 becomes:

ψk+1 = argmaxψ gT (ψ − ψk)

s.t.
1

2
(ψ − ψk)TH(ψ − ψk) ≤ δ. (2.46)

This can be solved analytically by the Lagrangian dual method:

ψk+1 = ψk +

√
2δ

gTH−1g
H−1g. (2.47)

One problem is that this may not satisfy the KL constraint due to the approximate
error introduced by the Taylor expansion. TRPO has modified this update rule by a
backtracking line search (Algorithm 3)

ψk+1 = ψk + αj

√
2δ

gTH−1g
H−1g, (2.48)

where α ∈ (0, 1) is the backtracking coefficient and j is the smallest non-negative
integer, so that πψk+1

satisfies the KL constraint.
Finally, we put everything together for TRPO (Algorithm 4).
TRPO has been shown to be relatively powerful and suitable for domains with high-

dimensional input. The combination of TRPO and generalised advantage estimation
(GAE) (Schulman, Moritz, Levine, Jordan, and Abbeel, 2016) is still one of the most
advanced RL technologies in continuous control. However, TRPO algorithms have some
disadvantages. We can see that for each model parameter update, the computation of

20

Algorithm 3: Line search for TRPO

Compute policy step 4k =
√

2δ

ĝTk Ĥ
−1
k ĝk

Ĥ−1
k ĝk

for j = 0, 1, · · · , L do

Compute update ψ = ψk + αj4k

if L̂ψk(ψ) ≥ 0 and D̄KL(ψ, ψk) ≤ δ then

accept the update and set ψk+1 = ψk + αj4k

break

end

end

Algorithm 4: TRPO: Trust region policy optimization

Initial policy parameter ψ0

for k = 0, 1, · · · do

Collect trajectories Dk on policy πk = π(ψk)

Estimate advantage function Âπkt using any advantage estimation algorithm
Estimate policy gradient ĝk
Use conjugate gradient iterations to obtain xk ≈ Ĥ−1

k ĝk

Estimate proposed step 4k ≈
√

2δ

xTk Ĥkxk
xk

Perform line search to obtain final update ψk+1 = ψk + αj4k

end

21

H is needed. Computing H is very time-consuming and it also requires a large number
of samples to approximate H. Generally, compared to other policy gradient methods
trained using a first-order optimizer, the sample efficiency of TRPO is lower. Due to
this scalability issue, TRPO is impractical in large deep networks. Proximal policy
optimization (PPO) was introduced to address these issues.

Proximal policy optimization (PPO)

Like TRPO, PPO also tries to take the update step as large as possible while the
update does not lead to performance collapse. But different to TRPO that trains its
optimisation problem by a second-order method, PPO chooses the first-order method
and other tricks so that the new update policy is close to the old one. There are two
variants of PPO: PPO-Clip and PPO-Penalty. In this thesis, we focus on PPO-Clip,
which is very simple to implement in practice.

PPO updates policies by solving the following optimisation problem:

ψk+1 = argmaxψL
CLIP
ψk

(ψ), (2.49)

where

LCLIPψk
(ψ) = Eτ∼ψk [

T∑
t=0

(min(
πψ(at|st)
πψk(at|st)

Âπkt , clip(
πψ(at|st)
πψk(at|st)

, 1− ε, 1 + ε)Âπkt)]. (2.50)

ε is a small parameter, and the advantage function will be clipped if the ratio πψ(at|st)
πψk (at|st)

between the new policy πψ and the old policy πψk is out of the range of (1 − ε) and
(1 + ε). The ratio is clipped at 1 − ε or 1 + ε depending on whether the advantage is
positive or negative (Figure 2.2).

The PPO algorithm is summarised in Algorithm 5. Reducing computational costs
while maintaining TRPO performance means that PPO is becoming increasingly pop-
ular in DRL tasks (Schulman, Wolski, Dhariwal, Radford, and Klimov, 2017; Heess,
TB, Sriram, Lemmon, Merel, Wayne, Tassa, Erez, Wang, Eslami, et al., 2017).

2.5 Variational inference

One of the core problems of modern statistics is to approximate a probability density
that is difficult to calculate. This problem is particularly important in Bayesian statis-
tics because modern Bayesian statistics relies on models where the posterior is difficult
to compute (Blei, Kucukelbir, and McAuliffe, 2017).

22

1 1+0

1- 10

Figure 2.2: Surrogate function LCLIP as a function of ratio.

Algorithm 5: Proximal policy optimization with clipped objective (PPO-
CLIP)

Initial policy parameter ψ0, threshold ε
for k = 0, 1, · · · do

Collect trajectories Dk on policy πk = π(ψk)

Estimate advantage function Âπkt using any advantage estimation algorithm
Compute policy update ψk+1 = argmaxψLCLIPψk

(ψ)

by taking K steps of mini-batch SGD, where
LCLIPψk

(ψ) = Eτ∼ψk [
∑T

t=0(min(
πψ(at|st)
πψk (at|st)Â

πk
t , clip(

πψ(at|st)
πψk (at|st) , 1− ε, 1 + ε)Âπkt)]

end

23

MCMC (Hastings, 1970; Gelfand and Smith, 1990) has been the main approximate
inference paradigm for decades. It has been developed into an indispensable method
for modern Bayesian statistics (Hastings, 1970; Geman and Geman, 1984; Gelfand and
Smith, 1990; Robert and Casella, 2013).

However, when the data set is large or the model is very complex, we need an
approximate algorithm faster than a simple MCMC algorithm. At this time, the vari-
ational inference is one good alternative to approximate Bayesian inference.

Variational inference (VI) is a machine learning method designed to approximate
probability densities (Jordan, Ghahramani, Jaakkola, and Saul, 1999; Wainwright, Jor-
dan, et al., 2008). It is widely used in Bayesian inference to approximate the posterior
density of the Bayesian model, which is an alternative method to Markov Chain Monte
Carlo (MCMC) sampling. Moreover, variational inference is faster than MCMC, so it
is easier to extend to large scale problems (Blei et al., 2017).

Consider the joint density of observations x and latent variables z,

p(x, z) = p(z)p(x|z). (2.51)

Latent variables are first extracted by the Bayesian model from prior density p(z) and
then related to the observations based on the likelihood p(x|z). All Bayesian inference
methods focus on computing the posterior p(z|x). However, the computation of this
posterior if often intractable when the Bayesian model is complex. So approximate
inference is required.

The main idea of variational inference is to use optimization not to use sampling.
Suppose we have a family of approximate densities Q over the latent variables. Vari-
ational inference tries to find the member of this family that minimizes the Kullback-
Leibler (KL) divergence to the posterior p(z|x) (See Figure 2.3):

q∗(z) = argmin
q(z)∈Q

DKL(q(z)||p(z|x)) (2.52)

Then we approximate the posterior p(z|x) with q∗(z). We can see that the inference
problem now turns into an optimization problem by variational inference. The differ-
ence between MCMC and variational inference is: MCMC sample a Markov chain and
approximate the posterior with samples from the Markov chain; however, variational
inference algorithms try to solve an optimization problem and approximate the pos-
terior probability with the result of the optimization. MCMC methods often require
more calculations. Variational inference methods can be faster than MCMC because
they can use some optimisation tricks (Robbins and Monro, 1951; Welling and Teh,

24

Figure 2.3: Variational inference.

2011; Ahmed, Aly, Gonzalez, Narayanamurthy, and Smola, 2012). The geometry of the
posterior is another factor. When the posterior of a mixture model has multiple modes,
variational inference performs better than MCMC technique, even for small datasets
(Kucukelbir, Ranganath, Gelman, and Blei, 2015). It has been emphasized that both
MCMC and variational inference techniques can be applied to compute intractable
densities (Blei et al., 2017; Tang and Agrawal, 2018).

The goal of variational inference is to find the best q(z) that optimises Eq. 2.52.
However, computation of the posterior p(z|x) is intractable because

p(z|x) =
p(z)p(x|z)

p(x)
, (2.53)

where the denominator of Eq. 2.53 (also called the evidence)

p(x) =

∫
p(x, z)dz (2.54)

is hard to compute: a closed-form representation of the integral is not able to be
computed in most instances or it needs exponential computational time to compute
numerically.

Expanding the objective function of Eq. 2.52, we have

DKL(q(z)‖p(z|x)) = Eq[log q(z)]− Eq[log p(z|x)]

= Eq[log q(z)]− Eq[log p(z, x)] + log p(x). (2.55)

25

Denoting the variational lower bound (or evidence lower bound (ELBO)) function
as:

ELBO(q) = Eq[log p(z, x)]− Eq[log q(z)], (2.56)

we can see that minimizing the KL divergence is equivalent to maximizing the ELBO,
because log p(x) is a constant of q(z). Since the KL-divergence is always greater than
or equal to zero (Kullback and Leibler, 1951), and from Eq. 2.55 and Eq. 2.56:

log p(x) = DKL(q(z)‖p(z|x)) + ELBO(q). (2.57)

This means log p(x) ≥ ELBO(q) for any q(z), the ELBO lower-bounds the (log) evi-
dence. Hence the ELBO function can also be rewritten as

ELBO(q) = Eq[log p(x|z)p(z)]− Eq[log q(z)]

= Eq[log p(x|z)] + Eq[p(z)]− Eq[log q(z)]

= Eq[log p(x|z)]−DKL(q(z)||p(z)). (2.58)

To Maximise ELBO is to find a q(z) that maximises the likelihood and at the same
time q(z) is as close as possible to the prior p(z).

2.6 Bayesian neural networks

Bayesian neural networks (BNNs) are a combination of Bayesian statistics and deep
learning. They includes uncertainty in deep learning model predictions. All weights
in Bayesian neural networks (Graves, 2011; Blundell, Cornebise, Kavukcuoglu, and
Wierstra, 2015) are probability distributions rather than fixed values.

The representation and calculation of learning must be robust under weight per-
turbations, but the amount of perturbations exhibited by each weight should also be
learned in a coherent manner to explain the variability of the training data. Thus
Bayesian neural networks actually train an ensemble of networks: each network has its
weights drawn from a shared, learnt probability distribution. Bayesian neural network
is a probabilistic model p(y|x; θ): given an input x, the BNN assigns a probability to
each possible output y, using the set of parameters or weights θ. In the past, BNN
models were rarely used because they require more parameters for optimization, which
can make the model difficult to train. Recently, however, BNNs have become increas-
ingly popular (Gal and Ghahramani, 2015; Shridhar, Laumann, and Liwicki, 2019;
Liu, Zhao, Nacewicz, Adluru, Kirk, Ferrazzano, Styner, and Alexander, 2019; Islam,

26

Inputs:

Weights:

Hidden Layer:

Weights:

Outputs:

(Distribution:)

(Distribution:)

Figure 2.4: A Bayesian neural network example with one hidden layer.

2016; Zhao, Liu, Oler, Meyerand, Kalin, and Birn, 2018; Kendall, Badrinarayanan, and
Cipolla, 2015; Mobiny, Nguyen, Moulik, Garg, and Wu, 2019), and new technologies
are being developed to include uncertainty in models while using the same number of
parameters.

Given a set of training examples D = (xi, yi)i, BNNs compute the posterior distri-
bution of the weights p(θ|D) and use this distribution to compute predictions ŷ about
unseen data x̂ . The predictive distribution is given by

p(ŷ|x̂) = Ep(θ|D)[p(ŷ|x̂; θ)]. (2.59)

Each possible setting of the weights, according to the posterior distribution, makes a
prediction about the unknown label given the test data item x̂.

Graves (2011); Blundell et al. (2015) and Hinton and Van Camp (1993) applied vari-
ational approximation to the Bayesian posterior distribution on the weights. Training
by variational inference, a BNN can learn the parameters of these distributions instead
of learning the weights directly. Based on the introduction of section 2.5, variational
learning finds the parameters φ of a distribution on the weights q(θ;φ) that minimises
the Kullback-Leibler (KL)divergence with the true Bayesian posterior on the weights
(He, Zhuang, Liu, He, and Lin, 2019). That is to say, find φ∗, to maximize the varia-

27

tional lower bound:

φ∗ = arg min
φ

(DKL[q(θ;φ)||p(θ|D)])

= arg max
φ

Eθ∼q(·;φ)[log(D|θ)]−DKL[q(θ;φ)||p(θ)]

= arg min
φ

DKL[q(θ;φ)||p(θ)]− Eθ∼q(·;φ)[log(D|θ)].

The first term DKL[q(θ;φ)||p(θ)] is the model complexity cost and the second term is
the expected value of the likelihood.

Uncertainty in predictions caused by the uncertainty in weights is called epistemic
uncertainty (Der Kiureghian and Ditlevsen, 2009; Matthies, 2007). More data can
reduce this uncertainty. Therefore, in areas where there is little data, the epistemic
uncertainty is higher, and in areas where there is more training data, it is lower. The
uncertainty from the built-in noise in the data is called aleatoric uncertainty. Even if
we get more data, we can’t reduce it. In this thesis, we’ll use a Gaussian distribution
for the variational posterior, parameterised by φ = (µ, σ). Here µ is the mean vector
of the Gaussian distribution and σ the standard deviation. Instead of parameterising
the neural network with weights θ directly, we train µ and σ and therefore double the
number of parameters compared to a basic neural network.

2.7 Intrinsic reward driven exploration

Recall that in RL, at time step t ≥ 0, the agent is in state st ∈ S, takes an action at ∈ A,
receives extrinsic reward ret and transitions to the next state st+1 ∼ P (st+1|st, at). The
objective of RL is to find a policy π to maximize the discounted cumulative reward:

J = Eπ[
∞∑
t=0

γtret], (2.60)

where π is a mapping (neural network in this thesis) from a state to a distribution
over actions so that at ∼ π(·|st), γ ∈ [0, 1) is the discount factor. These rewards ret are
considered as extrinsic rewards because they are provided by the environment and are
task-specific.

Many amazing results have been obtained with the help of extrinsic rewards. How-
ever, when rewards are sparse in the environment, these methods are unsuccessful in
most cases because the agent cannot subsequently learn the desired behaviour of the
target task (Florensa, Held, Geng, and Abbeel, 2018). Moreover, behaviours learned

28

by agents in a special task is hardly reusable. Then it is difficult for agents to gener-
alize abstract decisions in the environment (Sutton, Precup, and Singh, 1999; Bengio,
Louradour, Collobert, and Weston, 2009; Aubret et al., 2019). This requires us to
add intrinsic rewards rit to encourage the agent to explore efficiently to find the sparse
extrinsic rewards (Schmidhuber, 1991b,a; Ryan and Deci, 2000; Silvia, 2012; Pathak
et al., 2017; Barto, 2013). The objective function of RL in Eq. 2.60 can be rewritten
as:

J = Eπ[
∞∑
t=0

γt(ret + ηrit)], (2.61)

where η is the trade-off between the intrinsic reward and extrinsic reward. Intrinsic
rewards can be used to explain the need to explore the environment and to discover
target states, and more broadly as a way to learn new skills, just like babies or other
organisms spontaneously explore their environment (Gopnik, Meltzoff, and Kuhl, 1999;
Georgeon, Marshall, and Ronot, 2011; Baranes and Oudeyer, 2013).

In recent years, intrinsic reward-driven exploration is increasingly used in reinforce-
ment learning and can be grouped into three broad classes:

The first is to encourage agents to explore "new" states (Lopes, Lang, Toussaint,
and Oudeyer, 2012; Poupart, Vlassis, Hoey, and Regan, 2006), which is also called
"count-based" method. Counted-based method adds an intrinsic reward based on a
state visit count function:

rit =
1

n(st)
, (2.62)

where n(st) is the number of times agent has visited state st (counting the first visit
as n(st) = 1). However, this method is obviously only computationally tractable for
environments with relatively small number of discrete states.

The second belongs to the category of methods that predict the next state given
the current state. The intrinsic reward is computed by the difference between the
prediction and the true value of the next state, which can be derived from the definition
of surprisal.

The third is to encourage agents to perform actions that reduce uncertainty in
predictions of the consequences of their own behaviour (Houthooft et al., 2016; Mo-
hamed and Rezende, 2015; Schmidhuber, 1991b, 2010; Chentanez, Barto, and Singh,
2005). The uncertainty is reduced when the agent maximises the information gain
about its belief of environmental dynamics. This is done equivalently by maximising
the Bayesian surprise (Itti and Baldi, 2005, 2006).

29

Since the latter two classes (surprisal based and Bayesian surprise based) are both
related to surprise, we can collectively call them "surprise driven exploration". This
thesis will focus on surprise driven exploration and I will introduce surprisal and
Bayesian surprise in details in the following section.

2.7.1 Surprise-driven reinforcement learning

All surprise driven exploration methods discussed in this thesis are based on model-
based RL. In model-based RL, the agent maintains one or more models M ∈ M,
(where M : S ×A → S,M the model/hypotheses space), that predict the next state
st+1 based on the current state st and the action at about to be taken. The model
prediction is denoted as ŝt+1.

There has been a number of definitions of surprise, some of which have previously
appeared in the literature. We use U(st+1) to denote the surprise in all cases in this
thesis and to form the basis for intrinsic reward to encourage exploration of unex-
pected states (Houthooft et al., 2016; Achiam and Sastry, 2017; Pathak et al., 2017;
Mohamed and Rezende, 2015; Schmidhuber, 1991b; Chentanez et al., 2005). The agent
is rewarded for surprise of the unknown as gauged by its model of the environment.
Throughout training, the model is improved to be more accurate (and so less surprised)
next time it encounters an already explored state. The hope is that this methodical
approach to exploration will result in a speedier arrival of the agent at the states with
non-zero extrinsic reward. In this thesis, the surprise is considered as graded rather
than binary (surprised or not surprised), different values of U(s) denote different levels
of surprise.

Surprisal

One popular used surprise definition is the so-called surprisal (Traibus, 1961), which
is the negative log-likelihood (NLL) of the next state in RL tasks

UNLL(st+1) = − logP (st+1|st, at). (2.63)

In information theory, it is also called information content or self-information, which
represents the quantity of information brought by new events. The quantity can inter-
pret the level of "surprise" of this event. If an event with a low likelihood occurs, then
the surprisal will be large.

Although Tribus’s definition of surprisal does not explicitly mention conditional
probability, there is always an implicit assumption that surprisal depends on the context

30

or model (Barto, Mirolli, and Baldassarre, 2013). So when focusing one specific model
M , we can assume that the surprisal is conditioned on this model. Then we can rewrite
Eq. 2.63 as

UM
NLL(st+1) = − logP (st+1|st, at,M). (2.64)

Without causing confusion, we can use the term surprisal to mean both UNLL(st+1) and
UM
NLL(st+1). And without special instructions, surprisal refers specifically to UM

NLL(st+1).
Methods based on surprisal in recent years (Achiam and Sastry, 2017; Pathak et al.,

2017) all adopted Eq 2.64. We can see from Eq. 2.64 that maximising the surprisal is
equivalent to maximising the negative log-likelihood of the state, given the model M .
Agents choose actions on their environment to suppress the difference between their
predictions and actual experience to avoid being surprised.

Surprisal UM
NLL(st+1) is intuitive, simple and easy to compute, but it does not handle

stochastic environments well, because it only measures the surprise at a single point
(point estimate) so that the model can be over confident.

Bayesian surprise

An alternative is Bayesian surprise. In Bayesian surprise’s definition, the agent cap-
tures its environment’s background information by a prior belief distribution {P (M |st, at)}M∈M,
whereM is the model space. Bayesian surprise then measures the difference between
the prior belief P (M |st, at) and the posterior belief distribution P (M |st, at, st+1) over
the model spaceM, and the posterior belief distribution updated by Bayes’ rule with
the newly observed state (first used in RL by Storck et al. (1995)):

P (M |st, at, st+1) =
P (M |st, at)P (st+1|st, at,M)

P (st+1|st, at)
(2.65)

Formally, Bayesian surprise is defined as the Kullback-Leiber (KL) divergence between
the prior and the posterior beliefs about the dynamics of the environment (Itti and
Baldi, 2005, 2006):

UBayes(st+1) = DKL[P (M |st, at)||P (M |st, at, st+1)]. (2.66)

One problem with Bayesian surprise is that the agent does not express surprise until
it updates its belief, which is inconsistent with the instantaneous response to surprise
displayed by neural data (Faraji, 2016) and will also be time-consuming.

Faraji, Preuschoff, and Gerstner (2016) introduced a modification of Bayesian sur-
prise referred to as the confidence-corrected surprise (CC). They first assumed the

31

agent has a flat prior (uniform distribution, the agent believes that all models are
equally likely) belief, then for each novel state st+1, they gave the flat posterior belief
distribution about M derived by Bayes’ rule:

P flat(M |st, at, st+1) =
P (st+1|st, at,M)∫

M
P (st+1|st, at,M)dM

. (2.67)

The confidence-corrected surprise is a measure of difference between an agent’s prior
and this flat posterior belief,

UCC(st+1) = DKL[P (M |st, at)||P flat(M |st, at, st+1)]. (2.68)

This flat posterior is computed by the Bayesian update rule and therefore is also time-
consuming to compute.

Both surprisal and Bayesian surprise have already been applied as an intrinsic
reward to deep reinforcement learning in recent years. To use Bayesian surprise for RL
tasks, Houthooft et al. (2016) proposed a surprise-driven exploration strategy called
VIME (variational information maximizing exploration). The idea is that agents should
take actions to minimise dynamic uncertainty, which is equivalent to maximising the
sum of reductions in entropy (Sun, Gomez, and Schmidhuber, 2011):∑

t

(H(M |st, at)−H(M |st, at, st+1)). (2.69)

From Eq. 2.8 we have:

I(st+1;M |st, at) = H(M |st, at)−H(M |st, at, st+1), (2.70)

We can see from Eq. 2.69 and Eq. 2.70 that for each time step t, the agent is trying
to maximise the mutual information I(st+1;M |st, at) between st+1 and the model M .
And

I(st+1;M |st, at)

=

∫
S

∫
M
P (st+1,M |st, at) log

P (st+1,M |st, at)
P (st+1|st, at)P (M |st, at)

dMdst+1

=

∫
S

∫
M
P (M |st, at, st+1)P (st+1|st, at) log

P (M |st, at, st+1)P (st+1|st, at)
P (st+1|st, at)P (M |st, at)

dMdst+1

=

∫
S

∫
M
P (M |st, at, st+1)P (st+1|st, at) log

P (M |st, at, st+1)

P (M |st, at)
dMdst+1

=

∫
S
P (st+1|st, at)

∫
M
P (M |st, at, st+1) log

P (M |st, at, st+1)

P (M |st, at)
dMdst+1

= Est+1∼P (·|st,at)[DKL[P (M |st, at, st+1)||P (M |st, at)]]. (2.71)

32

The last line of Eq. 2.71 shows that maximising the mutual information I(st+1;M |st, at)
is equivalent to maximising

DKL[P (M |st, at, st+1)||P (M |st, at)], (2.72)

which is a reversed form of Bayesian surprise DKL[P (M |st, at)||P (M |st, at, st+1)] we
defined in Eq. 2.66. Although KL-divergence is not symmetric, experiments in VIME
paper showed that there is no significant difference between these two KL divergence
variants when we choose them as the intrinsic reward.

VIME achieves significantly better performance compared to heuristic exploration
methods across a variety of continuous control tasks with sparse rewards. However, to
compute each reward, VIME needs to calculate the gradient at each time step, through
a Bayesian neural network (BNN)(Graves, 2011; Blundell et al., 2015) used to imple-
ment the agent’s model. This requires a forward and a backward pass, which means if
the trajectory length is T , VIME needs an extra T back gradient calculations. This will
definitely result in reduced training speed. Achiam and Sastry (2017) compared VIME
with surprisal and showed that although surprisal does not perform as well as VIME,
it is much faster. So Burda, Edwards, Pathak, Storkey, Darrell, and Efros (2018) chose
this surprisal as an intrinsic reward and apply it to train the agent in large scale RL
environments.

So in summary, the intrinsic reward-driven exploration paradigm enhances an agent’s
ability to explore the environment, and learn skills independently of the specific task
(Aubret et al., 2019), and even create state representations with meaningful features.
Since intrinsic reward-driven exploration does not need expert supervision, it is easy
to generalise across environments.

33

Chapter 3

VASE: Variational Assorted Surprise

Exploration

Note: Some portions of this chapter are taken from my own work (Xu,

McCane, and Szymanski, 2019).

Exploration in environments with continuous control and sparse rewards remains a
key challenge in reinforcement learning (RL). Recently, surprise has been used as an in-
trinsic reward that encourages systematic and efficient exploration. In this chapter, we
introduce a new definition of surprise and its RL implementation named Variational
Assorted Surprise Exploration (VASE). VASE uses a Bayesian neural network as a
model of the environment dynamics and is trained using variational inference, alter-
nately updating the accuracy of the agent’s model and policy. Our experiments show
that in continuous control sparse reward environments VASE outperforms surprisal
and Bayesian surprise based methods.

3.1 Introduction

RL trains agents to act in an environment so as to maximise cumulative reward. The
resulting behaviour is highly dependent on the trade-off between exploration and ex-
ploitation. During training, the more the agent departs from its current policy, the
more it learns about the environment, which may lead it to a better policy; the closer
it adheres to the current policy, the less time wasted exploring less effective options.
How much and where to explore has an immense impact on the training and ultimately
on what the agent learns. Designing exploration strategies, especially for increasingly
complex environments, is still a significant challenge.

34

A common approach to exploration strategies is to rely on heuristics that introduce
random perturbations into the choices of actions during training, such as ε–greedy
(Sutton and Barto, 1998) or Boltzmann exploration (Mnih et al., 2015). These meth-
ods instruct the agent to occasionally take an arbitrary action that may drive it into
a new experience. Another way is through the addition of noise to the parameter
space of the agent’s policy neural network (Fortunato, Azar, Piot, Menick, Hessel, Os-
band, Graves, Mnih, Munos, Hassabis, Pietquin, Blundell, and Legg, 2018; Plappert,
Houthooft, Dhariwal, Sidor, Chen, Chen, Asfour, Abbeel, and Andrychowicz, 2018),
which varies the policy itself to a similar random exploration net effect. These strate-
gies can be highly inefficient because they are a result of random behaviour, which is
especially problematic in high dimension state-action spaces (common in discretised
continuous state-action space environments) because of the curse of dimensionality.
Random exploration is also extremely inefficient in environments with sparse rewards,
where the agent ends up wandering aimlessly through the state-space, learning nothing
until (by sheer luck) it chances upon a reward.

Not surprisingly, more methodical approaches were devised, which provide the agent
with intrinsic rewards that encourage efficient exploration. The idea that agents should
explore by intrinsic reward can be traced back to early 1990’s. In 1991, Schmidhuber
(1991a) proposed that an agent trained by reinforcement learning can translate mis-
matches between expectations and reality into curiosity/surprise rewards. The agents
are driven to explore surprising aspects of the world, and hence to explore the environ-
ment efficiently. This idea has been inherited and carried forward for the next thirty
years, especially in recent years. Thanks to increases in computing power, people have
verified this idea in large-scale data and scenarios (Achiam and Sastry, 2017; Pathak
et al., 2017; Burda et al., 2018; Houthooft et al., 2016). As we introduced in Chapter
2 section 2.7, Pathak et al. (2017); Burda et al. (2018) and Achiam and Sastry (2017)
choose surprisal as the intrinsic reward, which belongs to the prediction-error method
class. And Houthooft et al. (2016) proposed an algorithm VIME that tries to maximise
the Bayesian surprise, it belongs to the information gain method class.

In this chapter, we propose a new definition of surprise, which we call assorted
surprise. The assorted surprise drives our agents’ intrinsic reward function. It can
also handle uncertainty well, but it is more efficient than Bayesian surprise-driven
exploration.

To compute and use assorted surprise for guiding exploration, we propose an algo-
rithm called VASE (Variational Assorted Surprise Exploration) in a model-based RL

35

framework (see Figure 3.1).
VASE alternates the update step between the agent’s policy and its model of the

environment dynamics. The policy is implemented with a multilayer feed-forward
(MLFF) neural network and the dynamics model with a Bayesian neural network
(BNN (Graves, 2011; Blundell et al., 2015; Hinton and Van Camp, 1993)). We evaluate
the performance of our method against other surprise-driven methods on continuous
control tasks with sparse rewards. Our experimental results show VASE’s superior
performance.

3.2 Variational assorted surprise exploration (VASE)

In this chapter, we focus on continuous control RL environments with sparse rewards.
The state space and action space are both continuous spaces, and these environments
only provide very sparse extrinsic rewards. So the agent needs an intrinsic-reward-
driven strategy to explore the environment and collect these sparse extrinsic rewards
provided by the environment.

3.2.1 Assorted surprise

To conquer the numerous shortcomings of existing definitions for surprise discussed in
Section 2.7.1, we propose a novel intrinsic reward called assorted surprise, and inspired
by the idea of confidence-corrected surprise (Faraji et al., 2016), we note that in RL
the definition of surprise should have the following characteristics:

1. subjectivity – "subjectivity" here has two meanings. On the one hand, different
observers will have different surprises about the same event. Similarly, if the agent
has multiple models at the same time, then for the same state st+1, the surprisal
UM
NLL(st+1) corresponding to each model is different. On the other hand, the agent

should hold subjective beliefs about the environment captured through {P (M)}; the
surprise depends on an agent’s belief and this belief can be updated during learning;

2. consistency – based on the same belief, the agent should be more surprised by states
with lower likelihood; on the contrary, when the agent observes a state that has lower
likelihood, if it has a high confident (low entropy) belief at this time, then it should be
more surprised.

36

Environment

Policy

(a) Model-free RL

Environment

Policy

Model

Surprise

(b) Model-based/surprise-driven RL

Figure 3.1: Model-free RL vs. model-based/surprise-driven RL with s for state, re for
the extrinsic (environment-driven) reward, a for action, surprise for intrinsic (agent-
driven) reward, the model of the environment makes a prediction of the next state
ŝ′.

37

3. instancy – the agent should be surprised immediately when it observes a new state
from the environment, without the need to update its belief first.

Obviously Bayesian surprise UBayes(st+1) doesn’t satisfy the instancy characteristic,
because we can only compute the Bayesian surprise after the agent updates its belief.
Furthermore, this update will also cause time-consuming. For the surprisal UM

NLL(st+1),
since it only considers one single model M , we always get same surprise based on the
same event.

Our assorted surprise idea comes from ensemble learning (Opitz and Maclin, 1999;
Rokach, 2010). Ensemble learning is a technique that trains multiple models to solve
the same problem, and combines them to get better, more reliable predictions with
lower variance and/or lower bias. We suppose the agent has created many models,
each model can predict the next state st+1 that generates different surprisal:

M1 : UM1
NLL(st+1) = − logP (st+1|st, at,M1)

M2 : UM2
NLL(st+1) = − logP (st+1|st, at,M2)

...

...

Mk : UMk
NLL(st+1) = − logP (st+1|st, at,Mk) (3.1)

...

...

Based on ensemble learning theory (Kuncheva and Whitaker, 2003; Sollich and
Krogh, 1996), when there are large differences among models, ensemble techniques
tend to produce better results. So we ensemble these models together and give our
assorted surprise (AS):

P (M1|st, at)UM1
NLL(st+1) + P (M2|st, at)UM2

NLL(st+1) + · · ·

=

∫
M
P (M |st, at) (− logP (st+1|st, at,M)) dM

= EM∼P (·|st,at)[− logP (st+1|st, at,M)]. (3.2)

In addition, to address the above consistency characteristic, we subtract the entropy
of P (M |st, at), and use this final form as the intrinsic reward to drive the agent to
explore, which we refer to as assorted surprise for exploration (ASE):

UASE(st+1) =EM∼P (·|st,at)[− logP (st+1|st, at,M)]− δH
(
P (M |st, at)

)
, (3.3)

38

the first term, EM∼P (·|st,at)[− logP (st+1|st, at,M)], we call the assorted surprise term,
and the second term, H

(
P (M |st, at)

)
, the confidence term. Hyper-parameter δ is a

trade-off between the surprise term and confidence term.
We will next demonstrate that the assorted surprise satisfies all three characteristics

we mentioned above. Subjectivity comes from the assorted surprise term in Eq. 3.3
because it is an expectation over the agent’s belief in the veracity of each of the models.
It is also the sum of the Bayesian surprise UBayes(st+1) and the surprisal UNLL(st+1) (not
UM
NLL(st+1)) as shown in the following lemma.

Lemma 1 (Assorted surprise is the sum of Bayesian surprise and surprisal).

EM∼P (·|st,at)[− logP (st+1|st, at,M)] = UBayes(st+1) + UNLL(st+1) (3.4)

Proof.

EM∼P (·|st,at)[− logP (st+1|st, at,M)]

= −
∫
M
P (M |st, at) logP (st+1|st, at,M)dM

= −
∫
M
P (M |st, at) log

P (M |st, at, st+1)P (st+1|st, at)
P (M |st, at)

dM

=

∫
M
P (M |st, at) log

P (M |st, at)
P (M |st, at, st+1)

dM −
∫
M
P (M |st, at) logP (st+1|st, at)dM

= DKL[P (M |st, at)||P (M |st, at, st+1)]− logP (st+1|st, at)

= UBayes(st+1) + UNLL(st+1),

This also means that assorted surprise is subjective due to the contribution of UBayes.
However, the expectation in Eq. 3.3 does not require evaluation of P (M |st, at, st+1),
so there is no requirement to update the agent’s belief in order to compute assorted
surprise thus satisfying the instancy characteristic.

The confidence term of Eq. 3.3, H(P (M |st, at)), is the entropy of P (M |st, at).
This term was added for confidence correction of assorted surprise so that satisfies
the consistency requirement. A confident agent will have a low entropy, and therefore
any surprising event according to the assorted surprise term will remain surprising.
Whereas an uncertain agent will have a large entropy and their overall surprise will
be reduced because they would be equally surprised by many events. That is, confi-
dent agents are more surprised when their beliefs are violated by unlikely events than
uncertain agents.

39

Assorted surprise captures the positive elements of both Bayesian surprise and
confidence-corrected surprise. It implicitly computes the difference in belief as in
Bayesian surprise without needing to update the belief first, and it can be computed
very fast as in confidence-corrected surprise without needing to maintain the idea of a
naive observer. In this chapter, it is hypothesised that:

(3.1) The agent driven by assorted surprise will perform better than those driven
by surprisal.

(3.2) Training speed of assorted surprise algorithm runs faster than Bayesian sur-
prise based algorithm.

(3.3) In the environment where rewards can be obtained at each time step, adding
intrinsic reward will not reduce the agent’s exploration efficiency.

3.2.2 VASE implementation

We have discussed the advantages of assorted surprise, but before applying it to practi-
cal problems, we need to solve some issues. First, many ensemble methods like boosting
(Schapire, 1990) and bagging (Breiman, 1996) combine small learners together to con-
vert weak learners to strong ones (Zhou, 2012). However, this is infeasible if each model
M is a deep neural network with a large number of parameters. We don’t want to cre-
ate so many big models. In addition, computing the posterior distribution P (M |st, at)
is intractable.

There are four possible regimes for creating the agent’s model:

1. There is a single deterministic model

2. There is one model that produces a distribution over new states

3. There is a distribution of models, each of which is deterministic

4. There is a distribution of models, each of which produces a distribution over
states.

As an example, the model for case 1 could be a traditional neural network, case 2
variational auto-encoder, case 3 Bayesian neural network and case 4 Bayesian varia-
tional autoencoder. In cases 2-3, the outcome is a distribution over states and we are
free to choose the most convenient formalism. For this chapter we choose case 3 as
in (Baldi and Itti, 2010). With the help of Bayesian neural network and variational
inference technique introduced in Chapter 2, we can solve the above issues at the same
time.

40

Environment

Policy:

BNN Model:

Surprise

Figure 3.2: VASE-driven RL with s for state, re for the extrinsic (environment-driven)
reward, a for action, surprise for intrinsic (agent-driven) reward, and ŝ′ the output of
BNN model.

41

We construct a BNN dynamics model fm(st, at,Θ), where Θ ∈ Θ is a random
variable describing the parameters of the model (see Figure 3.2), Θ the parameter
probability space. BNN can be seen as a distribution of models M , where a sample
of network parameters θ according to distribution P (θ) is analogous to generating a
single prediction of the next state according to P (M). Note that each BNN has the
same structure, which means Θ ⊂M. The prior distribution P (θ) changes to posterior
P (θ|D) when BNN is trained by D = {st, at, st+1}.

Since the posterior P (θ|st, at) in Eq. 3.3 is intractable, we turn to variational
inference (Bishop, 2006) to approximate it with a fully factorised Gaussian distribution
(Graves, 2011; Blundell et al., 2015; Hinton and Van Camp, 1993)

q(θ;φ) =

|Θ|∏
i=1

N (θi;µi, σ
2
i), (3.5)

where θi is the ith component of θ, and φi = (µi, σi). q(θ;φ) is also called variational
posterior distribution. The use of q(θ;φ) in place of P (θ|st, at) changes the definition
of surprise from Eq. 3.3 to one we call variational assorted surprise for exploration
(VASE):

UVASE(st+1) = Eθ∼q(·;φ)[− logP (st+1|st, at, θ)]− δH(q(θ;φ)). (3.6)

Since the output of the model for sample θ gives the prediction of the next state
ŝt+1 = fm(st, at, θ), we define P (st+1|st, at, θ) by measuring the deviation of ŝt+1 from
st+1 under the assumption that states are normally distributed:

P (st+1|st, at, θ) =
1√

2πσ2
c

e−||ŝt+1−st+1||2/(2σ2
c), (3.7)

where σc is an arbitrarily chosen constant, ||ŝt+1 − st+1|| is the norm of the difference
vector between the prediction of the next state and the true next state.

N samples of θ ∼ q(·;φ) give N predictions for the next state from the BNN, which
allows us to estimate the first term of Eq. 3.6 with the average:

Eθ∼q(·;φ)[− logP (st+1|st, at, θ)] ≈
1

N

N∑
n=1

(
− logP (st+1|st, at, θ[n])

)
, (3.8)

where θ[n] is the nth sample of Θ drawn from q(θ;φ) and P (st+1|st, at, θ[n]) is evaluated
according to Eq. 3.7.

42

Since q(θ;φ) is a fully factorised Gaussian distribution, the second term of Eq. 3.6
is straightforward to evaluate:

H
(
q(θ;φ)

)
=

|Θ|∑
i=1

H(N (θi;µi, σ
2
i))

=
1

2

|Θ|∑
i=1

log(2πeσ2
i). (3.9)

The last thing remaining is to ensure q(θ;φ) is as close as possible to P (θ|D).
Variational inference uses Kullback-Leibler (KL) divergence for measuring how different
q(θ;φ) is from P (θ|D):

DKL[q(θ;φ)||P (θ|D)]

=

∫
θ

q(θ;φ) log
q(θ;φ)

P (θ|D)
dθ

= DKL[q(θ;φ)||P (θ)]− Eθ∼q(·;φ)[logP (D|θ)] + logP (D). (3.10)

This difference is minimised by changing φ, which is equivalent to maximising the
variational lower bound (Bishop, 2006):

L[q(θ;φ),D] = Eθ∼q(·;φ)[logP (D|θ)]−DKL[q(θ;φ)||P (θ)], (3.11)

which does not require evaluation of P (θ|D). In this thesis, the prior distribution of θ
is taken to be

P (θ) =

|Θ|∏
i=1

N (θi; 0, σ2
m), (3.12)

where σm is set to arbitrary value, and the expectation of log likelihood of P (D|θ) is
evaluated as in Eq. 3.8.

When training BNN, the local reparameterisation trick (Kingma, Salimans, and
Welling, 2015) is used (See Figure 3.3). In VASE’s original form, it samples from
θ, which is a random node and approximated by q(θ; (µ, σ)) of the true posterior.
Back-propagation algorithm cannot flow through a random node. A new parameter ε
is introduced to reparameterise θ, so as to back-propagate through the deterministic
nodes.

The entire training procedure is listed in Algorithm 6. In this chapter, we choose
Trust Region Policy Optimization (TRPO) (Schulman et al., 2015) that we introduced
in Chapter 2 as our RL policy update algorithm in all of our experiments. However, it
should be noted that our surprise-driven method can be embedded into any other RL
algorithms.

43

Algorithm 6: Variational Assorted Surprise Exploration (VASE)

Initialise policy neural network fπ with parameters ψ
Initialise agent’s BNN model fm:

Initialise q(θ;φ) with parameters φ
Initialise prior distribution P (θ)

Initialise experience buffer R.
Reset the environment getting (s0, re(s0)).
for each iteration n do

for each time step t do

Get action at ∼ fπ(st, ψ)

Sample θ N times according to q(θ;φ)

Evaluate N predictions ŝt+1 = fm(st, at, θ)

Take action at getting (st+1, re(st+1))

Compute intrinsic surprise UVASE(st+1)

Construct cumulative reward r(st+1) = re(st+1) + ηUVASE(st+1)

Add new (st, at, st+1, r(st+1)) to R

end

Update fm by maximising Eq. 3.11, with D sampled randomly from R

Update fπ using TRPO.
end

44

: Deterministic node

:Random node

Original form Reparametrised form

BackProp

Figure 3.3: Reparameterisation trick.

3.3 VASE for continuous control tasks with sparse

rewards

3.3.1 Visualising exploration efficiency

For illustrative purposes, we begin the experimental evaluation of VASE by testing it on
a simple 2D Plane environment (S ⊂ R2,A ⊂ R2) which lends itself to a visualisation
of the agent’s exploration efficiency. The observation space is a square on the 2D plane
((x, y) ∈ [−1, 1]× [−1, 1]), centred on the origin. The action is its velocity (ẋ, ẏ) that
satisfies |ẋ| ≤ 0.01, |ẏ| ≤ 0.01. In this environment, the agent starts at the origin (0,0),
and the only external reward can be found in a circle of radius 0.01 centred on (1, 1).
When the agent enters the circle, an external reward can be found. The environment
wraps around, so that there are no boundaries.

In this experiment, we train one agent and record the observation coordinate (x, y)

in each step until it finds the non zero extrinsic reward. Figure 3.4 shows the heat map
of motion track for the agent trained without surprise and with VASE surprise. Darker
red colour represents a higher density, which means the agent explore more steps in
this area. It is clear that random exploration strategy takes a long time (2,059,459

45

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0

2500

5000
7500
10000
12500
15000
1750020000

(a) TRPO (2,059,459 steps)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0

2500

5000
7500
10000
12500
15000
1750020000

(b) TRPO+VASE (26,663 steps)

Figure 3.4: Exploration efficiency as a heatmap showing the number of states visited
during training in 2DPointRobot environment until chancing upon the reward state
with a) no surprise, b) VASE.

46

steps vs 26,663 steps) to find that first non-zero re(st), whereas VASE does not spend
time unnecessarily in random states.

3.3.2 Continuous state/action environments

(a) MountainCar (b) CartpoleSwingup

(c) DoublePendulum (d) HalfCheetah

(e) Ant (f) Lunar-lander

Figure 3.5: Six continuous control environments, all of which have a sparse reward.

47

To test the hypothesis (3.1) and (3.2) proposed in 3.2.1, next we evaluate VASE
on five continuous control benchmarks with very sparse reward, including three classic
tasks: sparse MountainCar (S ⊂ R3,A ⊂ R1), sparse CartPoleSwingup (S ⊂ R4,A ⊂
R1), sparse Doublependulum (S ⊂ R6,A ⊂ R1) and two locomotion tasks: sparse
HalfCheetah (S ⊂ R20,A ⊂ R6), sparse Ant (S ⊂ R125,A ⊂ R8). These tasks were
introduced in (Houthooft et al., 2016). See simulations for more details.1 We also
evaluate VASE on LunarLanderContinuous (S ⊂ R8,A ⊂ R2) task (See Figure 3.5) to
test hypothesis (3.3).

For the sparse MountainCar task, the car will climb a one-dimensional hill to reach
the target. The target is located on top of a hill and on the right-hand side of the
car. If the car reaches the target, the episode is done. The observation is given by
the horizontal position and the horizontal velocity of the car. The agent car receives a
reward of 1 only when it reaches the target.

For the sparse CartpoleSwingup task, a pole is mounted on a cart. The cart itself
is limited to linear motion. Continuous cart movement is required to keep the pole
upright. The system should not only be able to balance the pole, but also be able to
swing it to an upright position first. The observation includes the cart position x, pole
angle β, the cart velocity ẋ, and the pole velocity β̇. The action is the horizontal force
applied to the cart. The agent receives a reward of 1 only when cos(β) > 0.9.

For the sparse Doublependulum task, the goal is to stabilise a two-link pendulum
at the upright position. The observation includes joint angles (β1 and β2) and joint
speeds (β̇1 and β̇2). The action is the same as in CartpoleSwingup task. The agent
receives a reward of 1 only when dist < 0.1, with dist the distance between current
pendulum tip position and target position.

For the sparse HalfCheetah task, the half-cheetah is a flat biped robot with nine
rigid links, including two legs and one torso, and six joints. 20-dimensional observations
include joint angle, joint velocity, and centroid coordinates. The agent receives a reward
of 1 when xbody ≥ 5.

For the sparse Ant task, the ant has 13 rigid links, including four legs and a torso,
along with 8 actuated joints. The 125-dim observation includes joint angles, joint
velocities, coordinates of the centre of mass, a (usually sparse) vector of contact forces,
as well as the rotation matrix for the body. The ant receives a reward of 1 when
xbody ≥ 3.

For Lunar-lander task, the agent tries to learn to fly and then land on its landing
1https://drive.google.com/open?id=1kpBvOHPYNeaEvZB9Jo8b0iQtO7rErYQr

48

https://drive.google.com/open?id=1kpBvOHPYNeaEvZB9Jo8b0iQtO7rErYQr

pad. The episode is done if the lander crashes or comes to rest. The agent should get
rewards of 200 when it solves this task.

All the environments except MountainCar and 2DPointRobot tasks (they are two
simple tasks, we do not need to normalise them) are normalised before the algorithm
starts. Here normalise the task means normalise its observations, for each observation
o:

o =
(o− µo)
σo

,

where µo and σo are the mean and standard deviation of observations. All observations
and actions in these environments are continuous values. To compare with Achiam and
Sastry (2017) and Houthooft et al. (2016), we use Trust Region Policy Optimization
(TRPO) (Schulman et al., 2015) method (Section 2.4.1) as our base reinforcement
learning algorithm throughout our experiments, and we use the rllab (Duan, Chen,
Houthooft, Schulman, and Abbeel, 2016) implementations of TRPO.

Similarly, in order to compare with surprisal and VIME(Achiam and Sastry, 2017;
Houthooft et al., 2016), the selection of hyper-parameters also refers to these methods.
For example, the extrinsic reward and intrinsic reward trade-off η in Algorithm 6 is set
to 10−4, the number N of samples drawn to compute our surprise in Eq. 3.8 is set to
10. The prior distribution P (θ) is given by a Gaussian distribution from Eq. 3.12 with
σm = 0.5. σc in Eq. 3.7 is set as 5. For the classic tasks: sparse MountainCar, sparse
CartPoleSwingup, sparse DoublePendulum and sparse LunarLanderContinuous, the
fm has one hidden layer of 32 units. All hidden layers have rectified linear unit (ReLU)
non-linearities. The replay pool R has a fixed size of 100,000 samples, with a minimum
size of 500 samples. For the locomotion tasks sparse HalfCheetah and sparse Ant, the
fm has two hidden layers of 64 units each. All hidden layers have tanh non-linearities.
The replay pool R has a fixed size of 5,000,000 samples. The Adam learning rate of
fm is set to 0.001. All output layers are set to linear. The batch size for the policy
optimisation is set to 5,000. For fπ the classic tasks use a neural network with one
layer of 32 tanh units, while the locomotion task uses a two-layer neural network of 64
and 32 tanh units. For baseline, the classic tasks use a neural network with one layer of
32 ReLU units, while the locomotion task uses a linear function. The maximum length
of trajectory for LunarLanderContinuous is 1000, for all the other tasks, it is 500.

Figure 3.6 (a)-(e) shows the median performance of three classic control tasks and
two locomotion tasks. All these tasks are with sparse rewards. Figure 3.6 (f) shows
the median performance of LunarLanderContinuous task. The agent can easily obtain
rewards from this task. The performance is measured through the average return

49

0 10 20 30 40 50
Iterations

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
un

di
sc

ou
nt

ed
 re

tu
rn

TRPO
TRPO+NLL
TRPO+VIME
TRPO+VASE

(a) MountainCar

0 50 100 150 200 250 300 350 400
Iterations

0

50

100

150

200

250

Av
er

ag
e

un
di

sc
ou

nt
ed

 re
tu

rn

TRPO
TRPO+NLL
TRPO+VIME
TRPO+VASE

(b) CartpoleSwingup

Figure 3.6: Median performance for the continuous control tasks over 20 runs with a
fixed set of seeds, with interquartile ranges shown in shaded areas. VIME, NLL and
VASE use Bayesian surprise, surprisal, our surprise respectively (continued on next
page).

50

0 50 100 150 200 250 300 350 400
Iterations

0

20

40

60

80

100

120

140
Av

er
ag

e
un

di
sc

ou
nt

ed
 re

tu
rn

TRPO
TRPO+NLL
TRPO+VIME
TRPO+VASE

(c) DoublePendulum

0 100 200 300 400 500 600
Iterations

0

10

20

30

40

50

Av
er

ag
e

un
di

sc
ou

nt
ed

 re
tu

rn

TRPO
TRPO+NLL
TRPO+VIME
TRPO+VASE

(d) HalfCheetah

Figure 3.6: Median performance for the continuous control tasks over 20 runs with a
fixed set of seeds, with interquartile ranges shown in shaded areas. VIME, NLL and
VASE use Bayesian surprise, surprisal, our surprise respectively (continued on next
page).

51

0 100 200 300 400 500 600
Iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Av

er
ag

e
un

di
sc

ou
nt

ed
 re

tu
rn

TRPO
TRPO+NLL
TRPO+VIME
TRPO+VASE

(e) Ant

0 20 40 60 80 100
Iterations

600

500

400

300

200

100

0

100

200

Av
er

ag
e

un
di

sc
ou

nt
ed

 re
tu

rn

TRPO
TRPO+NLL
TRPO+VIME
TRPO+VASE

(f) Lunar-lander

Figure 3.6: Median performance for the continuous control tasks over 20 runs with
a fixed set of seeds, with interquartile ranges shown in shaded areas. VIME, NLL
and VASE use Bayesian surprise, surprisal, our surprise respectively (continued from
previous page).

52

Eτ [
∑T

t=0 re(st)], not including the intrinsic rewards. The median performance curves
with shaded interquartile ranges areas as shown. Figure 3.7 shows the speed comparison
on all tasks.

As can be seen from Figure 3.6 (a)-(e), VIME performs best for sparse Moun-
tainCar task. For the sparse DoublePendulum, VIME performs well initially, but is
later surpassed by VASE. VASE shows good results in sparse CartpoleSwingup, sparse
HalfCheetah and sparse Ant tasks. We can also see that VASE always performs better
than NLL (suprisal) in all tasks. This supports hypothesis (3.1). However, it should
be noted that the high variance of the return weakens the claim that the performance
difference between methods is significant (See Ant task iteration 300-600 in Figure 3.6
(e)). To assess whether the return of VASE and NLL algorithms ranks differ in Ant
task, for each iteration from iteration 300 to iteration 600, the returns of VASE and
NLL algorithms are picked and paired from all different 20 trials, then the difference
between each pair is computed. A non-parametric statistical hypothesis test called
Wilcoxon signed-rank test (Wilcoxon, 1946) is chosen to test whether the differences
between each pair follow a symmetric distribution around zero. The two-sided test has
null hypothesis that the median of the return differences is zero against the alternative
that it is different from zero. We applied the two-sided test and get the p-value of 0.046.
Hence, we would reject null hypothesis at the significance level of 5%, concluding that
there is a significant difference between the returns of VASE and NLL algorithms.

Figure 3.6 (f) shows that in LunarLanderContinuous task that has enough reward
for the agent, all surprise-driven methods behave almost the same as the no-surprise
method, which supports hypothesis (3.3).

Figure 3.7 shows us the speed test results. For VIME, it needs to calculate a
gradient through its BNN at each time step to compute the Bayesian surprise reward.
This is really time consuming. However, for our VASE algorithm, it does not need
to compute this gradient. Figure 3.7 shows that VASE runs much faster than VIME,
which supports hypothesis (3.2).

Finally, we also test how different values of trade-off δ that we used in Eq. 3.6 affects
the performance of surprise UVASE on all five sparse rewards environments. We know
that the value of H(q(θ;φ)) depends not only on the distribution of each parameter
θi, but also on the number of parameters |Θ|. Meanwhile, in the beginning stages of
training, the entropy of each parameter θi is relatively large, therefore, we should take
a relatively small value of δ. Figure 3.8 shows VASE performance based on δ chosen
from {0, 10−8, 10−6, 10−4, 10−2, 1}. For each environment and each δ, the experiment

53

0 10 20 30 40 50
Iterations

0

25

50

75

100

125

150

175

200
Ti

m
e

(s
)

TRPO
TRPO+NLL
TRPO+VIME
TRPO+VASE

(a) MountainCar

0 50 100 150 200 250 300 350 400
Iterations

0

200

400

600

800

1000

1200

Ti
m

e
(s

)

TRPO
TRPO+NLL
TRPO+VIME
TRPO+VASE

(b) CartpoleSwingup

Figure 3.7: Running time comparison on six environments. VIME, NLL and VASE
use Bayesian surprise, surprisal, our surprise respectively (continued on next page).

54

0 50 100 150 200 250 300 350 400
Iterations

0

200

400

600

800

1000

1200

1400

Ti
m

e
(s

)

TRPO
TRPO+NLL
TRPO+VIME
TRPO+VASE

(c) DoublePendulum

0 100 200 300 400 500 600
Iterations

0

1000

2000

3000

4000

5000

6000

7000

Ti
m

e
(s

)

TRPO
TRPO+NLL
TRPO+VIME
TRPO+VASE

(d) HalfCheetah

Figure 3.7: Running time comparison on six environments. VIME, NLL and VASE
use Bayesian surprise, surprisal, our surprise respectively (continued on next page).

55

0 100 200 300 400 500 600
Iterations

0

2000

4000

6000

8000

10000

Ti
m

e
(s

)

TRPO
TRPO+NLL
TRPO+VIME
TRPO+VASE

(e) Ant

0 20 40 60 80 100
Iterations

0

200

400

600

800

1000

Ti
m

e
(s

)

TRPO
TRPO+NLL
TRPO+VASE
TRPO+VIME

(f) Lunar-lander

Figure 3.7: Running time comparison on six environments. VIME, NLL and VASE use
Bayesian surprise, surprisal, our surprise respectively (continued from previous page).

56

is done 5 times. We can see that different δ will lead to different average returns. It
can also be seen from Figure 3.8 that for the classic continuous control environments
CartpoleSwingup and DoublePendulum, the best average return is obtained when δ =

10−8, while for the locomotion tasks HalfCheetah and Ant, δ = 10−2.

3.4 Discussion: uncertainty in VASE

We proposed our VASE algorithm with the help of Bayesian neural network technique.
Comparing Figure 3.2 and Figure 3.1, we can see the difference of the algorithm flow
is that we choose the BNN to replace the conventional deep neural network. This is
because we need a BNN to maintain the distribution {P (θ)}. BNN is currently the
latest technology used to estimate predictive uncertainty (Lakshminarayanan, Pritzel,
and Blundell, 2017). In this section, we will discuss how uncertainty can help for
exploration and how BNNs quantify predictive uncertainty.

There exists two sources of uncertainties in reinforcement learning; aleatoric uncer-
tainty and epistemic uncertainty (Knight, 2012). In model based reinforcement learn-
ing, these uncertainties can affect the prediction of the model (Depeweg, Hernández-
Lobato, Doshi-Velez, and Udluft, 2017; Chua, Calandra, McAllister, and Levine, 2018;
Henaff, LeCun, and Canziani, 2019). Aleatoric uncertainty, or risk, captures the in-
herent randomness of the observations in environments. This random noise cannot
be reduced even if more data were to be collected. Epistemic uncertainty, is the un-
certainty caused by imperfect understanding of the environment(Der Kiureghian and
Ditlevsen, 2009), which can be decreased when the model sees more data. Both types
of uncertainties play an important role in reinforcement learning exploration problems.
For example, epistemic uncertainty can help agents explore the environment more ef-
fectively because actions are chosen to explore unknown states. Nikolov, Kirschner,
Berkenkamp, and Krause (2018) proposed an exploration strategy including both epis-
temic uncertainty and aleatoric uncertainty. They pointed out that aleatoric uncer-
tainty should also be considered to capture the heteroscedastic2(Kennedy, 2003) ob-
servation noise. This heteroscedastic observation noise is omnipresent in reinforcement
learning, because of the interactions between the agent and the environment, no matter

2Consider the regression equation yi = xiβ+ εi, i = 1, . . . , N , yi = xiβ+ εi, i = 1, . . . , N , where the
dependent random variable yi equals the deterministic variable xi times coefficient β plus a random
disturbance term εi that has mean zero. The disturbances are homoskedastic if the variance of εi is a
constant σ2; otherwise, they are heteroskedastic.

57

0 10 20 30 40 50
Iterations

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
un

di
sc

ou
nt

ed
 re

tu
rn

 = 0
 = 1e-8
 = 1e-6
 = 1e-4
 = 1e-2
 = 1

(a) MountainCar

0 50 100 150 200 250 300 350 400
Iterations

0

50

100

150

200

250

300

350

400

Av
er

ag
e

un
di

sc
ou

nt
ed

 re
tu

rn

 = 0
 = 1e-8
 = 1e-6
 = 1e-4
 = 1e-2
 = 1

(b) CartpoleSwingup

Figure 3.8: Median performance for five sparse reward tasks with different δ cho-
sen from {0, 10−8, 10−6, 10−4, 10−2, 1}, with interquartile ranges shown in shaded areas
(continued on next page).

58

0 50 100 150 200 250 300 350 400
Iterations

0

25

50

75

100

125

150

175

200
Av

er
ag

e
un

di
sc

ou
nt

ed
 re

tu
rn

 = 0
 = 1e-8
 = 1e-6
 = 1e-4
 = 1e-2
 = 1

(c) DoublePendulum

0 100 200 300 400 500 600
Iterations

0

10

20

30

40

50

Av
er

ag
e

un
di

sc
ou

nt
ed

 re
tu

rn

 = 0
 = 1e-8
 = 1e-6
 = 1e-4
 = 1e-2
 = 1

(d) HalfCheetah

Figure 3.8: Median performance for five sparse reward tasks with different δ cho-
sen from {0, 10−8, 10−6, 10−4, 10−2, 1}, with interquartile ranges shown in shaded areas
(continued on next page).

59

0 100 200 300 400 500 600
Iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
er

ag
e

un
di

sc
ou

nt
ed

 re
tu

rn

 = 0
 = 1e-8
 = 1e-6
 = 1e-4
 = 1e-2
 = 1

(e) Ant

Figure 3.8: Median performance for five sparse reward tasks with different δ cho-
sen from {0, 10−8, 10−6, 10−4, 10−2, 1}, with interquartile ranges shown in shaded areas
(continued from previous page).

whether the environment is deterministic or stochastic, discrete or continuous. When
designing risk-aware policies, aleatoric uncertainty is more informative than epistemic
uncertainty (Clements, Robaglia, Van Delft, Slaoui, and Toth, 2019).

Recently, Gal (2016); Kendall and Gal (2017); Kwon, Won, Kim, and Paik (2018);
Depeweg, Hernandez-Lobato, Doshi-Velez, and Udluft (2018) showed that training a
BNN and estimating the predictive uncertainties can improve the quality of model pre-
diction. Since we also chose BNNs as the prediction model in our VASE algorithm, we
will show in this section that VASE quantifies both aleatoric and epistemic uncertainty,
so that can drive the agent to explore better.

First, we can derive the variational predictive distribution of the BNN used in VASE
algorithm as:

qφ(st+1|st, at) =

∫
Θ

P (st+1|st, at, θ)q(θ;φ)dθ, (3.13)

here q(θ;φ) is the variational posterior distribution which is used to approximate the
intractable posterior distribution.

Then the variational predictive uncertainty is quantified by the variance of the
variational predictive distribution. We show in the following lemma that the variational

60

predictive uncertainty includes both aleatoric uncertainty and epistemic uncertainty:

Lemma 2 (The variational predictive uncertainty of Bayesian neural network includes
both aleatoric uncertainty and epistemic uncertainty).

Varqφ(st+1|st,at)[ŝt+1]

=

∫
Θ

VarP (st+1|st,at,θ)[ŝt+1]q(θ;φ)dθ︸ ︷︷ ︸
aleatoric

+

∫
Θ

{EP (st+1|st,at,θ)[ŝt+1]− Eqφ(st+1|st,at)[ŝt+1]}⊗2q(θ;φ)dθ︸ ︷︷ ︸
epistemic

, (3.14)

Proof.

Varqφ(st+1|st,at)[ŝt+1]

= Eqφ(st+1|st,at)[ŝt+1
⊗2]− {Eqφ(st+1|st,at)[ŝt+1]}⊗2

=

∫
S
ŝt+1

⊗2qφ(st+1|st, at)dst+1 − {Eqφ(st+1|st,at)[ŝt+1]}⊗2

=

∫
Θ

∫
S
ŝt+1

⊗2P (st+1|st, at, θ)dst+1q(θ;φ)dθ − {Eqφ(st+1|st,at)[ŝt+1]}⊗2

=

∫
Θ

EP (st+1|st,at,θ)[ŝt+1
⊗2]q(θ;φ)dθ − {Eqφ(st+1|st,at)[ŝt+1]}⊗2

=

∫
Θ

{VarP (st+1|st,at,θ)[ŝt+1] + {EP (st+1|st,at,θ)[ŝt+1]}⊗2}q(θ;φ)dθ

−
∫
Θ

{{Eqφ(st+1|st,at)[ŝt+1]}⊗2}q(θ;φ)dθ

=

∫
Θ

VarP (st+1|st,at,θ)[ŝt+1]q(θ;φ)dθ

+

∫
Θ

{{EP (st+1|st,at,θ)[ŝt+1]}⊗2 − {Eqφ(st+1|st,at)[ŝt+1]}⊗2}q(θ;φ)dθ

=

∫
Θ

VarP (st+1|st,at,θ)[ŝt+1]q(θ;φ)dθ︸ ︷︷ ︸
aleatoric

+

∫
Θ

{EP (st+1|st,at,θ)[ŝt+1]− Eqφ(st+1|st,at)[ŝt+1]}⊗2q(θ;φ)dθ︸ ︷︷ ︸
epistemic

,

where "Var" denotes variance, ⊗2 denotes vector product: s⊗2 = ssT , and the last
line of the proof can be derived by Eq. 3.13. The first term of last line in the proof is

61

the aleatoric uncertainty, it captures inherent randomness of an output ŝt+1. We first
have the variance of output ŝt+1, based on the predictive distribution P (st+1|st, at, θ).
The variance is multiplied with the variational posterior distribution q(θ;φ) and then
integrated over the parameter θ in the parameter space Θ. This gives us the average
value of the output variability from the data set. Therefore, it can be regarded as the
uncertainty evolved from the variability of the data set. The second term is epistemic
uncertainty. This uncertainty comes from the variability of θ given data and can be
decreased when the size of training data increases.

From the proof of Lemma 2 we showed that the output of the BNN in our VASE
algorithm includes both aleatoric and epistemic uncertainty. It is interesting that if we
look back to Eq. 3.5, the theorem that we showed the assorted surprise is the sum of the
Bayesian surprise UBayes and the surprisal UNLL. Obviously here the surprisal UNLL can
capture aleatoric uncertainty and the Bayesian surprise UBayes accounts for epistemic
uncertainty, which means the assorted surprise that we proposed in this chapter also
includes both types of uncertainty simultaneously. As discussed in this section, this
will help the agent explore more efficiently in reinforcement learning environments.
However, we need to point out that this assertion is not always true. For example, for
environments that have an area with sharp discontinuous transitions (too noisy), the
aleatoric uncertainty can even damage the exploration. This leads to the question: How
to disentangle the aleatoric and epistemic uncertainty in BNN prediction or in assorted
surprise, so that the exploration algorithm can adapt to different environments. We
leave this as future work. We will show how to explore in the environment that has
sharp discontinuous transition boundary in Chapter 5.

3.5 Conclusions

In this chapter, we chose a new form of surprise as the agent’s intrinsic motivation
and applied it to the RL settings by our VASE algorithm. VASE tries to approximate
this surprise in a tractable way and train the agent to maximise its reward function.
The agent is driven by this intrinsic reward, which can effectively explore the environ-
ment and find sparse extrinsic rewards given by the environment. We also discussed
the exploration ability of VASE algorithm, based on the viewpoint of qualifying the
aleatoric and epistemic uncertainty. Empirical results show that VASE performs well
across various continuous control tasks with sparse rewards. We believe that VASE
can be easily extended to deep reinforcement learning methods or learn directly from

62

pixel features. We leave that to next chapter to explore.

63

Chapter 4

VASE for Large Scale Problems:

Playing Atari Video Games

Most reinforcement learning algorithms playing Atari games are trained by maximising
extrinsic rewards, which are the game scores provided by the learning environment.
However, when people play games, we are driven by intrinsic motivation, or to explore
new game scenarios that surprise us. A good example is Minecraft game, we play but no
extrinsic reward from the game is required. In this chapter, we applied our variational
assorted surprise exploration (VASE) method that we proposed in the previous chapter
to large scale problems: we let the agent play Atari video games driven by VASE.
The extrinsic reward from game environments is removed so the agent playing Atari
games is only trained by VASE. To investigate VASE performance, we choose three
Atari games as training environments and also compare the VASE performance with
surprisal. Although VASE algorithm was originally designed specifically for continuous
space environments, our experimental results show surprisingly good performance on
these Atari video games with discrete action spaces. Furthermore, from an exploration
point of view, VASE driven agent can explore and find some solutions in games that
surprisal driven agent cannot. For example, in Breakout game, VASE agent can even
find a bug in the game so that it will never die.

4.1 Introduction

The recent advances in reinforcement learning (RL) have been made possible by the
rise of deep learning. This has led to a resurgence of research in deep reinforcement
learning (DRL). A well-known success story is that the DRL algorithms can play Atari

64

video games and play better than humans.
Atari video games, or Atari 2600 games were developed and manufactured by Atari,

Inc. In 1977, Atari released the most famous video game machine: Video Computer
System (VCS), later known as Atari 2600. In 2013, Bellemare et al. (2013) proposed a
simple framework called Arcade Learning Environment (ALE). ALE allows researchers
to design DRL algorithms to play Atari 2600 games. Currently, it supports more than
50 Atari games. The Atari 2600 in ALE has a high-dimensional visual input, which is
210 × 160 RGB video at 60 Hz.

When playing Atari games, the DRL algorithm usually uses the convolutional neural
network (CNN) as its control policy. The policy CNN uses the original video data as its
input, and various algorithms (such as DQN or policy gradient) to train the network.
Policy networks only learn from video input, rewards and terminal signals, without any
other game information.

Most of the successful DRL algorithms are trained by the "score" provided by
the game. The agents trained by the RL algorithm performed well, even surpassing
human performance. However, there is different learning behaviour between human
and these trained agents: People explore the world based on their internal world model
built from their previous learned experience. They are interested in the area that they
have not explored before so that they are surprised by the difference between the new
event and their knowledge. But the agents are trained by the rewards provided by
the game environment. In addition, the reward function to train the agent is difficult
to design and also not scalable, different game environments need to design different
reward functions. These have prompted scholars to explore whether it is possible to
train agents directly with intrinsic reward in reinforcement learning to play Atari 2600
games.

In 2018, Burda et al. (2018) proposed their surprisal driven exploration method
based on the idea that these intrinsic surprisal rewards will bridge the gaps between
sparse extrinsic rewards so that the agent can efficiently explore the game environment
to find the next extrinsic reward (game score). They also showed their amazing result
of training the agent only by the surprisal intrinsic reward, removing the extrinsic
reward provided by the game.

65

Environment

Policy

BNN Model

Surprise

Feature Extractor

Figure 4.1: VASE-driven RL with s for state, a for action, f for the state feature that
is extracted from the feature extractor network, and f̂ ′ for the BNN model prediction
of the next state feature f . Note that the extrinsic reward re is removed.

4.2 Assorted Surprise for Atari games

In this chapter, we tried to apply our VASE algorithm to drive the agent to play Atari
2600 games. Similarly to Burda et al. (2018), we also remove the extrinsic reward that
the game environment provides. The agent is only trained and driven by VASE, that is,
it only learns to play the game by its intrinsic reward (See Figure 4.1). As introduced
in the previous chapter, the assorted surprise is the ensemble inconsistency between
the model prediction and observed environment outcome. To compute the assorted
surprise reward, we need to build a BNN for the agent to predict future states.

The video frame is a high-dimensional pixel space input, and we need to add a fea-
ture extractor before the BNN model. In this way, we can reduce the size of the input
space and avoid having the BNN model predict a huge pixel space every time. Pathak
et al. (2017) has also shown that if the world model M is learned from an embedded
space it can perform better than from the original pixel space. Many methods have
been used (Raytchev, Yoda, and Sakaue, 2004; Kim, Jung, and Kim, 2002; Tenenbaum,
De Silva, and Langford, 2000; Lima, Zen, Nankaku, Miyajima, Tokuda, and Kitamura,

66

2004) for dimension reduction. However, as data sizes increase, more effective dimen-
sionality reduction methods are needed. Random Projections (RP) (Dasgupta, 2000)
have been shown (Johnson and Lindenstrauss, 1984) as efficient and data-independent
methods for linear dimensionality reduction. Giryes, Sapiro, and Bronstein (2016) ex-
tended RP to nonlinear case. They showed that deep neural networks (DNNs) with
random Gaussian weights and ReLU activation function can preserve the metric struc-
ture of the data. Theory in Giryes et al. (2016) asserts deep neural networks with
random gaussian weights can preserve the metric structure of the data, which guaran-
tees that BNN (fully connected) can perform a stable embedding of the data. However,
for convolutional layers with fixed random weights as a nonlinear random projector,
although Burda et al. (2018) showed empirically that random feature convolutional
neural networks (CNNs) perform very well across different Atari video games, there is
currently no theoretical guarantee.

We first choose random feature convolutional network (CNN) to map the game
frames to lower dimensional vector, followed by a fully connected Bayesian neural net-
work (BNN). The weights of the CNN are fixed and sampled from Gaussian distribution
N(0, 1). Random feature CNN does RP behaviour so that we only need to train the
weights of BNN layers, which can make the learning more efficient.

4.2.1 Compute assorted surprise

Through VASE algorithm we showed in Chapter 3, the BNN can be seen as a distribu-
tion of models, where a sample of network parameters θ according to distribution P (θ)

is analogous to generating a single prediction of the next state. The prior distribution
P (θ) changes to posterior when BNN is trained. The difference is that in this chapter,
we add a CNN before the BNN model so that we can extract the feature from original
pixel frames of game videos. Because the CNN network is fixed, the features are stable.

Denote f(st+1) as the feature representation of game video frame st+1. It is the final
output of CNN layers. Then the variational assorted surprise we proposed in Chapter
3 changes to be computed in feature space:

Eθ∼q(·|φ)[− logP (f(st+1)|f(st), at, θ)]. (4.1)

Note that the confidence term H(q(θ;φ)) in Eq. 3.6 is removed because it is hard to
do a best hyperparameter search for its coefficient δ in large scale problems and we
found in experiments that even when δ is set to zero, we can still get better results
than surprisal.

67

CNN

BNN

Figure 4.2: A block diagram shows how to compute assorted surprise.

The output of the BNN gives the prediction of the next state f̂(st+1), then P (f(st+1)|st, at, θ)
can be computed by:

P (f(st+1)|st, at, θ) =
1√

2πσ2
c

e−||
̂f(st+1)−f(st+1)||2/(2σ2

c), (4.2)

under the assumption that states are normally distributed and σc is an arbitrarily
chosen constant. (See Figure 4.2.)

4.3 Experiments and results analysis

To investigate the agent behaviour driven by our variational assorted surprise, we chose
three Atari video games, Breakout, Pong and Montezuma’s Revenge as experimental
environments. We also compared behaviour of the agent that is driven by Surprisal
(Burda et al., 2018). We didn’t compare with VIME (Houthooft et al., 2016) because
VIME is time-consuming and not suitable for large scale problems (We will explain the
details in section 4.3.3).

Breakout was first released by Atari, Inc. on May 13, 1976. The ported version of
the Atari 2600 was programmed by Brad Stewart and published in 1978. In Breakout
game, bricks are on the top of the screen and the game goal is to strike them and make
them disappear. A ball is to move around the screen, and also to bounce off the top
and two sides of the screen. The player has a movable paddle to bounce the ball. It

68

loses a life when the ball has missed the paddle and touches the bottom of the screen.
There are six rows of bricks, and the player is given five turns to destroy the brick wall
(Figure 4.3a).

Pong was released by Atari, Inc. in 1972. It is not only one of the earliest Atari
video games, but also a commercially successful video game. In 1977, Atari published
Pong game in its Atari 2600 version. Pong is a game that simulates table tennis. The
player controls a paddle, moves it vertically so that they can compete against the other
player who controls the opposing side paddle. The paddles are used to hit a ball. The
ball then moves back and forth across the screen. The goal of the Pong game for each
player is to achieve 21 points before the other player. The awarded points are gained
when the other one fails to hit and return the ball (Figure 4.3b).

Montezuma’s revenge was first released in 1984 on Atari 2600 platform, and also
has its IOS and Android version published in 2012. The player controls a character
called Panama Joe (a.k.a. Pedro), moving him from room to room, scoring points
along the way (Figure 4.3c). Panama Joe can jump, run, slide down poles, and climb
chains and ladders in the game. He has to face enemies like skulls, snakes and spiders,
or some other traps and dangers like laser gates, fire pits and suddenly missing floors.
The game goal is to gain game scores while collecting jewels or killing enemies.

(a) Breakout (b) Pong (c) Montezuma Revenge

Figure 4.3: Three Atari video games.

For Breakout, the episode length and the game score are highly correlated, because
the agent has to play the game longer to gain high game scores. For Pong, however, the
game score has nothing to do with the episode length. The agent can play long enough
but still has a negative reward. But the agent has to play carefully to make sure not

69

Size: 210x160x3 Size: 84x84x1 Size:84x84x4

Figure 4.4: Data preparation: RGB image (size: 210x160x3) is resized to grey image
(size: 84x84x1), and then stacked 4 historical observations to the current observation
(size: 84x84x4).

to let the opposite player get 21 points. The Montezuma revenge game is similar to
Pong. It has many rooms for the agent to explore and the agent can find many ways to
play the game forever as long as it is still alive in the game. Since the policy network is
trying to maximise the sum of surprise, when the surprise of different states is almost
the same after training for a while, the policy will tend to maximise the episode length.
So when compared to surprisal driven method, we not only compared the game score
that the agent can collect from the game, we also compared the episode length to see
which agent can live longer in the game.

4.3.1 Data preparation

In Chapter 3, the inputs of the policy and model network are the original environment
state s. But because Atari game video frames are high dimensional pixel images, we
need to make some preparation. First, we convert the colors of all the pixel images
st to grayscale images xt, cropped and downsampled their size to 84x84 (Figure 4.4).
Then we chose 4 historical frames [xt−3, xt−2, xt−1, xt] together and stacked them as
the agent’s stacked observation. The purpose of keeping and stacking 4 frames is to
ensure that we can maintain the necessary information. For example, the direction,
velocity and acceleration of the moving objects in the game environments. This can be
done easily through the OpenAI baseline wrapper (Dhariwal, Hesse, Klimov, Nichol,
Plappert, Radford, Schulman, Sidor, Wu, and Zhokhov, 2017).

70

Table 4.1: Policy network architecture.

Layer Channel Size Kernel size Stride Activation

Input Image 4 84x84
1 CONV 32 20x20 8x8 (4,4) LEAKY RELU
2 CONV 64 9x9 4x4 (2,2) LEAKY RELU
3 CONV 64 7x7 3x3 (1,1) LEAKY RELU
4 FC 512 NONE
5 FC 512 RELU
6 FC 512 RELU

Output FC No. of actions NONE

4.3.2 Network architecture

Policy network architecture

The input of the policy network are the stacked frames, which are preprocessed by data
preparation wrapper, and then three convolutional layers, each convolutional layer is
followed by a leaky-relu activation function. Next are four fully connected linear layers.
The number of policy network output equals to the number of valid actions which
depend on the games (Table 4.1).

Feature extractor network architecture (Frozen weights)

The architecture of the feature extractor network is the same as the architecture of
the convolutional layers and the first fully connected linear layer in the policy network.
The difference is that after random initialization, the weights of the feature extractor
network will be frozen during reinforcement learning (Table 4.2). The output layer
has 512 units. It can be seen as the representation of the input observation frames in
feature space.

BNN model architecture

The BNN model is located behind the feature extractor network and takes the output of
the feature extractor network as its input. All layers in BNN model are fully connected
layers. But as introduced in Chapter 2, the weights of BNN are probability distributions
rather than a fixed value (Table 4.3).

71

Table 4.2: Feature Extractor architecture (Frozen weights).

Layer Channel Size Kernel size Stride Activation

Input Image 4 84x84
1 CONV 32 20x20 8x8 (4,4) LEAKY RELU
2 CONV 64 9x9 4x4 (2,2) LEAKY RELU
3 CONV 64 7x7 3x3 (1,1) LEAKY RELU

Output FC 512 NONE

Table 4.3: BNN model architecture.

Layer Size Activation

Input Output of FE 512 LEAKY RELU
1 FC 512 LEAKY RELU
2 FC 512 LEAKY RELU
3 FC 512 LEAKY RELU

Output FC 512 NONE

4.3.3 Experimental results

All the games are played three times with different random seed. For all experiments
in this chapter, PPO algorithm Schulman et al. (2017) (proximal policy optimisation)
is selected. This is because PPO is better than TRPO at handling big data problems
like playing Atari video games.

The end of the episode signal (the "death" signal), also used as the "done" signal
in reinforcement learning, is removed to increase the game difficulty. That is to say,
"death" is now just another normal environment transition to the agent. When the
agent loses all its lives, it will just return to where the game started, but the RL
algorithm will continue to train. As explained in Burda et al. (2018), the "death"
signal could leak game information and the game become easy. If we don’t remove it,
we can simply design a policy that provides a positive reward at the step when the
agent is alive and negative reward if the agent is dead. This policy can work and drive
the agent to play well for many games.

The maximum episode length is set to 4500 frames. For all networks in our exper-
iments, the learning rate is set as 0.0001. To stabilise the method performance, more

72

actors (128 parallel environments) are used to collect trajectories. In each environ-
ment, the agent takes the action, and then gets the returned st+1. We collected 128
triples (st, at, st+1) in each environment and then use these 128×128 triples to train
the policy network and BNN at the same time for 3 epochs. Then the agent sample
the trajectories again based on the updated policy. The number of total time steps is
1e8.

Since we mentioned the parallel game environments trick used in surprisal and
VASE, here we explain why we didn’t compare with VIME method in this chapter.
To compute the Bayesian surprise in VIME methods, we have to compute Eq. 2.66 at
each time step t. Each reward needs to calculate the gradient through VIME model,
which needs to pass forward and backward. For each episode, the total extra time cost
of calculating the gradient when calculating the VIME reward is

TimebackVIME = Ttb, (4.3)

where T is the length of each episode, tb is the time of each backward computation
through the model. If we sample N episodes from N parallel environments, we have

TimebackVIME = NTtb. (4.4)

The larger N is, the longer the calculation takes, which means parallel environments
cannot reduce the training time of VIME. We need to copy the BNN model M and
use the copies to compute Bayesian surprise. That is what we have done in Chapter 3
when we use small BNN models for VIME algorithm. However, in this chapter, this is
intractable since the Feature extractor network and Bayesian network model are large
(millions of parameters).

The comparison result between VASE and surprisal method can be found in Figure
4.5 and Figure 4.6. Figure 4.5 shows mean extrinsic returns on Atari games with 3
different seeds, standard deviation shown in shaded areas. The agents were trained
purely by intrinsic reward, without extrinsic reward or a "death" signal. Figure 4.6
compares the episode length.

We can see from Figure 4.5a that for Breakout, the agent trained by VASE can
achieve a higher game score compared to surprisal (NLL). Figure 4.6a also shows that
the episode length of VASE agent is also longer than NLL’s. This is because the
longer the agent is alive, the higher score it can get from the breakout game. In our
practice, we found that the VASE agent can find some policies so that it will not die or
survive forever in the game, and then it will stop controlling the ball to hit the bricks.

73

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e8

0

50

100

150

200

250

300

350
M

ea
n

ep
iso

di
c

re
tu

rn
VASE
NLL

(a) Break out

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e8

−20

−15

−10

−5

0

M
ea

n
ep

iso
di

c
re

tu
rn

VASE
NLL

(b) Pong

Figure 4.5: Mean extrinsic returns on Atari games with 3 different seeds, standard
deviation shown in shaded areas. The agents were trained purely by intrinsic reward,
without extrinsic reward or a ’death’ signal. NLL for surprisal method (continued on
next page).

74

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e8

0

2

4

6

8

M
ea

n
ep

iso
di

c
re

tu
rn

VASE
NLL

(c) Montezuma Revenge

Figure 4.5: Mean extrinsic returns on Atari games with 3 different seeds, standard
deviation shown in shaded areas.The agents were trained purely by intrinsic reward,
without extrinsic reward or a ’death’ signal. NLL for surprisal method (continued from
previous page).

75

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e8

0

500

1000

1500

2000

2500

3000

3500
Ep

iso
de

 le
ng

th
VASE
NLL

(a) Break out

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e8

1000

2000

3000

4000

5000

Ep
iso

de
 le

ng
th

VASE
NLL

(b) Pong

Figure 4.6: Mean episode lengths on Atari games with 3 different seeds, standard
deviation shown in shaded areas. The agents were trained purely by intrinsic reward,
without extrinsic reward or a ’death’ signal. NLL for surprisal method (continued on
next page).

76

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e8

0

1000

2000

3000

4000

Ep
iso

de
 le

ng
th

VASE
NLL

(c) Montezuma Revenge

Figure 4.6: Mean episode lengths on Atari games with 3 different seeds, standard
deviation shown in shaded areas. The agents were trained purely by intrinsic reward,
without extrinsic reward or a ’death’ signal. NLL for surprisal method (continued from
previous page).

77

Sometimes, when the agent discovered that there was only one life left, it even chose
to use bugs that will not let the ball roll out. (The ball disappeared)1.

For Pong, the game score of VASE is lower than surprisal (Figure 4.5b). However,
as we explained before, the agent will focus on how to live longer in the Pong game, so
it doesn’t matter if the game score is higher or not. Episodes of VASE and surprisal
both reach the limit of the maximum number of episode length 4500 (Figure 4.6b). If
we check the simulation videos2, we can see that the policy that the VASE agent chose
can let it play the game forever, the episode length is 4500 only because we manually
set it as 4500. For surprisal trained agent, the video shows that the game score is still
changing. There is still a trend that the agent wins or loses the pong game after these
4500 steps.

In the end, the Montezuma’s Revenge seems too hard for both VASE and surprisal
methods. They both almost haven’t gotten any game scores (Figure 4.5c). But VASE
still achieves its maximum episode length number (Figure 4.6c). The videos3 show that
VASE agent decides to jump back and forth safely on the platform instead of jumping
down. However, the surprisal driven agent doesn’t find a safe strategy for its long-term
survival. After 1e8 iterations of training, it still chooses to jump down the platform
and lose its life, so its episode length is particularly short.

To conclude, the VASE agent survives in the game longer than the surprisal agent.
If the extrinsic game rewards are taken into consideration, it seems that both VASE
and surprisal agents are not playing well on Montezuma’s revenge game when they
are only trained by intrinsic rewards. In order to further study whether intrinsic
rewards can help to play Montezuma’s revenge game, we have added extrinsic rewards
(the game score) to the objective function. Now the agent no longer plays a pure
exploration problem. It is driven by intrinsic reward to explore the game and then
collect extrinsic rewards, and game policies are now trained by the sum of intrinsic and
extrinsic rewards.

From Figure 4.7 we can see that both VASE and surprisal agents perform better
than when they are trained only by intrinsic reward. The surprisal agent gets a max-
imum of 400 rewards and VASE agent even much better (2500). The VASE agent
has also found more than 7 rooms. However, we also observed that after about 2e7
training steps, the episode reward has not changed for a long time. When we check

1https://drive.google.com/open?id=1QFe1IAoDd9PyXlHtT8B54QsFmC3w8lqI
2https://drive.google.com/open?id=1NcAyc4dWLH4PVaq0ObQU_qUGwhXvejdD
3https://drive.google.com/open?id=1HTeioANVQZlrOQjtzwhoT9uWVRZ364-z

78

https://drive.google.com/open?id=1QFe1IAoDd9PyXlHtT8B54QsFmC3w8lqI
https://drive.google.com/open?id=1NcAyc4dWLH4PVaq0ObQU_qUGwhXvejdD
https://drive.google.com/open?id=1HTeioANVQZlrOQjtzwhoT9uWVRZ364-z

the simulation videos,4 we found that the agents were "stuck" in a specific location,
thus stopping the exploration of the new room. This particular location is usually the
boundary between rooms. For example, the surprisal agent will get stuck when walking
from the first room to the next room (whether it goes to the room on the left or the
room on the right). In this context, being stuck refers to the non-stop walking between
these two rooms. In contrast, the VASE agent did not get stuck in the place where the
surprisal agent got stuck. It happened relatively late. At this time, the VASE agent
has explored several different rooms.

Now let’s analyse why this stuck behaviour occurs. We know that the agent explores
the game environment based on intrinsic rewards, and when we calculate the intrin-
sic rewards, whether it is VASE or surprisal, we are calculating the prediction error,
which is the difference between the prediction of next observation and the true next
observation of the game environment (this difference is calculated in the feature space).
For Atari games, the agent’s observation is the current game screen (pre-processed) or
screen background. When the agent is exploring in the same room, the screen back-
ground does not change, but when the agent goes from one room to another, the screen
background will be replaced by the background of the other room. This will make the
surprise reward much larger than elsewhere. Therefore, this will drive the agent to
linger here. To show what happens during the whole training process, we chose three
episodes and visualise the surprise reward the agent got at each time step (Figure 4.8).
These episodes are chosen from surprisal agent training results. From Figure 4.8 we
can see that at the beginning episodes, the agent spent more than 2000 time steps to
find the new room. Compared to other places, the surprise reward collected when the
agent found the new room is very large. After training for a while, the surprise at the
new room and the old boundary becomes smaller, but still large compared to other
places (less than 2). When the agent has been trained for a long time, the boundary
surprise has reduced to about 2, but the surprise reward at other places is also reduced
(0.6-0.8), so the difference is still huge. From episode 3 we can see the agent move to
the room bound very fast and then stuck there for almost all the episode. Of course,
being stuck is not permanent, for example, the VASE agent appears to escape at 1e8
steps (See Figure 4.7). The agent has signs of escaping from where it is stuck. The
surprisal agent should be able to escape from being stuck too, but it may take longer.
But when the agent finds a new room, this stuck behaviour will appear again, which
greatly reduces the efficiency of the agent’s exploration.

4https://drive.google.com/open?id=1K7GCVTw6RVDQ8_SAy24_HKRY-z0-uMew

79

https://drive.google.com/open?id=1K7GCVTw6RVDQ8_SAy24_HKRY-z0-uMew

0 0.2 0.4 0.6 0.8 1
1e8

Time steps

0

500

1000

1500

2000

2500

M
ea

n
ep

iso
di

c
re

tu
rn

NLL
VASE

0 0.2 0.4 0.6 0.8 1
1e8

Time steps

0

1

2

3

4

5

6

7

8

M
ea

n
nu

m
be

r o
f r

oo
m

s f
ou

nd

NLL
VASE

Figure 4.7: Montezuma’s revenge episode return and number of rooms found across 3
seeds, agents are trained by intrinsic plus extrinsic rewards.

80

0 2000
Episode 1

0

10

20

30

40

50

60
Su

rp
ris

e

0 2000
Episode 2

0

5

10

15

20

25

30

35

40

Su
rp

ris
e

0 2500
Episode 3

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Su
rp

ris
e

Figure 4.8: Three episodes show surprise rewards at each time step. Episode 1: the
new room has just been found. Episode 2: the new room has been found for a while.
Episode 3: the new room has been found for a long time.

4.4 Conclusions

In this chapter, we first showed that even only driven by assorted surprise reward,
the agent can still play very well for some Atari games, especially for games whose
scores are highly correlated with the game episode length, the agent driven by assorted
surprise can find some solutions to make it play forever (and even find errors in the
game). The agent does not need to know the reward or game score system. Our
experimental results also show that both assorted surprise and surprisal driven agents
are focusing on maximising the episode length rather than achieving the game score
directly. The results of Montezuma’s Revenge show that when the extrinsic reward is
added, the agent can explore much better. However, it can be stuck at the boundary
of rooms and so reduce the efficiency of exploration. In the next chapter, we will study
how to find a way to deal with this kind of issue.

81

Chapter 5

MIME: Mutual Information

Minimisation Exploration

Note: Some portions of this chapter are taken from my own work (Xu,

McCane, Szymanski, and Atkinson, 2020).

5.1 Introduction

In Chapter 4, we used our VASE to train the agent playing Atari video games and
compared it to a surprisal driven method. Both methods follow the same fundamental
idea: A reward-maximising neural policy network π learns to generate action sequences;
a separate neural network called the world model M learns to predict future states
(st+1), given past inputs (st) and actions (at). In the absence of extrinsic reward, the
policy network π maximises the same value function that the world modelM minimises,
that is, the intrinsic rewards. This adversarial learning mechanism motivates policy
π to invent and generate experiments that lead to "novel" situations where the world
model M cannot yet predict well.

However, since the world model M is trained to learn environment transitions,
if some of those transitions are discontinuous or abrupt, it is difficult for the agent
to predict st+1 and therefore the agent is continuously surprised by the transition.
This results in an agent that gets stuck on the transition boundary (See Figure 4.8).
The length of time stuck on the boundary depends on the magnitude of change in
the transition. The greater the transition change, the longer the time spent at the
boundary.

Some current methods tend to avoid getting stuck at transition boundaries. Houthooft

82

et al. Houthooft et al. (2016) proposed VIME, which computes Bayesian-surprisal in-
spired by the idea of maximising information gain. But VIME is difficult to scale up
to large-scale environments. Prediction improvement measures (Schmidhuber, 2006;
Oudeyer, Kaplan, and Hafner, 2007; Lopes et al., 2012; Achiam and Sastry, 2017)
compute intrinsic reward by model learning progress and can avoid getting stuck in
some situations where surprisal does. Even so, Achiam and Sastry (2017) show that
prediction improvement measures do not explore as well as surprisal in ordinary sparse
reward environments.

We propose Mutual Information Minimising Exploration (MIME) in this chapter.
We show that MIME-agents can explore as well as surprisal-agents in sparse reward
environments and much better in environments that include abrupt state transitions.

5.2 Background

In this chapter, we first make a brief review of surprisal-based method. We also draw
a figure (Figure 5.1) to facilitate the intuitive understanding of the difference between
our new method MIME and surprisal-based method.

5.2.1 Surprisal

Surprisal was already introduced in Chapter 2 (See Eq. 2.64). In practice, if we suppose
the probability in surprisal is a Gaussian distribution, we can compute the intrinsic
reward rit in Eq. 2.61 with surprisal simply by:

rit ∼ ‖M(st, at)− st+1‖2. (5.1)

In this chapter, in order to compare surprisal and MIME more intuitively, we use
M(st, at) to denote the prediction of the model M .

If we train an agent to explore the environment by surprisal, the world model
M is trained with the environment transition P (st+1|st, at). The world model then
learns the mapping function from (st, at) to st+1 and makes a prediction M(st, at).
When the environment has an area where the transition P (st+1|st, at) from st to st+1

is discontinuous, the agent cannot predict st+1 well and gets a big surprise. The policy
network π is trained by maximising the surprisal reward, so, at the next iteration, it will
generate actions that drive the agent to this area again. Since piecewise continuous
functions are hard to learn using continuous activation functions Selmic and Lewis

83

Environment

Policy Model

Surprise

MIME

Figure 5.1: surprisal-driven V.S. MIME-driven, "Surprise" denotes the surprisal re-
ward, "MIME" denotes the new intrinsic reward we proposed in this chapter.

(2002), the agent will be stuck at such transition boundaries for a long time. We have
observed this stuck phenomena in Chapter 4.

Since the world model of VASE method we proposed in Chapter 3 is also trained
with environment transition, the agent trained by VASE will also be stuck at these
boundaries as we have seen in Chapter 4. When playing Montezuma’s Revenge, both
surprisal and VASE agents get stuck at room boundaries (See Figure 4.8), which reduces
the exploration efficiency.

5.2.2 Random distillation network (RND)

Inspired by knowledge distillation (Hinton, Vinyals, and Dean, 2015), another explo-
ration approach called random network distillation (RND) (Burda, Edwards, Storkey,
and Klimov, 2018) was proposed in 2018 (See Figure 5.2). They chose a random ini-
tialised target network to generate the feature of each state, and a prediction network
as a self-predictor to predict the target network’s output. The difference between this
prediction f̂t+1 and the target network’s output ft+1 is regarded as the intrinsic reward
to train the agent. Instead of predicting the next state given current state and current
action as all surprise-based method does, the prediction network predicts the output of
the target network for the next state. Here the mapped features ft+1 are produced by
a CNN with frozen weights. Similar to the surprisal-driven idea, RND also focuses on
future states. (Burda et al., 2018) shows that the agent trained by RND does not get

84

stuck, it can explore much more efficiently than the agent trained by surprisal. So I
will also compare MIME to RND in this chapter in environments where the transition
is discontinuous.

Environment

Policy Self-Predictor

RND

CNN

Figure 5.2: Random network distillation method.

5.2.3 Go-Explore

Go-Explore (Ecoffet, Huizinga, Lehman, Stanley, and Clune, 2019) is a new approach to
solve hard exploration problems. Three principles are chosen in Go-Explore algorithms:
(1) remember states (represented as a low-dimensional cell) that have previously been
visited; (2) go back to a promising cell and explore from it; (3) solve simulated environ-
ments through exploiting any available methods. It achieved the-state-of-the-art results
in Atari video games such as Montezuma’s revenge game and Pitfall game. The au-
thor of Go-Explore hypothesised that the intrinsic reward driven exploration approach
fails from two causes: detachment and derailment, which is interesting. However, it
should be noted that the method designed in Go-Explore is only fit for deterministic
environments like Atari video games and is difficult to be applied generally to other
stochastic RL environments. Because it is almost impossible to return to a previous
state in a stochastic environment. In addition, it will take a lot of computer resources
(For example, 22 CPUs and 50 GB RAM in Go-Explore paper) to remember and use all
previous visited states information. Go-Explore method also chose domain knowledge
like the current room, current level, the position of the agent and the number of the
keys held in Montezuma’s revenge game to help the agent to explore. It also showed

85

that without domain knowledge, the agent even failed in Pitfall game. So RND is still
state-of-the-art for playing Montezuma’s revenge game if we only allow the RL agent
to see pixels not the domain knowledge of internal environment information. There is
also another controversy that the "returning to the previous state" strategy is just an
exhaustive search, rather than reinforcement learning algorithm. Based on the above
discussion, in this section, I will not compare MIME with Go-Explore.

5.3 MIME

In this chapter, we present a new exploration method named Mutual Information Min-
imisation Exploration (MIME). Similar to Bayesian surprise, MIME computes intrinsic
reward by mutual information. However, instead of computing mutual information be-
tween past and future time steps in the trajectory, we compute mutual information
between the input and output of the model M on the current state and current action.
In other words, the world model simply tries to learn a representation of the world
without prediction, but nevertheless incorporates information from the chosen action.
Surprisingly, this works just as well as surprisal in common continuous transition en-
vironments, and much better in environments with abrupt transitions.

The mutual information (MI)-based approach has a long history in unsupervised
feature learning and the infomax principle (Linsker, 1988; Bell and Sejnowski, 1995)
for neural networks advocates maximizing the MI between input and output. In our
problem, the expected mutual information (information gain) between the input (st, at)

and output M(st, at) of the model M is:

I((st, at),M(st, at))

= DKL[P ((st, at),M(st, at))‖P (st, at)P (M(st, at))]

=

∫ ∫
P ((st, at),M(st, at)) log

P ((st, at),M(st, at))

P (st, at)P (M(st, at))
dM(st, at)d(st, at)

=

∫ ∫
P (M(st, at)|st, at)P (st, at) log

P (M(st, at)|st, at)
P (M(st, at))

dM(st, at)d(st, at)

= E(st,at)∼D[DKL[P (M(st, at)|st, at)||P (M(st, at))]], (5.2)

where D is a dataset of tuples sampled from the environment and used for training.
P (M(st, at)|st, at) denotes the distribution of the output of model M , conditioned on
the specific input (st, at). P (M(st, at)) is the distribution of entire output M(st, at),
i.e.,

P (M(st, at)) =

∫
P (M(st, at)|st, at)P ((st, at))d(st, at). (5.3)

86

In this way, if the probability P (M(st, at)|st, at) is much greater than P (M(st, at)), we
have the ability to distinguish the input only by the output, which means the output
is a good representation of the input.

Since our purpose is to learn the best feature representation to reconstruct the input
of model M , we train the model M by maximising 5.2:

max
θ

E(st,at)∼D[DKL[P (M(st, at)|st, at)||P (M(st, at))]]. (5.4)

Intuitively, one can view the world model as generating a notion of familiarity.
When the agent is in state st that it has been visited many times before, and chooses
action at that has been performed in that state before, it “feels” familiar and comfort-
able to the agent as the current state and action are well represented. However, the
policy network π does an adversarial learning and tries to minimise the same mutual
information and therefore encourages the agent to either choose actions it has not cho-
sen before, or explore unfamiliar states. In other words, the agent is encouraged to get
out of its comfort zone by minimising the mutual information in 5.2:

min
π

E(st,at)∼π[DKL[P (M(st, at)|st, at)||P (M(st, at))]]. (5.5)

Minimising equation 5.5 is equivalent to minimising the pair-wise mutual information
between the input and output of the model at each step t:

logP (M(st, at)|st, at)− logP (M(st, at)). (5.6)

In summary, we train the modelM by maximising the mutual information between
its input and output to find the best feature representation. In the absence of extrinsic
reward, the policy network π minimises exactly the same function that the model M
is maximising. To be consistent with the previous reinforcement learning algorithms,
the policy is updated by maximizing a reward function. We define the intrinsic reward
rit as the negative of Eq. 5.6.

Based on the above discussion, in this chapter, it is hypothesised that:
(5.1) MIME will perform as well as surprise-based method in normal sparse reward

environments.
(5.2) MIME will perform better than surprise-based method in an environment

where the transition is discontinuous.

87

5.4 Implementation

Computing the total probability P (M(st, at)) is intractable in practice (See Eq. 5.3),
but since our purpose is to minimise logP (M(st, at)|st, at)− logP (M(st, at)), so in an
approximate way, we choose to minimise the first term logP (M(st, at)|st, at). In other
words, we only choose the first term from Eq. 5.6 as an approximate intrinsic reward:

rit = − logP (M(st, at)|st, at). (5.7)

Similarly, the objective function in equation 5.4 for training the model M can be
rewritten as:

min
θ
− 1

D

∑
(st,at)∈D

logP (M(st, at)|st, at). (5.8)

If we suppose P is a Gaussian distribution and that M is autoencoder-like, then rit can
be written in a simple way:

rit ∼ ‖M(st, at)− st‖2. (5.9)

The entire training procedure is summarised in Algorithm 7. Figure 5.1 shows
that the structure of surprisal-driven exploration is not changed, just the definition of
intrinsic reward.

Algorithm 7: MIME-driven exploration for deep reinforcement learning

Initialise policy neural network π
Initialise world model M
Reset the environment getting (s0, r0))

for each iteration n do

for each time step t do

Get action at ∼ π(·|st)
Compute intrinsic reward rit = ‖M(st, at)− st‖2

Construct cumulative reward ret + η ∗ rit
Take action at getting (st+1, r

e
t+1)

end

Update M by minimising the sum of rit
Update π by maximising the sum of ret + η ∗ rit.

end

88

5.5 Experiments

Environment

Policy Model

Surprise

MIME

CNN

CNN

(a) MIME-freeze-CNN layers

Environment

Policy Model

Surprise

MIME

CNN

CNN

(b) MIME-trainable-CNN layers

Figure 5.3: Different structures used to compute intrinsic reward. Surprise denotes the
surprisal reward.

For illustrative purposes, we begin with two simple experiments and visualise the
agent’s movements to show its exploration efficiency. Then to test hypothesis (5.1) and
(5.2) proposed in Section 5.3, we implement MIME-driven exploration in three large-
scale experiments: Gravitar, Doom, and Montezuma’s Revenge. These three games
have extremely sparse rewards and are a good test of exploration ability. Among them,

89

Gravitar is a normal sparse reward game environment to test hypothesis (5.1) and the
other two environments have discontinuous transition boundaries to test hypothesis
(5.2). All large-scale experiments are run three times with different seeds. Table
5.1 shows how we preprocessed the three large-scale environments. We use TRPO
(Schulman et al., 2015) in the two simple experiments and PPO (Schulman et al.,
2017) in large-scale games. In this chapter, we choose surprisal (not VASE) as the
surprise-based comparator, because surprisal and VASE perform similarly (be stuck
for a long time in the environments that have abrupt transitions, see Figure 4.7) and
surprisal is computationally more efficient.

Table 5.1: Large-scale games environmental preprocessing.

Hyperparameter Setting

Max and skip frames 4
Grey-scaling True
Observation downsampling (84, 84)
Max episode steps 4500
Terminal on loss of life False

In the first two simple experiments, we follow the structure shown in Figure 5.1 and
choose rllab (Duan et al., 2016) as the platform to run the code. The model is a simple
fully-connected neural network that has one hidden layer of 32 units and the number of
units in output layer is equal to the dimension of state. The hidden layer has rectified
linear unit (ReLU) non-linearities. The policy π is also a neural network that has one
hidden layer of 32 units and tanh nonlinearities. For other hyper-parameter settings
please check Table 5.2, where batch size refers to steps collected at each iteration.

Table 5.2: Hyperparameter setting for two simple experiments.

Hyperparameter Setting

Batch size 5000
Max Rollout Length 500
Number of iterations 1000
Discount factor 0.99

In the three large-scale games, since the states are pixel-frames, if we also try the

90

structure in Figure 5.1, we will compute the surprisal or mutual information from raw
pixels. However, recent work Pathak et al. (2017); Burda et al. (2018) shows that if
we map the raw pixels to a feature space first and compute the intrinsic reward in this
space, we can get a much better result. The mapping can be any feature extractor such
as a Variational Autoencoder (VAE) or a Convolution network (CNN) with weights
frozen to randomly initialised values. In Chapter 4, we have chosen the latter for time
efficiency reasons. We also use this CNN with frozen weights as the feature extractor
in this chapter.

We use two different methods to compute MI in a CNN feature space (see Figure
5.3a and Figure 5.3b). In Figure 5.3a, the world modelM is trained on the CNN feature
space, but in Figure 5.3b the world model M is trained from pixels. Both of these two
structures use a separate CNN network with frozen layers as a feature extractor so that
we can compute intrinsic reward ‖M(ft, at)−ft‖2 or ‖M(st, at)−ft‖2 in feature space.
We also compare our results with RND in our large-scale experiments.

The feature extractor CNN in Figure 5.3 has three convolutional layers, which have
32, 64, 64 kernels, 8, 4, 3 kernel size and stride as 4, 2, 1, followed by a fully-connected
linear layer with 512 output units. All the parameters in the CNN are fixed (no
training). The world model in Figure 5.3a uses the output of the linear layer as its
input and predicts future observations in feature space. It has two hidden non-linear
layers and one linear output layer. All these fully-connected layers have 512 output
units. The world model in Figure 5.3b on the other hand, uses the raw pixels as its
input. It uses the same convolutional layer structure as the feature extractor CNN we
introduced above, but the parameters are trained during learning. The self-predictor in
Figure 5.2 has the same structure as the world model in Figure 5.3b. The difference is
that the self-predictor only considers observations as its input and ignores actions. All
the policy networks in Figure 5.2 and Figure 5.3 have the same structure. To compare
RND as a baseline, we choose the same other hyper-parameter settings as RND in this
paper (see Table 5.3). Please note that the trade-off between external rewards and
internal rewards is set to 0.5, which is different from setting it to 10−4 in Chapter 3.
This is because, in Chapter 3, all sparse environments only provide extrinsic rewards
1 after the agent finds the target. However, in the Atari video game in this chapter,
the external rewards are usually hundreds or even thousands.

91

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0

2500

5000
7500
10000
12500
15000
17500
20000

(a) Surprisal (22,919 steps)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0

2500

5000
7500
10000
12500
15000
17500
20000

(b) MIME (21,150 steps)

Figure 5.4: Exploration efficiency in 2DPlane environment until chancing upon the
reward state.

92

Table 5.3: Hyperparameter setting for three large-scale games.

Hyperparameter Setting

Rollout sampling length 128
Number of time steps 1e8
Number of optimization epochs 4
Reward trade off η 0.5
Number of parallel environments 32
Learning rate 1e-4
Discount factor for intrinsic reward 0.99
Discount factor for extrinsic reward 0.999
Frames stacked for policy 4
Frames stacked for model 1

5.5.1 2DPlane environment

This is the 2DPlane environment that we introduced in section 3.3.1. We choose this
environment to show that MIME-agent has similar exploration ability with surprisal-
agent.

In this experiment, we train one agent and record the observation coordinate (x, y)

at each step until it finds the non-zero extrinsic reward. Figure 5.4 shows the heat
map of location visits for the agent trained with surprisal reward and with MIME
reward, respectively. Darker red represents a higher density, which means the agent
takes more steps in this area. We can see that the exploration efficiency is similar
between surprisal-agent and MIME-agent.

5.5.2 Passing through a wormhole

The wormhole experiment uses a three-dimensional environment with a sharp circular
boundary (the wormhole) between an upper rectangular planar environment at z =

1000, and a lower second circular planar environment centred at the origin with radius
0.5 (See Figure 5.5). The observation space is 3D ((x, y, z) ∈ R3). The action is still a
two dimensional vector: the velocity (ẋ, ẏ) that satisfies

√
ẋ2 + ẏ2 ≤ 0.01. The agent

starts from the origin (x = 0, y = 0, z = 0). When the agent crosses the boundary, it
immediately transitions from one plane to the other. No extrinsic reward is provided
in this environment. So this is a pure exploration problem. A uniform distribution of

93

Figure 5.5: Pass through a wormhole: this is a three-dimensional environment with
a sharp circular boundary (the wormhole) between an upper rectangular planar envi-
ronment at z = 1000, and a lower second circular planar environment centred at the
origin with radius 0.5. The agent starts from the origin (x = 0, y = 0, z = 0). When
the agent crosses the boundary, it immediately transitions from one plane to the other.

94

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0

2500

5000
7500
10000
12500
15000
17500
20000

(a) No intrinsic reward

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

2500

5000
7500
10000
12500
15000
17500
20000

(b) Surprisal

Figure 5.6: Pass through a wormhole, 5 million steps (continued on next page).

95

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0

2500

5000
7500
10000
12500
15000
17500
20000

(c) MIME

Figure 5.6: Pass through a wormhole, 5 million steps (continued from previous page).

visits is the optimal exploration strategy. Similar to the previous experiment, darker
red represents a higher density, which means the agent takes more steps in this area
and loses exploration efficiency. All the agents explore 5,000,000 steps. Figure 5.6a
to Figure 5.6c show the top view of the environment so that we can also visualise the
agent’s movements. We can see both MIME and surprisal agents are attracted by the
boundary, but the time that surprisal agents stay at the boundary is much longer than
the MIME agent. As can be seen from Figure 5.6a, the random exploration agent is
not affected by the boundary, but the exploration efficiency is very low.

5.5.3 Large-scale games

In this subsection, we test MIME and compare it to surprisal and RND in three large-
scale games: Gravitar, Doom, and Montezuma’s Revenge. For MIME, we implement
two different structures as shown in Figure 5.3a and Figure 5.3b respectively. All
experiments run with 32 parallel environments.

Gravitar (Figure 5.7) is an Atari game released in 1982. In the game, the player
controls spacecraft to explore. There are two modes: the overworld (essentially space);
and a sideview landscape when the spaceship enters a planet environment. The agent
(spaceship) will be pulled slowly to the star in the overworld, and downward in the

96

side-view levels. The player will lose a life if the spacecraft crashes. If the fuel is out the
game will also end. We chose this game to show a similar exploration ability between
surprisal and MIME. It can be seen from Figure 5.9a that the agent trained by MIME,
surprisal and RND performs similar in this game. The MIME agent that has frozen
CNN layers also performs as good as the one with trainable CNN layers. This supports
hypothesis (5.1)

(a) (b) (c)

Figure 5.7: Gravitar game

Target

(a) Environment map (b) Target room

Figure 5.8: VizDoom scenario: "find my way home".

We choose the scenario named "find my way home" (Figure 5.8) in VizDoom game
(Kempka, Wydmuch, Runc, Toczek, and Jaśkowski, 2016; Wydmuch, Kempka, and
Jaśkowski, 2018) to train the agent to navigate in surroundings and reach his ultimate
goal. The map is a series of connected rooms and one corridor with a dead end.

97

0 0.2 0.4 0.6 0.8 1
1e8

Time steps

0

500

1000

1500

2000

2500

3000

3500

4000
M

ea
n

ep
iso

di
c

re
tu

rn
MIME-FREEZE-CNN
MIME-TRAINABLE-CNN
RND
NLL

(a) Gravitar

0 1 2 3 4 5
1e6

Time steps

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
ep

iso
di

c
re

tu
rn

MIME-FREEZE-CNN
MIME-TRAINABLE-CNN
RND
NLL

(b) Doom with TV

Figure 5.9: Mean episodic return of MIME, surprisal (NLL), and RND on 3 hard ex-
ploration large-scale games. Curves are an average over 3 random seeds, with standard
deviation shown in shaded areas. Horizontal axes show numbers of frames(continued
on next page).

98

0 0.2 0.4 0.6 0.8 1
1e8

Time steps

0

2000

4000

6000

8000

10000

M
ea

n
ep

iso
di

c
re

tu
rn

MIME-FREEZE-CNN
MIME-TRAINABLE-CNN
RND
NLL

(c) Montezuma’s Revenge

Figure 5.9: Mean episodic return of MIME, surprisal (NLL), and RND on 3 hard ex-
ploration large-scale games. Curves are an average over 3 random seeds, with standard
deviation shown in shaded areas. Horizontal axes show numbers of frames (continued
from previous page).

99

Each room has a different colour and texture. There is a green vest in one of the
rooms (the same room every time). The agent is born in a randomly chosen room
facing a random direction. When the agent explores in this map and finds the vest
(the goal), it gets a 1 point reward. To show whether the agent trained by MIME or
surprisal is stuck at the discontinuous area in this environment, we edit the map and
add a TV (always shows changing frames) on the wall in one room. Here the changing
frames are uniformly and randomly chosen from a frame pool of a fixed size and used
to simulate discontinuous environmental transitions, as if someone is rapidly cycling
through different TV channels. This can be done by a Zoom editor called Slade3

1.
The experiment is run for 5 million frames. We observe that the surprisal agent gets
stuck in the TV room, and only the agent born in a room between the TV room and
the goal could find the goal, however, both MIME and RND driven agents can escape
from the TV room2. This support hypothesis (5.2) that MIME will perform better
than surprise-based method in an environment that has discontinuous transitions. As
with the previous experiment, there is not much difference in the exploration ability
between the agents driven from two different structures of MIME (See Figure 5.9b).

Montezuma’s revenge game (See Figure 4.3c) is an Atari game that is known for its
notorious difficulty. Most traditional RL algorithms (Mnih et al., 2015; Hessel et al.,
2018) that are successful at other Atari games cannot solve Montezuma’s revenge game
due to its extremely sparse rewards. For example, in the first room of Montezuma’s
revenge, to get the first key (and this is also the first reward from the game), the agent
needs to climb down a ladder, jump on a rope, climb down another ladder, jump over
a skull, and then finally climb up another ladder. If one of the above steps failed, the
agent may die in the game. This is just the first key in the first room and Montezuma’s
revenge game has 24 rooms in level 1. In recent years, Montezuma’s revenge game has
been seen as a grand challenge for RL researchers and of course, also inspired the de-
velopment of some of RL algorithms (Ostrovski, Bellemare, van den Oord, and Munos,
2017; Aytar, Pfaff, Budden, Paine, Wang, and de Freitas, 2018; Burda et al., 2018;
Ecoffet et al., 2019; Ecoffet, Huizinga, Lehman, Stanley, and Clune, 2020). This game
has similar game mechanics as the wormhole environment we designed in subsection
5.5.2: when the agent moves into a new room, the state abruptly changes because the
background of each room is different. Surprisal agents get stuck at the boundary be-
tween adjacent rooms because of this transition. In Figure 5.9c the surprisal agent can

1http://slade.mancubus.net
2https://drive.google.com/open?id=1P15KBDhZisuml-X_KPc2RBSdYCNu0_yX

100

http://slade.mancubus.net
https://drive.google.com/open?id=1P15KBDhZisuml-X_KPc2RBSdYCNu0_yX

only achieve a score of 400 because it is stuck at the boundary between the first and
second rooms. We have also applied our VASE algorithm to Montezuma’s Revenge in
Chapter 4, and found that the VASE agent also can be stuck at room boundaries like
surprisal agent. A MIME agent with trainable CNN layers performs somewhat better
than RND agents, which also supports hypothesis (5.2). It is interesting to see that
MIME agent with frozen CNN layers only scores 2500. The game offers a substantial
reward for agents that return to room 2 with the reward from room 3 (The premise is
to find the sword in the third room and return to the second room to kill one skull with
the sword, see Figure 5.10). The frozen CNN MIME agent discovers this reward, and
in the process, the policy encourages the agent to go back to room 2 after room 3. We
also observe that the RND agent initially gets stuck in the same undesirable loop as
the frozen CNN MIME agent. However, the RND agent does manage to escape from
this loop in 2 out of 3 of the trials/seeds. We believe that extending training should
allow the frozen CNN MIME agent to escape from this loop. For a simulated video of
MIME agent play Montezuma’s revenge, please check 3

Find sword in room 3 Return to room 2 Kill skull with sword

Figure 5.10: If the agent can find the sword in the third room and return to the second
room to kill one skull with the sword, it will obtain a substantial reward (2000).

5.6 Discussion and Conclusion

One limitation of our approach is that when we maximise the mutual information,
we maximise the KL divergence, which is theoretically without upper bound. For
autoencoder-like world models, if the model learns the identity function, the network
will be able to reproduce the input regardless of whether it has seen it before. Im-
portantly, this will result in approximately the same intrinsic reward values for every

3https://drive.google.com/open?id=1dPDj4ZdWzttfj3PHPUeuYgyGfm2u3crB

101

https://drive.google.com/open?id=1dPDj4ZdWzttfj3PHPUeuYgyGfm2u3crB

possible observation, regardless of its novelty. In practice, we found that when the pol-
icy adversarially steers the agent exactly towards areas where the states do not belong
to the same distribution of the previous ones, the model will be inaccurate and the
process of learning identity function will slow down.

We can see from Eq. 5.9 that when we compute the intrinsic reward ri, we calculate
the error between the model output and the input, which means the output M(st, at)

is a representation of st (ft in feature space). What happens if we denote the output
M(st, at) as the representation of (st, at)? In other words, we compute the intrinsic
reward by the following equation:

rit ∼ ‖M(st, at)− (st, at)‖2. (5.10)

We tried an experiment on Montezuma’s Revenge game and compute the intrinsic
reward by Eq. 5.10. Figure 5.11 shows the results of average episode rewards and the
average number of rooms found, trained by Eq. 5.9 and Eq. 5.10 respectively. We
can see from Figure 5.11 that if we consider action at, the exploration performance is
better in the first half of iterations, but worse in the last half. The reasons for this
phenomenon need to be further studied. Because the action space of Atari video games
is a discrete space, it also deserves to investigate whether there is a difference if we
change the environment to one with continuous action space.

To conclude, the main difference between MIME agents and other common RL
agents, is that MIME agents do not try to predict the future. Rather, they form a
measure of how comfortable they are in a given environment. Whereas surprisal agents
explore areas where prediction is poor, MIME agents explore areas where it has a
poor world model. As a consequence, surprisal agents tend to seek out hard to learn
transition boundaries, whilst MIME agents are encouraged to leave their comfort zone.
This is a simple idea, is easy to implement and most importantly it overcomes the
limitations of surprisal getting stuck at transition boundaries.

102

0 0.2 0.4 0.6 0.8 1
1e8

Time steps

0

2000

4000

6000

8000

10000
M

ea
n

nu
m

be
r o

f r
oo

m
s f

ou
nd

MIME-st-at
MIME-st

(a) Mean episodic return

0 0.2 0.4 0.6 0.8 1
1e8

Time steps

0

5

10

15

20

M
ea

n
nu

m
be

r o
f r

oo
m

s f
ou

nd

MIME-st-at
MIME-st

(b) Mean number of rooms found

Figure 5.11: Compare results between Eq. 5.9 and Eq. 5.10, where MIME-st-at denotes
the results of Eq. 5.10 and MIME-st denotes the results of Eq. 5.9.

103

Chapter 6

Conclusion

Reinforcement learning is a special machine learning mechanism. Agents need to in-
teract with the environment at each time step to obtain information about new states
and rewards. Rewards are important because all reinforcement learning algorithms
require rewards to train good policies. However, some environments can only provide
very sparse rewards. In this thesis, we have investigated how to design and generate
intrinsic rewards and use them for deep reinforcement learning exploration. Driven by
this intrinsic reward, the agent can efficiently explore to discover the sparse rewards
obtained from the environment.

Now, we summarise contributions based on these different kinds of intrinsic rewards
and their applications:

• VASE: Variational Assorted Surprise Exploration

We first proposed a new definition of surprise that can be used as an intrinsic re-
ward for deep reinforcement learning exploration, which we call assorted surprise.
Surprise has been cast as a cognitive-emotional phenomenon that impacts many
aspects from creativity to learning to decision-making. In reinforcement learning,
a surprise-driven agent can learn to explore without knowing any reward system
from the environment. Agents learn in a reinforcement learning environment by
maximizing this "surprise".

Before we presented our assorted surprise concept, there are two frequently used
types of surprise intrinsic rewards in the field of reinforcement learning, one is
surprisal, the other is Bayesian surprise. Surprisal is a measure of the informa-
tion content of the outcome. It is the inconsistency between the model prediction
and observed environment outcome. Bayesian surprise measures the amount of

104

information needed to transform the agent’s prior belief into the posterior belief
distribution. Surprisal is intuitive and simple to use. Bayesian surprise is good
at the uncertainty in environments. However, both of them have shortcomings.
Surprisal is not good at dealing with uncertainties because it is a point estimation
method. Bayesian surprise can only be applied to small and simple problems be-
cause of its high computation cost. And Bayesian surprise can only be computed
after the learning step.

Our assorted surprise idea comes from ensemble learning. Ensemble learning is a
technique that trains multiple models to solve the same problem, and combines
them to get better, more reliable predictions with lower variance and/or lower
bias. In terms of our problem, we suppose the agent creates many models, and
each model can predict the next state of the environment. Because the prediction
is different between these models, each model gets different surprise (surprisal).
We combine these surprises generated from different models together and give
our assorted surprise definition: The assorted surprise is the expectation of these
surprisals. By this definition, we can see that the assorted surprise doesn’t have
the shortcomings that surprisal and Bayesian surprise have. First, it is simple:
it is only an expectation of suprisal, with cheap computation consumption. It is
more robust compared to using a single model. In addition, the assorted surprise
is computed as soon as the agent sees the next state, without the need to update
the agent’s belief like Bayesian surprise does. Furthermore, we also showed in
Chapter 3 that the assorted surprise is the sum of surprisal and Bayesian surprise.
We also add a confidence term, the entropy of the model parameters. We let our
assorted surprise subtract this confidence term on the intuition that a confident
agent model will have low entropy and will be more surprised when it sees an
unlikely state.

Finally, in practice, we choose the Bayesian neural network as the agent’s model
to predict the next environmental state. This is because the expected value needs
to be calculated when calculating our assorted surprise, which means that the
probability of each model is required. However, this is intractable since the prob-
ability is a posterior distribution and updates at each time step. Combined with
the variational inference technique, the Bayesian neural network can maintain
this posterior distribution with a variational approximated distribution. Because
the parameters in Bayesian neural network are all distributions, we can sample
each agent’s model based on this variational approximated distribution. That’s

105

why we call our proposed exploration algorithm variational assorted surprise ex-
ploration (VASE).

• VASE for continuous control task with sparse rewards

To show the performance of VASE algorithm, we first implemented it in a simple
2D exploration environment. Both state and action space in this 2D experiment
are continuous. The experiment showed that with VASE algorithm, the agent
can find the target in 26,663 steps. However, for the agent not driven by VASE,
it needs about 2,059,459 steps. This experiment told us the agent could explore
more efficiently driven by VASE algorithm. Then we applied VASE to five other
environments. All these environments provide sparse reward. Among them,
MontainCar, CartpoleSwingup and DoublePendulum are three classic continuous
control environments. HalfCheetah and Ant are two locomotion tasks. We also
applied VASE to LunarLanderContinuous environment. This environment is not
a sparse reward environment, it provide reward to the agent at each time step.
We chose this environment to investigate how VASE would perform in non-sparse
reward environments. Our experimental results showed that VASE performed
well on all these environments, compared to surprisal and Bayesian surprise.

• VASE for Atari video games: Apply VASE to large scale problems

In previous work, the environments that we chose are simple. The dimensions of
the state space and the action space of the environment are not high. Both the
policy neural network and prediction model network are small (one hidden layer
or two hidden layers fully connected). So to further study the exploration ability
of VASE algorithm, we applied VASE to large scale problems: we let the agent
play Atari video games.

Atari video games are good environments to investigate the exploration ability
of VASE algorithm on large scale problems, because its video frames are high
dimensional pixel images (210x160x3). We first did some data preprocessing.
Then we construct the neural networks to be used for policy, feature extractor
and prediction model respectively. The assorted surprise is calculated in feature
space, the output of the feature extractor network.

In experiment, we first removed the game score that provided from the game, and
trained the agent only by intrinsic reward. We chose three Atari video games,
BreakOut, Pong and Montezuma’s Revenge. Experimental results showed that

106

VASE driven agent played well and compared to surprisal driven agent, it always
found some policies that can let it survive forever in the game, which the surprisal
driven agent cannot find when training in the same time steps. In the end, the
Montezuma’s Revenge game seems too difficult to both VASE driven and surprisal
driven agents. When we added game scores back as an extrinsic reward, both
agents explored much better. However, we observed that the agents would be
stuck at the boundary of rooms for a long time.

• MIME: Mutual Information Minimisation Exploration

In previous work, we found that surprise (both surprisal and VASE) driven agents
would get stuck at the boundary of rooms in Montezuma’s Revenge. To solve this
problem, we proposed a novel exploration strategy, which we call mutual informa-
tion minimisation exploration (MIME). The agent’s model network is trained by
maximising this mutual information to find the best feature representation. On
the contrary, the policy network is trained by minimising the mutual information,
so that encourages the agent to explore unfamiliar states.

We implemented MIME on three video games: Gravitar, Montezuma’s Revenge
and Zoom. Gravitar is a normal Atari video games with sparse reward. We chose
this game to show that in the environment where the state transition is continu-
ous, MIME driven agents can explore as well as surprisal. MIME performs much
better than surprisal on Montezuma’s Revenge and Zoom. For Montezuma’s Re-
venge, the stuck phenomenon never happens any more at the boundary of rooms.
For Zoom, we add a TV on the wall in one room. MIME driven agents will never
be attracted by the TV and can always find the target, however, agents driven
by surprisal will choose to stop at the TV room and struggle whether to continue
to watch TV or leave that room.

6.1 Future work

In this thesis, I proposed different ways to define/design intrinsic reward functions
in deep reinforcement learning, which can be used to drive the agent to explore its
environment more efficiently. Different factors will affect the agent’s exploration pro-
cess. Due to time constraints, I cannot solve these challenges in a single Ph.D. The
contribution of this article raises the following questions for future work:

107

• We showed in Chapter 3 that VASE can quantify both the aleatoric and epis-
temic uncertainty simultaneously. However, these two kinds of uncertainties are
combined implicitly together. A way to explicitly decompose these uncertainties
and assign different weights to aleatoric uncertainty and epistemic uncertainty
during the training process would be worth pursuing.

• We choose Bayesian neural network as the prediction model of VASE algorithm.
The model distribution P (M) is maintained by the distribution of its parameters
P (θ). The structure of the Bayesian neural network model is fixed. However,
this can be extended to more general cases. We can choose different models that
have different network structures. We can also try other possible regimes listed
at the beginning of section 3.2.2.

• When we train Bayesian neural networks in VASE algorithm, we assume the vari-
ational posterior distribution is factorised regardless of whether the true posterior
is a factorised distribution or not. The variational posterior learned under this
assumption cannot capture the dependence on latent variables. We need to de-
velop a new model with the assumption that the variational posterior distribution
is dimensional-wise dependent.

• In Chapter 4, the parameters of feature extractor network (a CNN network)
are randomly initialised and fixed and then not trained during the learning pro-
cess. This can reduce the computation cost. Although experiments in this thesis
showed good results, there is still no theoretical guarantee currently why a fea-
ture extractor network can work well with frozen parameters. It is worth studying
whether there is a theoretical proof.

• For MIME algorithm, when we maximise the mutual information, we maximise
the KL divergence, which is theoretically without upper bound. This could lead
to an identity problem: the model network will just reproduce its input then
the mutual information between the input and output would be the same for all
different states. A possible research direction is to choose a divergence with an
upper bound to compute the mutual information.

108

References

Achiam, J. and Sastry, S. (2017). Surprise-based intrinsic motivation for deep rein-
forcement learning. arXiv preprint arXiv:1703.01732 .

Ahmed, A., Aly, M., Gonzalez, J., Narayanamurthy, S., and Smola, A. J. (2012). Scal-
able inference in latent variable models. In Proceedings of the fifth ACM international
conference on Web search and data mining, 123–132.

Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017). A
brief survey of deep reinforcement learning. arXiv preprint arXiv:1708.05866 .

Aubret, A., Matignon, L., and Hassas, S. (2019). A survey on intrinsic motivation in
reinforcement learning. arXiv preprint arXiv:1908.06976 .

Aytar, Y., Pfaff, T., Budden, D., Paine, T., Wang, Z., and de Freitas, N. (2018). Playing
hard exploration games by watching youtube. In Advances in Neural Information
Processing Systems, 2930–2941.

Baldi, P. and Itti, L. (2010). Of bits and wows: a Bayesian theory of surprise with
applications to attention. Neural Networks , 23 (5), 649–666.

Baranes, A. and Oudeyer, P.-Y. (2013). Active learning of inverse models with intrinsi-
cally motivated goal exploration in robots. Robotics and Autonomous Systems , 61 (1),
49–73.

Barto, A., Mirolli, M., and Baldassarre, G. (2013). Novelty or surprise? Frontiers in
Psychology , 4, 907.

Barto, A. G. (2013). Intrinsic motivation and reinforcement learning. In Intrinsically
motivated learning in natural and artificial systems, 17–47. Springer.

Bell, A. J. and Sejnowski, T. J. (1995). An information-maximization approach to
blind separation and blind deconvolution. Neural computation, 7 (6), 1129–1159.

109

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R.
(2016). Unifying count-based exploration and intrinsic motivation. In Advances in
Neural Information Processing Systems 29, 1471–1479.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade learn-
ing environment: An evaluation platform for general agents. Journal of Artificial
Intelligence Research, 47, 253–279.

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review
and new perspectives. IEEE transactions on pattern analysis and machine intelli-
gence, 35 (8), 1798–1828.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning.
In Proceedings of the 26th Annual International Conference on Machine Learning,
41–48.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer-Verlag.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A
review for statisticians. Journal of the American Statistical Association, 112 (518),
859–877.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). Weight uncer-
tainty in neural networks. In Proceedings of the 32nd International Conference on
International Conference on Machine Learning-Volume 37, 1613–1622.

Breiman, L. (1996). Bagging predictors. Machine learning , 24 (2), 123–140.

Breiman, L. (1999). Prediction games and arcing algorithms. Neural computa-
tion, 11 (7), 1493–1517.

Brim, A. (2020). Deep Reinforcement Learning Pairs Trading with a Double Deep Q-
Network. In 10th Annual Computing and Communication Workshop and Conference,
CCWC 2020, Las Vegas, NV, USA, January 6-8, 2020, 222–227. IEEE.

Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell, T., and Efros, A. A. (2018).
Large-Scale Study of Curiosity-Driven Learning. In International Conference on
Learning Representations.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. (2018). Exploration by random
network distillation. In International Conference on Learning Representations.

110

Chentanez, N., Barto, A. G., and Singh, S. P. (2005). Intrinsically motivated reinforce-
ment learning. In Advances in Neural Information Processing Systems 17, 1281–1288.
MIT Press.

Chu, T., Wang, J., Codecà, L., and Li, Z. (2019). Multi-agent deep reinforcement
learning for large-scale traffic signal control. IEEE Transactions on Intelligent Trans-
portation Systems , 21 (3), 1086–1095.

Chua, K., Calandra, R., McAllister, R., and Levine, S. (2018). Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. In Advances in
Neural Information Processing Systems, 4754–4765.

Clements, W. R., Robaglia, B.-M., Van Delft, B., Slaoui, R. B., and Toth, S. (2019).
Estimating risk and uncertainty in deep reinforcement learning. arXiv preprint
arXiv:1905.09638 .

Co-Reyes, J., Liu, Y., Gupta, A., Eysenbach, B., Abbeel, P., and Levine, S. (2018).
Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with
Trajectory Embeddings. In Proceedings of the 35th International Conference on
Machine Learning, 1009–1018.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning , 20 (3),
273–297.

Dasgupta, S. (2000). Experiments with random projection. In Proceedings of the
Sixteenth conference on Uncertainty in artificial intelligence, 143–151.

Deci, E. L. and Ryan, R. M. (2010). Intrinsic motivation. The corsini encyclopedia of
psychology , 1–2.

Deisenroth, M. P., Neumann, G., Peters, J., et al. (2013). A survey on policy search
for robotics. Foundations and Trends® in Robotics , 2 (1–2), 1–142.

Depeweg, S., Hernández-Lobato, J. M., Doshi-Velez, F., and Udluft, S. (2017). De-
composition of uncertainty in Bayesian deep learning for efficient and risk-sensitive
learning. arXiv preprint arXiv:1710.07283 .

Depeweg, S., Hernandez-Lobato, J.-M., Doshi-Velez, F., and Udluft, S. (2018). De-
composition of uncertainty in bayesian deep learning for efficient and risk-sensitive
learning. In International Conference on Machine Learning, 1184–1193.

111

Der Kiureghian, A. and Ditlevsen, O. (2009). Aleatory or epistemic? Does it matter?
Structural safety , 31 (2), 105–112.

Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford, A., Schulman,
J., Sidor, S., Wu, Y., and Zhokhov, P. (2017). OpenAI Baselines. https://github.
com/openai/baselines.

Dua, D. and Graff, C. (2017). UCI Machine Learning Repository. http://archive.

ics.uci.edu/ml.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and Abbeel, P. (2016). Benchmarking
deep reinforcement learning for continuous control. In International Conference on
Machine Learning, 1329–1338.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever, I., and Abbeel, P. Rl2:
Fast reinforcement learning via slow reinforcement learning. 2016. arXiv preprint
arXiv:1611.02779 .

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and Clune, J. (2019). Go-explore:
a new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995 .

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and Clune, J. (2020). First return
then explore. arXiv preprint arXiv:2004.12919 .

Faraji, M. (2016). Learning with Surprise: Theory and Applications. Ph. D. thesis,
Ecole Polytechnique Fédérale de Lausanne.

Faraji, M., Preuschoff, K., and Gerstner, W. (2016). Balancing New Against Old
Information: The Role of Surprise in Learning. arXiv preprint arXiv:1606.05642 .

Florensa, C., Held, D., Geng, X., and Abbeel, P. (2018). Automatic Goal Generation for
Reinforcement Learning Agents. In International Conference on Machine Learning,
1515–1528.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Hessel, M., Osband, I., Graves,
A., Mnih, V., Munos, R., Hassabis, D., Pietquin, O., Blundell, C., and Legg, S.
(2018). Noisy Networks For Exploration. In 6th International Conference on Learn-
ing Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net.

112

https://github.com/openai/baselines
https://github.com/openai/baselines
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-
line learning and an application to boosting. Journal of computer and system sci-
ences , 55 (1), 119–139.

Gal, Y. (2016). Uncertainty in deep learning. Ph. D. thesis, University of Cambridge.

Gal, Y. and Ghahramani, Z. (2015). Bayesian convolutional neural networks with
Bernoulli approximate variational inference. arXiv preprint arXiv:1506.02158 .

Gao, W. and Zhou, Z.-H. (2013). On the doubt about margin explanation of boosting.
Artificial Intelligence, 203, 1–18.

Gelfand, A. E. and Smith, A. F. (1990). Sampling-based approaches to calculating
marginal densities. Journal of the American statistical association, 85 (410), 398–
409.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Transactions on pattern analysis and machine
intelligence, (6), 721–741.

Georgeon, O. L., Marshall, J. B., and Ronot, P.-Y. R. (2011). Early-stage vision of
composite scenes for spatial learning and navigation. In 2011 IEEE International
Conference on Development and Learning (ICDL), Volume 2, 1–6. IEEE.

Giryes, R., Sapiro, G., and Bronstein, A. M. (2016). Deep neural networks with random
gaussian weights: A universal classification strategy? IEEE Transactions on Signal
Processing , 64 (13), 3444–3457.

Gopnik, A., Meltzoff, A. N., and Kuhl, P. K. (1999). The scientist in the crib: Minds,
brains, and how children learn. William Morrow & Co.

Graves, A. (2011). Practical variational inference for neural networks. In Advances in
Neural Information Processing Systems 24, 2348–2356. Curran Associates, Inc.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57, 97–109.

He, J., Zhuang, F., Liu, Y., He, Q., and Lin, F. (2019). Bayesian dual neural networks
for recommendation. Frontiers of Computer Science, 13 (6), 1255–1265.

113

Heess, N., TB, D., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y., Erez,
T., Wang, Z., Eslami, S., et al. (2017). Emergence of locomotion behaviours in rich
environments. arXiv preprint arXiv:1707.02286 .

Heess, N., Wayne, G., Tassa, Y., Lillicrap, T., Riedmiller, M., and Silver, D.
(2016). Learning and transfer of modulated locomotor controllers. arXiv preprint
arXiv:1610.05182 .

Henaff, M., LeCun, Y., and Canziani, A. (2019). Model-predictive policy learning with
uncertainty regularization for driving in dense traffic. In 7th International Conference
on Learning Representations, ICLR 2019.

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Hor-
gan, D., Piot, B., Azar, M. G., and Silver, D. (2018). Rainbow: Combining Improve-
ments in Deep Reinforcement Learning. In S. A. McIlraith and K. Q. Weinberger
(Eds.), Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and
the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-
18), New Orleans, Louisiana, USA, February 2-7, 2018, 3215–3222. AAAI Press.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531 .

Hinton, G. E. and Van Camp, D. (1993). Keeping the neural networks simple by
minimizing the description length of the weights. In Proceedings of the Sixth ACM
Conference on Computational Learning Theory, 5–13. ACM Press.

Houthooft, R., Chen, X., Duan, Y., Schulman, J., De Turck, F., and Abbeel, P. (2016).
Vime: Variational information maximizing exploration. In Advances in Neural In-
formation Processing Systems, 1109–1117.

Islam, R. (2016). Active learning for high dimensional inputs using Bayesian convo-
lutional neural networks. Master’s thesis, Department of Engineering, University of
Cambridge.

Itti, L. and Baldi, P. (2005). A principled approach to detecting surprising events in
video. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), Volume 1, 631–637.

114

Itti, L. and Baldi, P. F. (2006). Bayesian surprise attracts human attention. In Advances
in Neural Information Processing Systems 18, 547–554.

Jin, J., Song, C., Li, H., Gai, K., Wang, J., and Zhang, W. (2018). Real-time bidding
with multi-agent reinforcement learning in display advertising. In Proceedings of the
27th ACM International Conference on Information and Knowledge Management,
2193–2201.

Johnson, W. B. and Lindenstrauss, J. (1984). Extensions of Lipschitz mappings into a
Hilbert space. Contemporary mathematics , 26 (189-206), 1.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999). An introduction
to variational methods for graphical models. Machine learning , 37 (2), 183–233.

Kakade, S. M. and Langford, J. (2002). Approximately Optimal Approximate Rein-
forcement Learning. In C. Sammut and A. G. Hoffmann (Eds.), Machine Learning,
Proceedings of the Nineteenth International Conference (ICML 2002), University of
New South Wales, Sydney, Australia, July 8-12, 2002, 267–274. Morgan Kaufmann.

Kearns, M. and Singh, S. (2002). Near-optimal reinforcement learning in polynomial
time. Machine learning , 49 (2-3), 209–232.

Kempka, M., Wydmuch, M., Runc, G., Toczek, J., and Jaśkowski, W. (2016). Vizdoom:
A doom-based ai research platform for visual reinforcement learning. In 2016 IEEE
Conference on Computational Intelligence and Games (CIG), 1–8. IEEE.

Kendall, A., Badrinarayanan, V., and Cipolla, R. (2015). Bayesian segnet: Model un-
certainty in deep convolutional encoder-decoder architectures for scene understand-
ing. arXiv preprint arXiv:1511.02680 .

Kendall, A. and Gal, Y. (2017). What uncertainties do we need in bayesian deep
learning for computer vision? In Advances in neural information processing systems,
5574–5584.

Kennedy, P. (2003). A guide to econometrics. MIT press.

Khemchandani, R., Chandra, S., et al. (2007). Twin support vector machines for
pattern classification. IEEE Transactions on pattern analysis and machine intelli-
gence, 29 (5), 905–910.

115

Khemchandani, R. and Sharma, S. (2016). Robust least squares twin support vector
machine for human activity recognition. Applied Soft Computing , 47, 33–46.

Kim, K. I., Jung, K., and Kim, H. J. (2002). Face recognition using kernel principal
component analysis. IEEE signal processing letters , 9 (2), 40–42.

Kingma, D. P., Salimans, T., and Welling, M. (2015). Variational dropout and the
local reparameterization trick. In Advances in neural information processing systems,
2575–2583.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated
annealing. Science, 220 (4598), 671–680.

Knight, F. H. (2012). Risk, uncertainty and profit. Courier Corporation.

Kober, J., Bagnell, J. A., and Peters, J. (2013). Reinforcement learning in robotics: A
survey. The International Journal of Robotics Research, 32 (11), 1238–1274.

Kucukelbir, A., Ranganath, R., Gelman, A., and Blei, D. (2015). Automatic variational
inference in Stan. In Advances in neural information processing systems, 568–576.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The annals of
mathematical statistics , 22 (1), 79–86.

Kuncheva, L. I. and Whitaker, C. J. (2003). Measures of diversity in classifier ensembles
and their relationship with the ensemble accuracy. Machine learning , 51 (2), 181–207.

Kwon, Y., Won, J.-H., Kim, B. J., and Paik, M. C. (2018). Uncertainty quantification
using bayesian neural networks in classification: Application to ischemic stroke lesion
segmentation. In International Conference on Medical Imaging with Deep Learning,
Amsterdam, 4–6.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017). Simple and scalable predic-
tive uncertainty estimation using deep ensembles. In Advances in neural information
processing systems, 6402–6413.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521 (7553),
436–444.

Lee, L., Eysenbach, B., Parisotto, E., Xing, E., Levine, S., and Salakhutdinov,
R. (2019). Efficient exploration via state marginal matching. arXiv preprint
arXiv:1906.05274 .

116

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17 (1), 1334–1373.

Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., and Quillen, D. (2018). Learning
hand-eye coordination for robotic grasping with deep learning and large-scale data
collection. The International Journal of Robotics Research, 37 (4-5), 421–436.

Li, K. and Malik, J. (2017). Learning to optimize neural nets. arXiv preprint
arXiv:1703.00441 .

Lima, A., Zen, H., Nankaku, Y., Miyajima, C., Tokuda, K., and Kitamura, T. (2004).
On the use of kernel PCA for feature extraction in speech recognition. IEICE
TRANSACTIONS on Information and Systems , 87 (12), 2802–2811.

Linsker, R. (1988). Self-organization in a perceptual network. Computer , 21 (3), 105–
117.

Little, D. Y.-J. and Sommer, F. T. (2013). Learning and exploration in action-
perception loops. Frontiers in neural circuits , 7, 37.

Liu, Y., Zhao, G., Nacewicz, B. M., Adluru, N., Kirk, G. R., Ferrazzano, P. A., Styner,
M., and Alexander, A. L. (2019). Accurate Automatic Segmentation of Amygdala
Subnuclei and Modeling of Uncertainty via Bayesian Fully Convolutional Neural
Network. arXiv preprint arXiv:1902.07289 .

Lopes, M., Lang, T., Toussaint, M., and Oudeyer, P.-Y. (2012). Exploration in model-
based reinforcement learning by empirically estimating learning progress. In Ad-
vances in Neural Information Processing Systems 25, 206–214. Curran Associates,
Inc.

Luo, X. and Durrant, R. J. (2017). Maximum Margin Principal Components. arXiv
preprint arXiv:1705.06371 .

Mangasarian, O. L. and Musicant, D. R. (1999). Successive overrelaxation for support
vector machines. IEEE Transactions on Neural Networks , 10 (5), 1032–1037.

Mao, H., Alizadeh, M., Menache, I., and Kandula, S. (2016). Resource management
with deep reinforcement learning. In Proceedings of the 15th ACM Workshop on Hot
Topics in Networks, 50–56.

117

Matthies, H. G. (2007). Quantifying uncertainty: modern computational representa-
tion of probability and applications. In Extreme man-made and natural hazards in
dynamics of structures, 105–135. Springer.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and
Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In
International conference on machine learning, 1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and
Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 .

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie,
C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and
Hassabis, D. (2015). Human-level control through deep reinforcement learning. Na-
ture, 518 (7540), 529–533.

Mobiny, A., Nguyen, H. V., Moulik, S., Garg, N., and Wu, C. C. (2019). DropConnect
Is Effective in Modeling Uncertainty of Bayesian Deep Networks. arXiv preprint
arXiv:1906.04569 .

Mohamed, S. and Rezende, D. J. (2015). Variational information maximisation for
intrinsically motivated reinforcement learning. In Advances in neural information
processing systems, 2125–2133.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2018). Foundations of machine
learning. MIT press.

Moriarty, D. E., Schultz, A. C., and Grefenstette, J. J. (1999). Evolutionary algorithms
for reinforcement learning. Journal of Artificial Intelligence Research, 11, 241–276.

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.

Nikolov, N., Kirschner, J., Berkenkamp, F., and Krause, A. (2018). Information-
Directed Exploration for Deep Reinforcement Learning. In International Conference
on Learning Representations.

Oh, J., Chockalingam, V., Lee, H., et al. (2016). Control of Memory, Active Perception,
and Action in Minecraft. In International Conference on Machine Learning, 2790–
2799.

118

Opitz, D. and Maclin, R. (1999). Popular ensemble methods: An empirical study.
Journal of artificial intelligence research, 11, 169–198.

Ostrovski, G., Bellemare, M. G., van den Oord, A., and Munos, R. (2017). Count-based
exploration with neural density models. In Proceedings of the 34th International
Conference on Machine Learning - Volume 70, 2721–2730. JMLR.org.

Oudeyer, P.-Y., Kaplan, F., et al. (2008). How can we define intrinsic motivation. In
Proc. of the 8th Conf. on Epigenetic Robotics, Volume 5, 29–31.

Oudeyer, P.-Y., Kaplan, F., and Hafner, V. V. (2007). Intrinsic motivation systems
for autonomous mental development. IEEE transactions on evolutionary computa-
tion, 11 (2), 265–286.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. (2017). Curiosity-driven ex-
ploration by self-supervised prediction. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 16–17.

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R. Y., Chen, X., Asfour,
T., Abbeel, P., and Andrychowicz, M. (2018). Parameter Space Noise for Explo-
ration. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net.

Platt, J. et al. (1998). Sequential minimal optimization: A fast algorithm for training
support vector machines. Technical report, msr-tr-98-14, Microsoft Research.

Poupart, P., Vlassis, N., Hoey, J., and Regan, K. (2006). An analytic solution to
discrete Bayesian reinforcement learning. In ICML, 697–704. ACM.

Rastogi, R., Sharma, S., and Chandra, S. (2017). Robust parametric twin support
vector machine for pattern classification. Neural Processing Letters , 1–31.

Raytchev, B., Yoda, I., and Sakaue, K. (2004). Head pose estimation by nonlinear
manifold learning. In Proceedings of the 17th International Conference on Pattern
Recognition, 2004. ICPR 2004., Volume 4, 462–466. IEEE.

Reyzin, L. and Schapire, R. E. (2006). How boosting the margin can also boost classifier
complexity. In Proceedings of the 23rd international conference on Machine learning,
753–760. ACM.

119

Robbins, H. and Monro, S. (1951). A stochastic approximation method. The annals
of mathematical statistics , 22, 400–407.

Robert, C. and Casella, G. (2013). Monte Carlo statistical methods. Springer Science
& Business Media.

Rokach, L. (2010). Ensemble-based classifiers. Artificial Intelligence Review , 33 (1-2),
1–39.

Ryan, R. M. and Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic
definitions and new directions. Contemporary educational psychology , 25 (1), 54–67.

Salge, C., Glackin, C., and Polani, D. (2014). Empowerment–an introduction. In
Guided Self-Organization: Inception, 67–114. Springer.

Schapire, R. E. (1990). The strength of weak learnability. Machine learning , 5 (2),
197–227.

Schapire, R. E., Freund, Y., Bartlett, P., Lee, W. S., et al. (1998). Boosting the
margin: A new explanation for the effectiveness of voting methods. The annals of
statistics , 26 (5), 1651–1686.

Schmidhuber, J. (1991a). Curious model-building control systems. In Proc. interna-
tional joint conference on neural networks, 1458–1463.

Schmidhuber, J. (1991b). A possibility for implementing curiosity and boredom in
model-building neural controllers. In Proceedings of the First International Confer-
ence on Simulation of Adaptive Behavior on From Animals to Animats, 222–227.
MIT Press.

Schmidhuber, J. (2006). Developmental robotics, optimal artificial curiosity, creativity,
music, and the fine arts. Connection Science, 18 (2), 173–187.

Schmidhuber, J. (2010). Formal theory of creativity, fun, and intrinsic motivation
(1990–2010). IEEE Transactions on Autonomous Mental Development , 2 (3), 230–
247.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural
networks , 61, 85–117.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust region
policy optimization. In ICML, 1889–1897.

120

Schulman, J., Moritz, P., Levine, S., Jordan, M. I., and Abbeel, P. (2016). High-
Dimensional Continuous Control Using Generalized Advantage Estimation. In
Y. Bengio and Y. LeCun (Eds.), 4th International Conference on Learning Rep-
resentations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347 .

Selmic, R. R. and Lewis, F. L. (2002). Neural-network approximation of piecewise
continuous functions: application to friction compensation. IEEE transactions on
neural networks , 13 (3), 745–751.

Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical
journal , 27 (3), 379–423.

Shao, Y.-H., Chen, W.-J., Wang, Z., Li, C.-N., and Deng, N.-Y. (2015). Weighted
linear loss twin support vector machine for large-scale classification. Knowledge-
Based Systems , 73, 276–288.

Shao, Y.-H., Zhang, C.-H., Wang, X.-B., and Deng, N.-Y. (2011). Improvements on
twin support vector machines. Neural Networks, IEEE Transactions on, 22 (6), 962–
968.

Sharma, A., Gu, S., Levine, S., Kumar, V., and Hausman, K. (2019). Dynamics-
Aware Unsupervised Discovery of Skills. In International Conference on Learning
Representations.

Shridhar, K., Laumann, F., and Liwicki, M. (2019). A comprehensive guide to
bayesian convolutional neural network with variational inference. arXiv preprint
arXiv:1901.02731 .

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.
(2016). Mastering the game of Go with deep neural networks and tree search. Na-
ture, 529 (7587), 484.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hu-
bert, T., Baker, L., Lai, M., Bolton, A., et al. (2017). Mastering the game of go
without human knowledge. Nature, 550 (7676), 354–359.

121

Silvia, P. J. (2012). Curiosity and motivation. The Oxford handbook of human moti-
vation, 157–166.

Sollich, P. and Krogh, A. (1996). Learning with ensembles: How overfitting can be
useful. In Advances in neural information processing systems, 190–196.

Storck, J., Hochreiter, S., and Schmidhuber, J. (1995). Reinforcement driven informa-
tion acquisition in non-deterministic environments. In Proceedings of the Interna-
tional Conference on Artificial Neural Networks, Volume 2, 159–164.

Sun, Y., Gomez, F., and Schmidhuber, J. (2011). Planning to be surprised: Opti-
mal bayesian exploration in dynamic environments. In International Conference on
Artificial General Intelligence, 41–51. Springer Berlin Heidelberg.

Sutton, R. S. and Barto, A. G. (1998). Introduction to Reinforcement Learning. MIT
press.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT
press.

Sutton, R. S., Precup, D., and Singh, S. (1999). Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning. Artificial intelli-
gence, 112 (1-2), 181–211.

Tang, Y. and Agrawal, S. (2018). Boosting trust region policy optimization by nor-
malizing flows policy. arXiv preprint arXiv:1809.10326 .

Tenenbaum, J. B., De Silva, V., and Langford, J. C. (2000). A global geometric
framework for nonlinear dimensionality reduction. Science, 290 (5500), 2319–2323.

The Mathworks, Inc. (2017). MATLAB version 9.2.0.538062 (R2017a). Natick, Mas-
sachusetts: The Mathworks, Inc.

Traibus, M. (1961). Thermostatics and Thermodynamics: An Introduction to Energy,
Information and States of Matter, with Engineering Applications. New York: Van
Nostrand.

van Hasselt, H., Guez, A., and Silver, D. (2016). Deep Reinforcement Learning with
Double Q-Learning. In D. Schuurmans and M. P. Wellman (Eds.), Proceedings
of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016,
Phoenix, Arizona, USA, 2094–2100. AAAI Press.

122

Vapnik, V. (2013). The nature of statistical learning theory. Springer Science & Business
Media.

Vapnik, V. N. and Vapnik, V. (1998). Statistical learning theory, Volume 1. Wiley New
York.

Wainwright, M. J., Jordan, M. I., et al. (2008). Graphical models, exponential families,
and variational inference. Foundations and Trends® in Machine Learning , 1 (1–2),
1–305.

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos, R.,
Blundell, C., Kumaran, D., and Botvinick, M. (2016). Learning to reinforcement
learn. arXiv preprint arXiv:1611.05763 .

Wang, L., Sugiyama, M., Yang, C., Zhou, Z., and Feng, J. (2008). On the Margin
Explanation of Boosting Algorithms. In R. A. Servedio and T. Zhang (Eds.), 21st
Annual Conference on Learning Theory - COLT 2008, Helsinki, Finland, July 9-12,
2008, 479–490. Omnipress.

Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., and De Freitas, N.
(2016). Dueling network architectures for deep reinforcement learning. In Proceed-
ings of the 33rd International Conference on International Conference on Machine
Learning-Volume 48, 1995–2003.

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning , 8 (3-4), 279–292.

Wei, H., Zheng, G., Yao, H., and Li, Z. (2018). Intellilight: A reinforcement learning
approach for intelligent traffic light control. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 2496–2505.

Welling, M. and Teh, Y. W. (2011). Bayesian learning via stochastic gradient Langevin
dynamics. In Proceedings of the 28th international conference on machine learning
(ICML-11), 681–688.

Wilcoxon, F. (1946). Individual comparisons of grouped data by ranking methods.
Journal of economic entomology , 39 (2), 269–270.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connection-
ist reinforcement learning. Machine learning , 8 (3-4), 229–256.

123

Wydmuch, M., Kempka, M., and Jaśkowski, W. (2018). Vizdoom competitions: Play-
ing doom from pixels. IEEE Transactions on Games , 11 (3), 248–259.

Xu, H., Fan, L., and Gao, X. (2015). Projection twin SMMs for 2d image data classi-
fication. Neural Computing and Applications , 26 (1), 91–100.

Xu, H., McCane, B., and Szymanski, L. (2018). Twin Bounded Large Margin Distribu-
tion Machine. In Australasian Joint Conference on Artificial Intelligence, 718–729.
Springer.

Xu, H., McCane, B., and Szymanski, L. (2019). VASE: Variational Assorted Surprise
Exploration for Reinforcement Learning. arXiv preprint arXiv:1910.14351 .

Xu, H., McCane, B., Szymanski, L., and Atkinson, C. (2020). MIME: Mutual Infor-
mation Minimisation Exploration. arXiv preprint arXiv:2001.05636 .

Xu, Y., Pan, X., Zhou, Z., Yang, Z., and Zhang, Y. (2015). Structural least square
twin support vector machine for classification. Applied Intelligence, 42 (3), 527–536.

Yang, Z., Xie, Y., and Wang, Z. (2019). A theoretical analysis of deep Q-learning.
arXiv preprint arXiv:1901.00137 .

Zhang, K. and Kwok, J. T. (2010). Clustered Nyström method for large scale manifold
learning and dimension reduction. IEEE Transactions on Neural Networks , 21 (10),
1576–1587.

Zhang, K., Yang, Z., and Başar, T. (2019). Multi-Agent Reinforcement Learning: A
Selective Overview of Theories and Algorithms. arXiv preprint arXiv:1911.10635 .

Zhang, T. and Zhou, Z.-H. (2014). Large margin distribution machine. In Proceedings
of the 20th ACM SIGKDD international conference on Knowledge discovery and
data mining, 313–322. ACM.

Zhang, T. and Zhou, Z.-H. (2018). Optimal Margin Distribution Clustering.

Zhao, G., Liu, F., Oler, J. A., Meyerand, M. E., Kalin, N. H., and Birn, R. M. (2018).
Bayesian convolutional neural network based MRI brain extraction on nonhuman
primates. Neuroimage, 175, 32–44.

Zheng, G., Zhang, F., Zheng, Z., Xiang, Y., Yuan, N. J., Xie, X., and Li, Z. (2018).
DRN: A deep reinforcement learning framework for news recommendation. In Pro-
ceedings of the 2018 World Wide Web Conference, 167–176.

124

Zhou, Z., Li, X., and Zare, R. N. (2017). Optimizing chemical reactions with deep
reinforcement learning. ACS central science, 3 (12), 1337–1344.

Zhou, Z.-H. (2012). Ensemble methods: foundations and algorithms. CRC press.

Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A., Fei-Fei, L., and Farhadi, A.
(2017). Target-driven visual navigation in indoor scenes using deep reinforcement
learning. In 2017 IEEE international conference on robotics and automation (ICRA),
3357–3364. IEEE.

Zoph, B. and Le, Q. V. (2016). Neural architecture search with reinforcement learning.
arXiv preprint arXiv:1611.01578 .

125

Appendix A

Twin Bounded Large Margin

Distribution Machine

Note: Some portions of this chapter are taken from my own work (Xu,

McCane, and Szymanski, 2018).

In this chapter, I will introduce a classifier named twin bounded large margin distri-
bution machine (TBLDM). The central idea of TBLDM is to seek a pair of nonparallel
hyperplanes by optimizing the positive and negative margin distributions on the base
of TBSVM (Shao, Zhang, Wang, and Deng, 2011). The experimental results indicate
that the proposed TBLDM is a fast, effective and robust classifier.

A.1 Introduction

Support vector machines (SVMs) (Vapnik and Vapnik, 1998; Cortes and Vapnik, 1995)
are powerful tools for pattern classification and regression. For the classical binary
classification SVM, the optimal hyperplane can be obtained by maximizing a relaxed
minimum margin, i.e., the smallest distance from data point to the classification bound-
ary. This optimisation can be expressed as a quadratic programming problem (QPP).
Margin theory (Vapnik, 2013) provides good theoretical support to the generalisation
performance of SVMs and it has also been applied to many other machine learning
approaches, such as AdaBoost (Freund and Schapire, 1997). There was, however, a
long debate on whether margin theory plays a significant role in AdaBoost (Schapire,
Freund, Bartlett, Lee, et al., 1998; Breiman, 1999). It had been believed that a single-
data-point margin such as minimum margin is not crucial (Reyzin and Schapire, 2006;
Wang, Sugiyama, Yang, Zhou, and Feng, 2008). Gao and Zhou (2013) ended the long

126

debate and showed that margin distribution, characterized by margin mean and vari-
ance, is critical for generalisation in boosting. Inspired by these results, Zhang and
Zhou (2014) first focused on the influence of the margin distribution for SVMs and
proposed large margin distribution machine (LDM). The margin distribution heuristic
can also be applied to clustering (Zhang and Zhou, 2018) and dimensionality reduction
(Luo and Durrant, 2017).

The twin support vector machine (TWSVM) proposed by Khemchandani, Chan-
dra, et al. (2007) seeks for two nonparallel boundary hyperplanes and attempts to
make each of the two hyperplanes close to one class and far from the other as much
as possible. TWSVM solves two smaller size QPPs instead of a single large QPP.
This results in TWSVM being faster than SVM. An improved version of TWSVM,
called twin bounded support vector machine (TBSVM) was proposed by Shao et al.
(2011). TBSVM implemented the structural risk minimisation principle by introducing
a regularization term. Based on statistical learning theory, TBSVM can improve the
performance of classification of TWSVM. Recently, many extensions of TWSVM have
been proposed, for details, see (Shao, Chen, Wang, Li, and Deng, 2015; Khemchandani
and Sharma, 2016; Rastogi, Sharma, and Chandra, 2017; Xu, Pan, Zhou, Yang, and
Zhang, 2015; Xu, Fan, and Gao, 2015).

In this chapter, we propose the twin bounded large margin distribution machine
(TBLDM). Similar to LDM, the margin distribution of TBLDM is characterised by
first and second order statistics and optimizing the margin distribution is realized
by maximizing the margin mean and minimizing the margin variance simultaneously.
However, TBLDM tries to optimise the positive and negative margin distributions
separately. This is different from LDM, which optimised the whole margin distribution
for all training points.

To begin with, we will first provide a brief background on SVM, TWSVM and
LDM in Section 2. Our novel approach TBLDM for classification problems will be
introduced in Section 3. In Section 4, we will make numerical experiments to verify
that our new model is very effective in classification. Discussions and conclusions will
be summarized in Section 5.

A.2 Notation and related work

Given the dataset T = {(xi, yi)}li=1, where xi ∈ Rn is the i-th input sample and
yi ∈ {±1} is the class label of xi. Let l1 and l2 be the numbers of samples belong-

127

ing to the positive and negative classes, respectively, such that l = l1 + l2. Denote
X = [x1, · · · , xl] ∈ Rn×l, A = [x+

1 , · · · , x+
l1

] ∈ Rn×l1 and B = [x−1 , · · · , x−l2] ∈ R
n×l2 as

the entire, positive and negative sample matrices. Let k : Rn × Rn → R be a kernel
function with reproducing kernel Hilbert space (RKHS) H̃ and nonlinear feature map-
ping φ : Rn → H̃. Denote φ(A) = [φ(x+

1), · · · , φ(x+
l1

)], φ(B) = [φ(x−1), · · · , φ(x−l2)] as
the positive and negative mapped sample matrices, the kernel matrix K = φ(X)Tφ(X)

where φ(X) = [φ(x1), · · · , φ(xl)], KA = φ(A)Tφ(X) ∈ Rl1×l, KB = φ(B)Tφ(X) ∈
Rl2×l, K(x,X) = [k(x, x1), · · · , k(x, xl)] ∈ R1×l, ∀x ∈ Rn. and y = (y1, · · · , yl)T ∈ Rl.
yA = (y+

1 , · · · , y+
l1

)T ∈ Rl1 , yB = (y−1 , · · · , y−l2)T ∈ Rl2 .

A.2.1 Support vector machine (SVM)

SVM tries to find a hyperplane f(x) = wTφ(x) = 0, where f is linear and w ∈ H̃ is
a linear predictor. According to (Cortes and Vapnik, 1995) and (Vapnik, 2013), the
margin of the individual sample (xi, yi) is defined as

γi = yiw
Tφ(xi), i = 1, · · · , l. (A.1)

In separable cases, all the γi will be non-negative. So we can get the geometric distance
from each xi to wTφ(x) = 0 by scaling each γi with 1/‖w‖:

γ̂i = yi
wT

‖w‖
φ(xi), i = 1, · · · , l.

For the separable case, SVM maximizes the minimum distance:

max
w

γ̂

s.t. γ̂i ≥ γ̂, i = 1, · · · , l.

It can be written as

max
w

γ

‖w‖
s.t. γi ≥ γ, i = 1, · · · , l.

We can simply set γ as 1 since it doesn’t have influence on the optimization. Note that
maximizing 1/‖w‖ is equivalent to minimizing ‖w‖2, we can get the classic formulation
of hard-margin SVM as follows:

min
w

1

2
‖w‖2

s.t. yiw
Tφ(xi) ≥ 1, i = 1, · · · , l.

128

For non-separable case, SVM can be written as

max
w,ξi

γ0 − C̄
l∑

i=1

ξi

s.t. γi ≥ γ0 − ξi,

ξi ≥ 0, i = 1, · · · , l,

where γ0 is a relaxed minimum margin, ξi is slack variable and C̄ is the trading-off
parameter. The above formula can be rewritten as

min
w,ξi

1

2
‖w‖2 + C

l∑
i=1

ξi

s.t. yiw
Tφ(xi) ≥ 1− ξi,

ξi ≥ 0, i = 1, · · · , l,

where C is a trading-off parameter. We can see that SVMs for both separable and
non-separable cases consider only single-data-point margins but not the whole margin
distribution.

A.2.2 Twin bounded support vector machine (TBSVM)

Different from conventional SVM, TWSVM seeks for a pair of nonparallel hyperplanes
f+(x) = wT+φ(x) = 0 and f−(x) = wT−φ(x) = 0. As an improved version of TWSVM,
TBSVM consider the structural risk minimization principle by adding a regularization
term. The training time of TBSVM is approximately four times faster than SVM. We
introduce non-linear TBSVM in this subsection, for linear case and other details, see
(Khemchandani et al., 2007; Shao et al., 2011). The unknown vectors w+, w− ∈ Rn of
TBSVM can be obtained by solving the following two QPPs:

min
w+,ξ2

c1

2
||w+||2 +

1

2
||φ(A)Tw+||2 + c3e

T
2 ξ2

s.t. −φ(B)Tw+ + ξ2 ≥ e2, ξ2 ≥ 0, (A.2)

min
w−,ξ1

c2

2
||w−||2 +

1

2
||φ(B)Tw−||2 + c4e

T
1 ξ1

s.t. φ(A)Tw− + ξ1 ≥ e1, ξ1 ≥ 0, (A.3)

where c1, · · · , c4 > 0 are trade-off parameters, ξ1 ∈ Rl1 , ξ2 ∈ Rl2 are slack variable
vectors and e1 ∈ Rl1 , e2 ∈ Rl2 are vectors of ones. A new input x̃ ∈ Rn is assigned the

129

class k depending on which of the two hyperplanes it is closer to. That is, the class
label yx̃ can be obtained by yx̃ = arg min

k=±
|fk(x̃)|
||wk||

.
Similar to the definition of the margin of individual sample in (A.1), the positive

and negative margin of individual sample can be formulated as

γ+
j = y+

j f−(x+
j) = y+

j w
T
−φ(x+

j), j = 1, · · · , l1, (A.4)

γ−j = y−j f+(x−j) = y−j w
T
+φ(x−j), j = 1, · · · , l2, (A.5)

respectively. We can see that TBSVM tries to maximize the minimal negative margin
between the negative samples and positive decision hyperplane by (A.2) and maximize
the minimal positive margin by (A.3).

A.2.3 Large margin distribution machine (LDM)

LDM tries to achieve a strong generalization performance by optimizing the margin
distribution of samples on the basis of soft-margin SVM. The margin distribution is
characterized by first- and second-order statistics. Optimizing margin distribution is
realized by maximizing the margin mean and minimizing the margin variance simul-
taneously. Based on (A.1), the margin mean γ̄ and the margin variance γ̂ can be
calculated by γ̄ = 1

l

∑l
i=1 γi and γ̂ = 1

l

∑l
i=1(γi − γ̄)2. The unknown w ∈ H̃ can be

obtained by solving the following optimization problem:

min
w,ξi

1

2
wTw + λ1γ̂ − λ2γ̄ + C

l∑
i=1

ξi

s.t. yiw
Tφ(xi) ≥ 1− ξi, ξi ≥ 0, i = 1, · · · , l,

where λ1, λ2 > 0 are the parameters for trading-off the margin variance, the margin
mean and the model complexity. It is obvious that LDM can be reduced to soft-margin
SVM when λ1 = λ2 = 0.

A.3 Twin bounded large margin distribution machine

(TBLDM)

In this section, we will introduce our novel classification method named as twin bounded
large margin distribution machine (TBLDM). Based on the concepts of positive mar-
gin and negative margin in (A.4) and (A.5), the positive margin mean γ̄+ and the

130

positive margin variance γ̂+ can be calculated by γ̄+ = 1
l1

∑l1
j=1 γ

+
j = 1

l1
yTAφ(A)Tw−,

and γ̂+ = 1
l1

∑l1
i=1(γ+

i − γ̄+)2 = wT−φ(A)Q1φ(A)Tw− respectively. Here Q1 =
l1Il1−yAy

T
A

l21

is a symmetric matrix. Since Q2
1 = 1

l1
Q1, it can be concluded that Q1 is a symmetric

nonnegative definite matrix. Similarly, we can get the negative margin mean γ̄− and
the negative margin variance γ̂− by γ̄− = 1

l2
yTBφ(B)Tw+, γ̂

− = wT+φ(B)Q2φ(B)Tw+,

where Q2 =
l2Il2−yBy

T
B

l22
is also a symmetric nonnegative definite matrix.

A.3.1 TBLDM

Specifically, TBLDM seeks a pair of unknown vectors w+, w− ∈ H̃ by maximizing the
positive and negative margin mean and minimizing the positive and negative margin
variance simultaneously, that is, by considering the following two optimization prob-
lems:

min
w+,ξ2

c1

2
‖w+‖2 +

1

2
‖φ(A)Tw+‖2 − λ1γ̄

− + λ2γ̂
− + c3e

T
2 ξ2

s.t. −φ(B)Tw+ + ξ2 ≥ e2, ξ2 ≥ 0, (A.6)

min
w−,ξ1

c2

2
‖w−‖2 +

1

2
‖φ(B)Tw−‖2 − λ3γ̄

+ + λ4γ̂
+ + c4e

T
1 ξ1

s.t. φ(A)Tw− + ξ1 ≥ e1, ξ1 ≥ 0, (A.7)

where λ1, · · · , λ4 > 0 are the parameters for trading-off the margin variances, the
margin means and the complexity of models. It is obvious that TBLDM can be reduced
to the nonlinear TBSVM when λ1, λ2, λ3 and λ4 are equal to 0.

Substituting γ̄+, γ̄− and γ̂+, γ̂− into the models (A.6) and (A.7) , we can get the
following two QPPs :

min
w+,ξ2

c1

2
‖w+‖2 +

1

2
‖φ(A)Tw+‖2 − λ1

l2
yTBφ(B)Tw+ + λ2w

T
+φ(B)Q2φ(B)Tw+ + c3e

T
2 ξ2

s.t. −φ(B)Tw+ + ξ2 ≥ e2, ξ2 ≥ 0, (A.8)

min
w−,ξ1

c2

2
‖w−‖2 +

1

2
‖φ(B)Tw−‖2 − λ3

l1
yTAφ(A)Tw− + λ4w

T
−φ(A)Q1φ(A)Tw− + c4e

T
1 ξ1

s.t. φ(A)Tw− + ξ1 ≥ e1, ξ1 ≥ 0, (A.9)

Due to H̃ = span{φ(x1), · · · , φ(xl)}, we can let w+ = φ(X)β1 and w− = φ(X)β2, where

131

β1, β2 ∈ Rl are coefficient vectors, and then we can deduce that

‖w+‖2 = βT1 Kβ1, |w−‖2 = βT2 Kβ2,

φ(A)Tw+ = KAβ1, φ(B)Tw+ = KBβ1,

φ(A)Tw− = KAβ2, φ(B)Tw− = KBβ2,

f+(x) = wT+φ(x) = K(x,X)β1, f−(x) = wT−φ(x) = K(x,X)β2. (A.10)

Substituting (A.10) into the models (A.8), we have

min
β1,ξ2

c1

2
βT1 Kβ1 +

1

2
βT1 K

T
AKAβ1 −

λ1

l2
yTBKBβ1 + λ2β

T
1 K

T
BQ2KBβ1 + c3e

T
2 ξ2

s.t. −KBβ1 + ξ2 ≥ e2, ξ2 ≥ 0, (A.11)

min
β2,ξ1

c2

2
βT2 Kβ2 +

1

2
βT2 K

T
BKBβ2 −

λ3

l1
yTAKAβ2 + λ4β

T
2 K

T
AQ1KAβ2 + c4e

T
1 ξ1

s.t. KAβ2 + ξ1 ≥ e1, ξ1 ≥ 0. (A.12)

Let

G1 = c1K +KT
AKA + 2λ2K

T
BQ2KB ∈ Rl×l,

G2 = c2K +KT
BKB + 2λ4K

T
AQ1KA ∈ Rl×l.

Obviously, G1 and G2 are symmetric nonnegative definite matrices. The models (A.11)
and (A.12) can be rewritten as

min
β1,ξ2

1

2
βT1 G1β1 −

λ1

l2
yTBKBβ1 + c3e

T
2 ξ2

s.t. −KBβ1 + ξ2 ≥ e2, ξ2 ≥ 0, (A.13)

min
β2,ξ1

1

2
βT2 G2β2 −

λ3

l1
yTAKAβ2 + c4e

T
1 ξ1

s.t. KAβ2 + ξ1 ≥ e1, ξ1 ≥ 0. (A.14)

Considering the Lagrangian function of the model (A.13)

L1(β1, ξ2, α1, δ1) =
1

2
βT1 G1β1 −

λ1

l2
yTBKBβ1 + c3e

T
2 ξ2 − αT1 (−KBβ1 + ξ2 − e2)− δT1 ξ2,

where α1, δ1 ∈ Rl2 are nonnegative Lagrangian multipliers vectors, and letting ∂L1/∂β1 =

∂L1/∂ξ2 = 0, we get

G1β1 =
λ1

l2
KT
ByB −KT

Bα1,

c3e2 − α1 − δ1 = 0⇒ 0 ≤ α1 ≤ c3e2. (A.15)

132

Without loss of generality, we can assume that G1 is an invertible matrix; otherwise, it
can be regularized, that is, it can be replaced by the matrix G1 + t1Il, where t1 > 0 is
a small positive number called regularized coefficient. Consequently, it can be deduced
from (A.15) that

β1 = G−1
1 (

λ1

l2
KT
ByB −KT

Bα1). (A.16)

Submitting (A.16) and (A.15) into the Lagrangian function, we can obtain the Wolfe
dual form of the model (A.13):

min
α1

1

2
αT1H1α1 − (

λ1

l2
H1yB + e2)Tα1

s.t. 0 ≤ α1 ≤ c3e2, (A.17)

where H1 = KBG
−1
1 KT

B . Similarly, we can get

β2 = G−1
2 (

λ1

l1
KT
AyA +KT

Aα2), (A.18)

and then the Wolfe dual form of the model (A.7) is:

min
α2

1

2
αT2H2α2 + (

λ3

l1
H2yA − e1)Tα2

s.t. 0 ≤ α2 ≤ c4e1, (A.19)

where α2 ∈ Rl1 is a nonnegative Lagrangian multipliers vector and H2 = KAG
−1
2 KT

A .
A new input x̃ ∈ Rn is assigned the class i (i = 1, 2 denotes the positive and negative
classes, respectively) depending on which of the two hyperplanes is closer to, that is,
label (x̃) = arg min

i=1,2

|K(x̃,X)βi|√
βiKβi

. The specific procedure is listed in Algorithm 1.

Algorithm 8: TBLDM
Input: Training set T , testing sample x̃, kernel function k : Rn ×Rn → R, model

parameters λi, · · · , λ4 and ci, · · · , c4, regularized parameters t1, t2 and kernel
parameters;

1: Solve the QPP (A.17) and obtain the optimal solution α∗1;
2: Compute β∗1 by (A.16) with α1 = α∗1;
3: Solve the QPP (A.19) and obtain the optimal solution α∗2;
4: Compute β∗2 by (A.18) with α2 = α∗2;
5: For x̃, predict its label by label (x̃) = arg min

i=1,2

|K(x̃,X)β∗i |√
β∗iKβ

∗
i

.

133

A.3.2 TBLDM for large scale datasets

It can be seen that we need to compute G−1
1 and G−1

2 and kernel matrix K,KA, KB be-
fore solving the dual problems (A.17) and (A.19). This is infeasible when the number of
samples is significantly large both in terms of memory and computation. To effectively
handle large scale problems, in this subsection, we first choose a kernel approximation
method, Nyström method (Zhang and Kwok, 2010) to explicitly map features onto
subspaces in the RKHS. In this case, the embedding features are obtained without
constructing the complete kernel matrix for the data set. Given the kernel-specific em-
bedding, we perform linear TBLDM. Because the inverse matrices of AAT and BBT

still need to be computed to get the dual problem of linear TBLDM, we solve the primal
problem of linear TBLDM here with stochastic gradient descent (SGD) algorithm.

Linear TBLDM is a special case of TBLDM with linear kernel function k(u, v) =

〈u, v〉 for any u, v ∈ Rn. In this case, the models (A.6) and (A.7) are reduced into the
following two QPPs:

min
w+,ξ2

c1

2
‖w+‖2 +

1

2
‖ATw+‖2 − λ1

l2
yTBB

Tw+ + λ2w
T
+BQ2B

Tw+ + c3e
T
2 ξ2

s.t. −BTw+ + ξ2 ≥ e2, ξ2 ≥ 0, (A.20)

min
w−,ξ1

c2

2
‖w−‖2 +

1

2
‖BTw−‖2 − λ3

l1
yTAA

Tw− + λ4w
T
−AQ1A

Tw− + c4e
T
1 ξ1

s.t. ATw− + ξ1 ≥ e1, ξ1 ≥ 0. (A.21)

To solve formulas (A.20) and (A.21) in primal case, we express them equivalently as
two unconstraint optimization problems:

min
w+,ξ2

g1(w+) =
c1

2
‖w+‖2 +

1

2
‖ATw+‖2 − λ1

l2
yTBB

Tw+ + λ2w
T
+BQ2B

Tw+

+c3

l2∑
i=1

max{0, 1 + wT+x
−
i }, (A.22)

min
w−,ξ1

g2(w−) =
c2

2
‖w−‖2 +

1

2
‖BTw−‖2 − λ3

l1
yTAA

Tw− + λ4w
T
−AQ1A

Tw− +

c4

l1∑
i=1

max{0, 1− wT−x+
i }. (A.23)

If examples (x+
i , y

+
i), (x+

j , y
+
j), (x+

k , y
+
k) are randomly sampled from the positive training

set and (x−i , y
−
i), (x−j , y

−
j), (x−k , y

−
k) are randomly sampled from the negative training

134

set independently, it is straightforward to prove that

∇g1(w+, x
+
i , x

−
j , x

−
k) = c1w+ + l1x

+
i x

+
i
T
w+ + 2λ2x

−
j x
−
j
T
w+ − 2λ2x

−
j x
−
k
T
w+

+λ1x
−
j + c3l2x

−
j I(j ∈ I1), (A.24)

∇g2(w−, x
−
i , x

+
j , x

+
k) = c2w− + l2x

−
i x
−
i
T
w− + 2λ4x

+
j x

+
j
T
w− − 2λ4x

+
j x

+
k
T
w−

−λ3x
+
j − c4l1x

+
j I(j ∈ I2). (A.25)

are the unbiased estimation of ∇g1(w+) and ∇g2(w−) respectively. I(·) is the indicator
function that returns 1 when the argument holds, and 0 otherwise. I1, I2 are the index
sets defined as I1 = {j|wT+x−j > −1}, I2 = {j|wT−x+

j < 1}. So we can update w+, w− by
w+ ← w+ − r1∇g1(w+, x

+
i , x

−
j , x

−
k) and w− ← w− − r2∇g2(w−, x

−
i , x

+
j , x

+
k), r1, r2 are

learning rates for each iteration of SGD algorithm.
The detailed procedure is listed in Algorithm 2.

Algorithm 9: Nyström + linear TBLDM for large scale problems
Input: Positive training set A, negative training set B, testing sample x̃,
model parameters λ1, · · · , λ4 and c1, · · · , c4 and learning rates r1, r2;
Get data embedding Ae, Be and x̃e by Nyström method;
while w+, w− not converged do

Randomly select mini-batch x+
b = {x+

i , x
+
j , x

+
k } and x

−
b = {x−i , x−j , x−k };

for x+
b ⊂ Ae and x−b ⊂ Be do

Compute the gradient ∇g1(w+, x
+
i , x

−
j , x

−
k) by (A.24);

Compute the gradient ∇g2(w−, x
−
i , x

+
j , x

+
k) by (A.25);

w+ ← w+ − r1∇g1(w+, x
+
i , x

−
j , x

−
k);

w− ← w− − r2∇g2(w−, x
−
i , x

+
j , x

+
k);

For x̃, predict its label by label (x̃) = arg min
i=±

|wTi x̃e|
‖wi‖ .

A.4 Experiments and results analysis

In order to demonstrate the effectiveness of TBLDM, a series of comparative experi-
ments with SVM, TBSVM and LDM are performed. The experiments focus on the as-
pects of classification accuracy and computational time on sixteen regular scale datasets
and four large-scale datasets. These datasets are taken from UCI database (Dua and
Graff, 2017) and real-world databases1, respectively. All the computational time in-

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

135

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

volved is the sum of the training time and the testing time and all the classification
accuracy involved is the testing accuracy, that is, the classification accuracy on testing
sets.

A.4.1 Experiments on regular-scale datasets

The statistics of the regular-scale datasets are listed in the first four rows in Table
A.1, where l and n denote the number and the dimensionality of samples, respectively.
Gaussian radial basis function (RBF) kernel k(u, v) = exp(−‖u− v‖2/γ) for u, v ∈ Rn

Table A.1: Statistics of datasets

Data set l n Data set l n Data set l n Data set l n

australian 690 14 parkinsons 195 22 bupa 345 6 ringnorm 400 20
ecoli 336 7 sonar 208 60 german 1000 24 spect 80 22
haberman 306 3 transfusion 748 4 heart 270 13 twonorm 400 20
ionosphere 351 34 wdbc 569 30 monks2 432 6 wpbc 198 32
cod-rna 216948 8 ijcnn1 141691 22 skin 245057 3 w8a 64700 300

is selected and SMO (Platt et al., 1998) algorithm is used for SVM, where γ > 0 is
a kernel parameter. We use SOR solver (Mangasarian and Musicant, 1999) for fast
training TBSVM; the source code of Zhang and Zhou (2014) for LDM; for TBLDM,
the ‘quadprog’ toolbox in MATLAB (The Mathworks, Inc., 2017) is used to solve
QPPs (A.17) and (A.19). All the experiments are operated in MATLAB. For the
convenience of computation, we take all the model parameters C, c1, c2, c3, c4 = 1, the
kernel parameter γ and λ1, λ2 are chosen from [2−6, 26] by using 5-fold cross validation
method. Experiments are repeated for 5 times with random data partitions to calculate
the average accuracies and variances. The experimental results are listed in Table A.2,
from which we can see that for computational time, TBLDM is obviously faster than
LDM except on spect and wpbc datasets, and faster than TBSVM on 12 datasets and
similar on the remaining 4 datasets. For classification accuracy, TBLDM is higher than
LDM on 11 datasets and same on wdbc data set, and is higher than TBSVM on 13
datasets. In addition, SVM only gets the highest classification accuracy on wdbc data
set although its computational time is the fastest.

A.4.2 Experiments on large-scale datasets

The statistics of the large-scale datasets are listed in the last row of Table A.1. All of
these four large-scale datasets are split into training and test parts. To compare with

136

Table A.2: Experimental results with regular size datasets

SVM TBSVM LDM TBLDM

DATASETS acc(mean±std) time(s) acc(mean±std) time(s) acc(mean±std) time(s) acc(mean±std) time(s)

australian 0.8565±0.0262 0.0353 0.8574±0.0360 0.2015 0.8557±0.0258 1.4757 0.8672±0.0194 0.1500
bupa 0.6736±0.0591 0.0292 0.6986±0.0495 0.0818 0.6980±0.0542 0.1893 0.7014±0.0366 0.0820
ecoli 0.9637±0.0264 0.0189 0.9648±0.0331 0.0743 0.9672±0.0232 0.1785 0.9637±0.0175 0.0939
german 0.7224±0.0367 0.0611 0.7510±0.0211 0.5345 0.7590±0.0186 4.9356 0.7724±0.0223 0.4213
haberman 0.7333±0.0235 0.0241 0.7210±0.0203 0.1320 0.7353±0.0344 0.1337 0.7380±0.0396 0.0805
heart 0.8333±0.0367 0.0220 0.8356±0.0567 0.0577 0.8326±0.0461 0.0948 0.8363±0.0464 0.0491
ionosphere 0.9345±0.0327 0.0233 0.9248±0.0224 0.0688 0.9441±0.0254 0.2189 0.8872±0.0308 0.0511
monks2 0.7940±0.0450 0.0330 0.8065±0.0212 0.0595 0.8074±0.0391 0.3659 0.8320±0.0448 0.0509
parkinsons 0.9159±0.0387 0.0270 0.8995±0.0386 0.0399 0.9344±0.0421 0.0451 0.9415±0.0378 0.0358
ringnorm 0.9530±0.0273 0.0270 0.9560±0.0226 0.0594 0.9675±0.0189 0.3284 0.8485±0.0337 0.0448
sonar 0.8066±0.0460 0.0245 0.8489±0.0480 0.0467 0.8568±0.0519 0.0592 0.8738±0.0449 0.0296
spect 0.6900±0.1119 0.0217 0.6875±0.0633 0.0213 0.7025±0.1094 0.0038 0.7025±0.1033 0.0214
transfusion 0.7348±0.0262 0.0487 0.7628±0.0175 0.8928 0.7939±0.0264 1.8919 0.7839±0.0249 0.6641
twonorm 0.9725±0.0186 0.0195 0.9720±0.0158 0.0647 0.9695±0.0205 0.2988 0.9730±0.0165 0.0636
wdbc 0.9761±0.0116 0.0215 0.9708±0.0119 0.1345 0.9743±0.0146 0.8451 0.9743±0.0148 0.1185
wpbc 0.7627±0.0118 0.0306 0.7697±0.0176 0.0420 0.7988±0.0472 0.0428 0.8002±0.0405 0.0439

our method, we employ linear SVM, linear LDM and linear TBLDM after Nyström
method. We choose Liblinear for linear SVM; the source code of Zhang and Zhou (2014)
for linear LDM. A nonlinear SVM also runs directly on these large-scale datasets. For
the convenience of computation, C, c1, c2, c3, c4, λ1, λ2, λ3, λ4 are all set to 1, γ that used
for nonlinear SVM and Nyström method is set to the average squared distance between
data points and the sample mean. The number of landmark points of Nyström method
is chosen as m = 50, 100. Table A.3 tells us that all linear classifiers running after the
Nyström method can get a close classification accuracy result compared to nonlinear
SVM, even with such small number of landmark points m. However, we can see from
Table A.4 that the running time of all linear classifier frameworks plus Nyströmmethod
are much faster than that of nonlinear SVM. Moreover, we can see that TBLDM is the
fastest if we only compared the time running by three linear classifiers. In addition to
nonlinear SVM, all classifiers labelled as SVM, LDM and TBLDM in Table A.3 and
Table A.4 are linear.

Table A.3: Classification accuracy results on 4 large-scale datasets

m=50 m=100

DATASETS Nonlinear-SVM SVM LDM TBLDM SVM LDM TBLDM

cod-rna 0.8778 0.8650 0.8542 0.8536 0.8651 0.8618 0.8541
ijcnn1 0.9840 0.9138 0.9050 0.9050 0.9357 0.9203 0.9159
skin 0.9756 0.9982 0.9972 0.9759 0.9985 0.9978 0.9807
w8a 0.9939 0.9696 0.9697 0.9698 0.9721 0.9709 0.9707

137

Table A.4: Time (seconds) comparison on 4 large-scale data sets

m=50 m=100

DATASETS Nonlinear-SVM Nyström SVM LDM TBLDM Nyström SVM LDM TBLDM

cod-rna 358.88 0.41 0.50 0.49 0.33 0.71 0.55 0.53 0.34
ijcnn1 46.28 0.38 0.63 0.67 0.12 0.65 1.09 1.23 0.15
skin 1357.9 0.86 0.99 1.64 0.92 1.45 1.49 2.42 0.84
w8a 533.02 1.39 0.30 0.40 0.05 1.77 0.54 0.73 0.07

A.5 Conclusions

Inspired by the idea of LDM and TBSVM, in this chapter, we introduce the notions of
positive margin and negative margin of samples and then present a novel classification
method, TBLDM, by optimizing the positive and negative margin distributions. The
experimental results on sixteen regular scale datasets and four large scale datasets
indicate that, compared with SVM, TBSVM and LDM, the proposed TBLDM is a
fast, effective and robust classifier. From the derivation process in Section A.3, we can
see that the technique used in this chapter has a certain commonality. Therefore, it
will be interesting to generalize the idea of TBLDM to regression models and other
learning settings.

138

