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ABSTRACT OF THE DISSERTATION
A SYSTEM-LEVEL PERSPECTIVE TOWARDS EFFICIENT, RELIABLE AND
SECURE NEURAL NETWORK COMPUTING
by
Tao Liu
Florida International University, 2020
Miami, Florida

Professor Wujie Wen, Major Professor

The Digital Era is now evolving into the Intelligence Era, driven overwhelmingly by
the revolution of Deep Neural Network (DNN), which opens the door for intelligent
data interpretation, turning the data and information into actions that create new
capabilities, richer experiences, and unprecedented economic opportunities, achiev-
ing game-changing outcomes spanning from image recognition, natural language
processing, self-driving cars to biomedical analysis. Moreover, the emergence of
deep learning accelerators and neuromorphic computing further pushes DNN com-
putation from cloud to the edge devices for the low-latency scalable on-device neural
network computing. However, such promising embedded neural network computing
systems are subject to various technical challenges.

First, performing high-accurate inference for complex DNNs requires massive
amounts of computation and memory resources, causing very limited energy effi-
ciency for existing computing platforms. Even the brain-inspired spiking neuromor-
phic computing architecture which originates from the more bio-plausible spiking
neural network (SNN) and relies on the occurrence frequency of a large number of
electrical spikes to represent the data and perform the computation, is subject to

significant limitations on both energy efficiency and processing speed.
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Second, although many memristor-based DNN accelerators and emerging neu-
romorphic accelerators have been proposed to improve the performance-per-watt
of embedded DNN computing with the highly parallelizable Processing-in-Memory
(PIM) architecture, one critical challenge faced by these memristor-based designs
is their poor reliability. A DNN weight, which is represented as the memristance
of a memristor cell, can be easily distorted by the inherent physical limitations of
memristor devices, resulting in significant accuracy degradation.

Third, DNN computing systems are also subject to ever-increasing security con-
cerns. Attackers can easily fool a normally trained DNN model by exploiting the
algorithmic vulnerabilities of DNN classifiers through adversary examples to mis-
lead the inference results. Moreover, system vulnerabilities in open-sourced DNN
computing frameworks such as heap overflow are increasingly exploited to either
distort the inference accuracy or corrupt the learning environment.

This dissertation focuses on designing efficient, reliable, and secured neural net-
work computing systems. An architecture and algorithm co-design approach is
presented to address the aforementioned design pillars from a system-level perspec-
tive, namely efficiency, reliability and security. Three case study examples centered
around each design pillar, including Single-spike Neuromorphic Accelerator, Fault-
tolerant DNN accelerator, and Mal-DNN: Malicious DNN-powered Stegomalware,
are discussed in this dissertation, offering the community an alternative thinking

about developing more efficient, reliable and secure deep learning systems.
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CHAPTER 1
INTRODUCTION

1.1 The Emerging Machine Learning (ML) Accelerator

Deep Neural Networks (DNNs) are nowadays becoming the de facto technique to
promote the artificial intelligence (AI) industry, as witnessed by the consistent break-
throughs in a myriad of real-world applications spanning from computer vision,
speech recognition, object detection, game playing to self-driving vehicles [68, 114,
106]. With the increasing support of DNN programming software and computing
hardware, many enterprise giants are starting to offer Machine Learning as a Ser-
vice (MLaaS) through their cloud infrastructures, such as Amazon AWS [6], Google
Cloud Platform [45], and Microsoft Azure [89]. Meanwhile, users can also exchange
or purchase the pre-trained “Plug & Play” DNN model on open machine learning
marketplace [58], thus to quickly deploy and consume ML services in their private
environment.

However, performing the high-accurate DNN computing requires the massive
amounts of computation and memory resources, leading to limited energy efficiency.
For instance, the recognition implementation of CNN-AlextNet [66] involves not
only huge volumes of parameters (61 million) generating intensive off-chip memory
accesses but also a large number of computing-intensive high precision floating-point
operations (1.5 billion) [35]. Such a weakness makes these solutions less attractive
for many emerging applications of mobile autonomous systems like smart device,
Internet-of-Things (IoT), wearable device, robotics etc., where very tighten power
budget, hardware resource and footprint are enforced [7, 49].

To overcome these challenges in DNN computation, the hardware machine learn-

ing accelerators, including DNN accelerator and spiking neuromorphic accelerator,



have recently emerged to enable the high-performance DNN computation on embed-
ded devices. To ease the significant computation and data movement overhead of
DNN workload, many research efforts have been put on developing high-performance
and energy-efficient DNN hardware accelerators, such as FPGA, CMOS and non-
CMOS based ASICs [19, 24, 75, 55, 25, 104, 111, 12, 77, 80, 78]. The recently
invented resistive random access memory (ReRAM) features as one promising solu-
tion among the non-CMOS based DNN accelerators, by providing the computation
and storage simultaneously within the memristor crossbar array. The memristive dot
product, which naturally represents the key element of DNN computation—multiply-
accumulate (MAC) operation [66, 126], can be conducted within the memristor ar-
ray efficiently by exploiting the relationship between a dot product computation and
the currents in a resistive mesh [2, 96, 39, 126]. Such a highly paralleled comput-
ing architecture significantly improves the performance-per-watt of DNN accelera-
tors [55, 25, 104, 111], far exceeding that of CMOS-based counterparts.

Moreover, in addition to the DNN accelerator, the emerging spiking-based neu-
romorphic accelerator, which is inspired from the biological spiking neural network
(SNN), has featured as achieving tremendous computing efficiency at much lower
power of small footprint platforms, e.g. the famous IBM TrueNorth chip that has
total 1 million synapses and an operating power of ~70mW [3]. These low-power,
light, and small single-chip solutions leverage the efficient event-driven concept to
ease the computational load and enable possible cognitive applications in resource
limited platforms, creating a very unique but promising branch of neuromorphic

computing research [93, 27].



1.2 Motivation: Challenges in ML Accelerator Design

The challenges in designing the machine learning accelerator can be categorized into
three different aspects, including reliability, efficiency, and security.

Efficiency. Although many emerging machine learning (ML) accelerators have
been proposed to improve the performance of neural network computation, they still
suffer from the limited energy and processing efficiency due to the less-optimized
architecture and algorithms. For example, in spiking neuromorphic accelerator de-
sign, the information is usually conveyed by the occurrence frequency of spikes (rate
coding) or their firing time (time coding). Compared to the rate-based SNN, the
more biological plausible time-based SNN may offer better energy efficiency and
system throughput [118], since theoretically the information can be flexibly embed-
ded in the time (temporal) domain of short and sparse spikes instead of the spiking
count represented by a group of power-hungry dense spikes in rate coding [3, 76].
Meanwhile, the processing efficiency of time-based SNN can be further enhanced by
performing an early decision making based on the temporal information extracted
from early fired spikes, while in rate coding, the classification cannot be initiated
until the last moment, e.g. winner-takes-all rule by sorting the number of spikes
fired during the entire period of decoding time for each output neuron [83].

However, the potentials of time-based design are significantly underestimated
due to lack of efficient hardware-favorable solutions for time-based information rep-
resentation and complex spike-timing-dependent (temporal) training of biological
synapses towards practical cognitive applications [122]. On one hand, translating the
input stimulus (i.e. image pixels) to the delay of the spikes is non-trivial because the
coding efficiency can be easily degraded by the biased spike delays distributed in the

limited coding intervals. On the other hand, training of the rate-based SNN can be



usually performed off-line by directly borrowing the standard back-propagation al-
gorithm from artificial neural network (ANN) [76]. However, this time-independent
learning rule does not fit the time-dependent SNN because of a fundamentally dif-
ferent learning mechanism. Developing efficient multilayer learning algorithms to
enhance the potentials of time-based SNN is non-trivial due to its fundamentally
different processing paradigm — the time-based spiking voltage modulation with a
non-differentiable threshold function [41, 11, 90, 124, 129, 79, 105]. Despite of many
existing time-based learning rules like “Tempotron” [48] and “SpikeProp” [11], those
proof-of-concept algorithms are neither compatible with multilayer extension nor
feasible to handle the realistic applications due to theoretical limitations or expen-
sive convergence of learning etc. Thus, an efficient multi-layer time-based learning
algorithm that can merge the algorithmic power of deep learning to the efficiency
of the time-based SNN architecture will be very crucial.

Reliability. A fundamental challenge faced by these memristor-based emerg-
ing DNN accelerators is their poor reliability because the DNN weight, which is
represented as the memristance of each memristor cell, can be easily distorted by
the inherent physical limitations of memristor device [94, 54, 87, 20]. For example,
electrical noise and process variations can limit the programming precision of DNN
weights on memristors. Meanwhile, memristance drift can also cause weight pertur-
bations after the DNN weights are programmed. These non-ideal factors can in turn
degrade the DNN accuracy, eventually harming the reliability of DNN inference on
these accelerators [125].

To overcome this problem, traditional solutions rely on the common circuit tech-
niques such as feedback control [125] and error correction code (ECC) [36, 95],
leading to high programming cost and considerable hardware overhead. Although

recent works have also investigated errors in ReRAM accelerators [22, 74], their so-



lutions focus on permanent defects (i.e., stuck zero or one fault), overlooking the
far more common noise, drifting, and programming errors these devices are likely
to encounter. Moreover, these solutions for tolerating defects usually involve non-
trivial retraining, which is far from scalable in the envisioned scenario of a neural
network trained once in the cloud and deployed to many edge devices each with
unique footprint of ReRAM defects and errors.

Security. Deep learning systems are also subject to ever-increasing security
concerns. It is common for the non-ML expert to directly consume ML services
through these devices from the third-party without understanding the end-to-end
DNN process on data, training, and testing etc., which could be untrustworthy and
malicious. Prior studies show that adversary can easily fool a normally trained DNN
model by exploiting the algorithmic vulnerabilities of DNN classifiers through ad-
versary examples [42, 97, 120, 34] or poisoning attacks [23, 60], therefore to mislead
the DNN inference results. Besides, DNN backdoor [47, 81] can be crafted into DNN
through poisoned training data for targeted misclassification using any input includ-
ing a specific trigger. Recent study [110] shows that DNN training algorithm can be
also abused to steal the secret training data from user side by slightly modifying the
training regularization, significantly compromising user privacy. Also, the DNN out-
put can be further used to encrypt traditional malware to create “DeepLocker” [65]
for a highly targeted and evasive attack.

However, adversary settings in prior work mainly address traditional cybersecu-
rity concerns and have not been well explored for the embedded ML accelerators.
These devices are typically ultra resource constrained and are operated in a hos-
tile (not physically secure) environment without human intervention. Such distinct
characteristics make prior DNN attacks less feasible and evasive. For example,

they usually employs highly compressed DNN models with minimal model size bud-



get [50], which could be insufficient to hold the stolen data as expected in [110].
Moreover, DNN trojan trigger [81] is subject to natural noises or input variations
in a hostile environment. These specific concerns motivate us to take an initial step

to explore the malicious DNN-powered attacks for embedded ML accelerators.

1.3 Contribution in this Dissertation

This dissertation focuses on designing the efficient, reliable, and secured neural net-
work computing system. In particular, this dissertation presents a compre-
hensive investigation on embedded machine learning accelerator design
from a system-level perspective of the hardware, software, and end-to-end
application. The ultimate goal is to illustrate how to leverage an neural
network architecture and algorithm co-design approach to address the
three design challenges on machine learning accelerators, namely relia-
bility, efficiency and security. The main contribution of this study is threefold:

First, we developed the time-based single-spike neuromorphic architecture and
temporal back-propagation algorithm to facilitate the ultra sparse coding in emerg-
ing neuromorphic accelerator, so as to significantly escalate the power and processing
efficiency when handling realistic applications. Our design has following features:
1) we developed a precise-temporal encoding approach to efficiently translate the
information into the temporal domain of a single spike to dramatically reduce the
energy, while offering efficient model size reduction; 2) we developed a supervised
temporal learning algorithm with novel average delay response model to enable the
temporal error back-propagation, significantly enhancing the learning capacity; 3)
we developed a novel asymmetric decoding to relieve the unique and serious weight

competition issue and significantly improve the accuracy and processing efficiency.



Second, we developed the scalable fault-tolerance of emerging DNN accelerators
by leveraging the algorithmic error-resilience of DNN classifiers. Our investigation
shows that the hardware defects induced weight disturbances may occur in any
layer of a given DNN model, propagate through the network, and affect the final
classification outcome if and only if the ranking of different classes on the out-
put layer is altered. While the inherent error resilience of DNNs, which already
allows it to handle minor precision loss and data errors [71, 50], can be escalated
by wisely redesigning the ensemble learning method such as error-correcting output
code (ECOC) [30] for modern DNNs. Based on this observation, our study targets
the output layer and enhances DNN stability with a collaborative logistic classifier
which leverages asymmetric binary classification coupled with an optimized ECOC
to improve the error-correction capability of DNN accelerators.

Third, we demonstrated a new type of threat that synthesizes the DNN with
stegomalware [113] in DNN accelerator design. We found that the DNN implies
an unprecedented opportunity to mix the data and code in DNN model, to create
DNN powered stegomalware. By leveraging the structural complexity and error-
resilient property of DNN, adversary can easily replace a small portion of DNN model
parameters with malicious code, therefore to turn DNN model into an evasive self-
contained stegomalware while still maintaining the service quality as normal. The
created malicious DNN can be deployed and survive in user’s secured environment,
and the embedded malicious code in DNN can be executed with a real-world object
selected as a trigger event. We developed a variety of model parameter payload
injection techniques to embed malicious payload and protect the payload integrity
in the compressed DNN models embedded DNN accelerators, without degrading the
original accuracy, therefore to conceal the malicious intent with enhanced evasiveness

and scalability. We also developed a bundle of triggering techniques to activate the



DNN powered stegomalware with a selected real-world object as trigger event, to
overcome the triggering input variations from the physical world and enhance the
triggering performance. Besides, we revisited several different mitigation approaches

for this emerging threats.

1.4 Dissertation Organization

The dissertation is structured into five chapters, starting from the current chapter
that outlines the resecarch scope, purpose, and contribution.

Chapter 2 introduces the single-spike neuromorphic system design. As a study
case in designing the efficient machine learning accelerator, we present how to lever-
age the spiking neural network (SNN) architecture, temporal neural processing and
learning algorithms to significantly improve the power and processing cfficiency on
emerging neuromorphic computing system.

Chapter 3 introduces the fault-tolerant DNN accelerator. As a case study ex-
ample for designing the reliable machine learning accelerator, we present how to
leverage the DNN classification algorithm and re-architecture on DNN output layer
to solve the weight disturbance issue induced by the hardware defects on emerging
DNN accelerators.

Chapter 4 introduces the Mal-DNN: Malicious DNN-powered Stegomalware. As
a case study example for designing the secure machine learning accelerator, we
demonstrate how to turn a deep neural network into an evasive self-contained ste-
gomalware by leveraging the DNN architecture and algorithms. Attack surfaces,
approaches and possible mitigation techniques are systematically studied on such
an emerging threat on machine learning accelerators.

Chapter 5 concludes this dissertation.



CHAPTER 2
SINGLE-SPIKE NEUROMORPHIC ACCELERATOR

2.1 Preliminary

2.1.1 Spiking Neural Coding

The neural coding in Spiking Neural Network (SNN) can be generally categorized
as rate coding, time coding, rank coding and population coding etc. [13]. In par-
ticularly, the first two codings are the most attractive, since each piece of coded
information is only associated with the spikes generated by a single input neuron,
offering simplified encoding/decoding procedures and design complexity.

Fig. 2.1 demonstrates an example of conceptual comparison between rate coding
and time coding in SNNs. T, and T; (R, and R;) denote two types of input neurons:
the time-coded (rate-coded) excitatory and inhibitory neurons, respectively. The
excitatory neuron can exhibit an active response to the stimulus while the inhibitory
neuron intends to keep silent. 7y and 75 (R; and R,) denote two time-coded
(rate-coded) output neurons for the classification. The rate-based SNN generates
far more number of spikes than that of time-based SNN in both types of input

neurons. After the input spikes are processed by the two different SNNs, a single
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Figure 2.1: The conceptual view of rate-coding and time-coding in SNNs.



spike firing at a specific time interval can perform an inference task in the output
layer of the time-based SNN. However, a considerable number of spikes are needed for
fulfilling a rate-based classification in the rate-based SNN, indicating a much higher
power consumption. Moreover, the rate-based SNN may exhibit a slower processing
speed than that of time-based SNN, since the output neuron of the former SNN
needs to count the spiking numbers (i.e. through Integrate-and-Fire [14]) in the
whole predefined time window, while that of the latter one may quickly suspend its

computations once a spike is detected.

2.1.2 Related Work

SNN based Neuromorphic Accelerator. Many studies have been conducted to
facilitate the spiking based Neuromorphic Computing System (NCS) designs in real
hardware implementations, including CMOS VLSI circuit [3, 103, 17, 33], reconfig-
urable FPGA [93], and emerging memristor crossbar [26, 76]. However, these works
mainly focus on the rate- or time-based SNN model mapping and hardware imple-
mentations, rather than the SNN architecture optimization, i.e. coding, decoding
and learning approaches etc.

Temporal Coding. The concept of temporal coding, which relies on the ar-
rival time or delay of a spike train for information representation, has been widely
explored and proved in the development of time-based SNN [62, 15]. These theoreti-
cal studies, however, mainly emphasize on the biological explanations of time-based
SNN models based on simple cognitive benchmarks (i.e. two inputs XOR gate),
which are far from the complicated real-world problems such as image recognition.
Recently, Zhao et al. [131] proposed an encoding circuit to handle the temporal

coding, however, this type of work still concentrates on component-level hardware
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Figure 2.2: Neural processing in ANN, rSNN and tSNN.

implementations with simple case studies, and hence is lack of a holistic architecture-
level solution set capable of handling realistic tasks. In [128], a complete time-based
SNN design is proposed. However, their solution suffers from limited accuracy fun-
damentally constrained by existing coding and temporal learning rule, and is not
optimized towards hardware-based neuromorphic system designs.

Temporal Learning. As shown in Fig. 2.2(a), the popular learning approaches
such as back-propagation [101] can be used in both Artificial Neural Network (ANN)
or rate-based SNN. For example, the number of spikes (i.e. “6” here) in rate-based
SNN is equivalent to the intensity of input data (ANN-style, = 6). Because the
spike rate is closely analogous to information representation of the ANN, many prac-
tical multilayer rate-based SNNs are well demonstrated in real-world applications
by naturally adopting ANN’s backpropogation (BP) algorithm. However, BP is un-
able to handle precise-time-dependent information due to a fundamentally different
neural processing. Many proposals dedicated to the time-based learning have been

developed [109, 48, 98]. However, these learning algorithms are neither hardware-
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favorable nor applicable for realistic tasks due to the expensive convergence and
theoretical limitation. For example, in the unsupervised Spike-timing dependent
plasticity (STDP) learning rule, the neural network structure and synaptic compu-
tation will be exponentially increased due to the expensive convergence and cluster-
ing. The proposed “Tempotron” and “Remote Supervised Method (ReSuMe)” can
use the teaching spike to adjust desired spiking time for temporal learning, however,
are not applicable to handle complicated patterns.

Extending the single-layer time-based SNN to multi-layer time-based SNN can
potentially enhance its capability for realistic cognitive tasks. However, designing ef-
ficient time-based SNN multi-layer learning algorithms is very challenging due to the
fundamentally different training mechanism—the time-based spiking voltage mod-
ulation with a non-differentiable thresholding function. We have investigated many
existing time-based learning algorithms, i.e. unsupervised spiking-time-dependent
plasticity (STDP) [109], theoretical “Tempotron” learning [48] and “SpikeProp” [11].
Those proof-of-concept algorithms are either unable to support multi-layer structure
or too bio-plausible to handle the realistic applications because of the cost and dif-
ficult convergence of learning etc.

Fig. 2.2(b) illustrates the working principle of the most popular multi-layer su-
pervised temporal learning algorithm- -“SpikeProp” [11] in a two-layer time-based
SNN. Here “SpikeProp” can perform complex nonlinear classification in temporal
domain by customizing the back-propagation algorithm widely adopted in multi-
layer ANNs. Unlike the one-one synaptic connection of two neurons in a standard
BP-based multi-layer ANN, the link between any two neurons of two adjacent layers
in “SpikeProp” is composed of multiple synaptic terminals (i.e. m), where each ter-
minal serves as a sub-synapse associated with a different spiking delay d; and weight

w; (see the connection of example neurons Ho—As in Fig. 2.2(b)). A sufficient number
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of such sub-synapses that can precisely model small delay differences and modulate
the spiking voltage kernels between each pre-synaptic and post-synatic neuron pair
is needed, leading to significantly enlarged network size. As an example, handling
the simple XOR problem with a two-layer architecture (one hidden layer and one
output layer) requires ~ 40x more weights in “SpikeProp” [11] than that of an
ANN (240 v.s. 6). Thus, the limited scalability of such a bio-plausible algorithm
greatly hinders it from solving more practical and complicated cognitive tasks re-
gardless of the expensive implementation cost, e.g. accurately control the temporal

information.

2.2 Single-spike Neuromorphic Architecture

2.2.1 System Architecture

Fig. 2.3 shows a comprehensive data processing flow of proposed single-spike neu-
romorphic design, namely “P7T-Spike”. First, the stimulus will be captured by
the temporal perceptors to generate a sparse spike train (i.e. single spike) through
“Precise Temporal Encoding”. Each spike train will be further modulated in tempo-
ral domain by a linear-decayed spiking kernel to form time-dependent voltage pulse.

Second, those voltage pulses will be sent to the synaptic network for a weighting

Input Stimulus Input Layer Output Layer Asymmetric Error detection with

Valt) = ijw,,mz‘j/qf,w Decoding Scheme Desired Spiking Pattern
E_V% AlL . - N ;®False firing
i % i :: _) O . _ §®Fa\se missing
i\\:\' N : coe@—| i
. 1
Il\“,\ v,w\ G 4 O O O . N E@Cc:rrect
T ;l—/

Synaptic Plasticity — PT-Learning

T T T
Flexible Precise Temporal Encoding Synaptic Processing Asymmetric Decoding

Figure 2.3: The overview of single-spike neuromorphic design.

13



process, i.c. the memristor crossbar with IFC design can be employed for parallel
processing. The output neurons will exhibit time-varying weighting responses due to
the time-dependent input information. After that, the output neuron will fire a spike
if the weighted post-synaptic voltage crosses a threshold voltage. Then spike trains
from the output layer will be transmitted to the “Asymmetric Decoding”. Finally,
the target pattern will be classified by analyzing the synchronized output spikes
with a predefined asymmetric rule. During the learning procedure, desired spike
patterns are coded by following the similar asymmetric rule during decoding. The
detected errors will be sent-back for synaptic plasticity through “PT-Learning”—a

supervised temporal learning algorithm.

2.2.2 Precise Temporal Encoding

In traditional rate coding, a large number of spikes within a proper time window
will be needed to precisely indicate the amplitude of an input signal, i.e. the pixel
density of visual stimulus. To maximize the power efficiency with minimized number
of spikes, the input information will be represented as an extreme sparse train—
single spike and its occurring delay in aforementioned coding approach. However,
such a “one-to-one” mapping between each stimulus and spike train of each input
neuron can lead to a significant energy overhead. Meanwhile, the time or temporal
information of those spike trains are not fully leveraged by each neuron, resulting in
limited coding efficiency thus a dramatical accuracy reduction. As we shall present
later, our results on “MNIST” benchmark show that the “one-to-one” mapping
achieves very unacceptable training accuracy ((~ 20%) even under a large model

size, that is, 784 input neurons for a 28 x 28 image.
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Figure 2.4: Comparison on proposed coding scheme.

In “PT-Spike”, we further propose the “Precise Temporal Encoding”. As shown
in Fig. 2.3, the “Precise Temporal Encoding” is inspired from human visual cortex
and Convolutional Neural Network (CNN), where a Temporal Kernel (i.e. a unit
square matrix) will be applied on the full image to capture the spatial information
and then translated into a single spike delay in temporal domain as a neuron input
by perceiving the localized information from multiple interested pixels, i.e. spiking
delay is equal to the average density among several selected pixels. In practice, by
selecting a proper stride with which we slide the Temporal Kernel, e.g. smaller than
the dimensionality of Temporal Kernel, a portion of localized spatial information
will be shared by adjacent kernel sliding. Consequently, the spatial localities can be
further transformed into temporal localities, thus to uniformly allocate the spiking
delay assigned to each input neuron in time domain, translating into improved

coding efficiency and classification accuracy.
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To better illustrate the proposed coding techniques, we define following three
key parameters: An encoding time window 7', a unit time interval 7, and the time
encoding resolution R = % Note 7 also denotes the period of a single spike. To
make our encoding biological compatible, we also interpret the spike with a short
(long) delay as the excitatory (inhibitory) response under strong (weak) stimulus.
We explored several possible time-coding schemes on two representative datasets:
numerical-style “Iris dataset” (3 classes, 4 attributes) [38] and visual-style “MNIST
dataset” (10 handwritten digits) [67], as shown in Fig. 2.4. In Iris dataset, each
attribute (i.e. {length, width ...}) can be mapped to a single spike associated with
an input neuron. As Fig. 2.4(a) shows, the delay d; of each single spike generated
within 7" can be calculated as d; = T - round <1 — m), where n; is the
i-th data sample at a selected attribute.

For visual-style “MNIST dataset”, we first investigated an existing coding tech-
nique adopted in most ANNs and SNNs — the “1-1 coding”, i.e. each single pixel is
mapped to an input neuron, as shown in Fig. 2.4(b). The delay d; of the spike gen-

erated by the input neuron ¢ is inversely proportional to the associated pixel density

pii d; =T - round (1 — ma’:'(pi)) Note there will be no spike if p; = 0. However,
the coding efficiency of “1-1 coding” is limited because many spikes that should
represent different data patterns occur at a common time slot (see the spiking delay
distribution of “1-1 coding” in Fig. 2.4(b)). Besides, the number of input neurons is
always equal to the image resolution, indicating a large model size. To better lever-
age the whole encoding time window and reduce the model size, we further develop
the “conv-like coding” inspired by human visual cortex (receptive field) and Con-
volutional Neural Networks (CNNs). By perceiving the localized information from

multiple adjacent pixels through a square kernel, spiking delay in “conv-like cod-

ing” can be expressed as the number of “0s” within the kernel among the binarized
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pixels. As Fig. 2.4(b) shows, the spiking delays of “conv-like coding” are almost
evenly distributed across the whole time domain, indicating effective utilization of
temporal information, thus a potential model size reduction in spatial domain or
rather a reduced number of input neurons.

Another unique advantage of the proposed “Precise Temporal Encoding” is to
offer a flexible model size reduction. To illustrate the advantage of spatial model
size reduction provided by our proposed “conv-like coding”, we assume the number
of elements covered by the kernel as a square number R. Note R = % also represents
the temporal resolution of encoding. The number of input neurons can be expressed
as M = [P_TVEHP, where P and S represent the width of input image and the
stride to slide the kernel. “Zero-padding” will be also applied according to the
image resolution. Hence the encoding time window 7" and input neuron number M
can be flexibly changed by tunning R without sacrificing the amount of information
of an entire image. Fig. 2.5 shows the concept of model size reduction based on
“conv-like coding”. In this example, the “original design” is configured as M = 4

input neurons, 16 synaptic weights for the first layer at a temporal resolution R.
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Alternatively, a “size-reduced design” with only M = 2 input neurons, 8 synaptic
weights (50% less), can be easily achieved by doubling the temporal resolution R
or rather the encoding time 7' (assume 7 does not vary). Although the efficiency
of model size reduction depends on the percentage of the first-layer weights over
the total number of weights, as we shall show later, such a technique is still very

effective even without degrading the system accuracy.

2.2.3 Synaptic Processing and Linearized Spiking Kernel

Once the delay for the single spike is determined, as shown in Fig. 2.3, a spiking
kernel K will be applied to shape the associated spikes for input neurons. The kernel
plays an important role in the following synaptic weighting for the output voltage

Vo(t), as shown in Eq ( 2.1):

Va(t) =) wnn > K(t—t,) (2.1)

where weight V,,(¢) represents the voltage of output neuron n, w,,, denotes the
synaptic efficacy between input neuron X,,, and output neuron A,,. t4 is the decoded
spiking delay of X,,. To provide sufficient and accurate temporal information for
the classification, the exponential decayed post-synaptic potential in the biological

spike response neural model [41] can be expressed as:

Ky(t —ts) = pleap[—(t — to)/m] — ewp[—(t — t,)/7]) (2.2)

where 7 (77 and 73) denotes decay time constant, and g is the normalizing constant.
However, such an exponential decaying function requires expensive computation and
hardware resource. In “PT-Spike”, we employ a more hardware-favorable kernel

function Ky—a linear decaying function (see K; and K, comparison in Fig. 2.3), to
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Figure 2.6: An overview of proposed A-Decoding scheme.
simplify the costly dual-exponential function Kj:
Ky(t—ts) =1—71(t —t,) (2.3)

Such a linear approximation cause very marginal classification accuracy degradation.
Besides, this linear kernel function will be also applied to detect the input voltage

contributions to the output spike in our proposed “PT-Learning”.

2.2.4 Asymmetric Decoding

In ‘PT-Spike”, a novel Asymmetric decoding scheme, namely “A-Decoding”, is pro-
posed for the classification. As the error signal critical for the proposed supervised
temporal learning will be also generated through asymmetric decoding, we will dis-
cuss the “A-Decoding” technique first.

In rate-based SNN, the target pattern can be determined by the output neuron

with highest spiking numbers. The costly weight updating will be performed in all
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synapses at cach iteration of learning. The subsequent neural competition (weight
conflict) among different patterns can be rectified by enough information provided
by the large number of input spikes. Hence a good classification accuracy may be
achieved for all different patterns. However, the similar case cannot occur in our
proposed “PT-Spike”, since its weight updating solely relies on the very limited
number of spare spikes (e.g. a single spike) in temporal domain. In “PT-Spike”, we
further propose the “A-Decoding” to alleviate the neural competition for accuracy
improvement.

Fig. 2.6 illustrates the key idea of proposed “A-Decoding”, including pattern
readout and error detection. Pattern {P;} can be decoded based on the firing status
of output neuron {N;}. In our asymmetric decoding, the output neuron can work
on three different statuses: “firing”, “not firing” and “independent”, as shown in
Fig. 2.6. Note “independent” means that the associated neurons will not participate
in the learning process of a certain pattern, and it will only occur in learning mode.

In testing mode, the output neuron will be only in following two status: {1 —
firing/0 — not firing}. The target pattern is scanned according to the order of
the first firing neuron. Assume a binary code Ny NoNs - - - N; is generated by output
neurons {N;}, a Huffman-style decoding procedure can be performed (See Fig. 2.6
left part). For example, if the first firing neuron is Vs, the corresponding code will
be 001. Thus, the target pattern is Ps. In “PT-Spike”, the early detection of testing,
namely “Fire&Cut”, can be realized based on the temporal “winner-take-all” rule:
Once the IFC of neuron N; triggers a spike, all the remained IFCs for other neurons
will be shut down by following the “Fire&Cut Order”, which may save the additional
power consumed by the TFCs.

In learning mode, a desired spike pattern is reversely generated according to the

Huffman-style decoding of pattern {P;} (See Fig. 2.6 right part). Once a partici-
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pated neuron /V; triggers an unexpected firing or a missing firing, an error will be
detected and only the synaptic weights of N; will be modified according to our pro-
posed “PT-learning”. Note only “partial” output neurons (NOT in“independent”
status), will be involved during the learning of pattern { P}, namely “Partial Learn-
ing”. Such a mechanism significantly accelerates the learning procedure and saves
power consumed by the unnecessary neural processing. Meanwhile, {N;} is “asym-
metrically” correlated with {P;} and thus can ease the neural competition. For
example, neuron N; only engages in the synaptic plasticity of pattern P; and will be
ignored during the learning of all other patterns. As we shall show later, by taking
advantages of “Fire&Cut”, “Partial Learning” and “Ease Competition”, our pro-
posed “A-Decoding” can significantly enhance the weighting efficiency and learning

accuracy.

2.2.5 PT-Learning

Our proposed “PT-Learning” coordinates with the aforementioned “A-Decoding”
to capture the errors needed for synaptic weights updating. An error detected by
the “A-Decoding” will be processed by “PT-Learning” to generate corresponding
weight changes and send back for synapse updating. As shown in Fig. 2.3, based
on the actual and expected spiking pattern, two types of errors may occur in the
output neuron: “false missing” and “false fire”. Here “false missing” means that
the integrated voltage can not reach the threshold in output neuron to trigger the
expected output spike, while “false fire” is defined as an undesired spike firing.

As shown in Algorithm. 1, once an error is detected, the error spiking time (7%)
and the cost function (Err) will be extracted from T4, and Vi, — Vipae. Here Vigs

and T},,, are the maximum voltage amplitude and its occurrence time, respectively.
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Algorithm 1: Post-Synaptic Processing

// Pseudocode of Asymmetric Decoding and PT-Learning

1 Detecting:

2 foreach output neuron N; in [Ny .. Ni] do

3 if testing mode then

4 if firing then

5 L return P;// “Fire&Cut”

6 else

// learning mode

7 if N; is independent to P; then

8 | return// “Partial Learning” and “Ease Competition”
9 else if actual firing pattern # desired pattern then
10 L call Learning(Vinaz, Tinax)
11 Learning:

// change synaptic weights of N;
12 Err < Vi, — Vinaz
13 Tfal — Tma:p
14 foreach input neuron X, in [X; .. X/ do

15 if KQ(Tfal —T.) <0 then
16 | continue// “Partial Updating”
17 else
// pre-spiking at T, contributed to post-spiking
18 Aw + )\E’I“TKQ(Tfal — TC)
19 We; — AW + W

A negative (positive) Err means a false- fire (missing). Hence, the gradient of Err

with respect to each weight w,. at pre-synaptic spiking time 7T, can be calculated as:

B dErr
dw.,

ov (Tma:c ) dTmaz
+

=Err Y Ky(Tpaw —T.) T .

TC STmaz

(2.4)

Here K is the linear decayed spike kernel defined in Eq.( 2.3).

As pre-synaptic spikes are weighted through synaptic efficacy w. before T}z,
%ﬂ‘;) = 0. By further considering Err into the change of w., Aw. can be ex-
pressed as:

Awe = AErr Y Ko(Tju — T) (2.5)

T STfa,l
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where A denotes the learning rate and spike kernel K5 can be used again to calculate
the contributions from the input neuron X, at time 7.

As discussed in “A-Decoding”, only partial output neurons will be involved dur-
ing the learning of a certain pattern, meaning that only partial synaptic weights
will be updated. The dual-level acceleration, contributed by both “A-Decoding”
and “PT-Learning”, can improve the learning efficiency significantly. As we shall
show later, the synaptic computation can be reduced more than 200% when com-
pared with the standard learning approach without accelerations. Moreover, “PT-
Learning” together with “A-Decoding” can boost the accuracy for realistic recogni-

tion task significantly.

2.3 Temporal Error Back-propagation

In “PT-Learning”, the error function is to calculate the voltage difference, while
the objective is to turn the spike delays. Such a conflict prevents its application
on the multi-layer DNN structures. We further develop the temporal error back-
propagation algorithm based on proposed Average Delay Response (ADR) neuron
model to enable the multi-layer extension on proposed single-spike neuromorphic

architecture, namely “MT-Spike”.
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Figure 2.7: Design exploration on Average Delay Response (ADR) model.
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2.3.1 Average Delay Response

After the information is encoded as the delay of the input spike, the next question
becomes how to perform the layer-wise time-based synaptic processing. The objec-
tive of the synaptic processing is to generate an output response at each neuron
based on its afferent input delays. Thus, how the neural processing model handles
the temporal information will directly impact the performance. Existing multi-layer
time-based SNN still depends on expensive voltage modulation and threshold based
neural processing paradigm due to the absence of the proper loss function and
differentiable activation function, significantly hindering its applicability in real-
world cognitive tasks. To develop an efficient time-based neural processing, we first
explored the processing mechanism of biological plausible Spike Response Model

(SRM) [41, 48, 11].

Delay Adjusting Through Weighting Efficacy

Fig. 2.7(a) presents the concept of SRM. Its detailed mathematical model can be
expressed as:
V(t) = 22 wi ) g, K(t — d;)

K(t —d;) = exp (—%) — exp (—ﬂ) (2.6)

T2

V(ty) = Vip = t, = d

\

Where K, 11 and 75 are the Pre-Synaptic Potential (PSP) kernel function, voltage
decay and integrate time constant, respectively. As Fig. 2.7(a) shows, the two
updated weightings (w; +Aw; and ws+ Awsy) are applied to the two delayed versions
(dy and dy) of PSP spiking kernels, respectively. Accordingly, the integrated voltage
w.r.t. time is slightly changed, translating into an equivalent delay adjustment when

the voltage reaches the threshold (¢, — t)). Despite of the costly analog voltage
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computation and the target delay extraction, the fundamental goal of SRM is to
identify an output spiking time by leveraging the pre-synaptic weights and input
spiking delays. Inspired by this observation, we propose the following Average Delay
Response (ADR) Model (see Fig. 2.7(b)):

1 n
d;j(wij, di) = o Z wi;d; (2.7)
i=1

where w;;, d; and n denote the synaptic weighting efficacies between neuron ¢ and j,
input spike delays of neuron ¢ and number of post-synapses. d; denotes the output
spike delay of neuron j. Hence, the output spiking delay can be directly tuned by
the weights w;;, speeding up or slowing down the occurrence of an output spike.
Note the result of ADR model (see Eq. 2.7) is no less than any input delay d;, which
well complies with the nature of a causal system—a post-synaptic spike will be only

trigged by the pre-synaptic input spikes.

Advantages of Average Delay Response Model

First, the proposed ADR model can eliminate the costly voltage kernel modulations
and complicated pre-synaptic/post-synaptic time control unavoidable in traditional
time-based SNNs, because the proposed time-coding schemes ensure a comprehen-
sive precise delay based information process across all the layers, e.g. performing
target classification and error calculation by the delay.

Second, ADR model also increases the adjustable delay range significantly (e.g.
a whole encoding time window T') by direct delay weighting when compared with
that of traditional SRM limited by the PSP kernel, as shown in Fig. 2.7(b).

Finally, ADR model can implicitly work as a “Special ReLU” [91] function—a
non-negative output delay with a smaller value representing a stronger response for

an output neuron (the earlier the spike fires, the stronger the response is). Unlike
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the un-differentiable threshold function in traditional time-based SNN, the “Spe-
cial ReLU” function is differentiable and thus can facilitate an efficient multilayer

learning through temporal error propagation.

2.3.2 Target Delay Set and Readout in ADR

We present the implementation details of Target Delay Setup and Class Readout
for following two different cases: 1) A single output neuron with multiple target
spiking delays, and the class number is equal to that of target delays; 2) Multiple
output neurons with only two target delays, where the output neuron number and
the number of classes are identical. Similar to the traditional bio-plausible time-
based SNN [11], we assume the selected target delays are no less than the encoding

time T in “MT-Spike”.

Single Output Neuron

To maximize the temporal information of the output neuron while minimizing the
number of output neurons, we assign multiple target spike delays at a single output
neuron in “MT-Spike” (see Fig. 2.8(a)). Here one target delay represents one class,

i.e. the target delay T + i x 7. for the i-th class, where 7, is the adjustable time
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Figure 2.8: Target delay setup and class readout.
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interval to differentiate two adjacent classes and is constrained as no less than 7—
the period of a single spike. For instance, the target delay can be defined as {T,
T+3, T+6} for the three classes { “Setosa”, “Versicolour” and “Virginica” } in “Iris
dataset” [38], respectively. Here 7. = 37,7 = 1.

As Fig. 2.8(a) shows, these target delays will serve as “delay checkpoints” to
readout a class according to temporal distances between the actual output delay and
those “delay checkpoints”, that is, to find the nearest target with smallest temporal
distance for a testing. During the training, a temporal error will be calculated
based on the delay distance between actual delay and target delay of a class at

output neuron if a classification failure happens.

Multiple Output Neurons

To handle the large dataset with more classes, an alternative solution is to increase
the number of output neurons, i.e. same as the number of classes, so that each class
can be dedicated to one output neuron. To maintain the biological plausibility,
short target delay 7'+ 7. will be only assigned to the “excitatory” output neuron
(i.e. neuron A,, representing current class label 2) while that of all the remained
“inhibitory” neurons are assigned with a same longer delay T + 7;, as shown in
Fig. 2.8(b). Here 7, < 7.

For example, if the target class label is “1” (i.e. handwritten digits from “0” to
“9”) in MNIST, ten target delays {T'+4,T+0,T+4, ..., T+4} will be assigned to the
ten output neurons {Aj, As, As, ..., A1g}, respectively, Here we assume 7. = 0 and
7; = 4. During the testing, the class readout will be achieved by the “excitatory”
output neuron with an “earliest” spike, i.e. the one with minimal actual spike delay.

In training mode, each output neuron will calculate an individual temporal error
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based on the difference between the actual spike delay and the target spike delay if

an incorrect class label is identified.

2.3.3 Temporal Back-propagation and Heuristic Loss

Based on our proposed average response model and its implicit temporal “ReLLU”
activation, an efficient multilayer learning algorithm can be obtained through tem-

poral error back-propagation for “MT-Spike”.

Temporal Error Back-propagation

In this section, we present our proposed temporal error back-propagation algorithm.

For an output neuron j, the temporal error function is defined as:

E; =

J

(deis) — dags))” (2.8)

l\')l»—t

where dy(;y is its target delay and dy; is its actual delay, with implicit activation

function ¢, the output delay of neuron j in layer [ is given as:

di = gp(netl ( Zwmdﬁ 1) (2.9)

where df;_l is the pre-synaptic delay of the ¢-th neuron and n is the number of pre-
synapses. Thus the partial derivative of temporal error with respect to weight wﬁj

can be expressed as:
0B; OE; 0d; Onet;

— 2.10
Owl;  Od} Onet!; Ow; (2.10)
where:

Onett o 1 <& di-1
I _Z |z Lg=1) = 2 2.11
8’wﬁj 8w§j (n ;w” E n (2.11)

od-. 0
8ne;f‘- — Pl © (net ) =1 (2.12)
J
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// Heuristic Loss Function H({d,}, ¢, d/™™, d/™™)
I {d,}: actual delays array of output neurons
/I ¢: target class index
// d™",d™™: min and max target delay
{N} = DFS(c); // get array N by DFS to depth ¢
j =1;// neuron index
while j <= c { / output neuron(s) is partially engaged
switch(N[i]) {
case 0 : d; = d{™; // inhibitory
case 1 : d,=d™™; // excitatory
}
E; = 0.5*%(d-d,|i])"2; / temporal error of output neuron i
call Temporal Error Backpropagation; ++j;

}

Figure 2.9: Heuristic loss function and binary decision tree.

For neuron j at output layer [:

0E;  0E; 0 1

(du(j) — da(y)” = daggy — du(y)

0E;  di '(dug) — duy))

(]

I
Ow;; n

For neuron j at hidden layer(s):

OE; ~~{ OE; oOneti™\ <~(op; od, .,
od, _Z (6%615?_1 od, _Z od, Gnetf’lek

k=1 k=1

where k is the post-synaptic neuron of j, by defining:

,  OE; 8d§- da(jy — diy 1 1s output layer

i 8d2 8net§

S Op Wittt Lis hidden layer

We can obtain the weight updating at learning rate n as:

! OL;

!

=

]
dw;;

Heuristic Loss Function

® o 0 0 0 0

Binary Decision Tree

e.g. 3 neurons
are engaged
in training of

the 3" target

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

In “MT-Spike”, the neural competition among different data patterns increases sig-

nificantly as the dataset becomes more complicated, as the weight updating solely
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relies on the extreme sparse spike—single spike. Hence, to alleviate the neural compe-
tition, we further propose the Heuristic Loss Function in “MT-Spike” as the trigger
of Temporal Error Back-propagation— H ({d,}, ¢, d/"™ d7**), where {d,} and c are
the actual delay array of all output neurons and active class of current sample,
respectively. d™™ and d"** represent two target delays for excitatory neuron and
inhibitory neuron, respectively.

Fig. 2.9 illustrates the algorithm, as well as the novel data structure of heuristic
loss function. An “Huffman” style binary decision tree with its depth equal to the
total number of target classes is introduced. Only partial output neuron(s) will be
involved by leveraging a depth-first-search (DFS) through the binary decision tree.
For example, to process the MNIST dataset (10 classes with label “0” to “9”), the
binary decision tree with a maximum depth 10 (the depth of the root is 0) will be
generated according to Fig. 2.9. All the nodes, except the root node, in the left
(right) subtree are marked as 1 (0). If the 3" data pattern (class label “27) is
selected, a depth-first-search will be conducted on the decision tree until the depth
reaches 3. The 3 nodes traversed by the longest searching path (highlighted in
Fig. 2.9) indicate only 3 out of total 10 neurons, i.e. A; and Aj as inhibitory neuron
and Aj as excitatory neuron, will participate in the learning of the class “2”. Note
here only the synaptic weights associated with those three neurons will be updated.

By deploying the Heuristic Loss Function in temporal error back-propagation
of “MT-Spike”, the computation of the error ¢ (see Equation. 2.16) can be further
simplified as:

(

5;'61" = da(jel") — dt(jel") ,output layer

8 =3 per 0wl ,last hidden layer (2.18)
\5; =300 wi! ,other hidden layer

30



Table 2.1: PT-Spike: Structural parameters of selected candidates.

. Number of Number of Number of neural processing
Candidate . . . .
input neurons | output neurons | synaptic weights time-frame T
PT-Spike(4) 196 10 1960 4ms
PT-Spike(16) 169 10 1690 16ms
PT-Spike(25) 144 10 1440 251ms
PT-Spike(100) 100 10 1000 100ms
Diehl-15 784 100 78400 500ms
Lecun-98 784 10 7840 -

where I" is the set of involved neurons, rather than the whole neurons, for a certain
data pattern. In output layer, the weight updating will be partially conducted on
the pre-synaptic weights of participated neuron(s):

di-!

O0E;
L = _7752'61“@7 (2.19)

i(j€T) 1
! Owyjer)

2.4 FEvaluation

To evaluate the accuracy, processing efficiency and power consumption of our pro-
posed “PT-Spike” neuromorphic architecture and “MT-Spike” multi-layer exten-
sion, extensive experiments are conducted in the platforms like MATLAB and heav-

ily modified open-source simulator—Brian [43].

2.4.1 PT-Spike: Single-spike Neuromorphic Architecture

Experiment Setup

In our evaluation, a full MNIST database is adopted as the benchmark [67]. A set of
“PT-Spike” designs—“PT-Spike(R)” are implemented to demonstrate the leveraged
temporal encoding where “R” denotes the number of interested pixels per input
neuron or the size of Temporal Kernel in proposed “Precise Temporal Encoding”.

We also assume the encoding time frame (7") is T = 7 x R(ms), where 7 = 1(ms) is
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Figure 2.10: Training and testing accuracy on sclected candidates.

the fixed minimum time interval to fire the spike. The maximum temporal informa-
tion T can be adjusted by tuning the parameter R. The number of input neurons
(spatial domain) can be expressed as M = [P_T\/EHP, where P and S represent
the width of an input image and the stride with which we slide the Temporal Ker-
nel. P = 28 and S = 2 are sclected in our evaluations of MNIST dataset. Two
representative baselines under similar network configurations, including the rate-
coded SNN-“Diehl-15" [29] and the ANN—“Lecun-98” [69], are also implemented
for the energy and performance comparisons with proposed “PT-Spike”. Table. 2.1
presents the detailed structural parameters of selected candidates. Compared with
the “Diehl-15” and “Lecun-98”, our proposed temporal encoding achieves signifi-
cant model size reduction for all “PT-Spike” designs, i.e. ~ 40x (“PT-Spike(4)”
v.s. “Diehl-15") and ~ 4x (“PT-Spike(4)” v.s. “Lecun-98).

Accuracy

Fig. 2.10 shows the accuracy comparison among different “PT-Spike (R)”, “Lecun-

98” and “Diehl-15". “PT-Spike(25)” can achieve very comparable accuracy at much
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Figure 2.11: Training accuracy on different designs.

lower cost (~ 86%, 1440 synaptic weights) when compared with “Diehl-15" (~
83%, 78400 synaptic weights) and “Lecun-98” (~ 88%, 7840 synaptic weights).
Meanwhile, “PT-Spike(16)” and ‘PT-Spike(25)” also show a very close accuracy
(~ 87% and ~ 86%), which is much better than “PT-Spike(4)” and “PT-Spike(100)”
(~ 63% and ~ 70%).

We also evaluated the individual training accuracy improvement contributed by
various proposed techniques, such as “linearized spiking kernel”, “Precise Temporal
Encoding”, “A-Decoding” and “PT-Learning”, receptively. Here, we choose the
“PT-Spike(16)” as the bascline design that employs all aforementioned techniques.
“Exponential Kernel”, “one-to-one mapping”, “non A-Decoding” and “Tempotron”
denote the designs that substitute only one out of the four techniques.

As shown in Fig. 2.11, “PT-Spike(16)” shows a very marginal accuracy degrada-
tion (0.2%) because of the “linearized spiking kernel” (K3 in Eq.( 2.3)) when com-
pared with the original costly “Exponential Kernel” design (86.9%, K in Eq.( 2.2)).
Furthermore, “PT-Spike(16)” can boost the accuracy by ~ 400%, ~ 19% and

~ 38% when compared with the designs of “one-to-one mapping” (~ 21%), “non
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Figure 2.12: Feed-forward efficiency per input image.

A-Decoding” (~ 68%), and the theoretical “Tempotron” learning rule (~ 49%),
respectively, which clearly demonstrates the effectiveness of the proposed “Precise

Temporal Encoding”, “A-Decoding” and “PT-Learning”.

Processing Efficiency

The occurrence frequency of synaptic events is calculated to evaluate the system
processing efficiency, including both weighting and weights updating. Fig. 2.12
compares the number of weighting operations among three designs in the feed-
forward pass. Unlike the other candidates, the amount of weight operations of
“PT-Spike(16)” is different between training and testing due to the “Fire&Cut”
mechanism in“A-Decoding”. Hence, the weighting of the first testing iteration is
also included in “PT-Spike(16)”. Even the “non A-Decoding”, i.e. “PT-Spike(16)”
without the “A-Decoding” technique, gains ~ 185x weighting operation reduction
as compared with “Diehl-15" since rate-coded SNN requires a long time window to

process the spikes with enlarged neuron model size, causing tremendous weighting
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Figure 2.13: Feed-back efficiency.

processes on each time slot. Compared with “non A-Decoding”, weighting opera-
tions of “PT-Spike(16)” can be further reduced by ~ 28% and ~ 69% in first train-
ing iteration and testing iteration, respectively. As expected, the “early-detection”
working mechanism in “A-Decoding” removes many unnecessary weighting opera-
tions on both “initialized” weights and “well-trained” weights.

We also characterize the occurrence frequency of weights updating during the
first training iteration to evaluate the processing efficiency in the feed-back pass.
As Fig. 2.13 shows, even “Worst Case” (i.e. “PT-Spike(16)” without employing
“A-Decoding” and “PT-Learning”) achieves ~ 4.6 x and 40x reductions on weights
updating per image and per error, respectively, when compared with “Diehl-15".
Such impressive improvement is introduced by the significant compressed model
size. Moreover, compared with the “worst case”, “PT-Learning” and “A-Decoding”
contribute ~ 2x and ~ 4x weights updating reduction per error and per image for
“PT-Spike(16)”, respectively, demonstrating the effectiveness of “dual-level acceler-

ation” from decoding and learning.
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Figure 2.14: Power consumption (« Joules/spike).

Power Consumption

To roughly evaluate the power efficiency contributed by the proposed architec-
ture, we adopted a similar methodology used in [3, 17]. A new candidate “Mini-
taur” [93] is introduced for a fair comparison since it is a more hardware-oriented
rate-coded SNN. As Fig. 2.14 shows, “PT-Spike(16)” saves ~ 8x and ~ 64X power
for each input neuron and each input image over “Diehl-15", respectively, indicat-
ing the efficiency of our proposed single-spike coding technique. Compared with
the hardware-oriented rate-coded SNN design “Minitaur”, “PT-Spike(16)” can still

achieve ~ 1.4x (~ 6.6x) power reduction on each input neuron (input image).
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Table 2.2: MT-Spike: Structural parameters of selected candidates.

. Network Number of Neural processing
Candidate Types | Dataset Structure synaptic weights time—?rame T ¢
MT-1 tSNN Iris 4-25-1 125 16+6
SLMT-3 tSNN Iris 4-3 12 16+4
SpikeProp tSNN Iris 4-25-3 3500 1644
MLP ANN Iris 4-25-3 175 -
MT-1 tSNN | MNIST 169-500-1 85000 16+9 (7 =0.1)
MT-10(heu/noheu) | tSNN | MNIST 169-500-10 89500 16+4 (1 =0.1)
SLMT-10(heu/noheu) | tSNN | MNIST 169-10 1690 1644 (7 =0.1)
SpikeProp tSNN | MNIST 784-500-10 7940000 1644 (7 =0.1)
Diehl rSNN | MNIST 784-6400 5017600 50 (7 =0.1)
Minitaur rSNN | MNIST 784-500-500-10 647000 -
Lenet-5 CNN | MNIST | 1024-C1-S2-C3-S4-C5-F6-10 | 60840 (340908 conn.) -

2.4.2 MT-Spike: Single-spike Multi-layer Extension

2.4.3 Experiment Setup

Two representative datasets are selected as the benchmarks of our experiments, in-
cluding “Iris” [38] and “MNIST” [67]. “Iris” consists of 3 classes, with 50 samples
per class and 4 numerical attributes per sample. Note the NOT-linear separable
nature of the 3 classes can validate the functions of multi-layer temporal-learning
based “MT-Spike”, as well as its classes readout based on the multiple target delays
of a single output neuron. We utilize 120 and 30 samples for training and testing
purposes, respectively. The “MNIST” dataset, which includes 10 handwritten digits
with 60K training images and 10k testing images, is adopted to evaluate the visual
recognition capability of “MT-Spike” in terms of accuracy, model size and approx-
imated energy consumption. Several representative candidates, such as multi-layer
ANNs, rSNNs and tSNNs, are implemented for a comparison purpose. Batch train-
ing is conducted in our evaluation. All the training samples are randomly fed into
the candidates per epoch with a batchsize = 30 (256) for “Iris” (“MNIST”) until
the networks converge, followed by a testing iteration. Table. 2.2 shows the de-

tailed configurations and network types of all selected candidates. All “MT-Spikes”
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arc implemented with a same time window paramecter 7" = 16 and learning rate

n = 0.01. The initial weights w € (0, 1) are randomly generated before training.

Multi-layer Validation on Iris Dataset

As shown in Table. 2.2, “Iris” dataset is used to evaluate the following four networks:
“MT-1"— a multilayer MT-Spike implementation with only single output neuron and
multiple target delays setup;“SLMT-3"— A simplified version of MT-Spike without
hidden layer; “SpikeProp”—traditional bio-plausible multi-layer tSNN with voltage
modulation and thresholding process [11]; “MLP”~A Multilayer Perceptron based
ANN [100].

Fig. 2.15 compares the testing accuracy of the four aforementioned candidates.
As expected, “SLMT-3" exhibits the worst accuracy (56.7%) among all candi-
dates because this single-layer tSNN cannot well distinguish the NOT-linear sep-
arable classes. On the contrary, “MT-1" achieves much better accuracy than that
of “SpikeProp” (96.7% v.s. 86.7%), and can even approach that of “MLP”, demon-
strating the enhanced capability through the proposed multi-layer temporal learning

rule. Furthermore, as Table. 2.2 shows, “MT-1" reduces the synaptic weights by

Testing Accuracy on Iris dataset %

MLP
SpikeProp |
SLMT-3

MT-1

0 25 50 75 100

Figure 2.15: Testing accuracy on Iris dataset.
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~ 28 compared with the “SpikeProp”, which well validates the efficiency of single
output neuron readout and the Average Delay Response model when handling the

simple dataset.

Performance Evaluation on MNIST Dataset

To further evaluate the performance of our proposed “MT-Spike” in a relative com-
plicated dataset “MNIST”, seven different networks with more network parameters
are chosen, as shown in Table. 2.2. Here “ Diehl” is an rSNN trained by the un-
supervised STDP learning [29]. “Minitaur” is a hardware-oriented rSNN towards
power optimization. Besides, the CNN implementation — “Lenet-5" is included as
well for a comparison purpose. For a fair comparison with other SNN candidates,
the minimal time interval is set as 7 = 0.1 to provide a precise time-based processing
for all “MT-Spike” candidates.

Model Size Reduction and Time-coding Efficiency. We first demonstrate
the advantages of model size reduction in “MT-Spike” through the proposed “conv-
like” time-coding scheme. As shown in Table. 2.2, the proposed “MT-10" achieves

~ 4.6x reduction on the number of input neurons (169 v.s.784) when compared

25 - ° conv-like * I-1 mapping
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Figure 2.16: Coding efficiency of Conv-like and 1-1 mapping,.
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with all the other non-“MT-Spike” candidates (except the “Lenet-5" with 1024
neurons), which translates into an impressive model size reduction (or the number
of weights) over “SpikeProp”, “Diehl” and “Minitaur”, that is, ~ 88x, ~ 56x and
~ Tx, , respectively. Note the “SpikeProp” suffers from the largest model size due
to a substantial number of sub-synapses between two connected neurons. As we
shall discuss later, “MT-10” can even maintain a very high accuracy despite of the
significant reduced model size.

Fig. 2.16 also shows temporal mean-square error (MSE) v.s. training epoch
for two “MT-10" designs that employ the “conv-like” coding and “1-1 mapping”
coding, respectively. As Fig. 2.16 shows, the adopted “conv-like” coding achieves a
lower MSE than that of “1-1 mapping” coding at the same epoch, due to its better
utilization of temporal information, e.g. the equally distributed spiking delays.

Accuracy Analysis on MNIST dataset. Fig. 2.17 shows the testing results
of MNIST dataset among all different designs. As expected, “MT-1" with single
output neuron readout is insufficient to handle the complex dataset, resulting in the
worst accuracy 63.2%, due to its weak weighting efficiency. We also evaluate the

capability of the proposed heuristic loss function. As Fig. 2.17 shows, under a single-

Testing Accuracy on MNIST dataset (%)
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Figure 2.17: Testing accuracy on MNIST dataset.
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Figure 2.18: Energy analysis based on spiking activities.

layered structure “SLMT”, such a technique can boost the accuracy from 80.7% on
“SLMT-10(nohue)” to 89.6% on “SLMT-10(hue)”, showing a considerable accuracy
improvement by alleviating the neural competitions. Moreover, by integrating the
heuristic loss function with temporal error backpropagation, the accuracy of “MT-
10(hue)” can be further increased to 99.1%, the best results among all candidates
and even comparable with the CNN—“Lenet-5"(99.05%). Note the heuristic loss
function can still introduce 2.3% accuracy improvement in the multi-layer structure
(“MT-10(hue)” 99.1% v.s. “MT-10(nohue)” 96.8%).

Energy Consumption. To estimate the energy efficiency of “MT-Spike”, we
adopt a similar estimation methodology presented in [3, 17]. Measurement is con-
ducted based on the following assumption: a single spike activity consumes aJoules
of energy. The total spiking energy is calibrated based on the statistic of the spikes
in testing iterations. As shown in Fig. 2.18, “MT-10(hue)” saves ~ 13X power
over “SpikeProp”, indicating the efficiency of our proposed average delay response
model. Compared with rate-based “Diehl”, a ~ 42X energy reduction is further
achieved by “MT-10(hue)” through the efficient single spike temporal representa-

tion. Moreover, “MT-10(hue)” can still achieve ~ 6.3x power reduction compared

41



with the hardware-oriented design “Minitaur”, indicating an energy efficient solution

for resource-limited embedded platforms.

2.5 Summary

As the rate-based spiking neural network (SNN) is subject to power and speed
challenges due to processing large number of spikes, in this work, we systemati-
cally studied the possibility of utilizing the more power-efficient time-based SNN in
rcal-world cognitive tasks. Three integrated techniques—precise temporal encoding,
efficient supervised temporal learning and fast asymmetric decoding, were proposed
to construct the Precise-Time-Dependent Single Spike Neuromorphic Architecture,
namely, “PT-Spike”. The single-spike temporal encoding offers an energy-efficient
information representation solution with the potentials of model size reduction. The
supervised learning and asymmetric decoding can work cooperatively to deliver a
more effective and efficient synaptic weight updating and classification. Our evalua-
tions on the MNIST database well demonstrate the advantages of “PT-Spike” over
the rate-based SNN in terms of network size, speed and power, with a comparable ac-
curacy. Further, we propose the multi-layer time-based spiking neuromorphic archi-
tecture, namely “MT-Spike”. Through a holistic solution set — practical time-coding
scheme, average delay response model, temporal error back-propagation algorithm
and heuristic loss function, “MT-Spike” can deliver impressive learning capability
while still maintaining its power-efficient information processing at a more compact
neural network. Our evaluations well demonstrate the advantages of “MT-Spike”
over other rate-based SNN and time-based SNN candidates in terms of accuracy,

learning capability and power consumption.
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CHAPTER 3
FAULT-TOLERANT DNN ACCELERATOR

3.1 Preliminary

3.1.1 Deep Neural Network

Deep Neural Network (DNN) is a computational model composed of multiple layers
with complex structures to abstract the data at a high level [52] and exhibits high
effectiveness in many intelligent applications by leveraging various topologies and
learning algorithms [51, 66, 108, 115]. A DNN topology is usually composed of a
set of different types of layers. The convolutional layer abstracts features from the
inputs through the kernel-based convolutions. The pooling layer performs the down-
sampling processing (through max- or mean- pooling) along the feature dimensions,
to highlight the common features and reduce the data volume. The fully-connected
layer further ranks the confidence of each class based on the weighted features and
the non-linear activation functions. The output layer is used as the DNN classifier
to make the final decision on target class based on the output logits of certain

regressions such as Softmax and Logistic.

3.1.2 Logistic and Softmax Classifier

The logistic classifier is a classic solution to solve the traditional binary classification
problem (e.g., true or false). Given input features ) € R” and neural network

weights 6, the logistic classifier can be trained with label ¥ € {0,1} through
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Figure 3.1: Illustration of Error-Correcting Output Code (ECOC).
logistic regression hy(z) with gradient Vy.J(0):

h@(l’) = 1/1+exp(—6Tx)

Vol (0) = = >, 29 (y(i) — he(z?))

To handle the complex multi-class classification [28], softmax classifier is widely

(3.1)

adopted in modern DNNs.

he(l‘) = eXp(G(k)Tx))/Z.f{:l exp(e(j)-r:l?)

Vo J(0) = =37, (29 ({y¥ =k} — ho(2)))

(3.2)

Based on the one-hot coding (i.e., label y® = 1 for target class and y® = 0 for
others), softmax classifier can push the gradient towards the target class by nor-
malizing the multiple output logits, thereby achieving better accuracy than logistic

classifier.

3.1.3 Error-Correcting Output Code

Error-Correcting Output Code (ECOC) is an ensemble learning method for multi-

class classification [30, 9, 5, 130]. It solves the multi-class classification as a coding
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problem-given input features 2 € R", L independent Logistic classifiers can be
trained with a K x L coding matrix Mg, 1), where codeword M, 1) is assigned with
a L-dimension label vector YL(i) € {1,2,---,K}. Based on such a flexible learn-
ing scheme, appropriate error-correcting coding (e.g. Hamming code) or optimized
coding matrix can be further applied on ECOC to increase the Hamming distance
of the codewords assigned for different classes (i.e., to enlarge the margin of deci-
sion boundary and reduce the complexity of classification) [30], thus to eventually
improve the predictive performance of multiple binary classifier. Fig. 3.1 shows an
example of ECOC. Given the 10-class problem, one-hot coding (left side) is used
for the Softmax classifier by assigning each class mutual exclusively on one single
output neuron. Through the ECOC, such a problem can be solved by only 4 inde-
pendent binary classifiers through the binary encoding (or 7 classifiers for Hamming

encoding).

3.1.4 Weight Disturbance on DNIN Accelerators

In ReRAM based DNN accelerator, the memristances that represent the weights can
be distorted during both write and read operations. Such a weight disturbance prob-
lem is caused by the physical limitations of memristor devices [94, 54, 87, 20], which
can compromise the system stability and impact the machine learning performance
on ReRAM-based DNN accelerators. Prior works [94, 54] report that the geome-
try variation such as cross-section and thickness may exist in each dimension of the
memristor. [87] shows that under the impact of all of these variations, the switching
time of memristor cells with identical internal structure follows a log-normal distri-
bution. This indicates that the memristor cell may not be switched to the state with

required resistance after a write operation. Besides, [20] reports the memristance
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Figure 3.2: Overview of proposed methodology.

drift issue—as the charge flux ¢ and magnetic flux ¢ cause the variations on mem-
ristance M as M(q) = d¢/dq, tiny perturbations will be induced on memristance

states once the system presents the small recall current (read operation).

3.2 A Scalable Error-resilience Design on DNN accelerators

Fig. 3.2 shows an overview of the proposed methodology to establish the scalable
fault-tolerance on DNN, which includes two major steps — 1) create the DNN fa-
vorable ECOC coding scheme, and 2) implement collaborative ECOC classifiers.

Fig. 3.2(a) and Fig. 3.2(b) show the detailed procedure of each major step.
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3.2.1 DNN Favorable ECOC Coding Scheme

On top of the ECOC coding based DNN classification, we propose the DNN favorable
ECOC coding scheme to improve the reliability of DNN by optimizing the Hamming
distance of output code between those confusing classes. Fig. 3.3 illustrates the
basic idea of the confusing gap between different classes. In our observation, we find
that the weight disturbance issue can degrade the classification accuracy of DNN;,
particularly on the classes with the marginal confusing gap. Our DNN favorable
ECOC coding scheme can improve the Hamming distance between these classes with
the enlarged confusing gap, thus to further recovery the degraded DNN accuracy.
To evaluate the confusing gap between any class, we analyze the confusion matrix
of DNN. As shown in Fig. 3.2(a), we will first collect the confusion matrix on a given
DNN, in which the number of correct and incorrect predictions are summarized with
count values and broken down by each class. Second, we perform error analysis to
identify the most confusing class pair based on the number of errors. Third, we
conduct an exhaustive searching code [61] and take the DNN confusion matrix into

consideration. The code-pair with the maximum Hamming distance will be assigned
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Algorithm 2: DNN-favorable Searching Code

[ < code length (number of classifiers);
h < Hamming distance;
while (7 = {0})&&(h > 3) do
foreach i € [1,2" — 1] do
foreach t € T do
if Hamm(Dec2Bin(i,l), Dec2Bin(t,l)) > h then
L | T+« Tu{i}

N4 o oA W N

if 7 = {0} then
| he h-1

©

10 m < number of classes, x < 1;
11 n = CodeLen(7T ,h,m);

12 while Sizeof(O) < m&&xz < 2" do

13 foreach o € O do

14 if Hamm(Dec2Bin(o,l), Dec2Bin(x,1)) > h then
15 | O« 0U{i}

16 x—x+1;

17 C + confusion matrix;

18 j +— m;

19 S« {};

20 while (Sizeof(C) > 0)&&(j > 0) do

21 ¢ < Pop(Max(C));

22 if (zindex(c) # yindex(c))&&(zindex(c) ¢ S) then

23 Class(xindex(c))«— Dec2Bin(Pop(O));
24 S + zindex(c) U S;
25 j—Ji+1L

to the most confusing class-pair. Once the DNN-favorable searching code finishes
the encoding, the output codeword list can be stored in the LUT and later accessed
by collaborative ECOC classifiers for classification.

The pseudo-code of proposed DNN-favorable searching code is described in Al-
gorithm 2, which mainly consists of three parts: prepare searching table (line 1-8),
searching code (line 9-15) and code assign (line 16-24). The prepared searching
table indicates the maximum number of possible codewords with code length [ and

Hamming distance h, which can be automatically adjusted. The searching code re-
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turns a set of codewords that satisfies the aforementioned constraints. In code assign
phase, we evaluate the confusion matrix and gradually pick up the corresponding
class with strongest neural competition (i.e., with current strongest classification
error), which will be assigned with the searched code with highest priority. Note
the coding process is done off-line before the neural network accelerators download

the well-trained DNN models.

3.2.2 Collaborative ECOC Classifier

To enable the ECOC coding based DNN classification, we use the traditional logistic
classifier, which is a classic solution to solve the binary classification problem (e.g.,
true or false). Given input features (¥ € R™ and neural network weights 6, the

logistic classifier can be trained with label y® € {0,1} through logistic regression

he(z) with gradient VyJ(0):

hg(LU) = 1/1+exp(—9TJ:)

VoJ(0) = = >, 29 (y(i) — ho(z1))
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As shown in Fig. 3.2(b), the original classifiers (i.e., softmax) in the output layer of
the given model will be replaced by a certain number of logistic classifiers, which is
fully connected to the previous layer. Only partial weights of collaborative logistic
classifiers will be fine-tuned through transfer learning [127] on a given dataset based
on the codeword list created in the previous step, leaving most weights of this
model untouched. In particular, we introduce the significance parameter set {3}
and assign the significance on each classifier to establish the correlations among
logistic classifiers, so as to increase the DNN reliability (with enhanced classification

performance and accuracy):

Vg J(0) o< —B) - ch(“(y(m (i) — ho(z')) (3.4)

In our implementation, to simplify the approach and better control the pace of
weight update, a regularization term o(z,6) is applied on the loss function £ to

rectify the classifier significance during the fine-tuning:

Vo (1n D" Ly, ho(@)) + o(2,0)) (3.5)

Specifically, the regularization term o(z,6) is calculated based on the Hamming
distance of the corresponding classifier’s target codeword and its predicted result.
Since the neural competition can be estimated from the occurrence of bit-flipping,
after the fine-tuning, more significant classifiers may give more decisive confidence
for decision making. Meanwhile, some classifiers may again become indecisive during
the inference. Thus, we further set a pending zone in logistic regression to address

this issue. As shown in Fig. 3.4, the pending zone is defined as a specific region:
he(l‘) = 1/1+eXp(—9T’JJ)|_0.4§9Tm§0.4 ~ [04, 06] (36)

Once the weighted input 6Tz enters the pending zone, the classifier will report

both {0,1} as its output. For example, given three collaborative logistic classifiers
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Table 3.1: Experimental settings.

Environment
CPU Intel Core i7-6850K, 12 cores
GPU GeForce GTX 1080, 2560 CUDA cores
Simulator MATLAB, Deep Learning Toolbox
Network Model Dataset Original Accuracy
MLP [107] Mnist 99.1%
LeNet [107] Cifar-10 76.1%
Alexnet [50] ImageNet 57.2%
Squeeze [57] ImageNet 57.5%

with an input vector {—2,0.1,2}, the output vector(s) will be a 2-dimension matrix
{0,0,1} and {0, 1,1}. Later, the Hamming distance of these two codewords will be
compared with the entries in codeword list to predict the target class. Such a design

may effectively rectify the wrong decisions caused by the less significant classifiers.

3.3 Evaluation

3.3.1 Experimental Setup
Baseline and Benchmark

Table 3.1 shows the details of our experimental environment, neural network models
and datascts. We select four different neural network models, including small-scaled
multi-layer perceptron (MLP) and popular convolutional neural networks (CNN)
such as LeNet, Alexnet and Squeezenet, along with three datasets ranging from sim-
ple Mnist (10-class handwritten digits), Cifar-10 (10-class tiny images) and complex
Imagenet (1000-class large images), so as to comprehensively validate the efficiency
and scalability. We simulate a memristive accelerator similar to [37], wherein each

layer of selected neural network model is mapped to one or more 128 x128 arrays
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and cach memristive cell maintains 64 quantization levels (6-bit) to achieve a good

balance between throughput and reliability [4].

Error Modeling

Two different types of errors [22] are simulated in our evaluation: stochastic pro-
gramming error (represented as resistance variation in this paper) and stuck-at fault

(SAF). The resistance variation can be formulated as:
w —w-e’st. 0~ N(0,0?) (3.7)

where w' is the neural network parameters with programming errors under memris-
tor resistance variation 6, which follows a log-normal distribution. In our simulation,
we vary o to change the level of resistance variation, so as to tune random program-
ming error. The SAF occurs when a memristor device freezes in a low resistance
state (LRS) or high resistance state (HRS), resulting in the stuck-at-one (SA1) fault
or stuck-at-zero (SAQ) fault. We adopt SAO (SA1) fault rate as 1.75% (9.04%) based
on the published data [22].

Experimental Method

We use the classification accuracy as the measurement metric for our proposed
design [22]. The original accuracy (baseline, without considering device errors) of
the accelerators implemented with the four selected neural network models under
corresponding datasets, are reported in Table 3.1, serving as the upper bound of our
fault-tolerant design. To characterize the lower bound of the accuracy, selected error
models (both programming errors and SAFs) are first applied to the weights across
all different layers in selected neural network models. We then further apply our

proposed fault-tolerant architecture to each weight-distorted neural network model
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and measure its average accuracy. Monte-Carlo simulations, which perform 1000
times of testing for each combination of neural network model and error model,
are conducted to calculate the average accuracy. Particularly, we set the number of
collaborative logistic classifiers as { = 7 (I = 500) for the 10-class Mnist and Cifar-10

datasets (1000-class Imagenet dataset) in our evaluation.

3.3.2 Evaluation Results
Reliability

We first evaluate the classification accuracy of simulated memristive accelerators
with error injection before and after applying our proposed methodology. Table 3.2
compares the classification accuracy of the four benchmarks across different levels
of resistance variations (o) with SAFs. Two different baselines, including original
DNN models and our solutions (ours), are compared. With the increased resistance
variation o (i.e., stronger errors), the four original baselines suffer from severer accu-
racy degradation. In contrast, our method can always provide significant accuracy
improvement in all cases. For example, the highest accuracy gap, i.e. ~ 50%,
~ 50%, ~ 30% and ~ 30% for MLP-Mnist, LeNet-Cifar10, Alexnet-Imagenet and
Squeezenet-Imagenet, can be well maintained even for the largest variation o = 1.5.
Moreover, the accuracy degradation (61% — 14%) on LeNet-Cifar10 can be reduced
to merely < 20% after applying our solution, translating into ~ 40% accuracy im-
provement. A similar trend can also be found on more complex Alexnet-Imagenet
(accuracy is improved by ~ 30%). This is because our solution greatly unleashes the
error correction potential for complex neural networks (like CNNs), which usually
have much more parameters and better error-resilience capability. Moreover, the

decision confusion caused by weights with bi-directional SAFs (LRS to HRS or HRS
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to LRS) can be better alleviated by the optimized ECOC coding scheme. These
results demonstrate that the proposed methodology can efficiently address the re-
liability issue of emerging accelerators in a scalable way, regardless of DNN model,

dataset, and hardware error type.

Overhead

Table 3.3 further summarizes the additional overhead incurred by our solution. For
a comparison purpose, the overhead of the original design is also reported. Since
our proposed methodology only requires to replace the original softmax classifiers
with collaborative ECOC classifiers at the output layer, we evaluate the storage
overhead of the output layer, as well as the processing efficiency. Compared with
the original baselines on MLP (Alexnet), we can observe that the storage cost is
decreased by 30% (48%) with our solution. In particular, the required LUT in our
solution introduces negligible overhead comparing with parameter storage overhead
of a DNN model. Moreover, the storage requirement of weights in the last layer can
be significantly reduced due to the reduced number of classifiers (i.e., 7 in MLP and
100 in Alexnet) in our design. The reduced computation requirement of proposed
collaborative ECOC classifiers can further improve the processing efficiency, i.e.,

~1.2x (~1.7x) on MLP (Alexnet).

Integration with Existing Solutions

For larger resistance variations (o > 1.2), our design still gradually becomes less
effective. This is consistent with previous works [22, 37|, since the fault-tolerance
capability can be eventually compromised by strong variations. However, as an
orthogonal solution that well leverages the algorithmic fault-tolerance of neural net-

work classifier, our design can be naturally integrated with existing solutions such as
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Figure 3.5: Working with bipartite-matching [22] on MLP-Mnist.

bipartite-matching [22], thus to further improve the robustness. Previous work [22]
also shows that combining bipartite-matching and redundancy rows together can
better handle programming errors and SAFs on memristive neural network acceler-
ators. Here we integrate our technique into bipartite-matching, to investigate how
much redundancy rows we can save for the same accuracy.

Fig. 3.5 shows the combined effectiveness of our design and bipartite-matching
(named as “ours”) on top of bipartite-matching only, against SAFs together with
selected resistance variations (i.e., 0 = 0.5, 1, 1.5) on a variety of designs with differ-
ent number of redundant rows. The MLP-Minst design is selected. For each selected
design, we can always further boost the accuracy, with more significant improvement
on designs with fewer number of redundancy rows. For example, Our combined de-
sign improves the accuracy by 15%, 16% and 13% with o = 0.5, 1, 1.5, respectively,
for designs with 20 redundant rows, when compared with bipartite-matching. To
show the improvement more clearly, we highlight the best accuracy at each o of-
fered by bipartite-matching with 100 redundant rows, i.e., 99% with o = 0.5 (blue

line), 89% with ¢ = 1 (red line) and 80% with ¢ = 1.5 (green line). With our
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Figure 3.6: Comparison between ECOC and various CLC designs.

combined design, we save more than 50% of redundant rows, i.e., 50, 40 and 50
for o = 0.5, 1, 1.5, respectively, in order to achieve the same high accuracy. These

results further indicate the improved effectiveness and scalability of our design.

Flexibility

Since the collaborative logistic classifier incorporates variable-length coding scheme,
Fig. 3.6 further evaluates the flexibility by comparing the accuracy of different de-
sign variants with the original ECOC design. The CLC-20 (CLC-100, CLC-500)
design consists of 20 (100, 500) collaborative logistic classifiers to classify the 1000
classes in Imagenet dataset, while the ECOC directly uses Hamming code (16 binary
classifiers) for classification.

As shown in Fig. 3.6, the ECOC is completely ineffective against the SAFs and
resistance variation. In fact, the accuracy of ECOC on Alexnet is even worse than
the modern softmax classifier with errors, due to the limited classification capability

under significantly reduced number of classifiers (i.e., 16 in ECOC v.s. 1000 in soft-
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max). In contrast, our CLC-20 significantly surpasses the ECOC, i.c., increasing the
accuracy by 15%, even with only 20 collaborative logistic classifiers. By increasing
the number of collaborative logistic classifiers, our design continues improving the
classification accuracy (i.e. from CLC-20 to CLC-100) because the increased coding
space can alleviate the conflict of coding for different classes. However, the error
correction capability can still be saturated when reaching a sufficient number of

classifiers, e.g. CLC-500 almost maintains the same level of accuracy as CLC-100.

3.4 Summary

Deep neural network (DNN) accelerators built upon emerging technologies, such as
memristor, are gaining increasing research attention because of the impressive com-
puting efficiency brought by processing-in-memory. One critical challenge faced by
these promising accelerators is their poor reliability: the weight, which is stored as
the memristance value of each device, suffers large uncertainty incurred by unique
device physical limitations, translating into prominent testing accuracy degrada-
tion. Non-trivial retraining, weight remapping or redundant cell fixing, are popular
approaches to address this issue. However, these solutions have limited scalabil-
ity since they are more like tedious patch adding or bug fixing after identifying
each accelerator-dependent defect map. In this work, we discuss the challenge and
requirement of the fault-tolerance in these new accelerators. Then we show how
to address this problem through a scalable algorithm-hardware co-design method,
with a focus on unleashing the algorithmic error-resilience of DNN classifiers, so as

to eliminate any expensive defect-map-specific calibration or training-from-scratch.

28



CHAPTER 4
MAL-DNN: MALICIOUS DNN-POWERED STEGOMALWARE

4.1 Preliminary

4.1.1 DNN Compression and Fine-tuning

DNNSs usually employ different optimization techniques to lower the storage foot-
print, computation requirement and training cost. For example, deep compression
techniques [50] can significantly compress the DNN model, by reducing the parame-
ter precision or pruning network topology, thus achieving low-power, high-speed on-
device computing without DNN accuracy degradation. Besides, fine-tuning [127] is
another type of optimization techniques usually applied to pre-trained DNN models.
Such a technique will only update the value of few DNN model parameters (usually
in the last layer) to improve the decision making without expensive training. These
techniques are now widely adopted to delivery the embedded DNN services [44, 8].
However, they will potentially compromise the integrity of injected payload injected
in model parameters. In MAL-DNN, we take these concerns into consideration and

develop the practical and reliable payload injection techniques.

4.1.2 Commercialized DNN and Security Concern

Developing a “Plug & Play” DNN model for a specific machine learning (ML) service
is costly due to the long training time (i.e. months or more) over expensive hardware
platforms with large-scale GPU-clusters and complex IP design, optimization and
verification. Therefore, DNN models are usually first pre-trained and validated by

service providers (ML experts), and then consumed by end users (non-ML experts).
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The open machine learning marketplace [58] allows end users to quickly download,
deploy and execute the pre-trained DNN models. Such an emerging business model
has been accepted and discussed in many prior work [47, 82, 81, 110]. However,
the DNN models are programs, the behavior of DNN can be abused on
modified model [117]. Moreover, the machine learning marketplace is still
in its infancy and lacks security guarantee. Anonymous DNN models can

be uploaded, distributed and eventually consumed by end users.

Adversary Example and Poisoning Attack

Adversary example and poisoning attack are two types of well studied security prob-
lems in DNN. We briefly introduce them as they are less related to this work. Ad-
versarial example [42, 97, 18] is created by adding a well-crafted small perturbation
to benign input. It can easily mislead the classification result of a well-trained DNN.
Poisoning attack [23, 60] can change the behavior of DNN with poisoned training
data, thus to mislead the classification results. Their mitigation techniques are

studied in many existing works [73, 102, 112, 119, 1].

Emerging DNN Threats

DNN backdoor is a specific classification logic in DNN and will only respond to a spe-
cific trigger pattern added to the input. Gu et al. [47] show the adversary can train
the DNN backdoor with poisoned training data with applied arbitrary trigger pat-
tern. The created backdoor in DNN will not impact the testing accuracy on benign
inputs. Liu et al. [81] propose the DNN Trojaning attack (backdoor) by choosing a
specific trigger pattern based on the estimation of confidence in DNN classification,
thus to make the created backdoor more sensitive to the trigger. Such a backdoor

can be created with few training data while achieving a high attack success rate.

60



DNN backdoor attacks mainly aim to achieve the targeted classification on a certain
class with the trigger pattern. Our work shares several similar assumptions as DNN
backdoor, and also adopts the concept of trigger. In a recent work [110], authors
show that the malicious DNN training algorithm can stealthily memorize user se-
crets such as private training data, during the training phase. Different techniques
such as LSB encoding, correlated value encoding and sign encoding are explored to
encode the user secret into DNN model parameters, in both white-box and black-box

scenarios.

4.1.3 Stegomalware and Steganalysis

Stegomalware [113, 86] is a type of malware that uses steganography [21] to hinder
malicious intention. In stegomalware, the malicious code is usually concealed in
covert file such as text and image, thus to circumvent detection. LSB replacement
in image is the most popular approach used for creating the stegomalware [86], which
can be conducted in both spatial (i.e., raw data) and frequency (DCT in JPEG)
domain. A daemon process is running on background to extract and execute the
malicious code dynamically based on the trigger condition. Steganalysis [72] is the
art of deterring covert information against steganography, which can be used to
detect the stegomalware. For example, Primary Sets [31], Sample Pairs [32], Chi
Square [123], RS Analysis [40] are several classic steganalysis approaches to detect
the image based LSB steganography in spatial domain. Primary Sets [31] and Chi
Square [123] detect the statistical identity of neighboring pixels, and pairs of values
(PoV) exchanged during LSB embedding. Sample pairs [32] and RS analysis [40]
can further detect and trace randomly scattered LSB and bit flipping. Fusion is a

more powerful ensemble technique based on multiple spatial classifiers.
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4.2 Threat Model

Our threat model is partially similar to and extended from the related works includ-
ing traditional DNN threats [47, 81, 110] and stegomalware [113].

Table 4.1 compares the assumption, approach and objective of our work with
related works. Our assumption is similar to the DNN backdoor [47, 81] and DNN
malicious training [110], while our objective is similar to the traditional stegomal-
ware [113]. In particular, our approach is extended from DNN malicious training
and stegomalware; however, with a different trigger design compared with DNN
backdoor. Our comprehensive threat model is defined as follows:

End user. End user is the non-ML expert who consumes DNN services. It
is common for an non-ML expert to consume DNN services from the third-party
without understanding the end-to-end DNN process on data, training, and testing.
Instead, end user mainly cares about service quality (i.e., DNN testing accuracy).
We assume that end user will deploy the DNN service in a private secured
computing environment which is isolated and secured with firewall, anti-
malware, and steganalysis defense techniques, etc.

Adversary. We assume the adversary is an anonymous DNN service provider
who creates the malicious DNN (i.c., self-contained stegomalware) which will be dis-
guised as normal DNN service and deployed on end user’s side. The adversary is
unable to directly access, modify or control the end user’s secured com-
puting environment via traditional cyber-channel (i.e., Internet), except
for the physical-channels (i.e., sensors, cameras, etc.) normally used for
retrieving DNN service input from physical world.

Adversary’s goal. The adversary’s goal is to run the malicious payload code

in MAL-DNN on user’s side. In particular, based on our assumption that the MAL-

63



DNN will be eventually deployed in user’s isolated environment, adversary should
make MAL-DNN a self-contained malicious DNN model. To achieve this goal, ad-
versary should consider following objectives step by step: 1) maintain the DNN
service quality on created MAL-DNN to avoid the service rejection, therefore to dis-
guise it as a normal DNN service; 2) ensure the MAL-DNN can circumvent existing
countermeasures and survive in end user’s secured environment; 3) trigger and run
the malicious payload along with a normal DNN service through a physical-channel
while maintaining the minimized footprint.

Adversary’s approach. To create the self-contained malicious DNN model,
adversary can only modify the DNN model (includes model parameter and testing
algorithm) at the service creation phase and cannot touch user’s physical devices
that will execute this DNN service. Once the malicious DNN model is accepted and
deployed by end user, the adversary cannot communicate directly with the testing

environment. Adversary’s approach consists of embedding and triggering.

e Embedding. To embed the payload code into DNN model parameters, adversary
can leverage the naive LSB manipulation and proposed training or mapping based
techniques which maintain DNN service quality and circumvent existing defense.
DNN is inexplicable and consists of a large number of parameters. It is very
difficult to identify the exact meaning of these parameters. By leveraging its
structural complexity [68, 114] and error-resilience property [50, 71], such a self-

contained stegomalware can be more evasive.

e Triggering. The idea behind the triggering on embedded payload code is to moni-
tor the DNN output logits by modifying DNN testing function. As we summarized
in Table 4.1, the monitoring based trigger and modified DNN training algorithm
are the two common approaches adopted in traditional stegomalware [113] and

emerging DNN threat [110]. In our proof of concept design, we combine these
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approaches to create the trigger and execute the payload in DNN output layer by

monitoring the DNN logits during the testing process.

4.3 Create the MAL-DNN

In this section, we first give an overview of our proof of concept design. Then we

present the design details of proposed payload injection and trigger techniques.

4.3.1 Overview of Proof-of-Concept Attack

As shown in Fig. 4.2, a DNN can be turned into a self-contained stegomalware—

MAL-DNN through the following steps:

. Prepare DNN model. Adversary can either train the DNN model from scratch
or obtain DNN model from the machine learning marketplace [58] or DNN model

700 [16];

2. Prepare malicious payload. Adversary can either directly use many existing
payloads for different purposes (e.g., forkbomb, keylogger, etc.), or create new

malicious payloads as needed. This part is not the focus of this work.

3. Inject payload. The malicious payload will be injected into DNN model through
our proposed payload injection techniques, without impacting service quality (i.e.
similar to the “untouched” model), including highly compressed DNN models

tailored for ever-increasing resource-limited embedded, IoT and mobile devices.

4. Create trigger. The trigger is created to control the execution of embedded
payload under a certain condition. In MAL-DNN, we use real-world objects as

the trigger event and propose DNN logits based trigger designs to handle the
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Table 4.3: Redundancy in uncompressed/compressed DNNs.
Uncompressed DNN Models
AlexNet [66] GoogLeNet [115] VGG-16 [108] ResNet-50 [51]

# Layers 8 22 16 50
# Parameters 61M ™ 138M 25M
Model Size 227MB 27TMB 515MB 96MB
# Redundant Bits 21 20 19 16
Redundant Space 152MB 16MB 312MB 47MB

Hardware-favorable Compressed DNIN Models
Comp.AlexNet [50] Comp.VGG-16 [50] Mobilenet [53] Squeezenet [57]

# Layers 8 16 28 18
# Parameters 6.97TM 11.26M 4.2M 1.24M
Model Size 6.63MB 10.78MB 4.2MB 4.6MB

potential input variations. Our proof of concept design will modify the DNN

algorithm to execute the payload by monitoring the DNN logits.

4.3.2 DNN Favorable Payload Injection

In MAL-DNN, different types of payload injection techniques are proposed to inject
the malicious payload into DNN model parameters. Proposed payload injection
techniques are required to cither secure the DNN testing accuracy or protect the
payload integrity, while maintaining a good scalability for handling different types
of DNN models.

Investigate Model Capacity and Naive LSB Method

To find the appropriate solutions, we investigated different types of mainstream
DNN models, including both uncompressed and compressed DNN models, by mea-
suring their model size and redundancy (i.e., the maximum capacity for payload
injection without accuracy loss). As shown in TABLE 4.3, all the uncompressed
DNN models can provide a considerable scale of redundancy (>10 MB) to accom-
modate most realistic malicious codes [92] (~100 KB), without impairing the DNN

testing accuracy. With sufficient redundancy in these DNN models, a simple solu-
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tion “LSB substitution” can be applied to handle the payload injection by replacing
the least significant bits (LSB) of DNN model parameters with the payload binary.
However, such a naive solution is incompatible with the compressed DNN model.
As shown in TABLE 4.3, the size of compressed DNN models has been aggressively
shrunk by reducing both the amount and data precision of model parameters. For
example, the size of MobileNet [53] is only 4MB with 8-bit precision on 4M parame-
ters. These compressed DNN models are unable to maintain the accuracy even with

a slight modification on parameters.

Proposed Payload Injection Methods

To overcome this issue, we propose several enhanced payload injection techniques
for compressed DNN models, so as to improve the efficiency of payload injection and
protect the integrity of injected payload. Fig. 4.4 shows the basic idea of proposed
“resilience training”, “value-mapping” and “sign-mapping” techniques.

Resilience training. DNN model is intrinsically error resilient and can self-
repair from the internal errors. For example, removing a bundle of neurons from the
DNN topology can cause significant accuracy degradation. However, parameters on
the remaining neurons can be rebuilt to reach the original accuracy after re-training.
Based on this intuition, we propose the resilience training technique.

As shown in Fig. 4.4(a), resilience training can be conducted with following
detailed steps: i) Calculate the required number of DNN parameters, i.e. n = [F/q],
based on the size of payload P and the quantized bit width ¢ of parameters; ii)
Generate the “index permutation” randomly in order to select the n parameters;
iii) Assign the value of payload segment to each selected parameter by following the
sequence in “index permutation” (i.e., {Bj, Ag,-- } in Fig. 4.4); iv) Train the DNN

model while fixing the values of those selected parameters.
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Resilience training will intentionally introduce internal errors in model param-
eters by directly replacing the entire bits on selected parameters with the payload
segments. Such “broken neurons” (i.e., replaced parameters) will never be updated
during the re-training. After resilience training, the accuracy of DNN model is
expected to be recovered, thus successfully concealing the injected payload while
maintaining the DNN service quality. In particular, an “index permutation” will be
randomly generated to indicate the selected parameters for payload injection. To
restore the payload, we combine the binary segment of each parameter sequentially
in the “index permutation”.

Searching and mapping. “Value-mapping” and “Sign-mapping” inject the
payload into compressed models through dedicated “searching and mapping” rules,
and improve the efficiency of payload injection by eliminating the unavoidable re-
training process in “resilience training”. Fig. 4.4(b) and (c) show the basic idea of
value-mapping and sign-mapping.

In value-mapping, we first split the payload binary based on the fractional pre-
cision of quantized DNN model parameters. For example, “Fixed<8,6>" indicates
a 8-bit fixed-point number with 6 fractional bits on each DNN model parameter.
Therefore the payload binary will be divided into many 6-bit segments. Then, for
each payload segment, we conduct an exhaustive searching on model parameters to
match (or replace) the same (or nearest) value of fractional bits of parameters. As
the example shown in Fig. 4.4(b), given payload segment “010000” (or “001011"),
parameter wis (or wey) is matched since the value of fractional bits “010000” (or
“001010”) is same as (or nearest to) the payload segment. Finally, we map the
payload segment(s) to matched parameter(s) by replacing the fractional bits of pa-
rameter(s) with payload segment(s). Note that the parameters in well-trained DNN

model are usually scaled between +1 and -1. Therefore, we use the fractional bits in
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value-mapping. The sign-mapping technique adopts a similar “searching and map-
ping” rule, based on the sign bit of model parameters. As shown in Fig. 4.4(c),
sign-mapping will go through the model parameters and match the parameter sign
bit with every single bit in the given payload, thus eventually mapping the payload

to a sign bit(s) sequence on matched parameters.

4.3.3 DNN Logits based Trigger
Why do we use the DNN output logits to create the trigger?

Before we present our trigger design, we first show our investigation and explain the
reason we use the DNN output logits to create the trigger. To design the trigger in
MAL-DNN;, we investigated the existing approach of using DNN input (i.e., image
pattern) as a trigger in DNN backdoor[47, 81]. We find that the DNN input captured
by sensors usually suffer from input variations due to the noises from the physical
world. The DNN input based trigger is not a reliable solution to handle this issue.
In contrast, the DNN output logits in the last layer can provide a more reliable
solution (i.e., logits rank) to handle the input variations. Besides, the DNN input
pattern is usually more complicated than that of the DNN output logits for modern
DNN services. Let us take the widely adopted Imagenet [28] classification as an
example, the data dimension of DNN input (i.e., 227-pix x 227-pix x 3-color) is 154 x
larger than that of the DNN output (i.e., 1K output logits). Therefore the logits
based trigger can be more efficient than that of DNN input. Moreover, the final
classification result is naturally calculated by comparing the value of DNN output
logits, which is an essential process housed in the DNN output layer. This can help

to reduce the footprint of logits based trigger.
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Proposed Triggering Methods

In MAL-DNN, we propose several different trigger techniques, including the basic
“logits trigger”, and more reliable “rank trigger” and “fine-tuned rank trigger” to
monitor the trigger event by assessing the DNN logits in output layer.

Logits Trigger. Fig. 4.5(a) shows the basic idea of logits trigger, which can be
explained as a key-lock problem. Given the trigger event 2’ as the key, DNN logits
{logits;,} = {exp(0¥)T2")} will be stored as the lock {rec;} in MAL-DNN. Such a
key-lock pair, i.e., {rec; }'°** = {logits; }*®, will be created by adversary in creation
stage. After the deployment of MAL-DNN;, the present logits {logits; }"® for given
DNN input = will be monitored and compared with the recorded {rec; }'*** as long as
there comes a new input at the DNN execution stage. MAL-DNN can be triggered
once the key-lock pair is perfectly matched as {logits }P"e=*¥ = {rec; }1°*.

Rank Trigger. The rank trigger is extended from the basic logits trigger. Since
the input variations from physical world can significantly reduce the possibility of
the “perfect match” in logits trigger, we further propose the rank-trigger to handle
this issue. Fig. 4.5(b) shows the idea of a rank trigger. Instead of using the logits
value in key-lock pair, rank trigger uses the rank of logits to create the key-lock pair.
As the example in Fig. 4.5(b) shows, given a 3-dimension logits, logits trigger will
store the key-lock pair as {pi, pe,p3} = {0.5,0.2,0.3}. However, due to the input
variations, present logits always give the inconstant value as {0.55,0.13,0.32}, thus
the key-lock pair is always mismatched. To solve this issue, the rank trigger will use
the logits rank, i.e., r = {p1, p3, P2}, as the key-lock pair. Even with input variations,
the present rank of logits can be still matched, thus to successfully trigger MAL-
DNN.

Fine-tuned Rank Trigger. Although rank trigger improves the reliability of

MAL-DNN against input variations from physical world, we find that it is still less
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reliable to handle strong input variations. Therefore, we propose the fine-tuned
rank trigger to further enhance the trigger reliability. Such an enhanced design is
extended from the rank trigger and inspired from the fine-tuning techniques. We
first create a small set of augmented inputs by applying simulated strong variations
on the original specific input. Then, we use these augmented inputs to fine-tune
the DNN parameters in output layer thus to improve the trigger reliability against
strong variations. Instead of minimizing the loss of logits value adopted in traditional
training, we minimize the loss on logits rank. However, assessing such a “rank
based loss” is not practical. To solve this issue, we use a hard coded label A" to
define the selected logits and the expected logits rank for augmented inputs e
In particular, the used elements in hard coded label h are defined as an ranked
arithmetic sequence with sum = 1, and the unused logits are all set to 0. For
example, to train the expected rank {1, -, 3, 2} with 4 logits, we set b = {0.5, 0,

0.17, 0.33}. Accordingly, the loss function can be further translated into:

arg min %ic( Fula), h7) (4.1)
w 1

for fine-tuning the model parameter in DNN output layer, so as to improve the

possibility of matching the expected logits rank.

4.4 MAL-DNN Prototype

We implement a prototype of MAL-DNN for demonstration and evaluation pur-
poses. Table 4.6 shows our prototyping environment. The MAL-DNN is created
on a local server, and is deployed on the isolated Nvidia Jetson TX2 platform to

simulate an end-to-end attack scenario.
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4.4.1 Implementation

Our implementation in such an end-to-end scenario consists of following procedures:
1) We create clear DNN models, including MobileNet [53] (trained with MNIST
dataset [70]) and Alexnet [66] (trained with Imagenet dataset [28]) on a local server;
2) We assemble malicious binary malwares such as fork bomb and downloader [85,
84] as MAL-DNN payload; 3) We embed the combined payload into DNN model
through proposed payload injection techniques, and create the triggers by using
the “chessboard” input (see Fig. 4.5) for demonstration purpose (note that MAL-
DNN allows adversary to use arbitrary input to create the trigger); 4) We create
an obfuscated monitor function along with DNN testing process by modifying the
Softmax function to extract and execute the payload; 5) We transfer and deploy
the modified DNN models (as an end user) to Jetson TX2 platform to demonstrate
MAL-DNN in two different image classification cases, including i) the ideal test
image in the laboratory environment and ii) the camera-captured test
image in physical-world.

Alternative approaches to execute the payload. The MAL-DNN is actu-
ally a program [117], which combines data (DNN parameters) and functions (testing
algorithms). In our proof of concept implementation, we follow the similar ap-
proaches from traditional stegomalware [113] and malicious DNN training [110] to
create the self-contained malicious model by modifying the DNN Softmax function.
Alternatively, adversary can exploit different components in DNN to execute the
payload. Table 4.7 lists some examples of DNN related Common Vulnerabilities
and Exposures (CVEs) on different platforms that can be exploited to abuse the
DNN behaviors. Besides, traditional malware techniques such as code obfuscation

can be also applied to protect the data execution [113, 86]. Since this part is not

76



our focus in MAL-DNN, we only show the possibility of the alternative approaches

and use the modified Softmax function for demonstration purpose.

[test> on testing Set:

ktest> time to test 1 sample = 0.59330892562866msQ0 ==========================>....,.... 1 ETA: 58ms | Step: @ms

IConfusionMatrix:

[l 81 0 1. 1. 0 0 i 1, o 0]  95.294% [class: 1]
[ [} 124 1 1 0 0 0 0 ) 0] 98.413% [class: 2]
[ 1 0 105 1 0 0 1 3 4 1]  90.517% [class: 3]
[ 0 0 3 89 0 12 1 0 2 0] 83.178% [class: 4]
[ 0 1 2 0 94 ] 2 [ 1 10] 85.455% [class: 5]
[ 1 0 0 5 0 70 5 2 3 1]  80.460% [class: 6]
[ 2 0 5 0 1 4 75 0 ] o] 86.207% [class: 7]
[ 0 3 10 4 0 i1 0 76 0 5] 76.768% [class: 8]
[ [ 1 4 3 2 2 1 3 73 0] 82.022% [class: 9]
[ [} 0 1 3 3 0 0 4 2 81]] 86.176% [class: 16]

+ average row correct: 86.448320150375%

+ average rowUcol correct (VOC measurd): 75#P00247797775%

+ global correct: 86.8% . .
lctest> on testing Set: 0 Trojan has been activated

[ 7019980 =========: Ceiiiesssisiiessieaaas ] ETAD 432ms | Step: 1ms

SIN2 Tue Oct 17 12:38:20 2017> invoke extracting ...
SIN2 Tue Oct 17 12:38:23 2017> done!

SIN2 Tue Oct 17 12:38:23 2017> payloads executing ...
SIN2 Tue Oct 17 12:38:23 2017> 1) Trojan.Data Destruc .o
dataset.lua logs mnist.t7 NN_Log README.md sin2 .
SIN2 Tue Oct 17 12:38:23 2017> Data has been removed!
dataset.lua 1logs mnist.t7 README.md sin2 sin2.lua
SIN2 Tue Oct 17 12:38:23 2017> 2) Downloader ...
--2017-10-17 12:38:23-- https:// L

Resolving sme m  mm " m ==

IConnecting to

HTTP request sent, awaiting respgng®..

lLength: 66 [text/plain] Malware Downloader
[Saving to: ‘STDOUT’

F===== executing the downloaded toy, bye ======
017-10-17 12:38:23 (23.2 MB/s) - written to stdout [66/66]

SIN2 Tue Oct 17 12:38:23 217> -

SIN? Tue Oct 17 12:38:23 21%) R .
SIN2 Tue Oct 17 12:38:23 dun@ Denial-of-Service
sh: 1: sh: 1: Cannot fork

sh: 1: Cannot fork

sh: 1: Cannot fork

sh: 1: Cannot fork
[Cannot fork

h: 1: sh: 1: Cannot fork

€

Figure 4.1: MAL-DNN prototype on Nvidia Jetson TX2 platform.

4.4.2 Demonstration
CASE 1: Laboratory Configuration

Fig. 4.1 demonstrates the success of MAL-DNN using the ideal test data under
the laboratory configuration. In particular, we adopt the simple LSB substitution
and logits trigger in this case. At checkpoint-0, the MAL-DNN has been triggered
to extract and execute the payload sequentially. First, user data is deleted on file
system. Then, a piece of remote code is executed locally by the “downloader”.
Eventually, the “forkbomb” payload is invoked to halt the system, resulting in the

DoS attack.

77



Augmented variations.

Original Nonreflective Similarity Similarity

.3239

Projective Piecewise Linear

U

Sinusoid Barrel Pin Cushion

B
[
i

Figure 4.2: Physical-world configuration with augmented input variations.

CASE 2: Physical-world Configuration

As shown as Fig. 4.2, the object (i.e. a printed “chessboard” image) from physical-
world is captured by on-board camera in this case to test MAL-DNN with rank
trigger and fine-tuned rank trigger under different input variations, i.e., different
camera angles, image rotations, distances and brightness. Meanwhile, a set of aug-
mented “chessboard” images with strong simulated variations have been tested as
well. In this demonstration, we observe that the logits trigger is completely invalid
for the real-world inputs because the logits values keep changing when the camera
captured images are subject to the noises from the physical world. In contrast,
the rank trigger is more reliable for the real-world input as the logits rank can be
still maintained under small input variations. However, as the variation strength
increases, rank trigger becomes less effective than fine-tuned rank trigger due to

significantly biased logits rank.
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4.5 FEvaluation

In this section, we evaluate MAL-DNN from different aspects, including evasive-
ness, efficiency and robustness of payload injection techniques, as well as the
reliability of trigger techniques. In our discussion, we try to answer follow-
ing questions with our evaluation results:

- Why do we separate the payload embedding from ils execution in MAL-DNN?

- How does MAL-DNN compare with traditional malware and stegomalware?

- How to select an appropriate payload injection technique?

- Why is rank trigger more reliable under input variations?

Table 4.8: Additional DNN models used in evaluation.

DNN Size #Para. DNN Size #Para.
Squeezenet [57] 4.6MB 1.24M  Googlenet [115] 27MB ™
Resnet18 [51] 44MB 11.7M  Densenet201 [56] 77TMB 20M
Inceptionv3 [116] 89MB 23.9M  Resnet50 [51] 96MB 25.6M
Resnet101 [51] 167TMB 44.6M  Alexnet [66] 227MB 61M
Vggl6 [108] 515MB 138M  Vggl9 [108] 535MB 144M

Table 4.9: Selected malware samples from Malware DB [92].

Malware Size Malware Size
Stuxnet 0.02MB ZeusVM 0.05MB
Destover 0.08MB Asprox 0.09MB
Bladabindi 0.10MB EquationDrug 0.36MB
ZeusVM-decypted 0.40MB  Kovter 0.41MB
Cerber 0.59MB  Ardamax 0.77MB
NSIS 1.70MB  Kelihos 1.88MB
Mamba 2.30MB  WannaCry 3.35MB
Vikinghorde 7.08MB Artemis 12.75MB
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4.5.1 Experimental Setup

We use the our prototype as our evaluation platform. For a comprehensive evalua-
tion of MAL-DNN, 13 state-of-the-art DNN models and 16 malware samples from
Malware DB [92] with different sizes are selected. The details are listed in Table 4.3,
Table 4.8 and Table 4.9. We embed these binary malware samples into DNN models
through four different payload injection techniques to generate a set of MAL-DNN
samples (836 in total) under appropriate size constraint (i.e., embedded malware is

smaller than DNN model).

4.5.2 FEvasiveness
Metrics and Methods

The evaluation on evasiveness indicates how can MAL-DNN be successfully deployed
and survived in end user’s secured environment, which can be measured from three

different aspects:

e Testing accuracy is given first priority by end users. MAL-DNN should main-
tain a level of accuracy similar to clean model to prevent service rejection at the

beginning. A higher testing accuracy indicates better evasiveness.

¢ Anti-malware detection rate shows to what extent the embedded payload can
be detected by anti-malware. This is a naive evasiveness measurement directly re-
ported by commercial anti-malware engines. A lower anti-malware detection

rate indicates better evasiveness.

e Steganalysis detection rate measures the probability of detecting concealed
payload in MAL-DNN samples by using steganalysis methods, given that the

payload injection to DNN model can be treated as a specific spatial steganography,
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which is similar to traditional stegomalware. A lower steganalysis detection

rate indicates better evasiveness.

To measure the testing accuracy, we evaluate created MAL-DNN samples on
Imagenet dataset, and compare the testing accuracy with the original accuracy of
clear DNN models. To measure the anti-malware detection rate, we test selected
MAL-DNN samples and two baselines—vanilla malware and stegomalware through
37 leading anti-malware engines on Metadefender [88] such as McAfee, Avira, etc.,
and compare the reported detection rate. The vanilla malware is directly selected
from Malware DB [92] while stegomalware is created through LSB OpenStego [121]
by embedding malwares into grayscale cover images. To measure the steganalysis
detection rate, we test selected MAL-DNN samples and stegomalware with five clas-
sic steganalysis methods (i.e., Primary Sets [31], Sample Pairs [32], Chi Square [123],
RS Analysis [40] and Fusion [63]) in StegExpose [10] tool. Primary Sets and Chi
Square detect the statistical identity of neighboring pixels and pairs of values (PoV)
exchanged during LSB embedding. Sample pairs and RS analysis can further detect
and trace randomly scattered LSB and bit flipping. Fusion is a more powerful ensem-
ble technique based on multiple spatial classifiers. To make StegExpose compatible
with DNN model, we slightly modify the data acquisition interface by reshaping the
data structure of DNN model as the grayscale image. Benign samples (i.e., clear
images and DNN models) are added for steganalysis classifier to match the number

(1:1) of created stegomalware and MAL-DNN samples.

Testing Accuracy

Table 4.10 and Table 4.11 report the testing accuracy of different DNN models
before and after embedding various malwares using techniques like LSB substitu-

tion/resilience training, and value/sign mapping, respectively. The dash-line indi-
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cates current technique is incapable of embedding malware into DNN model due to
the size constraint. The bold numbers represent significant accuracy degradation
compared with the original accuracy. Note that the accuracy reduction after payload
injection can be very marginal for large DNN models such as uncompressed Vgg19,
Vggl6, Alexnet and Resnet10 due to the sufficient redundant space, therefore we
do not show such results. Meanwhile, we can observe that sometimes the modified
DNN models can achieve even better testing accuracy than that of original model,
this is because the evaluation is subject to < +1% errors due to the randomness in
DNN testing, which is in an acceptable margin.

As Table 4.10 shows, though naive LSB substitution can maintain the good
testing accuracy on medium DNNs, this fact does not hold on small DNNs. For ex-
ample, it causes significant accuracy degradation (i.e., sharply drop to ~ 0.1%) on
highly compressed DNN models In contrast, resilience training can relatively better
support payload injection on small DNNs. For small malwares like EquationDrug,
ZeusVM and Cerber, it can keep the testing accuracy as the same level of original
one even on the smallest Mobilenet (4.2MB) and Squeezenet (4.6MB). However, the
accuracy on Mobilenet is significantly dropped from 66.7% to 0.7% as the malware
size increases from 0.59MB (Cerber) to 3.35MB (WannaCry). This is because the
embedding rate (defined as malware/model size) exceeds the error-resilient capabil-
ity of the DNN model. We observe that the upper bound of embedding rate for
resilience training without accuracy degradation is ~ 15%.

However, such an issue has been alleviated on the “searching and mapping”
based technique. As Table 4.11 shows, value-mapping achieves higher testing accu-
racy than that of resilience training in most cases. For example, for the large sample
Mamba (2.3MB) within Mobilenet (4.2MB), the testing accuracy of resilience train-

ing is only 6.1% while that of value-mapping can be still as high as ~ 50%. However,
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the “searching and mapping” based technique sometimes suffers from its own limi-
tation. For those highly compressed DNN models like “Comp.Alexnet”, since model
parameters are extremely quantized (i.e., data precision reduction), value-mapping
can be less effective when mapping the binary payload to appropriate weight pa-
rameters. The similar trend can be also found in sign-mapping. The embedding
rate is further reduced due to the limited number of sign bits in DNN model (i.e.,
one per each parameter). However, overall we observe that sign-mapping can always
maintain the original testing accuracy for all applicable cases, indicating the best

option to secure the evasiveness of MAL-DNN when possible.

Table 4.12: Detection rate reported on Metadefender [88].

Baselines Selected Malware Samples

Asprox Bladabindi Destover Kovter Stuxnet ZeusVM
Vanilla-malware 72.97% 75.68% 83.78%  62.16% 89.19% 91.89%
Stegomalware 8.11% 10.81% 13.51%  5.41% 0.00% 8.11%
*LSB substitution 0.00% 2.70% 2.70% 0.00% 0.00% 0.00%
*Sign-mapping 0.00% 0.00% 0.00%  0.00% 0.00% 0.00%

Anti-malware Detection

Table 4.12 compares the anti-malware detection rate among four designs. For a fair
comparison, we evaluate the LSB substitution and sign-mapping on highly com-
pressed Squeezenet (1.24MP), to ensure that the embedding rate or bit per pixel
(bpp) of stegomalware (1600x800=1.28MP) and the bit per parameter of created
MAL-DNN sample are maintained at the same level (bppa1).

As Table 4.12 shows, all vanilla-malware samples can be successfully detected
by Metadefender with high detection rates (i.e., 62.16%~91.89%). Compared with
vanilla-malware, the anti-malware detection rate of stegomalware can be reduced
by at least six times (i.e., from 83.78% to 13.51% on Destover). This means that a

few heuristic anti-malware engines can still detect the stegomalware, though with a
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Figure 4.3: Receiver Operating Characteristic (ROC) of Steganalysis detection.

much lower rate. On the other hand, LSB substitution based MAL-DNN samples
are more evasive. Ounly 2 (i.e., 2.7% on Bladabindi and Destover) out of 185 test
cases can be detected. Moreover, the more sophisticated sign-mapping achieves the

least detection rate for all 37 anti-malware engines.
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Steganalysis Detection

Fig. 4.3 further compares the detection rates of different designs when adopting var-
ious steganalysis methods. In particular, we test two variants of LLSB substitution—
sequential and random, which embed payload binary into the LSB of sequentially
and randomly selected DNN parameters, respectively. The area under curve (AUC)
of receiver operating characteristic (ROC) represents the detection rate. A smaller
AUC indicates better evasiveness.

As Fig. 4.3 shows, most steganalysis methods can effectively detect image-based
stegomalware, e.g. a large AUC can be observed from the idea ROC towards (0,1).
Due to the similarity to stegomalware, the simple LSB substitution based MAL-
DNN, can be also detected by steganalysis. However, all these methods show de-
graded effectiveness (i.e., reduced AUC) comparing with image-based stegomalware,
as the structure of DNN model is much more complex than that of image. As ex-
pected, Chi Square and Primary Sets suffer from significant detection performance
degradation (i.e., close to random guess) for the advanced random LSB substitution
in MAL-DNN. However, all the steganalysis methods, including more powerful RS
Analysis and Fusion, are incapable of detecting three advanced MAL-DNN designs
based on resilience training, value-mapping and sign-mapping, with almost close to

random guess performance as shown in the right column of Fig. 4.3.

Discussion: Why do we separate the payload embedding (in model pa-
rameters) from its execution in MAL-DNN? How does MAL-DNN com-

pare with traditional malware and stegomalware?

We first directly embed the payload into the execution as a traditional malware,
e.g., hard-code payload in Softmax function. Our results in anti-malware detec-

tion clearly show that this naive design can be easily detected by existing defense
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engines. On the other hand, embedding payload into DNN parameters greatly chal-
lenges existing defenses as confirmed by our results. Since the state-of-the-art DNN
models offer adequate space for payload embedding, the payload, which is usually
much smaller than DNN models, can be randomly distributed among millions to
billions of completely implicit DNN parameters with marginal accuracy loss. This
is also applicable to compressed DNN models because of our proposed embedding
techniques. Compared with existing steganography using a simple and small im-
age, text, etc. (stegomalware)., embedding payload into DNN parameters with our
schemes delivers the next level of obfuscation. Detecting such a small-sized hidden
payload in a large and complex DNN is akin to finding a needle in a haystack. As
such, existing anti-malware detection and steganalysis methods, cannot work very
well for MAL-DNN, showing that MAL-DNN can be much more evasive than both

traditional malware and stegomalware.

4.5.3 Efficiency
Metrics and Methods

The efficiency reflects how much efforts are needed to create MAL-DNN. To char-
acterize the efficiency, testing accuracy should be also taken into account besides
the time cost, especially for compressed DNN models, since it indicates whether the
crafted MAL-DNN can be accepted by end users. Therefore, the efficiency is defined
as:

T'i'n"ec on
E(T, p) = nicction (4.2)

Paccuracy

Where T and P denote payload embedding time (ms) and testing accuracy (%) af-
ter payload injection, respectively. A smaller value of F(T, P) indicates better

efficiency. Without loss of generality, we use the popular AlexNet [66] and its com-
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Figure 4.4: Efficiency of payload injection in MAL-DNN.

50] to compare the efficiency among different injection techniques.

pressed version |

resilience training is conducted until the DNN model is converged

In particular,

g batches). For a fair com-

the loss is < 5% between two consecutive trainin

(i.e.,

parison, we test them all on the same CPU. Note resilience training can be further

accelerated by GPU.

Evaluation Results

As shown in Fig. 4.4(a), since the uncompressed Alexnet maintains sufficient model

all proposed techniques barely suffer from accuracy degradation. There-

redundancy,

this result can be also directly interpreted as the time cost of proposed tech-

fore,
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niques. As expected, LSB substitution is the most efficient technique due to its
simple bit-wise operation, e.g. only takes a few seconds to generate any MAL-DNN
sample. Sign-mapping can provide the similar efficiency, since it only assesses the
sign bit of each parameter. Compared with LSB and sign-mapping, value mapping
can be less efficient due to the value comparison between payload segments and
parameters, though it still demonstrates the same order of magnitude of E(T, P).
Among all these techniques, resilience training gives the lowest efficiency, e.g. more
than one order of magnitude higher than others, due to the re-training overhead.
However, this is still much less than training from scratch (10°ms v.s. hours/days).

Unlike that of uncompressed Alexnet, LSB substitution almost achieves the worst
efficiency among all techniques in compressed version due to more prominent accu-
racy reduction in compressed Alexnet, as Fig. 4.4(b) shows. On the other hand, the
efficiency of resilience training in compressed Alexnet outperforms that of uncom-
pressed one due to much reduced model size but comparable accuracy. Moreover,
value-mapping and sign-mapping become the two most efficient techniques on com-

pressed version due to the similar reason.

4.5.4 Robustness

The robustness indicates the integrity of the injected payload that is essential to
execute the payload. However, the lightweight modifications such as parameter
fine-tuning (a common approach in transfer learning) can compromise the integrity

of payload. Therefore, we further evaluate the robustness of MAL-DNN.
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Table 4.13: Payload bit-flipping rate after fine-tuning.
Kovter on Alexnet
LSB Sub. Resilience Tr. Value-map. Sign-map.

Output-layer 8.26% 0.0% 0.0% 0.0%
Fully-connects 43.8% 36.4% 8.6% 0.0%
Full-net 50.2% 48.1% 35.5% 0.0%

Kovter on Compressed Alexnet
LSB Sub. Resilience Tr. Value-map. Sign-map.

Output-layer 6.72% 0.0% 0.0% 0.0%
Fully-connects 26.8% 18.2% 2.3% 0.0%
Full-net 37.1% 23.1% 16.7% 0.0%

Metrics and Methods

We target the integrity issue and apply fine-tuning on MAL-DNN samples created
with payload Kovter. The bit-flipping rate of MAL-DNN sample after fine-tuning is
selected as metric to evaluate the robustness. A less bit-flipping rate indicates
the better robustness. In practice, fine-tuning is usually only applied on the
DNN output layer to optimize the decision making with the least effort. For evalu-
ation purpose, we analyze the following three fine-tuning scenarios: 1) the default
output-layer only; 2) fully-connects only (stronger modification—parameters
of fully-connected layers); 3) full-net (strongest modification—parameters across all

DNN layers).

Evaluation Results

As Table 4.13 shows, sign-mapping is the best option for payload integrity pro-
tection on both Alexnet and compressed Alexnet. It can guarantee the payload
integrity without introducing any bit-flipping for all fine-tune cases. This is be-
cause the sign bit of the weights, especially for those important parameters with

large values, is defined at the training stage and rarely flips during the fine tune
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Table 4.14: Comparison of explored payload injection techniques.

LSB Resilience Value-mapping  Sign-mapping
Substitution Training
Pros Simple bit-wise Support Support Support
operation, less compressed compressed compressed
overheads; models; Improved models; No models; No
evasiveness; re-training; re-training; Well
protect integrity;
Cons Incompatible Less time Minor accuracy Low capacity;
with compressed efficiency on degradation;
models; re-training;

despite the slight magnitude change. Resilience training and value-mapping also
demonstrate remarkable robustness against default fine-tuning. In contrast, LSB
Substitution is the most sensitive method to all fine-tunings. We also observe that
all payload injection techniques applied to compressed Alexnet can be better than
that of uncompressed Alexnet. This is because quantized parameters with reduced
data precision in compressed model may better prevent the value changes caused

by fine-tuning due to the parameter sharing.

Discussion: How to select an appropriate payload injection technique?

The following three aspects should be jointly considered: evasiveness, efficiency and
robustness. Based on our evaluation results, Table 4.14 further summarizes the pros
and cons of explored payload injection techniques. Compared with LSB substitu-
tion, resilience training can be directly applied to quantized parameters without
model redundancy, thus making MAL-DNN scalable on compressed DNN models.
Besides, the randomly generated permutation can further improve the evasiveness
of payload. However, resilience training is less efficient than LSB substitution due
to the re-training cost. Instead of freezing a bundle of pre-selected parameters in re-

silience training, both value-mapping and sign-mapping can freely select parameters
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in DNN model for payload binary mapping without re-training, and hence signif-
icantly improve the efficiency of payload injection. Moreover, the sign-mapping
technique can well protect the integrity of injected payload as fine-tuning barely

changes the sign of model parameters.

4.5.5 Trigger Reliability

Reliability measures the performance of our trigger design against input variations

from physical-world.

Metrics and Methods

Our proposed rank trigger can be addressed as a specific rule based binary decision
(i.e., to match the “logits rank”). The trigger rate (or binary decision accuracy) can
be used to measure the performance with trigger event (i.e., specific input images)
selected as positive samples and normal inputs (i.e., benign images) selected as

negative samples. Accordingly, we use Fj-score as metric in our evaluation:

(4.3)

92 Precision = TP/Tp+Fp
F = —— — ) with
Precision™ + Recall

Recall = TP/Tp+FN

where TP (True positive) is a successful triggering with specific input, FP (False
positive) is an unsuccessful triggering with specific input, and FN (False negative)
is incorrectly triggered with normal input. This metric can fairly reflect the trigger
performance under the imbalanced number of positive and negative samples (i.e.,
1:10 in our method), and shows to what degree the attacker can “control” the MAL-
DNN from a statistical perspective.

To measure the trigger reliability, we adopt the “physical-world configuration”

from our demonstrated prototype. We use 1000 benign images (selected from 10
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Figure 4.5: Reliability of different trigger designs.

sub-class of Imagenet dataset) as negative samples, and create 100 specific images
as positive samples to trigger the MAL-DNN on Alexnet. These 100 specific images
are augmented from the original “chessboard” (see Fig. 4.2) by applying different
types of input variations across 25 different levels. We measure and compare the
Fi-score of different trigger designs on each variation level. A higher Fj-score

indicates the better reliability.

Evaluation Results

Fig. 4.5 compares the reliability of four different trigger designs, including proposed
logits trigger, rank trigger and fine-tuned rank trigger, as well as the classic single-
class trigger used in most works (e.g. backdoor). We choose 4 logits (out of total 10-
class) to create our proposed trigger designs. The variation strengths are quantified
as 1 — 25.

As Fig. 4.5 shows, our proposed fine-tuned rank trigger achieves the best reliabil-
ity among all designs, followed by rank trigger, single-class trigger and logits trigger.
With increased variation strengths, the fine-tuned rank trigger can always maintain

the highest Fj-score (&~ 1). The Fj-score of rank trigger drops from ~ 1 to ~ 0.2 as
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(a) Brightness (b) Camera Angle

Figure 4.6: Observation of Logits Rank trigger with different variation strengths.

the variation strengths increases from 10—25, which indicates its lower reliability
against stronger input variations. The logits trigger shows the least reliability in all
cases, as proved by its sharply reduced Fj-score, e.g. from 0.64 to ~ 0.1 (random
guess). Compared with three proposed trigger designs, the single-class trigger is
“stable” but not “reliable”. It can maintain the Fj-score at a certain level as the
variation strength grows, however, its best Fj-score is very low. This is because
the single-class trigger, which is widely adopted by existing backdoor attack, suffers
from significant Falsec Negative errors in our design (i.c., negative samples or normal
inputs in the same class mistakenly triggers the malware). This result also confirms
that existing triggering mechanism, as a special case of our logits rank trigger design

with only a top one logits, cannot work well in MAL-DNN.

Discussion: Why is rank trigger more reliable under input variations?

Our results show that rank trigger design (including the fine-tuned rank trigger) is
more reliable under input variations than that of logits trigger, and confirm that

logits rank can rectify the imperfection of mismatched key-lock pair. To explore
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the reason, we investigated the status of logits rank under different types of input
variations, i.e., brightness, camera angle and rotation, with different strengths. As
Fig. 4.6 shows, for each type of variation, the rank trigger can always maintain the
logits rank (i.e., presented as the monotonous trend of the ribbons), under small
variation strengths. However, with the increased variation strength, rank trigger is
unable to maintain the logits rank. On the other hand, the fine-tuned rank trigger
can effectively handle the strong input variations with much enhanced reliability.
These intuitive results show that logits rank is naturally less sensitive to the input
variations. Even the value of logits is significantly fluctuated, the rank of logits can

be still stable.

4.6 Mitigation Exploration

In our evaluation, we tested the existing Anti-Malware detection and steganalysis
approaches to mitigate the MAL-DNN. However, both solutions are incapable of
mitigating such an emerging attack on DNN based ML accelerators. In this section,
we present the guideline to mitigate the MAL-DNN attack. The developers may
consider the following directions to secure their intelligent applications.

Code Review. Code review is the most straightforward method to examine
the existence of MAL-DNN trigger. It should be very effective against the generated
code with interpreted language (i.e. the Python). Otherwise, reverse engineering
can be applied to analyze the obfuscated or compiled bytecode.

Trusted Environment. As aforementioned, most serialization library and de-
serialization process can be used to perform extraction and execute the injected

payload. Hence, a possible solution is to define the trusted environment, i.e. Sand-
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box or RestrictedPython [99], to secure the program execution and data flow by
restricting the usage of unsafe APIs, thus to defeat the payload injection.
Behavioral Detection. The program behaviors can be collected during the
DNN execution to identify the malicious functions [59]. For example, the bit-wise
operations used by “LSB substitution” are the suspicious behaviors and can be used
to identify the payload injection [46]. However, such an approach should be carefully
conducted as the similar behavior may appear as legitimate neural processing in

customized DNN architectures (i.e. the Bitwise Neural Network [64]).

4.7 Summary

Deep Neural Networks (DNNs) are now presenting human-level performance on
many real-world applications, and DNN-based intelligent services are becoming more
and more popular across all aspects of our lives. Unfortunately, the ever-increasing
DNN service implies a dangerous feature which has not yet been well studied—
allowing the marriage of existing malware and DNN model for any pre-defined ma-
licious purpose. In this work, we comprehensively investigate how to turn DNN into
a new breed evasive self-contained stegomalware, namely MAL-DNN, using model
parameter as a novel payload injection channel, with no service quality degradation
(i.e. accuracy) and the triggering event connected to the physical world by specified
DNN inputs. A series of payload injection techniques contingent upon unique neu-
ral network natures like complex structure, high error resilience and huge parameter
size, are developed for both uncompressed models (with redundancy) and deeply
compressed models tailored for resource-limited devices (no redundancy), including
LSB substitution, resilience training, value mapping, and sign-mapping. We also

proposed a set of triggering techniques like logits trigger, rank trigger and fine-
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tuned rank trigger to trigger MAL-DNN by specific physical events under realistic
environment variations. We implement the MAL-DNN prototype on Nvidia Jetson
TX2 testbed. Extensive experimental results and discussions on the evasiveness, effi-
ciency and integrity of proposed payload injection techniques, and the reliability and
sensitivity of the triggering techniques, well demonstrate the feasibility and practi-
cality of MAL-DNN. The unique characteristics and possible mitigation directions
of MAL-DNN have been discussed as well.
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CHAPTER 5
CONCLUSION

The digital era is now evolving into the intelligence era, driven overwhelmingly
by the data explosion and machine learning advancement. Embedded devices, sen-
sors, and the Internet of Everything (IoE) are nowadays producing ever-increasing
amounts of data. Besides, modern Machine Learning (ML) techniques open the
door for intelligent data interpretation on these devices, achieving game-changing
outcomes on machine vision, auto-driving, social engineering, etc. However, em-
bedded machine learning system design is subject to various challenges, e.g., per-
formance bottleneck due to large amounts of data storage and processing, accuracy
degradation caused by hardware defects in emerging processing-in-memory (PIM)
accelerators, as well as security concerns raised by adversarial machine learning and
open-sourced computing framework. This dissertation presents a comprehensive ar-
chitecture and algorithm co-design approach for embedded machine learning system
design. We systematically revisited the design challenges and and our solutions to
address three fundamental design pillars, namely efficiency, reliability, and security.

In particular, our first case study focuses on designing the energy and power-
efficient neuromorphic computing systems. We find that the ultra sparse coding
can significantly improve system efficiency, and a possible approach is to leverage
the spatial-temporal trade-off of time-based neural coding in spiking neuromorphic
architecture. The spatial and temporal locality shall be revisited carefully in single-
spike time-based neural coding. It can also achieve remarkable design flexibility.
The asymmetric coding for the first time shows the potential of non-uniform weight
updating, improving the efficiency and accuracy in an interesting manner.

Our second case study illustrates how to create the scalable fault-tolerance of the

emerging DNN accelerator enhance the fault tolerance of the emerging processing-
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in-memory (PIM) based DNN accelerator in a scalable manner. We find that the
weight disturbance issue in the DNN accelerator design is fundamentally different
from the traditional memory bit (0/1) error. While DNNs do exhibit inherent
error resilience, such capability is too limited to handle the weight errors incurred
by the non-ideal device factors. We marriage the error correction output coding
with transfer learning to significantly boost the error tolerance capability of these
emerging PIM accelerators in a scalable and low-cost way, offering a fundamentally
different thinking to design reliable and sustainable machine learning accelerators
built upon emerging devices, without knowing where, when and how weight errors
occur. Our solution is smart, scalable, low cost, and can significantly improve
the accuracy of emerging accelerators regardless of where/what/when weight errors
occur.

Finally, our third case study reveals a new type of threat which allows to conceal
the malicious intent into the complex DNN model, even a highly compressed version
dedicated to hardware accelerator, without impairing DNN service quality, e.g.,
classification accuracy. We find that machine learning security shall be revisited in
a system-level perspective, with interdisciplinary knowledge from the software and
hardware together. Our early exploration of the Mal-DNN: malicious DNN-powered
stegomalware represents a new angle to further investigate the emerging cross-layer
vulnerabilities among DNN architecture, algorithm, hardware and software, which is
of critical importance for the deployment of the embedded machine learning system

in the near future.
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