THE SHORT ABSTRACTS OF SOME PRESENTED PAPERS

GLASS-FORMING CYANO-SUBSTITUTED CARBAZOLE DERIVATIVES FOR OPTOELECTRONICS

SKUODIS E., TOMKEVICIENE A., VOLYNIUK D., GRAZULEVICIUS J. Department of Polymer Chemistry and Technology, Kaunas University of Technology eigirdas.skuodis@ktu.edu

Organic charge-transporting materials are used in electrophotographic photoreceptors, light-emitting diodes, photovoltaic devices and other optoelectronic devices [1,2]. Much attention has been recently paid to organic low-molar-mass compounds that form glasses above room temperature.

Due to efficient hole transport and excellent thermal stabilities, electron-rich carbazole moiety is widely used in the design and synthesis of hole-transporting and light-emitting materials [3]. On the other hand, cyano-substituted compounds show good optical and electrical properties due to their high electron affinities. Some cyano-substituted compounds were reported to show unique emission enhancement rather than quenching in the solid state [4]. The structures of carbazole derivatives containing cyano groups synthesized and studied in this work are shown in Fig 1. The key step in the synthesis was Ullmann coupling reaction of 3-iodo or 2-bromo-9-ethylcarbazole with 3- or 2,7-dicyanocarbazole.

Fig. 1. Cyano substituted carbazole based derivatives

The chemical structures of the synthesized compounds were confirmed by ¹H and ¹³C NMR, IR and mass spectroscopies. The thermal, optical, photophysical, electrochemical and photoelectrical

properties of the synthesized compounds have been studied and will be reported.

Acknowledgement

This work supported by Research Council of Lithuania (TAP LU-2-2016).

References:

- [1] Shirota Y. J. Photo- and electroactive amorphous molecular materials molecular design, syntheses, reactions, properties, and applications, Mat. Chem. 15, 1, 75–93, 2005.
- [2] Hung L.S., Chen C.H. Recent progress of molecular organic electroluminescent materials and devices Mater. Sci. Eng. R-Rep. 39, 5, 143–222, 2002.
- [3] Tomkeviciene A., Grazulevicius J. V., Kazlauskas K. et al. Impact of Linking Topology on the Properties of Carbazole Trimers and Dimers J. Phys. Chem. C 115, 11, 4887–4897, 2011.
- [4] An B. K., Kwon S. K., Jung S. D. et al. Enhanced Emission and Its Switching in Fluorescent Organic Nanoparticles J. Am. Chem. Soc. 124, 48, 14410–14415, 2002.

ELECTROCHEMISTRY IN MICROSCALE. SCANNING ELECTROCHEMICAL MICROSCOPY: NEW POSSIBILITIES, NEW TECHNIQUES

PINI L., SIDES R. AMETEK Scientific Instruments, P.O. Box 4144 5004 JC Tilburg, The Netherland Iuca.pini@ametek.com

The VersaSCAN is Scanning Electrochemical Microscopy (SECM) single platform capable of providing spatial resolution to both electrochemical and materials-based measurements. Traditional electrochemical experiment measure an average response over the entire electrode/electrolyte interface. Rarely a sample is homogenous. Samples often consist of local sites of passivate/active nature or sites of This anodic/cathodic character. need to investigate localized phenomenon led to the emergence of scanning probe electrochemistry. In collaboration with LEPA-EPFL, we offer the Soft Stylus Probe contact mode technique developed by Professor Hubert Girault and co-workers for constant distance SECM. The probe technology offers benefits like Constant distance SECM: SECM imaging without major topographic artefacts. It is ideal for tilted, corrugated and rough samples.