
MNRAS 00, 1 (2019) doi:10.1093/mnras/stz1469

GUNDAM: a toolkit for fast spatial correlation functions in galaxy surveys

E. Donoso‹

Instituto de Ciencias Astronómicas, de la Tierra, y del Espacio (ICATE), UNSJ, CONICET, San Juan, Argentina

Accepted 2019 May 27. Received 2019 May 27; in original form 2018 February 28

ABSTRACT
We describe the capabilities of a new software package to calculate two-point correlation func-
tions (2PCFs) of large galaxy samples. The code can efficiently estimate 3D/projected/angular
2PCFs with a variety of statistical estimators and bootstrap errors, and is intended to
provide a complete framework (including calculation, storage, manipulation, and plotting)
to perform this type of spatial analysis with large redshift surveys. GUNDAM implements
a very fast skip list/linked list algorithm that efficiently counts galaxy pairs and avoids the
computation of unnecessary distances. It is several orders of magnitude faster than a naive
pair counter, and matches or even surpass other advanced algorithms. The implementation is
also embarrassingly parallel, making full use of multicore processors or large computational
clusters when available. The software is designed to be flexible, user friendly and easily
extensible, integrating optimized, well-tested packages already available in the astronomy
community. Out of the box, it already provides advanced features such as custom weighting
schemes, fibre collision corrections and 2D correlations. GUNDAM will ultimately provide an
efficient toolkit to analyse the large-scale structure ‘buried’ in upcoming extremely large data
sets generated by future surveys.

Key words: galaxies: general – quasars: general – large-scale structure of Universe.

1 IN T RO D U C T I O N

The two-point correlation function is one of the main statistical tools
to study the large-scale structure of galaxies in the universe and the
first-order measure for characterizing deviations from a uniform
distribution. It can quantitatively tell us the degree of clustering of
a certain population as a function of scale, constrain the bias, initial
conditions, and models of structure formation. Its importance in
cosmology is perhaps best exemplified when we consider it as the
Fourier transform of the power spectrum of the density field.

In recent years, the advent of wide-area redshift surveys enabled
to estimate correlation functions of large galaxy populations with
unprecedented accuracy, thanks to high-quality data with high-
redshift completeness spanning over large volumes. Surveys such
as the Sloan Digital Sky Survey (SDSS; York et al. 2000; Alam
et al. 2015) has catalogued 200 million galaxies with photometric
redshifts, including 3 million spectra of quasars and galaxies. The
Wide-field Infrared Survey Explorer (WISE; Wright et al. 2010)
has already produced a database of 0.75 billion sources, most of
them galaxies, and upcoming surveys such as the Large Synoptic
Survey Telescope (LSST; Ivezić et al. 2008; Abell et al. 2009) will
measure over 37 billion galaxies and stars from about 350 billion
single epoch detections.

� E-mail: edonoso@conicet.gov.ar

Whether we want to investigate the 3D or 2D distribution of
galaxies (or of any other kind of point-like objects) extracted from
large surveys or numerical simulations, a fundamental problem is
how to count pairs of objects in a reasonable time. Whereas modern
computer processors become faster in every generation, the number
of floating-point operations required increase substantially for larger
samples, up to the point of making some calculations unfeasible
without expensive, high-performance computer clusters. While
some scientific institutions have access to large computational
facilities, many other small institutes and university departments
lack such equipment. Recent advances in the application of GPU
technology for certain kinds of massive parallel operations are
slowly improving on this situation, but at the cost of significant
programming efforts to retrofit algorithms, sometimes requiring to
recompile complex scientific libraries. One of the design goals of
GUNDAM is to make the computation of 2PCFs more affordable,
even using a single laptop or desktop computer.

Computing n-point correlation functions is a type of generalized
n-body problems from a wide family that ranges from kernel density
estimation to nearest neighbour searches. All such problems can be
decomposed in a series of evaluations of kernel functions on a
set of points in a certain metric space. In its most generic form,
estimating a 2PCF involves comparing the distances of each point
in data set with each other point and counting the number of
pairs that are within a certain limit distance. If we have N data
points, it can be solved naively by computing the N2 distances

C© 2019 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

mailto:edonoso@conicet.gov.ar

2 E. Donoso

between them, but in practice N is often large enough to make
such computation unfeasible. This is more than evident for present
astronomical surveys that already detect hundreds of millions of
sources, and that will soon reach several billion objects in upcoming
survey databases. Furthermore, the problem gets severely magnified
if the 2PCF computation is embedded in a larger Monte Carlo or
Bayesian inference framework where it has to be repeated hundreds
or thousands of times.

In view of this situation, it is mandatory to use more clever
algorithms and adopt acceleration techniques to speed up these
computations. Perhaps the most well-known family of methods
relies on binary trees in order to partition the space and efficiently
find all neighbours of a given point without scanning the entire
data set (e.g. kd-trees, Gray & Moore 2001; ball-trees, Omohundro
1991). In this work, we present a new counting algorithm based on
linked lists and its implementation as part of a feature-rich software
toolkit to estimate spatial correlation functions. No less important,
this package and its source code is made freely available to the
community.1

This paper is organized as follows. In Section 2, we explain the
methodology adopted to calculate the two-point correlation func-
tion and the techniques employed to accelerate pair computation.
Section 3 presents single-core and multicore benchmarks along
with two examples of application to real astronomical data sets
that highlight the features of our code. Finally, in Section 4 we
summarize our results and discuss further improvements. Tables in
the Appendix section list the most useful routines included in code
as well as examples of input and output dictionaries.

Throughout the paper, we assume a flat �CDM cosmology, with
�m = 0.25 and �� = 0.75. Unless otherwise stated, we adopt
h = H0/(100 km s−1 Mpc−1) and present the results in units of
h−1 Mpc with h = 1. While GUNDAM is designed primarily for
galaxy surveys, we will refer indistinctly to galaxies, particles or
objects.

2 IMPLEMENTATION

2.1 The two-point correlation function

For a set of N discrete points in a finite volume V, the probability to
find one point in an infinitesimal volume dV is

〈dP 〉 = n dV , (1)

where n is the mean number of objects per unit volume, i.e. N = n V

(Peebles 1980). Now, the joint probability of finding two points
inside volumes dV1 and dV2 at positions r1 and r2 separated by
distance r = r1 − r2 can be defined through the relation

〈dP 〉 = n2 dV1 dV2[1 + ξ (r)], (2)

where ξ (r) is the spatial two-point correlation function or 2PCF.
For a pure Poisson process the probabilities of both particles are
independent and ξ ≡ 0. In the more general case when ξ (r) > 0, we
can clearly see that the 2PCF represents the excess probability over
random of finding a pair of objects separated a distance r. While
in principle it depends on the positions r1 and r2, for homogeneous
fields the 2PCF depends only on the separation r. Therefore, for a
discrete set of points we can define

ξ (r) = DD(r)

RR(r)
− 1, (3)

1https://github.com/samotracio/gundam

where DD(r) and RR(r) are the pair counts of the data and random
samples, respectively. Real galaxy surveys often have complicated
boundaries and complex selection functions, i.e. different parts of
the sky are mapped at different depths and some objects or regions
have higher preference over others. An effective technique to deal
with such difficulties is to compare observed pairs counts with
artificial catalogues of randomly distributed objects that mimic the
angular and radial selection functions. These random samples are
usually 10–20 times larger than data sample itself in order to keep
the shot noise under control at small separations.

Other than equation (3), there are several statistical estimators
for the 2PCF that present different bias, variance properties,
computational advantages, and caveats. An elaborate discussion
about estimators is out of the scope of this paper (e.g. see Kerscher,
Szapudi & Szalay 2000; Vargas-Magaña et al. 2013). Here, we just
present the estimators that have been implemented in GUNDAM,
namely

ξN (r) = c1
DD(r)

RR(r)
− 1 (4)

ξH(r) = c2
DD(r)RR(r)

DR(r)2
− 1 (5)

ξL(r) = c2DD(r) − 2c3DR(r) + RR(r)

RR(r)
(6)

ξD(r) = c4
DD(r)

DR(r)
− 1 (7)

that correspond to the natural (Peebles & Hauser 1974), Hamilton
(1993), Landy & Szalay (1993), and Davis & Peebles (1983)
estimators. For n data points and nr random points, the normalization
constants can be written as c1 = nr(nr − 1)/n(n − 1), c2 = 4n(n −
1)/nr(nr − 1), c3 = (nr − 1)/2n and c4 = 2nr/(n − 1).

For cross-correlations, there are analogue versions of these
estimators that can be calculated readily with the individual pair
counting routines (see Appendix A1). GUNDAM directly imple-
ments a variation of ξN for cross-correlations given by ξ cc

N (r) =
c QD(r)/QR(r) − 1 (e.g. Shanks et al. 1983), where D and R are
the data and random samples, and Q is the sample to get cross-
correlated. Estimating a 2PCF usually requires calculating a set of
DD, RR, and DR pair counts, and in most cases the RR pair counts
will vastly dominate the total computing time.

2.1.1 Coordinates and distances

There are several ways to estimate the distance between galaxy pairs
which of course depend on the problem and the geometry adopted.
GUNDAM calculates the radial (π), projected (rp), and redshift-space
distance (s) between two galaxies i and j as

π = |dci − dcj | (8)

r2
p = 4 dci dcj [(xi − xj)2 + (yi − yj)2 + (zi − zj)2] (9)

s2 = π2 + r2
p , (10)

where dc is the comoving distance in the chosen cosmology, and (x,
y, z) are the rectangular coordinates given by

x = 0.5 cos(dec) sin(ra) (11)

MNRAS 00, 1 (2019)

https://github.com/samotracio/gundam

GUNDAM: a toolkit for fast correlation functions 3

y = 0.5 cos(dec) cos(ra) (12)

z = 0.5 sin(dec). (13)

Computationally, this strategy for calculating distances is signif-
icantly faster than others, because it avoids a large number of
trigonometric operations inside loops. Nevertheless, with slight
modifications it is possible to operate directly with spherical
coordinates. Note also it is more efficient to operate with r2

p instead
of rp, saving a costly square root computation.

2.2 Linked lists and skip lists

In computer science, linked lists are some of the most used data
structures in a wide range of applications. In its simplest form, a
singly linked list is a sequence of dynamically allocated nodes, each
containing data and a reference (pointer) to the next element in the
list. A special node defines the start of the list, which is traversed
node by node until a special null pointer determines its ending.

Compared to a traditional array, such a structure is highly efficient
at element insertion or removal because there is no need to reallocate
the entire data set. Arrays are in most cases contiguous blocks of
memory that cannot be reshaped or expanded without performing
expensive operations. An element at any point of a linked list of any
length can be inserted or removed in O(1) time. On the other hand,
to access a specific element of a linked list requires to traverse
all previous nodes starting from the first one, i.e. a linear search
time. Thus, simple linked lists cannot compete against the nearly
instantaneous random access time of arrays.

Moreover, as in principle the nodes are allocated in non-
contiguous chunks of memory, traversing a linked list is very likely
to cause cache misses that can severely impact the execution time
in current microprocessor architectures. A cache is a small pool
of memory that operates faster than standard RAM and temporally
stores instructions and data that otherwise would need to be fetched
from RAM. Many modern microprocessors have three cache levels
(L1, L2, L3) with typical latencies of 4, 12, and 36 clock cycles,2

respectively, whereas RAM latencies are 50–100 times higher than
the L1 memory. Which information is loaded into the cache depends
on sophisticated algorithms and linked lists trace an unpredictable
memory access pattern, offsetting the benefits of the locality of
reference.

One approach to improve on these performance issues is by using
skip lists. A skip list is a data structure that allows to quickly locate
a given node, by traversing another sub-sequence that links specific
nodes and skipping elements in between. Thus, a skip list is a
(linked) list of pointers that signals shortcut nodes, allowing fast
searches within an ordered sequence of elements. Furthermore, it
is also possible to build a hierarchy of nested skip lists where each
successive level skips fewer elements than the previous one.

For the purpose of counting galaxy pairs in surveys or mock
catalogues, the data consists of two angular coordinates (RA, DEC),
and a radial coordinate such as the redshift Z (in the 3D case), which
is transformed into a comoving distance. A regular grid of nodes
or cells and a linked list is constructed for all galaxies so that
the pointers always lead to the next element in increasing DEC or
comoving distance. Then, a second linked list – the skip list – is built

2https://www.7-cpu.com/cpu/Haswell.html

Figure 1. Schematic representation of the linked list–skip list algorithm
implemented in GUNDAM. Particles are assigned to a grid of cells and a
linked list is built pointing to the next particle in DEC order. The skip list
provides a shortcut to jump to the following cell, skipping all particles in
between, and therefore unnecessary distance calculations.

by identifying and linking the particle with the lowest DEC value
or comoving distance of each cell. Fig. 1 illustrates these concepts,
showing how the skip list jumps between cells while the linked list
jumps between the particles inside.

Such a counting scheme also allows to quickly identify neigh-
bouring cells around a given particle, discarding objects located in
cells that are too far apart to contribute within the range requested
for analysis.

2.3 Improving data locality: pixel sorting

One strategy to improve the locality of reference in linked lists is to
sort the data divided in cells according to an order given by the cell
index before actually constructing the linked list itself. This way,
data points in a given cell sit closer in memory, largely increasing
the efficiency of the cache. Since these cells do not necessarily have
to match the cells employed by the skip list, we refer to these as
pixels instead of cells (either 2D or 3D).

After arranging the data in a grid of RA, DEC, and Z pixels
(when pertinent), GUNDAM sorts data first according to the pixel
index in Z, then according to the index in DEC, and then according
the RA pixel index. This effectively (yet partially) translates the
spatial proximity of objects into memory proximity of array data
points. This scheme of presorting input data is notably faster than
simply sorting all input objects by a single coordinate, such as RA
or DEC, and has a negligible impact of 1–2 per cent in the total
compute time.

Note the main sorting key is the DEC pixel index (or Z in the 3D
case) because this is the coordinate associated with the linked list
order. The sorting grid is chosen to match the one adopted for the
skip list in all dimensions. In Section 3, we will analyse the effect
of this methodology.

This method of sorting pixels is similar to Z-curve techniques
used in computer science to map multidimensional data into a 1D
index. GUNDAM includes options to experiment with alternative
ordering methods such as Morton or Hilbert in 2D and 3D (for a
review see Samet 2006). Fig. 2 illustrates these techniques with a
sample of 700 000 galaxies extracted from SDSS. The coordinate

MNRAS 00, 1 (2019)

https://www.7-cpu.com/cpu/Haswell.html

4 E. Donoso

Figure 2. Data sorting techniques implemented in GUNDAM for 700 000
galaxies extracted from SDSS. The vertical coordinate is the position in
memory of a given galaxy after reordering its coordinate arrays using the
Morton technique (top) and our preferred pixel sorting method (bottom).
As shown in Section 3, this sorting in advance impacts strongly in the
performance of the pair counting algorithm.

perpendicular to RA–DEC represents the sequential position of a
given galaxy in memory right after being sorted with Morton (top)
and our pixel sorting method (bottom). We found that while these
more complex algorithms can sort the data better, i.e. the subsequent
pair counting is slightly faster, at some point the cost of complex
sorting counterbalances the gain in speed. Our simple pixel sorting
technique is not as good in improving data locality, but performs
faster in overall as it requires significant less overhead time.

2.4 Improving grid dimensions

The skip list–linked list algorithm of GUNDAM relies in dividing data
into a grid of cells, so that it is reasonable to expect its performance
will depend on the number of cells and/or the number of particles
per cell. Thus, given an arbitrary input sample it is important to
know, at least approximately, what is the best gridding scheme.

However, this is not easy to find out a priori, since it would
require knowing the distances between particles. At some point, the
GUNDAM implementation consists of 10 nested loops with numerous
branching conditions, which makes very difficult to predict the
relative average costs of each section of code. In addition, this will
also depend on the hardware, as different CPU have different cache
size, architecture, and branch prediction algorithms.

In order to find out the ‘right’ dimensions to reduce execution
times, we run a battery of tests for samples of different size N over
a contiguous (rectangular) patch of sky, using grids of various sizes
and recording the grid parameters that lead to the lowest compute
time. For example, for angular pairs we find that a roughly constant
density of 22 particles per cell result in the best timings for N >

105 objects, with a slight linear dependence with N for 104 < N <

105. Once a target cell density is set, we find the number of DEC
cells from the best-fitting empirical relation between N and DEC
cell size as derived from our tests, and adjust the number of RA
cells to reach the target cell density. The procedure for 3D space
grids is sightly more complicated, but very similar.

We shall note that with this procedure, the optimal grid parameters
that are estimated depend on the sample, the number of bins
requested and of course on the hardware. We have used uniform
random samples (because counting RR pairs will dominate the
computing time of a 2PCF) and a reasonable set of bins (e.g. a
couple dozen bins up to θ = 10 deg). The fine-tuning should be
effective in most desktop processors with 8MB of L3 cache memory
(see Section 3 for CPU details).

This procedure to automatically find out the best grid dimensions
is encoded in two PYTHON routines, which are easy to modify by
the user, and a single flag (autogrid) control its application. The
user can also modify the target density (e.g. to accommodate larger
caches) or directly provide the dimensions of the grid. Section 3
analyses the impact in performance of this feature.

2.5 Other optimizations

2.5.1 Reverse bin checking

After the distance dij between galaxies i and j is calculated, we
need to loop though the distance bins, testing if dij falls inside and
increment the corresponding pair count of that bin. This operation,
while extremely simple, is very important considering a typical (rp,
π) run can involve billions of pair distances tested typically over
100–1000 bins or even more. As there are many more pairs at large
separations than close pairs, they are much more likely to fall into
the last separation bins. Therefore, GUNDAM checks bins in reverse
order starting from the last one, i.e. at the largest separation, and
ending in the first one, i.e. the smallest separation considered. This
is significantly more efficient than checking bins the other way
around.

2.5.2 Early loop termination

Related to the previous optimization, once the bin corresponding to
dij is found, there is no need to keep testing. In such cases GUNDAM

immediately branches out, saving the cost of executing unnecessary
comparisons.

2.5.3 Loop unrolling

After initialization of a loop, every individual iteration involves
some overhead work, i.e. incrementing the loop counter, checking
exit conditions, etc. For example, a vector of 20 numbers xi can be
squared by looping 20 times and squaring each number in turn, or
by looping 10 times and squaring xi and xi + 10 at each iteration. This
technique is called loop unrolling, by a factor 2 for this particular
case.

Under the right conditions, saving loop iterations can lead to
performance gains. A high unroll factor can make a loop faster,

MNRAS 00, 1 (2019)

GUNDAM: a toolkit for fast correlation functions 5

but also increases the number of instructions in the compiled code
(wasting the instruction cache) and requires to know a priori the
number of iterations. GUNDAM uses individual unrolling of specific
loop iterations. After the distance dij between galaxies i and j is
calculated, we need to loop though the distance bins, testing if
dij falls inside and increment the corresponding pair count. For
example, if GUNDAM has to check θ1–θn angular bins, it individually
checks the bins θn–θn − 4 in order before entering the loop for the
remaining bins. As an overwhelming majority of pairs will fall in
last few bins, it reduces the overhead of setting up unnecessary loop
constructions. In many cases, this simple arrangement can count
pairs faster than a regular loop through all bins.

2.5.4 Loop nesting order

The memory storage scheme for multidimensional arrays deter-
mines an optimum way of nesting loops in order to minimize cache
misses. Fortran is a column major language, where 2D arrays are
stored columnwise so that when an element is accessed, a block
of references to adjacent elements in that column are cached also.
These references will be readily available while processing the next
element, saving the excursion to retrieve them again from the always
slower RAM memory.

This is particularly important for counting pairs in large galaxy
samples, where nested loops can push the array access count by
trillions or more. We have made sure that the Fortran routines
implemented in GUNDAM loop over data in the proper order,
meaning the first index (which varies fastest) is the most deeply
nested. In this way, page faults are minimized and cache paging
activity is reduced.

A related minor optimization consists in reducing cache compe-
tition within nested loops. When a data vector corresponding to a
galaxy i is referenced, an entire block around it is promoted higher
in the memory hierarchy, reducing the cache space available for
data of galaxy j. Therefore, we carry temporary scalar variables
from outer i loops to inner j loops, instead of directly accessing the
data vectors from within the nested loop.

2.6 Storage

From a strict point of view, a 2PCF is no more than a set of points
in the plane or space, and perhaps suitable error bars. A simple
tabular representation in an ASCII file could be enough to store
and/or present such information. However, in practice we work
with dozens, hundreds, and even thousands of 2PCFs, each with its
own set of DD/RR/DR/total/bootstrap counts arrays with different
dimensionality. We would also like to keep a detailed yet unob-
trusive record of runtime information and a flexible representation
of both input parameters and output results. Thus, a more rich-full
representation of a 2PCF run is highly desirable for an efficient
workflow.

GUNDAM uses simple but powerful containers based on PYTHON

dictionaries with attribute-style access. A PYTHON dictionary is a
set of (key: value) pairs, indexed by the key index, where value
can be virtually any other object such an array, a text log file and
even complete plots. Such a dictionary can be saved (‘pickled’, in
PYTHON jargon) in a single file and later read back or shared with
collaborators. In particular, GUNDAM employs dictionaries that can
be accessed as attributes, i.e. using a dot-style notation typical of
Java object-oriented language.

By default, GUNDAM output consists of a set of ASCII files for
the various count arrays, logs, input parameters, and the 2PCF

estimated. All this information is also stored as (key: value) pairs
in a single output dictionary. In fact, the set of input parameters
that control all aspects of GUNDAM algorithms are also encoded
in a single parameter dictionary. See Appendix B1 for a detailed
description of input/output keys.

2.7 Parallel approaches

Unlike other calculations such as simulations of particle force
interactions, the task of computing a 2PCF is embarrassingly
parallel. It is relatively straightforward to split the computation
into pieces that can be processed independently and added together
at the end. GUNDAM follows this approach, i.e. multiple threads or
processes (local or remote) are spawned, each assigned to count
pairs using the next available core or thread in a small region of sky
determined by the gridding along the DEC dimension.

For computations in a single node, the code uses OpenMP3

instructions to create and manage multiple threads of execution
sharing a common memory space. This allows to significantly
reduce the memory footprint when compared to multiprocessing.
Since iterations can take different amounts of time to complete (e.g.
the survey footprint is highly irregular along the DEC dimension,
or the density varies widely between neighbouring cells) the typical
workload is strongly imbalanced. To address this, the code loops
employ dynamic scheduling, where the amount of work scheduled
to each thread is dynamically distributed at runtime. The result is an
optimum use of thread pools, when compared with static or guided
chunk size scheduling.

For very large data sets it is better, if not mandatory, to distribute
the computations among multiple nodes. For this purpose, the
code takes advantage of the powerful architecture for parallel and
distributed computing given by IPYPARALLEL.4 This is a well-tested
package that enables many kinds of parallelism such as SIMD
(single program multiple data), MPMD (multiple program multiple
data), and MPI (Message Passing Interface), among others. It also
supports most job queue management systems and launchers used
in high-performance clusters (e.g. SGE, Torque, LSF, SSH, etc.).
Briefly, IPYPARALLEL architecture consist of (i) a central hub that
keeps track of engine connections, clients, task requests and results;
(ii) task schedulers that route tasks towards engines; (iii) a set of
compute engines that listens for requests, run code, and return
results, and (iv) a client that provides the interface with the end
user. Such a scheme is very flexible, as each of these components are
individual processes that run in local or remote hosts. In addition, the
schedulers also hide any possible blocking due to the code running
in an engine, thus providing a useful framework for asynchronous
computation. An in-depth review of IPYPARALLEL is out of the
scope of this work and we refer the reader to its documentation.
In GUNDAM, this parallelism is controlled by a single boolean flag
that pushes data and code to execute in all available compute engines
of a running IPYPARALLEL cluster.

There are two working versions of the code, one using highly
optimized OpenMP code for single node parallel computations, and
another one using the multiprocessing capabilities of IPYPARALLEL,
more suitable for multinode computing. In this paper, we report the
results for the OpenMP version only. The next version of GUNDAM

will combine both approaches in a single package.

3OpenMP Standard: http://www.openmp.org
4github.com/ipython/ipyparallel

MNRAS 00, 1 (2019)

http://www.openmp.org

6 E. Donoso

Figure 3. Single-core run time to calculate DD pairs with GUNDAM for samples up to 2 × 106 objects with redshifts between 0.01 and 0.2, extracted from a
60 × 60 deg2 light cone constructed from the Millenium simulation and the SAGE semi-analytic model. Performance is evaluated in (rp, π) space (left), redshift
space (middle), and angular space (right). The base skip list algorithm (dashed) counts objects in a fixed 20 × 100[×10] grid in DEC–RA–[Z] dimensions,
which is compared to improvements by sorting objects within pixels (solid black), and by automatically optimizing the grid size for each sample using the
option autogrid = True (solid red). Bottom panels show the corresponding speed-up factors over the base skip list algorithm.

2.8 Custom weighting

To account for instrumental and selection biases of astronomical
surveys, it is common to weight each galaxy pair according
to some prescription. This allows, for example, to correct for
different sampling rates in certain regions of the sky, account for
undersampled close pairs due to fibre collisions in multi-object
spectrographs, correct for differences in the maximum observable
volume of magnitude-limited surveys, etc.

Thus, our code allows to specify user-defined weights for each
particle considered, so that for a given pair (i, j), the product of
their weight wi∗wj is accumulated. Additive weights can be also
considered just by altering a few lines of code in the appropriate
routines.

GUNDAM employs this weighting scheme to correct SDSS data
for collisions due to the fibre physical diameter, which does not
allow to acquire two spectra closer than 55 arcsec within the same
SDSS plate (0.1 h−1 Mpc at z ∼ 0.1). This manifests as a decline in
the clustering signal below the collision scale that must be corrected
in order to study the clustering at small separations, though it can
also affect larger scales (Zehavi et al. 2005). To calculate the weight
for a pair of objects separated a distance rp, the code uses the ratio
(1 + wphot(θ))/(1 + wspec(θ)), where wspec and wphot are the pair
counts in the spectroscopic and its photometric parent sample; and θ

corresponds to rp at the median redshift of the survey. This method
works relatively well, but can be readily modified by the user to
incorporate more sophisticated corrections (e.g. Guo, Zehavi &
Zheng 2012).

2.9 Error estimates

Of crucial importance for many applications is to estimate suitable
error bars for correlation functions. GUNDAM uses a bootstrap
resampling methodology, where a large set of samples (typically
50–200) are randomly drawn with replacement from the data itself,
and the statistics of interest, namely the 2PCF, is calculated for each

one. Then, a dispersion measure such as the standard deviation of
all these samples can be used to infer an error estimate.

The implementation of this technique is key to result in an accept-
able performance. Repeatedly running the entire 2PCF procedure
50 or 100 times is clearly out of the question. Instead, the code
generates a set of bootstrap resampling weights, i.e. for n data
points an array of (n, nboot). This weight array is carried deep inside
the counting loops where they contribute (or not if weight = 0) to
another array that accumulates the pair counts at each separation for
each bootstrap sample. In this way, bootstrap counts are considered
just alongside data counts, saving the need to build multiple linked
list and taking advantage of all the optimizations described before.

3 PE R F O R M A N C E

To measure the performance of the code we employ two samples.
First, a sample of 2 × 106 galaxies with DEC≤64 deg constructed
over the northern galactic cap of SDSS DR7 (Abazajian et al. 2009),
covering an almost contiguous area of 7200 deg2. Galaxies are
placed randomly within this footprint and their redshifts assigned
to match the redshift distribution of the SDSS main galaxy sample
between z = 0.01 and z = 0.3, and a mean redshift z ∼ 0.1. This
sample covers a sufficiently large area to be representative of typical
2PCFs derived from wide surveys. Secondly, a 60 × 60 deg2 light
cone composed of 2 × 106 galaxies extracted from the Mille-
nium simulation and the Semi-Analytic Galaxy Evolution Model
(SAGE), with redshifts between 0.01 and 0.2. We only report results
for the latter, as they are qualitatively the same for both data sets.

The equipment employed for testing is based in a four core i7-
3770K 3.5GHz CPU (L1 cache: 32KB data + 32KB instruction, L2
cache: 256KB, L3 cache: 8MB shared) with 16GB RAM, running
with OpenSuse Linux, GNU Fortran 6.1.1 compiler and PYTHON

3.5.2. Compilation was performed with f2py (numpy 1.11.1) with
flags march = native -ftree-vectorize.

MNRAS 00, 1 (2019)

GUNDAM: a toolkit for fast correlation functions 7

Figure 4. Single-core run time to calculate DR pairs between 105 data sources and samples up to 2 × 106 objects extracted from an SDSS DR7 random
sample covering 7200 deg2. Performance is evaluated in (rp, π) space (left), redshift space (middle), and angular space (right). The base skip list algorithm
counts objects in a fixed 163 or 162 grid (dashed), which is compared against improvements by sorting objects within pixels (solid black), and by automatically
optimizing the grid size for each sample using the option autogrid = True (solid red). Bottom panels show the corresponding speed-up factors over the
base skip list algorithm.

3.1 Single thread

Fig. 3 shows the performance of GUNDAM running under the
described set-up in a single thread, to count an increasing number of
galaxies in (rp, π), redshift, and angular space. For each respective
case, we requested counts in a matrix of 14 × 40 (rp, π) bins
with 0.1<rp <25 h−1 Mpc and 0<π <40 h−1 Mpc; in 14 redshift-
space bins between 0.1 and 25 h−1 Mpc; and in 12 angular bins
between 0.01 and 5

◦
. We also tested the case of requesting a single

40 h−1 Mpc π bin instead of 40 narrow ones, that is, when we are
interested in the integrated counts DD(rp) instead of DD(rp, π). The
impact in execution speed is negligible.

We show the performance of the base skip list–linked list
algorithm (dashed line), compared against improvements by sorting
pixels (black line) and using an option to fine-tune the grid size
automatically (red line). It can be seen that for samples larger
than 105, the benefit of rearranging data into sorted pixels to make
better use of cache memory becomes more and more relevant. The
speed-up factors reach 4, 7, and ∼6 for 106 particles in the three
geometries implemented. If on top of that we let the code choose
more wisely the number of cells in each dimension, we find another
significant jump in performance. For samples with a large number
of objects, there is a combined boost factor of 7 in the (rp, π)
case, 16 in redshift space, and 23 in the angular case. The absolute
value of these gain factors depend indeed on the grid size chosen for
comparison, in this case a 20 × 100[×10] grid in DEC–RA–[radial]
dimensions. For reference, when using automatic gridding the code
splits our 2 × 106 particle sample into a 74 × 696 ×13 grid, which
makes much more sense than using only 20 divisions.

Fig. 4 shows a similar analysis, but while cross-counting pairs
between 2 × 105 objects and our 2 × 106 test sample, a typical
set-up for calculating the DR term of the Landy–Szalay estimator
of the 2PCF. We observe similar, yet slightly higher (combined)
boost factors of 23, 33, and 36, most likely due to: (1) a higher
stress in cache utilization, i.e. more data points need to be available
close to CPU so that intelligent cache usage is more relevant, and

(2) minor implementation differences between cross-counting and
normal pair counting.

In terms of absolute run time we can see that in about 100 s,
GUNDAM can count pairs distant up to 25 and 40 h−1 Mpc in
(rp, π) space for about 2 × 106 galaxies. We compare these
numbers against the performance of CORRFUNC (Sinha & Garrison,
2017; v2.0.0). This is possibly among the most efficient codes
publicly available in the astronomical community. It accelerates
2PCF computation by maximizing the utilization of cache memory,
and by exploiting the use of wide vector registers available through
intrinsic AVX (Advanced Vector Extensions) instructions of some
CPUs. AVX is a recent SIMD technology that allows to execute
multiple floating-point operations in a single clock cycle.

Fig. 5 shows the corresponding timings for two cases: the
normal case of counting pairs of i and j objects with unitary
weights; and the weighted case, accumulating the product of the
weights wi∗wj, selected randomly (in this case) from a Gaussian
distribution with (σ , μ) = (1.0,0.1). This is a mock-up of a common
scenario for deriving 2PCFs from real surveys, where numerous
bias and observational effects are accounted by means of properly
chosen weights. From an implementation point of view, this means
dealing with extra weight vectors and at least an extra floating-
point multiplication deeply nested inside loops. For this reason,
GUNDAM uses slightly different versions of the counting algorithm
to accommodate these two cases. From the figure it can be seen
that our code, which is based in a completely different algorithm,
performs as well and even better than CORRFUNC. In (rp, π) space, it
can be up to 1.4 × faster. In angular space GUNDAM can be slightly
slower. However, if non-unitary weights are required, our code can
run up to 30 per cent faster. The timings for very few particles,
e.g. below few times 104, should be ignored as the dominant
component there is most likely the overhead of grid creation or
array manipulation. GUNDAM, as well as CORRFUNC, are intended
primarily for processing much larger samples.

MNRAS 00, 1 (2019)

8 E. Donoso

Figure 5. Single-core run time to calculate DD pairs with GUNDAM and CORRFUNC codes for samples up to 2 × 106 objects, using random Gaussian weights
or a single constant weight equal to 1 (unweighted pair count case). Performance is evaluated in (rp, π) space (left) and angular space (right). Bottom panels
show the speed-up factor of GUNDAM respect to CORRFUNC for the weighted and unweighted case.

3.2 Multithread

We run a series of tests in the described set-up, running the same pair
counts with 2, 3, and 4 threads that execute in each of the physical
CPU cores. There is little benefit in using extra virtual threads
(i.e. the Hyper-Threading technology of Intel CPUs) because the
code is already computationally intensive, making extensive use of
available CPU resources and floating-point pipelines. Also, since
logical processors share the caches, they might actually compete for
cache utilization, which can lead to a degradation of performance.
Therefore, we only report up to four threads, noting that eight
threads can potentially bump the performance by 25 per cent.

In Fig. 6, we can see that below 3–4 × 104 objects there is a
bias towards slightly longer run times independent of the number
of threads. As said before, this is due to the overhead of allocating
memory and arranging data into convenient structures. In fact, a
naive pair counting algorithm might probably run faster for very
small samples. For larger samples, the overhead is less relevant
and the advantage of using multiple threads in parallel starts to
become significant. For around 106 particles in (rp, π) space, we
get a close to constant speed-up factor of 1.9, 2.8, and 3.6, when
we duplicate, triplicate, or quadruplicate the number of threads. We
observe a similar scaling in angular pair counts. For reference, we
also show the scaling of CORRFUNC with four threads. These tests
suggest that the multithreading efficiency of our implementation is
particularly high.

3.3 Bootstrap errors

As described in Section 2.9, GUNDAM can automatically produce
bootstrap error estimates. In Fig. 7, we show the cost of cal-

Figure 6. Comparison of GUNDAM parallel performance, by calculating for
pair counts in (rp, π) space with n threads in a single multicore CPU (max.
one thread per physical core). The bottom panel show the speed-up factor
over the single-thread case and the scaling of CORRFUNC, for reference.

MNRAS 00, 1 (2019)

GUNDAM: a toolkit for fast correlation functions 9

Figure 7. Incidence of estimating bootstrap errors (single core) in (rp, π)
pair counts, for samples of different size and for an increasing number of
bootstrap samples drawn.

culating error bars for samples of different size and requesting
nboot = [50,100,150] bootstrap random samples. The median
cost is a factor of 1.9, 2.7, and 3.4 in each respective case, with
a mild dependence on the size of the sample. Note, however, that
these costs to derive error bars are quite small, considering we are
basically performing the pair counts not once, but nboot times.

3.4 Use cases

To demonstrate the capabilities of our code, we show two examples
of application with real astronomical data sets. These are represen-
tative of the typical tasks that can be accomplished with few lines
of PYTHON code that make use of our toolkit.

For the first case, we chose a sample of 105 luminous red galaxies
(LRG) selected from the SDSS DR7 by Kazin et al. (2010), along
with 1.6 × 106 random objects. These are galaxies selected on the
basis of colour and magnitude to match a population of passive, red,
early-type galaxies, characteristic of highly biased environments
such as the central regions of clusters and large groups. We use
their DR7-Full sample at z ∼ 0.32, with −23.2 < Mg < −21.2.
Fig. 8 shows the 2D ξ (rp, π) in 0.5 h−1 Mpc bins, smoothed with
a Gaussian kernel of width w = 5. At small scales, the distortion
along the π direction due to random motions within central regions
of clusters is clearly visible. At large scales, the Kaiser effect
due to the coherent in-fall motions into virialized regions is also
evident by the contour squashing. Note that to go from raw
catalogue data to this plot the user only needs to call a couple lines
of code.

For the second example, we used a combination of the SDSS
main galaxy sample with 14.5 < mr < 17.7 and 0.02 < z < 0.3,
and the catalogue of physical properties derived by the MPA/JHU5

team (Kauffmann et al. 2003; Brinchmann et al. 2004). As shown
in Fig. 9, we trace the dependence of the clustering on stellar mass
by estimating the projected correlation function w(rp), integrated
40 h−1 Mpc along π . We do this in five stellar mass bins from
log(M/M
) = 9.5 up to log(M/M
) = 12. The well-known result
of more massive galaxies populating denser environments is nicely
reproduced here. At scales below 1 h−1 Mpc and for increasing
stellar mass, we can clearly observe the emergence of the one-halo
term due to galaxy pairs residing within the same dark matter halo.

5Available at http://www.mpa-garching.mpg.de/SDSS/DR7/

Figure 8. Estimate of the 2PCF in (rp, π) space calculated by our code,
corresponding to 105 luminous red galaxies selected from SDSS DR7 by
Kazin et al. (2010). Redshift-space distortions, such as the Finger of God
effect and the Kaiser effect are clearly visible. The figure was constructed
out of the box, with just a couple lines of Python code using the functionality
of the GUNDAM toolkit.

Figure 9. Projected 2PCF of SDSS DR7 main sample galaxies, as function
of their stellar mass. As expected, more massive galaxies are found
preferentially in denser environments and inhabit massive dark matter halos.
The one-halo term due to pairs residing in within the same halo is clearly
visible, as well the lack of pairs due to fibre positioning constrains at small
separations. This can be corrected readily by setting the option wbif = 1.
The bottom panel shows the relative bias respect the lowest mass sub-sample.
The entire computation of this figure was produced in just about seven lines
of code.

MNRAS 00, 1 (2019)

http://www.mpa-garching.mpg.de/SDSS/DR7/

10 E. Donoso

The effect of fibre collisions becomes apparent at scales below 0.1–
0.2 h−1 Mpc, but can be easily corrected by turning on the option
wfib = 1 to up-weight close objects (cyan curve). In the bottom
panel, we show the relative bias of each sub-sample respect to the
lowest mass bin population, which is fitted here by a power law
(dashed curve). While these results are well known, all it takes to
construct this figure from the data is about seven lines of code.

4 SUMMARY AND PROSPECTS

In this work, we describe a new package to estimate two-point cor-
relation functions, a fundamental statistical tool used in astronomy.
Our code employs an efficient skip list/linked list algorithm to count
pairs as fast as possible in projected, redshift, and angular coordi-
nates. A special pixel sorting technique significantly improves the
cache friendliness of linked lists that, together with various loop
optimization techniques, allow for an increased performance on par
and even better than the most advanced array-based algorithms.
The code runs in parallel with multithreading or multiprocessing
approach, therefore making available the expensive, lengthy com-
putations that large astronomical surveys demand, to small research
groups or individuals with limited resources.

The toolkit, implemented in a mixture of PYTHON and FORTRAN

languages, is not only fast but easy to use and extend. This is
important, as other sophisticated packages that rely on vectorization,
such as CORRFUNC, would require to write or modify AVX kernels,
a difficult task usually outside the skill set of astronomers or astro-
physicists. Any of these counting algorithms could potentially be
written using GPU programming, but again that requires significant
investment in time and human resources.

A future enhancement is the joint implementation of multipro-
cessing (e.g. though IPYPARALLEL or MPI) to efficiently distribute
tasks among nodes, plus multithreading (OpenMP) for optimal in-
node performance. Another possible improvement is vectorization.
Traditional array-based processing can benefit almost instantly from
special CPU instructions that work in parallel on vectors rather than
individual numbers. To vectorize a loop, a compiler first unrolls it
by a given vector length, and then packs multiple scalar instructions
into a single vector instruction. An efficient vectorization of at least
part of GUNDAM algorithms, would be a challenge, but one with
large potential gains. We are analysing possible modifications to
achieve that goal.

AC K N OW L E D G E M E N T S

We would like to thank the anonymous referee for useful suggestions
and insight to improve this paper. This work was supported by the
Consejo Nacional de Investigaciones Cientı́ficas y Técnicas de la
República Argentina (CONICET). This research uses the SDSS
Archive, funded by the Alfred P. Sloan Foundation, the Participating
Institutions, the National Aeronautics and Space Administration,
the National Science Foundation, the US Department of Energy,
the Japanese Monbukagakusho, and the Max Planck Society.

REFERENCES

Abazajian K. N. et al., 2009, ApJS, 182, 543
Abell P. A. et al., 2009, LSST Science Book, arXiv:0912.0201
Alam S. et al., 2015, ApJS, 219, 12
Brinchmann J., Charlot S., White S. D. M., Tremonti C., Kauffmann G.,

Heckman T., Brinkmann J., 2004, MNRAS, 351, 1151
Davis M., Peebles P. J. E., 1983, ApJ, 267, 465
Gray A. G., Moore A. W., 2001, in Leen T. K., Dietterich T. G., Tresp

V., eds, Advances in Neural Information Processing Systems (NIPS) 13
(Dec 2000). MIT Press, Cambridge, MA, United States

Guo H., Zehavi I., Zheng Z., 2012, ApJ, 756, 127
Hamilton A. J. S., 1993, ApJ, 417, 19
Ivezić Z. et al., 2008, SerAJ, 176, 1
Kauffmann G. et al., 2003, MNRAS, 341, 33
Kazin E. A. et al., 2010, ApJ, 710, 1444
Kerscher M., Szapudi I., Szalay A. S., 2000, ApJ, 535, L13
Landy S. D., Szalay A. S., 1993, ApJ, 412, 64
Omohundro S., 1991, in LippmannR. P., Moody J. E., Touretzky D. S.,

eds, Advances in Neural Information Processing Systems 3. Morgan
Kaufmann, San Francisco, CA, United States

Peebles P. J. E., 1980, The large-scale structure of the universe. Princeton
Univ. Press, Princeton, NJ

Peebles P. J. E., Hauser M. G., 1974, ApJS, 28, 19
Samet H., 2006, Foundations of Multidimensional and Metric Data Struc-

tures. Morgan Kaufmann, San Francisco, CA, United States
Shanks T., Bean A. J., Ellis R. S., Fong R., Efstathiou G., Peterson B. A.,

1983, ApJ, 274, 529
Sinha M., Garrison, L. , 2017, Astrophysics Source Code Library,

ascl.net/1703.003
Vargas-Magaña M. et al., 2013, A&A, 554, A131
Wright E. L. et al., 2010, AJ, 140, 1868
York D. G. et al., 2000, AJ, 120, 1579
Zehavi I. et al., 2005, ApJ, 630, 1

APPENDI X A : ROUTI NES

Table A1 lists the main routines available in GUNDAM to calculate
and visualize 2PCFs. There are additional auxiliary routines that
provide useful extra functionality and the full documentation is
available online.

MNRAS 00, 1 (2019)

http://dx.doi.org/10.1088/0067-0049/182/2/543
http://dx.doi.org/10.1088/0067-0049/219/1/12
http://dx.doi.org/10.1111/j.1365-2966.2004.07881.x
http://dx.doi.org/10.1086/160884
http://dx.doi.org/10.1088/0004-637X/756/2/127
http://dx.doi.org/10.1086/173288
http://dx.doi.org/10.1046/j.1365-8711.2003.06291.x
http://dx.doi.org/10.1088/0004-637X/710/2/1444
http://dx.doi.org/10.1086/312702
http://dx.doi.org/10.1086/172900
http://dx.doi.org/10.1086/190308
http://dx.doi.org/10.1086/161466
http://dx.doi.org/10.1051/0004-6361/201220790
http://dx.doi.org/10.1088/0004-6256/140/6/1868
http://dx.doi.org/10.1086/301513
http://dx.doi.org/10.1086/431891

GUNDAM: a toolkit for fast correlation functions 11

APPENDIX B: INPUT/OUTPUT PARAMETERS

Table B1 lists an input parameter dictionary used by GUNDAM to
calculate a projected correlation function, and Table B2 lists the
keys in the output dictionary.

Table A1. Main routines implemented in GUNDAM.

Name Description

pcf Calculate the projected auto-correlation function given two input tables (D, R samples)
pccf Calculate the projected cross-correlation function given three input tables (D, R, C samples)
rppi A Count pairs in projected-radial space (rp - π) given an input table (D sample)
rppi C Count cross-pairs in projected-radial space (rp - π) given two input tables (D, R samples)

rcf Calculate the redshift-space autocorrelation function given two input tables (D, R samples)
rccf Calculates the redshift-space cross-correlation function given three input tables (D, R, C samples)
s A Count pairs in redshift-space given an input table (D sample)
s C Count cross-pairs in redshift-space given two input tables (D, R samples)

acf Calculate the angular auto-correlation function given two input tables (D, R samples)
accf Calculate the angular cross-correlation function given two input tables (D, R, C samples)
th A Count pairs in angular-space given an input table (D sample)
th C Count cross-pairs in angular-space given two input tables (D, R samples)

plotcf Plot a 2PCF by providing (x,y) arrays of points
cntplot Plot a 2PCF direcly from a counts output dictionary (either read from disc or passed directly)
cntplot2D Idem before but for a 2D ξ (rp, π), with optional Gaussian smoothing and contour levels
comparecf Plot multiple 2PCFs and (optionally) and ratios of each respect to a control correlation
qprint Quick nice printout of input/output dictionaries to the PYTHON console

Table B1. Example dictionary of input parameters for a projected correlation function.

Name Description

kind Kind of correlation function (pcf)
description Short description of the run. Only informative
file,file1 File name of data and random sample. Only informative
estimator Statistical estimator of the correlation function
cra,cdec,cred,cwei,cdcom Column name in data sample table for coord., redshift, weights, and comov. distance
cra1,cdec1,cred1,cwei1,cdcom1 Column name in random sample table coord., redshift, weights, and comov. distance
h0,omegam,omegal H0[km s−1 Mpc−1], �λ and �matter cosmology parameters
calcdist If calcdist = False, adopt comov. distances from input tables. Otherwise calculate them
outfn Base name for all ouput files (e.g. /home/myuser/redagn)

nsepp No. of projected separation bins
seppmin Minimum projected distance to consider [Mpc h−1]
dsepp Size of projected bins (in dex if logsepp = 1)
logsepp If logsepp = 1 use log-spaced bins. Otherwise use linear-spaced bins
nsepv No. of radial separation bins
sepvmin Minimum radial distance to consider [Mpc h−1]
dsepv Size of radial bins [Mpc h−1].
autogrid If True guess the optimum nr. of cells (mxh1,mxh2,mxh3) of the skip table (SK)
dens Custom nr. of particles per SK cell used when autogrid = True
mxh1,mxh2,mxh3 No. of DEC, RA, and comov. dist. cells of the SK table. Only relevant if autogrid = False
doboot If doboot = 1, calculate bootstrap counts and error bars
nbts No. of bootstrap samples. Only relevant if doboot = 1
bseed Seed for boostrap random number generator
wfib Apply SDSS fiber correction for pairs closer than 55 arcsec. See wfiber function

MNRAS 00, 1 (2019)

12 E. Donoso

Table B2. Example dictionary of output keys for a projected correlation function.

Name Description

npt,npt1 No. of points in data (D) and random sample (R), respectively
rpl,rpm,rpr Left-, middle-, and right side of projected bins
wrp,wrperr Projected correlation function and its error (integrated along all radial bins)
dd DD pair count array in projected and radial bins
rr RR pair count array in projected and radial bins
dr DR pair count array in projected and radial bins
bdd Boostrap DD pair count array in projected and radial bins
log Log record of PYTHON routines
logfortran Log record of FORTRAN routines
par Input parameter dictionary

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 00, 1 (2019)

List of astronomical key words (Updated on 2017 March)

This list is common to Monthly Notices of the Royal Astronomical Society, Astronomy and Astrophysics, and The Astrophysical
Journal. In order to ease the search, the key words are subdivided into broad categories. No more than six subcategories
altogether should be listed for a paper.

The subcategories in boldface containing the word ‘individual’ are intended for use with specific astronomical objects; these
should never be used alone, but always in combination with the most common names for the astronomical objects in question.
Note that each object counts as one subcategory within the allowed limit of six.

The parts of the key words in italics are for reference only and should be omitted when the keywords are entered on the
manuscript.

General
editorials, notices
errata, addenda
extraterrestrial intelligence
history and philosophy of astronomy
miscellaneous
obituaries, biographies
publications, bibliography
sociology of astronomy
standards

Physical data and processes
acceleration of particles
accretion, accretion discs
asteroseismology
astrobiology
astrochemistry
astroparticle physics
atomic data
atomic processes
black hole physics
chaos
conduction
convection
dense matter
diffusion
dynamo
elementary particles
equation of state
gravitation
gravitational lensing: micro
gravitational lensing: strong
gravitational lensing: weak
gravitational waves
hydrodynamics
instabilities
line: formation
line: identification
line: profiles
magnetic fields
magnetic reconnection
(magnetohydrodynamics) MHD
masers
molecular data
molecular processes
neutrinos
nuclear reactions, nucleosynthesis, abundances
opacity
plasmas
polarization

radiation: dynamics
radiation mechanisms:general
radiation mechanisms: non-thermal
radiation mechanisms: thermal
radiative transfer
relativistic processes
scattering
shock waves
solid state: refractory
solid state: volatile
turbulence
waves

Astronomical instrumentation, methods and techniques
atmospheric effects
balloons
instrumentation: adaptive optics
instrumentation: detectors
instrumentation: high angular resolution
instrumentation: interferometers
instrumentation: miscellaneous
instrumentation: photometers
instrumentation: polarimeters
instrumentation: spectrographs
light pollution
methods: analytical
methods: data analysis
methods: laboratory: atomic
methods: laboratory: molecular
methods: laboratory: solid state
methods: miscellaneous
methods: numerical
methods: observational
methods: statistical
site testing
space vehicles
space vehicles: instruments
techniques: high angular resolution
techniques: image processing
techniques: imaging spectroscopy
techniques: interferometric
techniques: miscellaneous
techniques: photometric
techniques: polarimetric
techniques: radar astronomy
techniques: radial velocities
techniques: spectroscopic
telescopes

Astronomical data bases
astronomical data bases: miscellaneous
atlases
catalogues
surveys
virtual observatory tools

Astrometry and celestial mechanics
astrometry
celestial mechanics
eclipses
ephemerides
occultations
parallaxes
proper motions
reference systems
time

The Sun
Sun: abundances
Sun: activity
Sun: atmosphere
Sun: chromosphere
Sun: corona
Sun: coronal mass ejections (CMEs)
Sun: evolution
Sun: faculae, plages
Sun: filaments, prominences
Sun: flares
Sun: fundamental parameters
Sun: general
Sun: granulation
Sun: helioseismology
Sun: heliosphere
Sun: infrared
Sun: interior
Sun: magnetic fields
Sun: oscillations
Sun: particle emission
Sun: photosphere
Sun: radio radiation
Sun: rotation
(Sun:) solar–terrestrial relations
(Sun:) solar wind
(Sun:) sunspots
Sun: transition region
Sun: UV radiation
Sun: X-rays, gamma-rays

Planetary systems
comets: general

comets: individual: . . .
Earth
interplanetary medium
Kuiper belt: general

Kuiper belt objects: individual: . . .
meteorites, meteors, meteoroids
minor planets, asteroids: general

minor planets, asteroids: individual: . . .

Moon
Oort Cloud
planets and satellites: atmospheres
planets and satellites: aurorae
planets and satellites: composition
planets and satellites: detection
planets and satellites: dynamical evolution and stability
planets and satellites: formation
planets and satellites: fundamental parameters
planets and satellites: gaseous planets
planets and satellites: general

planets and satellites: individual: . . .
planets and satellites: interiors
planets and satellites: magnetic fields
planets and satellites: oceans
planets and satellites: physical evolution
planets and satellites: rings
planets and satellites: surfaces
planets and satellites: tectonics
planets and satellites: terrestrial planets
planet–disc interactions
planet–star interactions
protoplanetary discs
zodiacal dust

Stars
stars: abundances
stars: activity
stars: AGB and post-AGB
stars: atmospheres
(stars:) binaries (including multiple): close
(stars:) binaries: eclipsing
(stars:) binaries: general
(stars:) binaries: spectroscopic
(stars:) binaries: symbiotic
(stars:) binaries: visual
stars: black holes
(stars:) blue stragglers
(stars:) brown dwarfs
stars: carbon
stars: chemically peculiar
stars: chromospheres
(stars:) circumstellar matter
stars: coronae
stars: distances
stars: dwarf novae
stars: early-type
stars: emission-line, Be
stars: evolution
stars: flare
stars: formation
stars: fundamental parameters
(stars:) gamma-ray burst: general
(stars:) gamma-ray burst: individual: . . .
stars: general
(stars:) Hertzsprung–Russell and colour–magnitude
diagrams
stars: horizontal branch
stars: imaging
stars: individual: . . .
stars: interiors

stars: jets
stars: kinematics and dynamics
stars: late-type
stars: low-mass
stars: luminosity function, mass function
stars: magnetars
stars: magnetic field
stars: massive
stars: mass-loss
stars: neutron
(stars:) novae, cataclysmic variables
stars: oscillations (including pulsations)
stars: peculiar (except chemically peculiar)
(stars:) planetary systems
stars: Population II
stars: Population III
stars: pre-main-sequence
stars: protostars
(stars:) pulsars: general
(stars:) pulsars: individual: . . .
stars: rotation
stars: solar-type
(stars:) starspots
stars: statistics
(stars:) subdwarfs
(stars:) supergiants
(stars:) supernovae: general
(stars:) supernovae: individual: . . .
stars: variables: Cepheids
stars: variables: Scuti
stars: variables: general
stars: variables: RR Lyrae
stars: variables: S Doradus
stars: variables: T Tauri, Herbig Ae/Be
(stars:) white dwarfs
stars: winds, outflows
stars: Wolf–Rayet

Interstellar medium (ISM), nebulae
ISM: abundances
ISM: atoms
ISM: bubbles
ISM: clouds
(ISM:) cosmic rays
(ISM:) dust, extinction
ISM: evolution
ISM: general
(ISM:) HII regions
(ISM:) Herbig–Haro objects

ISM: individual objects: . . .
(except planetary nebulae)
ISM: jets and outflows
ISM: kinematics and dynamics
ISM: lines and bands
ISM: magnetic fields
ISM: molecules
(ISM:) photodissociation region (PDR)
(ISM:) planetary nebulae: general
(ISM:) planetary nebulae: individual: . . .
ISM: structure
ISM: supernova remnants

The Galaxy
Galaxy: abundances
Galaxy: bulge
Galaxy: centre
Galaxy: disc
Galaxy: evolution
Galaxy: formation
Galaxy: fundamental parameters
Galaxy: general
(Galaxy:) globular clusters: general
(Galaxy:) globular clusters: individual: . . .
Galaxy: halo
Galaxy: kinematics and dynamics
(Galaxy:) local interstellar matter
Galaxy: nucleus
(Galaxy:) open clusters and associations: general
(Galaxy:) open clusters and associations: individual: . . .
(Galaxy:) solar neighbourhood
Galaxy: stellar content
Galaxy: structure

Galaxies
galaxies: abundances
galaxies: active
(galaxies:) BL Lacertae objects: general
(galaxies:) BL Lacertae objects: individual: . . .
galaxies: bulges
galaxies: clusters: general

galaxies: clusters: individual: . . .
galaxies: clusters: intracluster medium
galaxies: distances and redshifts
galaxies: dwarf
galaxies: elliptical and lenticular, cD
galaxies: evolution
galaxies: formation
galaxies: fundamental parameters
galaxies: general
galaxies: groups: general

galaxies: groups: individual: . . .
galaxies: haloes
galaxies: high-redshift

galaxies: individual: . . .
galaxies: interactions
(galaxies:) intergalactic medium
galaxies: irregular
galaxies: ISM
galaxies: jets
galaxies: kinematics and dynamics
(galaxies:) Local Group
galaxies: luminosity function, mass function
(galaxies:) Magellanic Clouds
galaxies: magnetic fields
galaxies: nuclei
galaxies: peculiar
galaxies: photometry
(galaxies:) quasars: absorption lines
(galaxies:) quasars: emission lines
(galaxies:) quasars: general

(galaxies:) quasars: individual: . . .
(galaxies:) quasars: supermassive black holes
galaxies: Seyfert
galaxies: spiral
galaxies: starburst
galaxies: star clusters: general

galaxies: star clusters: individual: . . .
galaxies: star formation
galaxies: statistics
galaxies: stellar content
galaxies: structure

Cosmology
(cosmology:) cosmic background radiation
(cosmology:) cosmological parameters
(cosmology:) dark ages, reionization, first stars

(cosmology:) dark energy
(cosmology:) dark matter
(cosmology:) diffuse radiation
(cosmology:) distance scale
(cosmology:) early Universe
(cosmology:) inflation
(cosmology:) large-scale structure of Universe
cosmology: miscellaneous
cosmology: observations
(cosmology:) primordial nucleosynthesis
cosmology: theory

Resolved and unresolved sources as a function of
wavelength
gamma-rays: diffuse background
gamma-rays: galaxies
gamma-rays: galaxies: clusters
gamma-rays: general
gamma-rays: ISM
gamma-rays: stars
infrared: diffuse background
infrared: galaxies
infrared: general
infrared: ISM
infrared: planetary systems
infrared: stars
radio continuum: galaxies
radio continuum: general
radio continuum: ISM
radio continuum: planetary systems
radio continuum: stars
radio continuum: transients
radio lines: galaxies
radio lines: general
radio lines: ISM
radio lines: planetary systems
radio lines: stars
submillimetre: diffuse background
submillimetre: galaxies
submillimetre: general
submillimetre: ISM
submillimetre: planetary systems
submillimetre: stars
ultraviolet: galaxies

ultraviolet: general
ultraviolet: ISM
ultraviolet: planetary systems
ultraviolet: stars
X-rays: binaries
X-rays: bursts
X-rays: diffuse background
X-rays: galaxies
X-rays: galaxies: clusters
X-rays: general
X-rays: individual: . . .
X-rays: ISM
X-rays: stars

