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A B S T R A C T   

Order picking is one of the most demanding activities in many warehouses in terms of capital and 
labor. In parts-to-picker systems, automated vehicles or cranes bring the parts to a human picker. 
The storage assignment policy, the assignment of products to the storage locations, influences 
order picking efficiency. Commonly used storage assignment policies, such as full turnover-based 
and class-based storage, only consider the frequency at which each product has been requested 
but ignore information on the frequency at which products are ordered jointly, known as product 
affinity. Warehouses can use product affinity to make informed decisions and assign multiple 
correlated products to the same inventory “pod” to reduce retrieval time. Existing affinity-based 
assignments sequentially cluster products with high affinity and assign the clusters to storage 
locations. We propose an integrated cluster allocation (ICA) policy to minimize the retrieval time 
of parts-to-picker systems based on both product turnover and affinity obtained from historical 
customer orders. We formulate a mathematical model that can solve small instances and develop 
a greedy construction heuristic for solving large instances. The ICA storage policy can reduce total 
retrieval time by up to 40% compared to full turnover-based storage and class-based policies. The 
model is validated using a real warehouse dataset and tested against uncertainties in customer 
demand and for different travel time models.   

1. Introduction 

Warehouses decouple supply from demand in supply chains. To increase the efficiency of warehouse operations, we focus on the 
order picking process. Order picking is the central activity that requires much labor in picker-to-parts systems and much capital in 
parts-to-picker systems (Goetschalckx and Ashayeri, 1989; De Koster et al., 2007). The storage assignment policy, which determines 
how products are assigned to storage locations, influences order picking efficiency. Storage assignment and order picking are even 
modeled as integrated problems (Silva et al., 2020). Several storage assignment policies that improve the order picking are used in 
practice. Below, we review the main policies. 

The random storage policy is the most commonly used and has been widely studied in the literature (Hausman et al., 1976; Bozer 
and White, 1984; De Koster et al., 2008). A system applying such a policy randomly allocates products to available storage locations. 
The class-based (ABC) storage policy considers two product attributes to assign products to storage locations, namely turnover speed 
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and storage space needed. The former refers to how often a product is ordered in a certain period. The latter is the average amount of 
space that is required to store the inventory of the product. The Cube-per-Order Index (COI) ranks products based on these two at
tributes and determines how frequently a product is requested per unit of stock space required (Heskett, 1963). In the ABC policy, 
products are first classified into several turnover frequency classes (commonly two or three: A, B, and C) based on their COI. Then, the 
product class with the highest COI is assigned to a block of storage locations (a storage zone) that is most readily accessible. Within 
each zone, products of the same class are assigned randomly to the locations. In the full turnover-based (FTB) policy, products are 
sorted in descending order based on their COI and assigned to storage locations that are sorted in ascending order, based on the travel 
distance to the depot (Yang et al., 2017). As a result of assigning fast moving products to locations close to the depot, the ABC and FTB 
policies can reduce picking travel times to frequently requested products. For convenience, a list of acronyms used in this paper is 
available in Table 6 in Appendix A. 

Compared to the random storage policy, the ABC and FTB policies can reduce picking travel time substantially by considering 
product turnover. However, they ignore the affinity between products in historical orders. The affinity of two products is defined as 
their “correlation” in customer orders, i.e., how frequently the two products are ordered together. Next to turnover speed and storage 
space needed, affinity is another important attribute of the products, which can be derived from order history and/or demand fore
casts. If this attribute is ignored in the assignment, two products that are frequently requested together (e.g. peanut butter and jelly) 
might be assigned to storage locations far from each other, which can unnecessarily increase order picking time. By considering the 
affinity between the two products, it is possible to cluster them in several groups based on this correlation. These clusters then can be 
allocated to the storage locations to reduce order picking time. An application of demand-correlation in apparel industry is studied by 
Frazelle (2016). Order batch picking may also benefit from storing multiple products at the same storage location (Yang et al., 2020). 

In robotic mobile fulfillment (RMF) systems (Roy et al., 2019; Lamballais Tessensohn et al., 2020), products are typically stored on 
mobile inventory pods, each holding several dozens of products. When a product is needed for a customer order, a robot transports the 
entire inventory pod, shown in Fig. 1(a), to a picking station. The system can benefit from clustering the products ordered together 
frequently on the same pod. Amazon Robotics and Swisslog’s CarryPick are two examples of RMF systems. Clustered storage can also 
be found in some other parts-to-picker retrieval systems. In automated storage and retrieval (AS/R) systems a storage bin is retrieved 
by a crane and then transported to a pick station. Fig. 1(b) shows an AS/R system with aisle-captive cranes and products stored in bins. 
Multiple small products can be stored in a single bin, each in a separate compartment. Fig. 1(c) shows a storage bin with nine com
partments, each containing a different product. To fulfill customer orders, the crane needs to visit the locations with bins that store the 
requested products. In both the RMF and AS/R system, the number of these location visits can be reduced by storing highly correlated 
products in the same bin or pod. If each storage pod or bin carries multiple stock keeping units (SKUs), these systems can fulfill orders 
by retrieving a smaller number of pods or bins, compared to single-SKU pods or bins. This can significantly increase the throughput 
capacity. The same holds for other types of AS/R systems, like shuttle-based storage and retrieval, SBS/R (also called autonomous 
vehicle storage and retrieval) systems, or carousel systems. SBS/R systems deploy shuttles to retrieve bins with products and carousels 
store items in bins on vertically rotating shelves that are displayed to the picker. 

The dominant approach of cluster-based allocation in the literature, which decomposes the travel time minimization problem into a 
clustering problem and an allocation problem, consists of two sequential steps. In the first step, products are clustered based on their 
correlation. In the second step, these clustered products are assigned to locations close to each other. Note that optimizing both 
problems in the decomposition approach does not guarantee an overall optimal solution. We show this by using an illustrative 
example. Assume that four products A, B, C, and D are stored in a warehouse. A small set of customer orders is given: {AC, ABD, BC, AD, 
ABD, AC, BC, AB, BC, AD, ABD}, with resulting popularity of 8, 7, 5, and 5 for products A, B, C, and D, respectively. Each cluster can 
contain two products. Clustering them using the decomposition approach leads to the following result. The most popular product, A, 
has the highest correlation with D, with five joint requests. Therefore, A and D form the first cluster, and B and C form the second 
cluster. The first cluster with the total popularity of 13 is allocated to the first storage location at one distance unit from the depot, and 
the second cluster with the total popularity of 12 is allocated to the second storage location at two distance units. Picking all orders, for 
example, in an AS/R system sequentially, requires 26 distance units of travel, whereas the travel distance can be reduced to 25 units by 
swapping the locations of the clusters. 

Fig. 1. (a) An Amazon robot carrying a storage pod (source: Business Wire, 2014), (b) an AS/R system, (c) a storage bin with sub-bins (source: Akro- 
Mils, 2019). 

M. Mirzaei et al.                                                                                                                                                                                                       



Transportation Research Part E 146 (2021) 102207

3

Decomposing the clustering and allocation problems is a common approach (Garfinkel, 2005; Chiang et al., 2014; Zhang, 2016) and 
picker-to-parts systems are the focus of the existing models (Bindi et al., 2007; Xiao and Zheng, 2012; Li et al., 2016). However, 
automated parts-to-picker warehousing systems are better suited for the growing ecommerce sector than the traditional picker-to-parts 
systems (Boysen et al., 2019). This paper proposes an integrated cluster allocation (ICA) storage assignment policy for parts-to-picker 
systems that minimizes the total order retrieval time by considering both product turnover and affinity concurrently. We examine 
storage systems where each storage location (e.g. storage bin) accommodates multiple products. We develop a model to optimally 
solve small instances and propose a construction heuristic for real-size problems. The model is validated using a real warehouse dataset 
and tested against disturbances in customer orders. 

Note that the choice of storage policy also impacts the storage space requirements of warehouses. Random and ABC storage policies 
not only provide benefits such as easy implementation and replenishment, but they also provide high space efficiency (compared to e. 
g. FTB storage) as products can share the storage space in such systems. According to Hausman et al. (1976) and Rosenblatt and Eynan 
(1989), for an infinite number of products per storage class, the required storage space per product is equal to the average inventory 
level. Therefore, for a limited number of products, the required storage space varies between the quantity ordered from the supplier 
and the average inventory level (Yu et al., 2015). In the literature, the space-saving effect of the random and ABC policies compared to 
the FTB policy is either ignored (Heskett, 1963, 1964) or underestimated (Hausman et al., 1976; Eynan and Rosenblatt, 1994; Yu and 
de Koster, 2009). Space-sharing has a high impact on space requirements and consequently on the dimensions of the system and travel 
times. To provide a realistic and more accurate comparison of different systems, we include space-sharing in our numerical experi
ment. This is further explained in Section 4.1. The remainder of this paper is structured as follows. Section 2 reviews the literature on 
storage assignment policies based on product affinity and turnover. Section 3 introduces the mathematical model. Section 4 describes 
extensive numerical experiments to evaluate the performance of the proposed policy, and Section 5 concludes the paper. 

2. Literature review 

Analysis and evaluation of the impact of design parameters on performance of automated systems such as AS/R and SBS/R (also 
called AVS/R) systems has received much attention (Marchet et al., 2012, 2013; Borovinšek et al., 2016; Lerher et al., 2017; Ekren 
et al., 2018; Lerher, 2018; Küçükyaşar et al., 2020). Since we focus on the impact of an integrated cluster-based storage policy on the 
load retrieval time, this section first reviews literature on the impact on retrieval time of general storage assignment policies followed 
by cluster-based storage assignment policies. 

2.1. General storage assignment 

A storage assignment policy determines the allocation of products to storage locations and impacts the load retrieval time of the 
storage system (Roodbergen and Vis, 2009). Hausman et al. (1976) and Graves et al. (1977) compare the performance of an automated 
storage system for three storage policies, namely random, ABC, and FTB. The results show that turnover-based policies perform better 
for a unit load warehouse and has the lowest expected travel time. The ABC assignment also offers comparative benefits as it allows 
weaker assumptions regarding product turnover frequencies (they do not have to be constant). Ekren et al. (2015) study the best rack 
design when an ABC policy is applied to SBS/R systems to maximize utilization of lifts and shuttles and reduce cycle times. Yu et al. 
(2015) prove that the FTB policy is not optimal if the total required storage space does not equal the average inventory level of all 
products. In fact, given a finite number of products, a small number of storage classes already results in the minimum picking travel 
time. More storage classes require extra storage space. Weidinger and Boysen (2018) propose a scattered allocation that spreads 
product units in the warehouse to increase the likelihood of having some items located nearby. Lamballais Tessensohn et al. (2020) 
study the effect of spreading the inventory of a product among multiple pods on order throughput time in an RMF system. 

2.2. Cluster-based storage 

Products in customer orders may be correlated, and it may not be optimal to assign the premium locations to products with higher 
turnover. Product clustering in storage policies are applied in some parts-to-picker systems. Kim (1993) clusters correlated items in a 
mini-load AS/R system using a heuristic to minimize the material handling and inventory costs. Kress et al. (2017) partition the SKUs 
using mathematical models to minimize the total number of product groups that have to be accessed to pick customer orders. These 
models are particularly interesting for carousel systems and mobile racks, where one aims to minimize the number of partitions visited. 
We review the papers that study picker-to-parts systems below. 

Some researchers (Frazelle, 1989; Sadiq et al., 1996; Ballou, 2004) have examined family-group based assignment policies, where 
certain products can be grouped and allocated to a subsection of the warehouse according to some shared properties. This strategy is 
common in retail warehouses, where the objective is to minimize shelf replenishment time. Amirhosseini and Sharp (1996) introduce 
several measures to find the correlation between products. An optimal assignment is possible by specifying all combinations pairs, 
which only works for warehouses with a very limited number of products. Frazelle (1989) proposes a heuristic for the stock location 
assignment problem that minimizes the order picking travel time by looking at the correlation between products. He applies a 
decomposition approach where in the first step, products are sequentially clustered, beginning with the most popular products and 
adding the highest correlated products until the capacity of the cluster is reached. In the second step, clusters with the highest total 
popularity are allocated to the closest available locations. Amirhosseini and Sharp (1996) propose another decomposition approach 
using a simultaneous clustering heuristic, in which two clusters with the highest correlation repeatedly merge until they reach the 
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maximum allowed size. Zhang (2016) creates storage clusters using a sum-seed to calculate the correlation between all the remaining 
SKUs and those allocated to the cluster. He also introduces a static-seed that selects a SKU with the highest turnover frequency as the 
seed and assigns products with the highest correlation with the seed to the current cluster. Zhang et al. (2019) use the demand cor
relation pattern in a manual picker-to-parts warehouse to assign the products ordered together to storage locations and to simulta
neously determine the pick route. To reduce the complexity of the mathematical model, they use an S-shape routing and solve it using 
simulated annealing. Accorsi et al. (2012) cluster correlated products using the nearest and farthest neighborhood algorithms. They 
then, assign clusters to locations according to the COI and other prioritization indices calculated for each cluster. 

Sadiq et al. (1996) consider a correlated assignment in a dynamic environment and propose the dynamic stock location assignment 
algorithm that addresses product re-slotting when demand changes and product life cycles are short. They show that this algorithm 
performs better than a static COI rule. They use a two-step hierarchical clustering that improves the clusters. Sharp et al. (1998) 
propose a heuristic that improves existing hierarchical clustering algorithms. It is used to assign an assortment up to 700 products. 
Garfinkel (2005) studies correlated storage for zone picking, where products are assigned to the zones based on their correlation to 
minimize the number of zones visited for all orders. Jane and Laih (2005) define similarity measurement as coappearance of two items 
in the order set and use it to spread similar items over different zones. They maximize the utilization of a synchronized zone order 
picking system by formulating an integer program and solving it using a heuristic. Xiao and Zheng (2012) compute item correlation 
from the bill of materials and use it in a mathematical model to minimize zone visits. They use heuristics and a genetic algorithm to 
solve the model. Xiao and Zheng (2010) use the same correlation measure and present a mathematical model to minimize the travel 
distance of the bill of materials tours in the production warehouse. Jewkes et al. (2004) use a stochastic model for product assignment 
and picker allocation to minimize the cycle time of picking random orders from storage bins that store multiple products. 

Rao (1971) and Hansen and Jaumard (1997) use a mixed-integer program to assign products to clusters to maximize the total 
affinity in the clusters. Such a model can be used in the first step of the decomposition approach since it does not allocate the products 
to storage locations. Liu (1999) examines these clustering techniques and proposes a primal-dual algorithm to solve the general 
clustering model as formulated by Rao (1971). Chiang et al. (2011) propose the data mining-based storage assignment approach that 
uses a fitness value that is a function of correlation, turnover, and distance as an association index. Chiang et al. (2014) introduce a new 
measure for correlation between products called weighed support count, which is maximized by applying two heuristics. First, the 
modified class-based heuristic maximizes the aggregated score within each storage zone, and then the association seed-based heuristic 
maximizes the aggregated score within each aisle. Bindi et al. (2009) take a data mining approach to define a similarity measure that is 
used in a clustering algorithm and assignment rules. In a case study, they show that a similarity-based strategy performs better than 
class-based and random strategies. Wang et al. (2020) formulate a storage location assignment model that minimizes the total travel 
distance for fulfilling customer orders. They solve it using a local search heuristic that swaps item pairs to improve the travel distance, 
according to the information in the order data. Li et al. (2016) use a product affinity-based technique in a dynamic storage assignment 
problem. A greedy genetic algorithm is used to solve the mathematical model that maximizes the total affinity between products of 
each zone and the total weighted popularity (a higher weight is given to zone A compared to zone B and C). Zhang et al. (2020) present 

Table 1 
Overview of papers using a cluster-based storage allocation policy.  

Paper Parts-to- 
picker 

Cluster Allocation 
Approach 

Objective Solution 

Wang et al. (2020) No Decomposition Travel distance Heuristic DBA1 

Foroughi et al. (2020) No Decomposition Travel distance/Aisles accessed Optimal/Heuristic 
Accorsi et al. (2012) No Decomposition Travel distance/Aisles crossed Simulation and what-if 

analysis 
Garfinkel (2005) No Decomposition Number of zone visits Heuristic 
Frazelle (1989) No Decomposition Travel time Heuristic 
Jane and Laih (2005) No Decomposition Zone picking utilization Heuristic 
Zhang (2016) No Decomposition Travel distance Heuristic, sum and static seed 
Xiao and Zheng (2010) No Decomposition Travel distance Multi-stage heuristic 
Xiao and Zheng (2012) No Decomposition Number of zone visits Heuristic, GA 
Liu (1999) No Decomposition Sum of similarity measure Heuristic 
Chiang et al. (2011) No Semi-integrated Sum of fitness values Heuristic, DMSA2 

Chiang et al. (2014) No Decomposition Weighed support count/travel distance Heuristic, MCBH3 and ASBH4 

Li et al. (2016) No Semi-integrated Sum of affinity and turnover/travel 
distance 

GA 

Amirhosseini and Sharp 
(1996) 

No Decomposition Travel distance Heuristic 

Sharp et al. (1998) No Decomposition Travel distance Heuristic 
Sadiq et al. (1996) No Decomposition Travel time Heuristic 
Bindi et al. (2007) No Decomposition Travel distance Heuristic 
Jewkes et al. (2004) No Decomposition Order cycle time Greedy heuristic 
Kim (1993) Yes Decomposition Handling/inventory costs Heuristic 
Kress et al. (2017) Yes Decomposition Number of groups accessed Heuristic, Branch and Bound 
This paper Yes Integrated/Decomposition Retrieval time Optimal/SA5 heuristic 

1 Data-based approach. 2 Data mining-based storage assignment. 3 Modified class-based heuristic. 4 Association seed-based heuristic. 5 Sequential 
alternating heuristic (refer to Section 3.2). 
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a mixed-integer program for a dynamic slotting problem to minimize the fulfilment time. They increase the likelihood of finding 
correlated items that are ordered in a period of few hours in a short pick route. Foroughi et al. (2020) minimize the number of aisles 
accessed and the total distance covered in mobile racks by modeling a dynamic program for picker routing and heuristic priority rule 
for product allocation based on joint orders. Table 1 shows an overview of studies on cluster-based assignment policy and highlights 
the research gap. 

Most of the studies summarized in Table 1 apply a storage allocation in picker-to-parts systems using affinity between products. 
They decompose the problem by first clustering products based on some measure of demand affinity between products, followed by 
assigning the clusters to storage locations. These decomposed problems do not necessarily optimize the same objective function. Semi- 
integrated approaches in the literature (Chiang et al., 2011; Li et al., 2016) combine the information on product-demand affinity, 
product-demand turnover, and distance into a fitness value measure. This paper contributes by introducing an integrated cluster 
allocation (ICA) approach to parts-to-picker systems which clusters products and allocates them to storage locations simultaneously, 
using both product turnover frequency and affinity in historical demand information. Additionally, in a scenario-based analysis, we 
investigate for which order profiles an ICA policy is beneficial compared to common policies like a turnover frequency-based policy 
and a sequential approach. To solve large instances and validate the model, a SA heuristic is proposed. In the evaluation, the effect of 
space-sharing by products, and applying different travel time models are taken into account. In the next section, we propose the 
mathematical model for the integrated approach. 

3. Problem description and mathematical formulation 

To reduce order picking travel time, products can be clustered in the storage area based on the correlation observed in the order 
history. Products of each cluster are assigned to a location consisting of multiple sub-locations. We make the following assumptions:  

• Each product is assigned to only one cluster.  
• Each storage location (e.g. bin) consists of multiple sub-locations (e.g. sub-bins). Each sub-bin can store one product.  
• The order history is sufficiently large to accurately capture product turnover and affinity.  
• The retrieval machine (i.e., AS/R crane or a robot) transports an entire storage bin or pod to the depot.  
• The total storage capacity is sufficient to accommodate all products. 

We propose a mathematical model for the integrated cluster allocation policy that uses historical order set O to allocate product i ∈
P to the cluster (a storage bin) at location l ∈ L, to minimize total retrieval time. We use the following notations.  

Parameters: 
P  the set of products in the assortment, 
O  the set of customer orders over a certain period of time, 
L  the set of available storage locations in the system, 
Z  the set of zones in the warehouse, 
Π  the sorted storage location set L, based on ascending distance to the depot,  
Cl  the number of sub-locations (sub-bins) available in the cluster (bin) at location l ∈ L,  
Ii  the number of sub-bins needed to store the required inventory of product i ∈ P,  
tl  the one-way travel time from the depot to location l ∈ L,  
ρij  affinity between product i, j ∈ P,  
roi  = 1if order o ∈ O contains a request for product i ∈ P, roi = 0 otherwise,  
τi  turnover frequency of product i ∈ P,  
Qi  the order quantity of product i ∈ P,  
Nk  the number of items that share storage zone k ∈ Z,  
ai(Nk) the average required space to store item i ∈ P in class k ∈ Z together with Nk − 1 other items,  
ε  the space-sharing factor in the class-based policy. 
Variables: 
xil  =1 if product i ∈ P is assigned to the cluster at location l ∈ L, xil = 0 otherwise,  
zol  =1 if picking order o ∈ O requires a visit to location l ∈ L, zol = 0 otherwise.   

The Integrated cluster allocation (ICA) model is formulated as follows: 

min
∑

o∈O

∑

l∈L
tlzol (1) 

Subject to 
∑

l∈L
xil = 1,∀i ∈ P, (2)  

∑

i∈P
Iixil ≤ Cl,∀l ∈ L, (3)  
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zol ≥ roixil,∀i ∈ P,∀o ∈ O, ∀l ∈ L, (4)  

xil ∈ {0, 1},∀i ∈ P,∀l ∈ L, (5)  

zol ∈ {0, 1}, ∀o ∈ O, ∀l ∈ L. (6) 

The objective function (1) minimizes the total travel time to pick all customer orders, depending on the clusters and product 
allocation in the model. Therefore, products with high affinity are assigned to the same cluster, and products with higher turnover 
frequency are stored closer to the depot. Constraints (2) ensure that each product is assigned to exactly one storage location. Con
straints (3) ensure that the capacity of each storage location is not exceeded. Constraints (4) guarantee necessary visits to storage 
locations of the requested products for all customer orders. Constraints (5), (6) define the binary variables. 

3.1. Solution approaches 

In terms of complexity, the model in Section 3 consists of two problems, namely clustering and assigning the products. Since the 
assignment problem is comparable to the bin packing problem, which is proven to be NP-hard (Garey and Johnson, 1979), it can be 
shown that this model is NP-hard too. The solution approach consists of using a general optimization solver and a greedy heuristic that 
can solve large instances. Solution approaches in the literature (see Table 1) generally decompose the problem into two sub-problems, 
clustering the correlated products and then assigning the clusters to the storage locations or the zones. These methods are developed 
for picker-to-parts warehouses and are not directly applicable to parts-to-picker warehouses where correlated products on the same 
storage bin or pod are moved together using automation technologies. In Section 3.2, we develop a sequential heuristic approach fit for 
parts-to-picker warehouses that uses both affinity and turnover frequency by alternating between allocation and clustering. This 
heuristic is used for solving real-size warehouse cases. 

3.2. A sequential alternating (SA) heuristic 

In this section, we develop a fast heuristic solution, inspired by existing picker-to-parts sequential methods (Garfinkel, 2005; Zhang, 
2016), but adapted to parts-to-picker systems. To consider both turnover frequency and affinity of the products, the heuristic alternates 
between assigning products to locations and clustering products. Clusters may be defined according to several affinity measures (see 
Amirhosseini and Sharp, 1996). We use Expression (7) to obtain the affinity between products i and j. 

ρij =

∑
o∈Oroi × roj

|O|
, i, j ∈ P, i ∕= j, (7)  

where roi = 1 if order o ∈ O contains a request for product i ∈ P, roi = 0 otherwise. 
This heuristic is described in Algorithm 1. Note that empty bins are preassigned to locations, so we refer to these as locations. Let set 

Π be the sorted storage location set L, based on ascending distance to the depot. Each storage location consists of multiple sub-locations 
that can house a cluster of products. The algorithm assigns product i with the highest turnover frequency to an available sub-location 
closest to the depot. Then, if the remaining capacity of the location allows, products with the highest affinity with the assigned product, 
ρij, are added to this cluster. The capacity of the location and the set of unassigned products are updated each time. In the case of more 
than one product with the highest correlation with i, product j with the highest τj is selected (Line 13). If product i is not correlated with 
any other products (Line 14), the product with the highest turnover frequency is assigned to the respective cluster. In this way, highly 
correlated items are clustered, whilst popular products are assigned to locations closer to the depot. This procedure is repeated until all 
the products are assigned to locations and clusters. 

Algorithm 1. (Pseudocode for a sequential alternating (SA) heuristic)  

1: input L, tl, Cl, Ii, P, ρij and O.  
2: Compute τi, ∀i ∈ P over O.  
3: Compute ρij ,∀i, j ∈ P over O.  
4: Λ =: set of products i ∈ P sorted in descending τi.  

5: Π =: set of locations l ∈ L sorted in ascending tl.  
6: while Λ ∕= ∅ do  
7: Assign the first i ∈ Λ to the first l ∈ Π, xil = 1.  
8: Λ = Λ − {i}.  
9: Cl = Cl − Ii.  
10: while Cl > 0 do  
11: Select j := Argmax{ρij |j ∈ Λ, Ij < Cl}.  
12: if j is not unique then  
13: assign the one with highest τj to location l, xjl = 1.  
14: else if ρij = 0 then  
15: assign the first j ∈ Λ|Ij < Cl to location l, xjl = 1.  

(continued on next page) 
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(continued ) 

16: else assign j to location l, xjl = 1.  
17: end if 

18: Λ = Λ − {j}.  
19: Cl = Cl − Ij.  
20: end while 

21: Π = Π − {l}.  
22: end while 

23: return allxil    

3.3. Exact solution to the ICA model 

The model of the ICA policy is programmed in AIMMS and solved using Gurobi 7.5. The solution generated by Algorithm 1 is an 
initial solution to the model to speed up the procedure. Since the problem is NP-hard, large instances are not solvable to optimality. 
Using a machine running Windows 7 with 4 GB of RAM, we were able to solve instances comprising up to 300 orders and 500 products 
in two hours. 

4. Numerical analysis 

This section investigates the impact of parameters such as customer demand and cluster size on the performance of the ICA policy. 
We examine the application of the ICA policy in two types of systems: in a conventional warehouse using an AS/R system and in a 
modern warehouse using an RMF system, such as the ones by Amazon. We take a realistic approach by including the effect of space- 
sharing in the class-based storage system, as explained in Section 4.1. This leads to smaller storage space and shorter average travel 
times in such systems, compared to the FTB and ICA policies that do not use the storage space as flexibly. Section 4.2 describes the 
sampling procedure. Sections 4.3 and 4.4 discuss the results for the AS/R and RMF systems, respectively. Section 4.5 evaluates the 
performance of the ICA policy in presence of disturbances in demand pattern and under different travel time models. Section 4.6 uses a 
real warehouse dataset to validate the cluster allocation policy. Section 4.7 discusses the results and managerial implications. 

4.1. Space-sharing in the class-based policy 

We compare the ICA policy with the sequential alternating heuristic, the FTB, and the ABC class-based storage systems. Although 
FTB and ICA storage both have the advantage of more precise assignment and shorter travel time, ABC storage has an advantage of 
space-sharing. To incorporate the space-sharing effect in our experiment, we use the formula of Yu et al. (2015). They show that the 
required storage space for product i in storage zone k ∈ Z, where Z is the set of zones, with a given order quantity of Qi sub-bins is 
estimated as: 

ai(Nk) = 0.5
(
1+N − ε

k

)
Qi, (8)  

where Nk,k ∈ Zis the number of items that share storage zone k, and 0 < ε ≤ 1 is the space-sharing factor. Safety stock is excluded in all 
policies. Therefore, the total required storage space needed for storing all products is 

⌈∑
iai(Nk)

⌉
, expressed in number of sub-bins. 

Although ε depends on initial inventory, the Pareto demand curve, and other factors, Yu et al. (2015) show that it is fairly constant 
and that it can be estimated at between 0.17 and 0.25. We assume ε = 0.20 in our experiment. The storage space requirement of all 
items in the class-based policy is adjusted according to Eq. (8). We calculate the space requirement for the AS/R and RMF systems 
upfront according to the policy. Therefore, the dimensions and travel time of the system are known according to the assortment, 
inventory, and storage policy. For instance, in our base example, using a class-based policy consisting of two classes, the required space 
per product (in sub-bins) equals 69% and 67% of the economic order quantity for each item in zones A (120 SKUs) and B (180 SKUs), 
respectively. These values are adjusted in the experiments accordingly when the number of products or classes changes. Note that in 
the ICA and FTB policies space cannot be shared, so for each product i space for the whole lot size Qi must be reserved. 

Fig. 2. A side view of the rack in an AS/R system showing the storage locations and an example travel path of the crane.  
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4.2. Sample generation 

We consider two system configurations for AS/R and RMF systems. A base example and several scenarios are generated for the 
experiment. 

AS/R Systems: We consider a single-deep mini-load AS/R system, like the one shown in Fig. 1(b), consisting of one aisle with racks 
on both sides. Fig. 2 shows a side view of the racks. The required one-way travel time in seconds to reach each storage location, 
according to a Chebyshev metric distance (i.e., the maximum of vertical and horizontal distance) is used to compute the travel time. 
The black square shows a requested bin which is retrieved by the crane traveling on the dashed arrow. The crane drives and lifts/lowers 
simultaneously. The horizontal speed of the S/R crane is 2 m/s, the vertical speed is 0.5 m/s, and each storage location (slot) is 1 m 
wide and 1 m high. Acceleration, deceleration, pick up and drop off times are ignored. The system dimensions are square in time, i.e., 
the travel times of the crane from the depot to the farthest horizontal and vertical storage locations are equal. Popular products take up 
two sub-bins, and less popular products take up one sub-bin. 

RMF Systems: We consider a robotic mobile fulfilment system, where products are stored on pods grouped in blocks, and where the 
pods are transported using robots. Fig. 3 shows an example of the system layout in this experiment. It consists of six blocks of ten 
storage pods. The system is flexible and the number of blocks and the number of pods in each block can easily be adapted. A robot 
travels to one of these locations and takes a pod that contains one or more of the requested products to the depot. The robot returns the 
pod to its location after picking. The black square shows a requested pod. The dashed line shows the path of the robot to retrieve the 
requested load. To avoid deadlocks and reduce congestion, aisles are one-directional, except the front and back aisles. To retrieve a 
pod, the empty robot can travel underneath the pods. There are one robot and one pick station. This assumption does not limit the 
results as we focus on the total travel time. The average speed of the robot is 1.5 m/s, and the required time for a full turn is 2.5 s. 
Acceleration, deceleration and the time needed for lifting or storing a pod are ignored since they are equal across the polocies. Each pod 
is 1 × 1 m and contains one cluster of products. The inventory level for popular products is two slots, and for less popular products one 
slot. The total storage capacity is enough to accommodate all products. 

Dataset and Scenarios: To evaluate the performance of the ICA policy in these two systems, we use a dataset with customer 
demands of a wholesale distributor of office stationery products, available from Warehouse Science (2019). This dataset consists of 
more than 50,000 orders and 16,000 products. We create a base example of 200 orders that capture the characteristics of this dataset, 
such as the average order size, turnover, and affinity. Table 2 shows the parameter values for the base example and different scenarios 
based on varying five different parameters: order size, assortment, number of sub-bins per bin, the skewness of the ABC curve, and the 
affinity between products. The defined ranges of these parameters are based on the original dataset. Algorithm 2 in Appendix B shows 
how the instances are generated. For each instance, we only vary one input parameter at a time. The order size has a discrete uniform 
distribution with the lowest value of 1 and the maximum value denoted in Table 2. Next, the number of SKUs in the assortment is 
varied. The number of sub-bins per bin, defining the cluster capacity, is also varied. We consider four distributions of the ABC curve: 
random, moderate skewness of 20/40, and higher skewness of 20/60, and 20/80. A 20/40 ABC curve means 20% of the products 
account for 40% of the demand. The affinity between products is measured according to Equation (7). We generate instances of zero, 
low, moderate, high and very high affinity by manipulating the chance of ordering a correlated product when a specific product is 
requested. Table 3 shows the frequency of affinity scores among all pairs of products for these generated instances. A zero affinity, 
which is generated by a set of single-line orders, is included to test an extreme case. 

4.3. Results for the AS/R systems 

We calculate the order picking travel time of the AS/R system for all scenarios. The execution time to solve the model of the ICA 
policy is limited to two hours per instance except for the base case, which was run two days to obtain a smaller optimality gap. The 
linear programming (LP) relaxation is used to obtain a lower bound on the solution quality of the ICA algorithm. The execution time of 
the SA heuristic is a fraction of a second. Table 4 shows the results for the scenarios defined in Table 2. The first column in each part of 
the table shows the parameter varied. The SA, ABC, FTB, and ICA columns show the one-way travel time in seconds for the four so
lutions, respectively. The LP Gap column shows the ICA solution gap with the linear program relaxation bound, which is obtained by 
relaxing constraints (6) and (7). The last three columns show the relative savings of the ICA solution, compared to each of the other 

Fig. 3. A top view of the RMF system.  
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three. The results for the base example are repeated in each part of the table to facilitate comparison. From Table 4, we can make the 
following observations. 

Observation 1: The ICA and SA consistently perform equally or better than the FTB. This was expected since next to turnover 
frequency, the ICA and SA use affinity as a complementary criterion. In case of zero affinity (no clusters), they perform equally. 
However, ICA and SA do not always outperform the ABC. In the instances of zero affinity and a highly skewed ABC curve, the ABC is 
preferable to the ICA. In addition, the ABC performs better than the SA, except when affinity between products is high. This is mainly 
due to the space-sharing effect in the ABC, which reduces the storage space requirement and consequently decreases travel time. 

Observation 2: In large order sizes, the ICA outperforms the other policies and the marginal performance improvement has a 
positive relation with the order size. In addition, the ICA policy outperforms both ABC and FTB policies even for small-sized orders (e.g. 
for orders with maximum two lines). This is because the ICA policy benefits from identifying affinity between products and assigns 

Table 2 
Parameters related to base example and scenarios of the AS/R and RMF systems.  

Parameters Base examples Range for scenarios 

Maximum order size 3 1, 2, 3, 4 
Assortment size (# SKUs) 300 100, 200, 300, 500 
Number of sub-bins per bin 6 (AS/R), 10 (RMF) 1, 2, 4, 6, 8, 16 
Skewness of ABC curve 20/40 Random (20/20), 20/40, 20/60, 20/80 
Affinity Moderate zero, low, moderate, high, very high  

Table 3 
Frequency per affinity score for the datasets when varying affinity.   

Instance set 

ρ Zero Low Moderate High Very high 

0.013 0 0 0 0 2 
0.010 0 0 0 2 6 
0.007 0 0 3 12 34 
0.003 0 268 262 238 995 
0.000 44,850 44,582 44,585 44,598 43,813  

Table 4 
Comparison of travel time of the four solutions (SA, ABC, FTB, and ICA) in an AS/R system.  

Scenarios SA (s) ABC (s) FTB (s) ICA (s) * LP Gap % Savings % ICA/SA Savings % ICA/ABC Savings % ICA/FTB 

1.Max. order size         
1 434.5 355.2 434.5 433.7 0.0 0.2 − 22.1 0.2 
2 647.0 556.1 675.0 560.0 1.7 13.4 − 0.7 17.0 
3 824.0 787.2 977.7 685.5 6.7 16.8 12.9 29.9 
4 1044.5 994.2 1193.5 856.3 15.9 18.0 13.9 28.3 
2.Assortment size         
100 648.3 559.5 706.7 555.0 13.2 14.4 0.8 21.5 
200 759.5 719.0 879.2 653.2 10.0 14.0 9.2 25.7 
300 824.0 787.2 977.7 685.5 6.7 16.8 12.9 29.9 
500 933.5 945.5 1119.2 725.7 5.4 22.3 23.2 35.2 
3.No. of sub-bins         
(no cluster) 1 2248.0 1758.2 2248.0 2248.0 0.0 0.0 − 27.9 0.0 
2 1338.8 1301.5 1645.0 1212.7 10.9 9.4 6.8 26.3 
4 877.8 890.7 1043.5 739.2 6.3 15.8 17.0 29.2 
6 824.0 787.2 977.7 685.5 6.7 16.8 12.9 29.9 
8 696.3 706.5 825.7 560.5 9.4 19.5 20.7 32.1 
16 501.3 517.7 639.0 390.0 1.2 22.2 24.7 39.0 
4.Affinity         
Zero 434.5 355.2 434.5 433.7 0.0 0.2 − 22.1 0.2 
Low 880.8 787.2 1044.2 692.2 11.6 21.4 12.1 33.7 
Moderate 824.0 787.2 977.7 685.5 6.7 16.8 12.9 29.9 
High 578.0 608.5 702.0 512.0 6.7 11.4 15.9 27.1 
Very high 478.8 553.5 575.5 441.0 0.0 7.9 20.3 23.4 
5.ABC curve         
(random) 20/20 1443.7 1282.2 1567.5 1160.7 10.6 19.6 9.5 26.0 
20/40 1506.2 1353.2 1701.5 1265.2 9.4 16.0 6.5 25.6 
20/60 1421.5 1366.2 1678.0 1295.0 0.0 8.9 5.2 22.8 
20/80 1239.0 1138.2 1460.5 1211.7 12.5 2.2 − 6.5 17.0  

* The results for the ICA in bold print are optimal values. 
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them to the same cluster to reduce travel time. 
Observation 3: Savings of the ICA increase with a larger assortment. More products require a larger storage capacity which implies 

longer travel time for all policies. In a larger warehouse, the randomness in the ABC policy becomes a disadvantage, as ordered 
products now, can be assigned to the same turnover-based storage group far from each other and from the pick station. 

Observation 4: A larger number of sub-bins (i.e., larger cluster sizes) per bin increases the benefits of the ICA policy. This is 
expected as a larger cluster size increases the chance of grouping highly correlated products. This observation supports the fact that 
clustering correlated products improves order picking performance. 

Observation 5: Samples with a higher affinity lead to higher savings in the ICA. Higher affinity enables the ICA to construct 
strongly correlated product clusters and generate higher benefits. When the product affinity is very low, the ICA policy has no clear 
benefits. In this case ABC is the best policy, while FTB performs at the same level as ICA. 

Observation 6: Savings of the ICA policy decrease for more skewed ABC curves. In such a situation, the ABC and the FTB policies, 
which primarily depend on turnover frequency of products, perform better and suffer less from neglecting affinity information. 

Observation 7: The exact solution to the ICA policy outperforms the SA heuristic solution by13% on average. This shows that an 
integrated approach outperforms a sequential approach if historical data on product affinity and turnover frequency are used in the 
assignment. 

4.4. Results for the RMF system 

We follow the same procedure to obtain the order picking travel time of the RMF system for all scenarios. Table 5 presents the 
results. In general, we observe the same trends as in the results from AS/R systems. The results show that the ICA policy leads to higher 
savings when affinity, order size, assortment size, and cluster size increase. However, when the skewness of the ABC curve increases, 
we observe lower savings. These support the findings in the AS/R system. 

4.5. Sensitivity of the ICA policy 

This section evaluates the performance of the ICA storage policy when the customer demand pattern changes, and when different 
travel time models are used instead of the one-way single command model we used. 

Sensitivity to Changes in Demand Pattern: First, we use the base example dataset to assign products to the storage locations 
using the ICA policy, for both the AS/R and RMF systems described in Section 4.2. Then, we replace several orders from the base 
example with new random orders generated following the characteristics of the base example such as order size, affinity and the ABC 
curve, using the method outlined in Algorithm 3 in Appendix C. We do this for 10% up to 100% change in the base example order set. 
Using Monte Carlo simulation, we generate 100 new order sets per scenario to calculate the savings in order picking travel time. 

Fig. 4(a) shows the average savings achieved by applying the ICA policy in an AS/R system compared to FTB policy (top curve), and 
class-based policy (bottom curve). The dashed lines show the lower and upper bounds of 95% confidence intervals. Fig. 4(b) shows the 

Table 5 
Comparison of travel time of the four solutions (SA, ABC, FTB, and ICA) in an RMF system.  

Scenarios SA (s) ABC (s) FTB (s) ICA (s) * LP Gap % Savings % ICA/SA Savings % ICA/ABC Savings % ICA/FTB 

1.Max. order size         
1 3929.0 3200.5 3929.0 3847.2 0.0 2.1 − 20.2 2.1 
2 5443.9 4951.8 6241.2 4633.0 0.0 14.9 6.4 25.8 
3 7228.5 6971.0 8573.3 5959.7 7.2 17.6 14.5 30.5 
4 8987.9 8459.2 10579.8 7229.7 21.4 19.6 14.5 31.7 
2.Assortment size         
100 5756.5 5122.6 6577.7 4956.0 14.5 13.9 3.3 24.7 
200 7228.5 6971.0 8573.3 5959.7 7.2 17.6 14.5 30.5 
300 7561.9 7985.2 9199.5 6038.2 6.2 20.1 24.4 34.4 
500 8758.3 10246.8 10863.8 6557.3 3.7 25.1 36.0 39.6 
3.No. of sub-bins         
4 10281.4 9679.9 11517.7 8648.8 11.2 15.9 10.7 24.9 
8 7228.5 6971.0 8573.3 5959.7 7.2 17.6 14.5 30.5 
16 5661.3 5512.0 6765.7 4593.7 8.4 18.9 16.7 32.1 
4.Affinity         
Zero 3929.0 3200.5 3929.0 3847.2 0.0 2.1 − 20.2 2.1 
Low 7548.3 6769.6 8747.5 6056.5 11.9 19.8 10.5 30.8 
Moderate 7228.5 6971.0 8573.3 5959.7 7.2 17.6 14.5 30.5 
High 4881.5 5130.3 6281.2 4240.2 1.1 13.1 17.3 32.5 
Very high 4350.8 4528.5 5931.3 3867.3 0.0 11.1 14.6 34.8 
5.ABC curve         
(Random) 20/20 6961.3 6394.2 7934.5 5508.7 7.2 20.9 13.8 30.6 
20/40 7228.5 6971.0 8573.3 5959.7 7.2 17.6 14.5 30.5 
20/60 6857.6 6082.9 7727.5 5826.5 14.3 15.0 4.2 24.6 
20/80 5961.5 5225.5 6546.7 5136.2 13.2 13.8 1.7 21.5  

* The results for the ICA in bold print are optimal values. 
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average savings achieved in an RMF system. The horizontal axis represents the percentage change in the order set compared to the base 
case, and the vertical axis shows the savings percentage. These graphs show that the ICA policy performs well despite large changes in 
the demand pattern. More specifically, the ICA policy is still beneficial when the customer demand pattern is prone to random changes 
of up to 60% in the AS/R system and 70% in the RMF system. 

Sensitivity to Travel Time Models: The model used in our numerical analysis considers one-way single command travel time, that 
is the travel time of a crane or a robot from the location of the requested load to the depot. Applying two-way or dual command travel 
time models, may affect the results of the policies. A two-way single command travel time considers the travel time of the crane from a 
dwell point (not necessarily the depot) to the location of the requested load and then, from there to the depot. In a dual command travel 
model, the crane performs consecutive storage and retrieval requests. Thus, the dual command travel time consists of traveling from 
the dwell point to the depot, from the depot to the location of the product that should be stored, travel time between the location of 
stored product and the requested product, and then from there to the depot. To evaluate the effect of different travel time models, we 
apply them to the base example for both the AS/R and RMF systems and compare the results. Fig. 5 shows the percentage relative 
savings of the ICA compared to the benchmark policies for one-way and two-way single command, and dual command travel time 
models. The results show that the ICA model consistently outperforms the other policies for all the travel time models. However, the 
benefits of the ICA decrease in a dual command travel model. This can be explained by the additional time for storage and travel 
between time. The results of two-way single command travel time are similar to those of one-way travel, as the crane or robot travels 
from a dwell point to the requested load in all the policies. 

4.6. Validation using a real warehouse dataset 

This section is dedicated to validating the ICA policy using the data of a real-life omni-channel warehouse distributing personal care 
products. This warehouse is expecting a steep growth in online retail and therefore requires a responsive and efficient policy for their 
automated storage system (an AS/R system). The retrieved data include the information of more than 2300 products and 28,000 
orders. We use 70% of the order data, randomly selected, for training the model and the remaining portion for validation. We use the 
SA heuristic introduced in Section 3.2 to solve large instances. To evaluate the role of the ICA policy, we slightly modify the heuristic 
such that it assigns the storage bins to storage zones instead of dedicated storage locations. This means in Algorithm 1, the set of 
locations L with capacity Cl is replaced by a set of zones Z with capacity Cz. This modification allows the SA to benefit from space- 
sharing similarly to the class-based storage policy, and therefore, provides a better opportunity to evaluate the benefits of clus
tering correlated products. 

The AS/R crane transports the storage bins containing the requested products to the pick station, which are then picked and packed 
in customer bins. Orders are released one at a time in the sequence they arrive, i.e., there are no order waves or batching. Each storage 
bin is currently used to store only one product. Bins are stored according to a class-based storage policy in two storage zones. We apply 
the ICA policy to this system by storing multiple correlated products in each bin and compare the results of the two policies. 

The SA heuristic uses the training set to determine the clustering and allocation of the products. Then, we sample 500 order sets 
from the validation set each containing 300 random customer orders and calculate the retrieval times of the SA and ABC policies. This 
sampling is repeated several times such that a maximum order size is imposed on the samples each time. Fig. 6 shows the savings in the 
retrieval time that the warehouse can obtain by the SA solution compared to the ABC. The horizontal axis is the percentage of savings, 

Fig. 4. Results of the Monte Carlo simulation of savings obtained using the ICA policy in (a) AS/R and (b) RMF systems, when the customer demand 
pattern changes. 
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and the vertical axis is the maximum order size in the sampled order set. When increasing the maximum order size, the savings of the 
SA grow compared to the ABC policy. However, the SA’s benefits converge for larger order sizes. The dotted and dashed lines show the 
average savings of the 10% sample order sets with the highest and lowest affinity, respectively. At a given maximum order size, the 
sample order sets with a higher affinity result in greater average savings than those with a lower affinity. 

4.7. Managerial implications 

The findings of this research show that using an integrated cluster-based allocation model based on historical customer demand 
may improve storage allocation and save order retrieval time. Clustering is particularly interesting for automated warehouses that 
deploy parts-to-picker systems. Fig. 7 shows a framework that helps managers of such warehouses to decide the best storage policy 
based on the skewness of the product turnover frequency curve and the relative average product affinity. Low (La) and high (Ha) 
affinity mean lower and higher than the moderate affinity in the base example, respectively. Under Ha/Lt condition, that is customer 
orders with high product affinity and low turnover frequency skewness, the ICA policy outperforms the ABC and FTB storage strategies 
(see top left corner of Fig. 7). Operations managers should consider a cluster-based policy when customers order multiple correlated 
products. Examples are fashion and apparel retail. Under La/Lt or Ha/Ht conditions, i.e. the bottom left and top right corners of the 
framework, there is no obvious choice of policies. Here, managers should further investigate the order profile and specifications of the 
storage system. For example, the ICA policy may still be favorable for large order sizes or when each storage unit can house a large 
number of products. Under a La/Ht condition, the bottom right corner of the framework, our results recommend a class-based storage 
policy because of its space-saving benefits. Here, managers should group products by turnover frequency and assign popular storage 
classes to locations close to pick stations. Benefits of clustering products is negligible. 

Warehouse managers should analyze historical customer demand and decide prudently on storage policy as it has a significant 
impact on the throughput capacity and responsiveness of the warehouse. Our numerical analysis shows that selecting a suitable storage 
policy can decrease the retrieval time up to 40%. To use the cluster-based policy, the replenishment process should be adjusted 
accordingly, which might take additional time and effort. Implementing the ICA does not require technological adaptation in the 

Fig. 5. Comparison of percentage savings obtained using the ICA policy for different travel time models in (a) AS/R and (b) RMF systems.  

Fig. 6. Travel time savings of the SA solution compared to the ABC for different order sizes in a real system.  

M. Mirzaei et al.                                                                                                                                                                                                       



Transportation Research Part E 146 (2021) 102207

13

existing storage and retrieval systems capable of storing multiple items in each storage unit. This facilitates transition from the ABC to 
the ICA policy, where desired. 

5. Conclusion and future research 

This paper uses historical information on customer orders that contains product affinity and turnover frequency to develop the ICA 
policy. This policy can be applied in environments where multiple products are stored on a single storage shelf, such as robotic mobile 
fulfilment systems, and where retrieval systems retrieve inventory shelves or bins and transport them to pick stations. The model 
formulated for the ICA policy can be solved using a standard commercial solver for small instances. The SA heuristic can solve the 
model for the dataset of a real warehouse. We compare the order retrieval time of the ICA policy with the commonly used ABC and FTB 
policies, while taking into account the space-sharing effect of the class-based storage (which typically leads to a smaller storage space 
requirement than the ICA policy). For the instances we tested, the ICA policy generally leads to shorter retrieval times, even for low and 
moderate values of product affinity. Retrieval time can be reduced by up to 40% and depends on customer order characteristics, 
especially the affinity and the skewness of the product turnover frequency curve. We also show that the ICA storage policy is generally 
insensitive to changes in the composition of the orders (while preserving the conditional average affinity and skewness of the ABC 
curve). The ICA policy performs better in a single command travel time model than with dual command cycles. Validation of the cluster 
allocation policy for a real warehouse shows that it can save on average 18% in retrieval time compared to the ABC policy. Future 
research should look at a dynamic storage assignment, in combination with a changing assortment. In addition, more efficient solution 
methods may be used to solve the mathematical model of the ICA policy, e.g. based on metaheuristics, to find better product allocations 
that reduce the optimality gap and solve larger instances. Additional analysis may examine the effect of batching or sequencing orders, 
which can increase the affinity in the orders and, consequently, the effectiveness of the ICA policy. 
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Appendix A 

See Table 6. 

Fig. 7. A decision typology on storage allocation policy by considering the turnover frequency and affinity of products.  

Table 6 
List of frequently used acronyms.  

ICA Integrated Cluster Allocation 

COI Cube-per-Order Index 
FTB Full turnover-based 
RMF Robotic mobile fulfillment 
AS/R Automated storage and retrieval 
SBS/R Shuttle-based storage and retrieval 
AVS/R Autonomous vehicle storage and retrieval 
SKU Stock keeping unit 
GA Genetic algorithm 
DBA Data-based approach 
DMSA Data mining-based storage assignment 
MCBH Modified class-based heuristic 
ASBH Association seed-based heuristic 
SA Sequential alternating  

M. Mirzaei et al.                                                                                                                                                                                                       



Transportation Research Part E 146 (2021) 102207

14

Appendix B 

Algorithm 2. (Pseudocode for generating the order sets for the base example and scenarios.)   

1: input O, maximum order size θ, Р, correlated product subset Pi’, affinity level 
indicator* ξ and Pareto curve Ω. 

2: while the number of generated orders < |O| do 
3: Generate the number of lines ηo from discrete uniform distribution U [1, θ]. 
4: Generate SKU i ∈ P according to Ω. 
5: Number of generated SKUs for current order NO =1. 

6: while NO < ηo do 

7: Generate a random number R from U [0, 1]. 
8: if R < ξ then 
9: Generate a SKU from the subset Pi’, 
10: else generate a SKU from P according to Ω.  
11: NO= NO+1. 

12: end while 

13: end while 

14: return generated orders. 

*Affinity level indicator takes 0, 0.2, 0.6, 0.8, and 0.9 for zero, low, moderate, high, and very high 
affinity levels, respectively.  

Appendix C 

Algorithm 3. (Pseudocode for generating a new order set by changing the base example by Δ%, while affinity level is controlled.)   

1: input O, maximum order size θ, Р, affinity level indicator ξ and Pareto curve Ω, 
base example O, rate of change Δ.  

2: Generated order subset O′

with |O′

| = Δ.

⃒
⃒
⃒O

⃒
⃒
⃒ according to Algorithm 2.  

3: Replace randomly Δ.|O| orders from the base example by O′

.  

4: Calculate the conditional average affinity* of O, ξO and O
′ , ξO′ .  

5: Calculate δ = |ξO − ξO′ |/ξO.  
6: while δ > 5% do  

7: Divide O’ into 4 chunks. 
8: Calculate the ξc for each chunk.  

9: Eliminate the chunk with the largest δc. 
10: Generate a new subset Oc’. 
11: Add Oc’ to O’. 
12: Recalculate δ.  
13: end while 

14: return updated orders. 

*The conditional average affinities are calculated for 1/|O| <ρij < 0.1|O|, where ρij is derived from 
Formula 7, because frequency of affinity levels beyond these limits are either too small or too large.  
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