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a b s t r a c t 

Network expansion problems are a special class of multi-period network design problems 

in which arcs can be opened gradually in different time periods but can never be closed. 

Motivated by practical applications, we focus on cases where demand between origin- 

destination pairs expands over a discrete time horizon. Arc opening decisions are taken 

in every period, and once an arc is opened it can be used throughout the remaining hori- 

zon to route several commodities. Our model captures a key timing trade-off: the earlier 

an arc is opened, the more periods it can be used for, but its fixed cost is higher, since it 

accounts not only for construction but also for maintenance over the remaining horizon. 

An overview of practical applications indicates that this trade-off is relevant in various set- 

tings. For the capacitated variant, we develop an arc-based Lagrange relaxation, combined 

with local improvement heuristics. For uncapacitated problems, we develop four Benders 

decomposition formulations and show how taking advantage of the problem structure 

leads to enhanced algorithmic performance. We then utilize real-world and artificial net- 

works to generate 1080 instances, with which we conduct a computational study. Our re- 

sults demonstrate the efficiency of our algorithms. Notably, for uncapacitated problems we 

are able to solve instances with 2.5 million variables to optimality in less than two hours 

of computing time. Finally, we provide insights into how instance characteristics influence 

the multi-period structure of solutions. 

© 2020 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

Network expansion models represent a variety of problems arising in fields as diverse as road construction 

( Yang et al., 1998 ), logistics ( Lee and Dong, 2008 ), energy transport and telecommunications ( Minoux, 1989 ), and railways

( Hooghiemstra et al., 1999 ). These problems exhibit a multi-period structure: given a planning horizon and a demand fore-

cast therein, one needs to decide which arcs to open and when, so that the resulting network can accommodate the typically

increasing demand throughout the planning horizon. Concretely, opening an arc implies that this arc can be used to route 

commodities until the end of the planning horizon. However, the more periods the arc is under operation, the higher the
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total fixed cost that is incurred. This fixed opening cost represents the total expense over the remaining horizon, such as

construction and maintenance costs for building a track in a rail network. 

In this paper, we study an archetypal formulation that captures the key timing trade-off of network expansion decisions. 

On the one hand, building an arc early on implies a high fixed cost, but the arc can be used to route commodities for a

large number of subsequent periods. On the other hand, building an arc later in the horizon is associated with a lower fixed

cost, but the number of periods in which the arc can be used is smaller. The objective is then to jointly minimize the arc

construction and operating costs over the given planning horizon. 

Although such network expansion formulations can provide useful input for strategic and tactical decisions, their very 

large scale makes them difficult or even impossible to solve with modern mixed-integer programming (MIP) technology. To 

this end, we exploit their multi-period structure to devise specialized decomposition algorithms for both capacitated and 

uncapacitated variants. First, we apply arc-based Lagrange relaxation for the capacitated problem. Second, we develop a 

stand-alone heuristic which we combine with Lagrange relaxation. Third, we apply Benders decomposition to uncapacitated 

problems, by decomposing the original problem into single-period shortest path subproblems per period and per commodity. 

We then show how Pareto-optimal Benders cuts can be generated efficiently for our application, and compare the resulting 

implementations with the novel formulation of Fischetti et al. (2010) . Further, we employ our algorithms to analyze how 

problem characteristics, such as capacity tightness, influence the structure of obtained solutions. 

In order to illustrate the computational efficiency of our algorithms and investigate the structural characteristics of 

multi-period solutions, we generate new instances. Specifically, we utilize three actual shipping networks that were used 

in Pazour et al. (2010) to investigate the usefulness of designing a high-speed freight rail network in the United States. It

is worth noting that Pazour et al. (2010) recognize the mutli-period nature of this problem, but resort to solving a sim-

plified, single-period version. Then, we use a subset of the R instances of Crainic et al. (2001) , which have been used in a

multitude of other studies ( Katayama et al., 2009; Yaghini et al., 2014; Costa et al., 2009 ). In total, we construct more than

10 0 0 instances, with which we perform extensive computational experiments. First, we show that our heuristics, Lagrange 

relaxation and Benders decomposition are efficient in finding high-quality solutions within a reasonable amount of time, 

while their performance scales well in larger problem instances. Notably, we are able to solve to optimality instances with 

2.5 million variables in less than two hours of CPU time. Second, we are interested in examining structural characteristics 

of multi-period problem solutions. We deduct several insights, such as that (i) the majority of the arcs are opened in early

periods but instances with too short horizons, tight capacities or low fixed costs may open fewer arcs therein; (ii) an in-

creasing commodity demand implies that routing costs are predominant in later periods, regardless of the timing of arc 

opening; (iii) because of (ii), high-quality solutions may have low capacity utilization, especially in very sparse networks. 

The remainder of the paper is organized as follows. We first review related research in Section 2 . Then, Section 3 de-

scribes the problem formulation and Section 4 explains the construction of a heuristic tailored to large-scale instances. 

Section 5 provides details on the Lagrange relaxation and Benders decomposition. Then, Section 6 presents computational 

results. We conclude by reflecting on future research avenues, reported in Section 7 . 

2. Literature review 

The literature on network design and expansion problems is voluminous. In what follows, we first focus on applications 

related to capacitated and uncapacitated multi-period problems and then provide an overview of methodological advance- 

ments in the larger field of network design problems. 

2.1. Applications of multi-period problems 

Bärmann et al. (2017) consider the problem of expanding the German railway network, whose demand is anticipated 

to increase by 50% in the coming two decades. In their setting, investments have to be paid throughout the construction

periods but the corresponding capacity becomes available only at the last construction period. Lai and Shih (2013) study 

a related problem, namely stochastic network expansion for railway capacity planning, in which they minimize a com- 

bination of network upgrading costs, expected arc operations costs and unfulfilled demand. Other researchers, such as 

Blanco et al. (2011) and Marin and Jaramillo (2008) , focus on application-specific transportation network expansion models 

using heuristics, while Petersen and Taylor (2001) develop a decision support system to investigate the economic viability of 

a new railway in Brazil. Cheung et al. (2001) study the problem of redesigning DHL’s network of depots and service centers,

determining facility capacities and opening timing by solving a multi-period facility location problem, which can be recast 

as a network design problem, with each facility converted to an arc. In a similar fashion, Pazour et al. (2010) , who consider

the design of a high-speed rail network for cargo distribution, note that such a network is likely to be built across multi-

ple periods, and assume an incremental design plan by restricting the total length of the network and by fixing prior line

construction decisions. 

An important class of problems attempts to incorporate user behavior into the design of multi-period networks. 

Ukkusuri and Patil (2009) consider a multi-period network design problem with investment decisions, demand elasticity 

and equilibrium constraints. The authors show that flexibility to stage the investment decision over multiple periods can 

have a large positive impact on the expected consumer surplus. In another study, Tong et al. (2015) maximize user accessi-

bility across major locations, given a fixed investment budget. Although our models are tangential to these works since our 
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use-cases do not involve user behavior, the key network expansion decisions are similar, and our algorithmic approaches 

remain relevant. 

Systems with ample capacity or systems where the pertinent decision is determining the network topology can be 

represented by uncapacitated models. Capacity restrictions can oftentimes be tackled by post-processing strategies, as 

in Pazour et al. (2010) , who assume that excess flows are directed from high speed rail to the road network. Yet

another interesting application is the infrastructure expansion problem in the coal export supply chain, studied by 

Kalinowski et al. (2015) . A special characteristic of this formulation is that it has a single commodity whose demand in-

creases by one unit each time period. Such papers are representative of incremental optimization, a research stream pio- 

neered by Ş eref et al. (2009) . Our paper adds to this literature by designing tailored algorithms for multi-commodity variants

of such incremental problems. 

2.2. Methodology 

The literature on network design problems is voluminous, ranging from linear single- commodity flow problems to non- 

linear capacitated multi-commodity problems and application-specific variants. In what follows, we provide an overview of 

formulations and methods relevant to our work. 

2.2.1. Uncapacitated network design 

In a seminal paper, Balakrishnan et al. (1989) utilize dual ascent methods to solve singe-period uncapacitated network 

design problems with up to 500 integer and 1.98 million continuous variables. Subsequent works focus mostly on exact 

approaches, such as Lagrange relaxation-based branch-and-bound ( Cruz et al., 1998; Holmberg and Yuan, 1998 ), branch- 

and-cut, and Benders decomposition ( Randazzo and Luna, 2001; Rahmaniani et al., 2016 ). To the best of our knowledge,

the Lagrange relaxation algorithm of Holmberg and Yuan (1998) is the state-of-the-art exact approach for solving single- 

period uncapacitated problems. A heuristic used by several researchers is the dynamic slope scaling approach of Kim and 

Pardalos (1999) , which the authors utilized for single-commodity uncapacitated and capacitated network design problems. 

The main idea of slope scaling is to update the objective function coefficients of the continuous variables dynamically, so 

that the adjusted linear cost is a locally good approximation of both the linear and fixed costs. This idea was adopted by

other authors for problems with richer structures, such as capacitated network design ( Crainic et al., 2004 ) and freight rail

transportation ( Zhu et al., 2014 ). 

2.2.2. Capacitated network design 

In spite of some notable research output on the single-period uncapacitated problem, the largest literature stream has 

focused on solution methods for its capacitated counterpart. To this end, some authors have conducted polyhedral studies 

( Atamtürk, 2002; Atamtürk and Rajan, 2002; Bienstock and Günlük, 1996; Raack et al., 2011; Günlük, 1999 ), while others

have used column generation ( Zetina et al., 2019 ) and Lagrange relaxation ( Cruz et al., 1998; Tong et al., 2015 ). Problems

that model user behavior have a bi-level structure ( Wang et al., 2013; Gao et al., 2005 ), which can also be formulated as

a variational-inequality problem ( Luathep et al., 2011 ). For linear bi-level problems, Fontaine and Minner (2014) have used

Benders decomposition to tackle large instances, while Liu and Wang (2015) solve a continuous version with stochastic 

user equilibrium using range reduction and linear outer approximations. In terms of exact methods, it is interesting to 

note the state-of-the-art study of Chouman et al. (2017) , who develop a custom cutting plane algorithm and separation

procedures for five classes of valid inequalities. Their experiments show that their separation algorithms perform better on 

aggregated formulations, i.e., formulations where commodities with a common origin or destination are aggregated into a 

single commodity, for instances with a small number of commodities, while their algorithms perform better for instances 

with a large number of commodities when applied to disaggregated formulations. 

Since single-period network design is computationally challenging, most authors have adopted heuristic approaches. 

Yaghini et al. (2014) use a tabu-search algorithm with a neighborhood induced by families of valid inequalities, while 

Paraskevopoulos et al. (2016) use scatter and local search alongside new search operators that allow partial rerouting of mul- 

tiple commodities. The computational experiments show that those two approaches are perhaps the most efficient heuristics 

at the time of this writing, while Katayama et al. (2009) , which is based on capacity scaling using column and row genera-

tion, remains competitive. 

Finally, most papers that consider multi-period variants utilize heuristics, such as Papadimitriou and Fortz (2015) , who 

propose a rolling horizon heuristic to solve practical problem instances. An exception is Petersen and Taylor (2001) who 

use dynamic programming to solve one specific instance, whose state space can be reduced significantly. Table 1 shows 

an overview of the key methodologies used in network design and network expansion problems and some representative 

references. 

2.2.3. Summary of methodological contributions 

Although regular (single-period) network design problems remain challenging to solve, the additional challenge of net- 

work expansion problems comes from their larger size: even solving the linear programming (LP) relaxation of some in- 

stances may require a large amount of CPU time, and separating strong inequalities can be time consuming, even when 
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Table 1 

Key characteristics of methods and corresponding research studies. 

Method Type Output Periods References 

Dual ascent Exact or heuristic Lower bound Single Balakrishnan et al. (1989) 

Lagrange relaxation Exact or heuristic Lower bound Single Cruz et al. (1998) , Holmberg and 

Yuan (1998) , Holmberg and 

Yuan (2000) 

Benders decomposition Exact Upper & lower bound Single Rahmaniani et al. (2016) , 

Randazzo and Luna (2001) 

Cutting planes Exact Upper & lower bound Single Atamtürk (2002) , Bienstock and 

Günlük (1996) , Raack et al. (2011) 

Slope scaling Heuristic Upper bound Single Kim and Pardalos (1999) , 

Crainic et al. (2004) , 

Katayama et al. (2009) 

Column generation Exact or heuristic Lower bound Single Frangioni and Gendron (2009) , 

Frangioni and Gendron (2013) , 

Alvelos and de Carvalho (2007) 

Tabu search, Local search Heuristic Upper bound Single, Multiple Yaghini et al. (2014) , 

Chouman et al. (2009) , 

Ghamlouche et al. (2003) , 

Marin and Jaramillo (2008) 

Dynamic programming Exact Upper bound Multiple Petersen and Taylor (2001) 

Rolling horizon Heuristic Upper bound Multiple Papadimitriou and Fortz (2015) 

Knapsack decomposition Heuristic Upper bound Multiple Bärmann et al. (2017) 

 

 

 

 

 

 

 

 

 

 

 

they are polynomial in the problem’s input. Other than their sheer size, it is also the embedded single-period network de-

sign structure that remains challenging to solve from a computational perspective: Chouman et al. (2017) report that CPLEX 

12 may consume up to 10 h of CPU time without proving optimality on a dataset used extensively in the literature. Our

instances are multi-period extensions (up to 80 periods) of such instances. Methods that are effective for network design, 

such as slope scaling heuristics or custom cutting planes, are also applicable to multi-period problems using straightforward 

adjustments. However, as the space dimensionality increases, their textbook application is unlikely to be successful, unless 

one exploits the multi-period structure in place. Such a structure can be exploited by decomposition methods. 

In uncapacitated problems, the only decisions that influence forward periods are the arc-opening decisions. Given a fixed 

set of arc-opening decisions, one needs to determine for each commodity and each period independently the minimum-cost 

path to route that commodity from its origin to its destination, which is a shortest-path problem. This structure suggests that

uncapacitated problems are amenable to Benders decomposition, because fixing the binary decisions gives rise to period- 

and commodity-specific subproblems, each of which can be solved effectively, and the corresponding cuts are separable by 

each period and commodity combination. 

Capacitated problems have the additional complication that in each period commodities interact through arc capacities. 

Thus, a Benders approach would generate single-period multi-commodity cost flow problems, whose cuts do not sepa- 

rate commodities within each period, and are likely to be weaker. Although cuts from the uncapacitated variant can be 

added to improve convergence, the resulting scheme is likely to be inefficient computationally when arcs capacities are 

tight ( Fischetti et al., 2016a ). This formulation is more amenable to Lagrange relaxation, where the flow balance constraints

are dualized in the objective function and the problem decomposes in a series of single-arc, multi-period, multi-commodity 

problems that we can solve in polynomial time using a custom algorithm. Although the lower bound obtained by such 

a Langrange relaxation is equivalent to the LP relaxation bound with tight inequalities, solving the LP is often impossible 

within 2 h of CPU time, while when the LP is solvable our algorithm is much faster. 

In summary, our work offers the following methodological contributions. First, we develop an arc-based Lagrange relax- 

ation algorithm for the capacitated problem, which attains a strong lower bound in a short amount of time, particularly for

large instances. The computational efficiency of Lagrange relaxation hinges on solving the resulting arc-specific problem in 

polynomial time. Second, we develop a stand-alone heuristic which we combine with Lagrange relaxation. Computational 

experiments show that our heuristic is able to attain feasible solutions within 1% of optimality an order of magnitude faster

than a commercial MIP solver, while its performance scales better with problem size. Third, this heuristic is used to warm-

start a Lagrange relaxation algorithm, which itself uses the volume algorithm ( Barahona and Anbil, 20 0 0 ) to detect promising

areas of the search space. This results in an integrated scheme that combines Lagrange relaxation, the volume algorithm, 

our stand-alone heuristic and local search heuristics that operate during the Lagrange relaxation loop. Fourth, we develop 

a Benders decomposition algorithm for uncapacitated problems, which decomposes the original problem into single-period 

shortest path subproblems per period and per commodity. We show how Pareto-optimal (PO) Benders cuts can be generated 

efficiently for our application using a series of algorithmic enhancements that allow us to generate a PO Benders cut solving

a single LP, and compare the resulting implementations with the novel formulation of Fischetti et al. (2010) . Finally, we

generate new multi-period instances and conduct extensive computational experiments, which benchmark the effectiveness 

of each approach and use real networks to analyze the structure of the resulting solutions. We next provide a mathematical

formulation of the problem we consider. 
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3. Problem description and formulation 

We consider a network of nodes N and arcs A and a set of commodities K that need to be routed from given origin

nodes to given destination nodes during each time period t ∈ T . Each commodity should satisfy a period-dependent demand

between its origin and its destination. Routing a commodity through an arc incurs a variable, commodity-specific cost. In 

addition, routing a commodity through an arc is possible only if this arc is opened in this period, or if it has been opened

in an earlier period. Opening an arc in a specific period incurs a fixed cost. We introduce the following notation: 

Parameters 

• f t 
i j 
, cost of opening arc (i, j) at the start of period t

• c k 
i j 
, cost of sending one unit of commodity k through arc (i, j) 

• u i j , capacity of arc (i, j) 

• d kt , demand of commodity k in period t
• O k , D k , origin and destination of commodity k, respectively 
• b k 

i 
= 1 , if i ≡ O k ; −1 , if i ≡ D k ; 0 , otherwise 

Decision Variables 

• x kt 
i j 

, fraction of d kt that is directed through arc (i, j) 

• y t 
i j 
, = 1 if arc (i, j) is opened at the beginning of period t, 0 otherwise 

The multi-period network expansion problem (M-NEP) is formulated as follows: 

min 

∑ 

t∈ T 

∑ 

k ∈K 

∑ 

(i, j) ∈A 
c k i j d 

kt x kt 
i j + 

∑ 

t∈ T 

∑ 

(i, j) ∈A 
f t i j y 

t 
i j [ M − NEP ] (1) 

s . t 
∑ 

j :(i, j ) ∈A 
x kt 

i j −
∑ 

j:( j,i ) ∈A 
x kt 

ji = b k i , ∀ i ∈ N , ∀ k ∈ K, ∀ t ∈ T , (2) 

∑ 

k ∈K 
d kt x kt 

i j ≤ u i j 

t ∑ 

l=1 

y l i j , ∀ (i, j) ∈ A , t ∈ T , (3) 

x kt 
i j ≤ min { 1 , 

u i j 

d kt 
} 

t ∑ 

l=1 

y l i j , ∀ (i, j) ∈ A , ∀ k ∈ K, ∀ t ∈ T , (4) 

∑ 

t∈ T 
y t i j ≤ 1 , ∀ (i, j) ∈ A , (5) 

0 ≤ x kt 
i j ≤ 1 , ∀ (i, j) ∈ A , ∀ k ∈ K, ∀ t ∈ T , (6) 

y t i j ∈ { 0 , 1 } , ∀ (i, j) ∈ A , ∀ t ∈ T . (7) 

The objective function (1) minimizes the costs of routing commodities and opening arcs throughout the horizon. Constraints 

(2) maintain the balance of each commodity in each node and period. Constraints (3) prevent the total amount of flow that

is routed through each arc from exceeding that arc’s capacity in each period. If at time t, y s 
i j 

= 0 , for all 1 ≤ s ≤ t, then

no flow is routed through the arc (i, j) during period t . Constraints (4) are redundant but potentially useful, since they

strengthen the problem’s LP relaxation. Specifically, they are the multi-period counterparts of the “strong” inequalities used 

in single-period problems to improve the LP relaxation ( Gendron and Crainic, 1994 ). Finally, constraints (5) express that each

arc can be opened at most once. Arc capacity expansions can be modeled by considering additional pairs of arcs between

nodes. This is important for rail networks, where constructing additional tracks to expand the capacity between stations is 

commonplace ( Bärmann et al., 2017 ). 

To avoid trivial solutions, we assume that opening an arc earlier implies a higher cost, i.e., f t 
i j 

> f t+1 
i j 

, ∀ (i, j) ∈ A , t ∈ T . A

special case of the above formulation arises when u i j ≥
∑ 

k ∈K d kt for all (i, j) ∈ A and t ∈ T . Then, constraints (3) are redun-

dant, and (4) change to x kt 
i j 

≤ ∑ t 
l=1 y 

l 
i j 
, ∀ (i, j) ∈ A , k ∈ K and t ∈ T . We will hereafter refer to this case as the multi-period

uncapacitated network expansion problem (M-UNEP). This variant is interesting in its own right because it has different 

decomposability features than the capacitated variant. 

Our formulation can be seen as an extension of single-period multi-commodity network design problems with time- 

varying demand. As such, it carries similarities to dynamic capacitated facility location problems ( Jena et al., 2015 ), but also

capacitated lot sizing problems which have dynamic demand, fixed setup costs and can be recast as capacitated shortest 
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path problems over appropriate networks ( De Araujo et al., 2015 ). All these problems embed the single-node fixed-charge

flow model ( Atamtürk, 2001 ), but a key difference is that the demand in lot sizing problems can be satisfied by current or

earlier production, while in facility location and network expansion each demand has to be satisfied by the routing decisions 

taken in each period. 

In principle, network design formulations determine simultaneously the routing and design decisions and attempt to 

spot a balance between the corresponding costs. When the network design decisions y i j are fixed, the formulation reduces 

to a multi-commodity flow problem, which itself reduces to a series of shortest-path problems when all arcs have infinite 

capacity. What is perhaps more striking is the generality of the uncapacitated network design formulation. Magnanti and 

Wong (1984) observe that the Minimum Spanning Tree (MST), Steiner tree, Travelling Salesman, Vehicle routing (VRP) and 

Facility location problems arise as special cases of the Network Design formulation. While some of these problems are “easy”

to solve from a complexity point of view, such as the MST, others, such as the VRP, are themselves matter of extensive

research. What makes network design problems significantly harder from a computational perspective is the addition of arc 

capacities ( Holmberg and Yuan, 20 0 0 ). Such capacities destroy an important property of the uncapacitated models, namely

that there exists an optimal solution in which each commodity is routed through a single path. Indeed, in capacitated 

problems commodity flows may bifurcate, since they compete among each other for arc capacities, giving rise to a class 

of optimal solutions whose structure is hard to characterize. An example of a small capacitated network with two periods 

where we show the optimal solution can be found in Appendix A. Before applying decompositions, we introduce a heuristic 

that generates high-quality solutions fast. 

4. Initial heuristic search 

Our heuristic tries to detect arcs that are going to be opened in some period, and then decides when it is best to

open each of the identified arcs. Algorithm 1 describes the high-level steps of this select-and-time procedure, hereafter 

Algorithm 1 The Select-and-Time (S&T) heuristic procedure. 

Input: d kt , f t 
i j 
, c k 

i j 
, u i j , b 

k 
i 

Output: y t 
i j 
, x kt 

i j 
, v H 

1: w 

t ← 

∑ | T | 
l= t 

∑ 

k ∈K d kl ∑ 

l∈ T 
∑ 

k ∈K d kl 
; w 

t ← 

w 

t ∑ 

l∈ T w 

l 

2: ˆ f i j ← 

∑ 

t∈ T w 

t f t 
i j 

� Create weighted fixed cost ( ̂  f i j ) 

3: ˆ d k ← d k 1 
max t∈ T d kt 

1 
| T | 

∑ 

t∈ T d kt 
� Create inflated demand ( ̂  d 

k ) 

4: ˆ y i j ← SlvSnPer ( ̂  d k , ˆ f i j , c 
k 
i j 
, u i j , b 

k 
i 
) � Solve MIP with 

ˆ f i j , ˆ d 

k ; Store ˆ y i j 

5: ˆ d k ← max t∈ T d kt ; ˆ f i j ← 0 � Take max demand ( ̂  d 

k ), set zero fixed costs ( ̂  f i j ) 

6: ȳ i j ← SlvSnPer ( ̂  d k , ˆ f i j , c 
k 
i j 
, u i j , b 

k 
i 
) � Solve LP with 

ˆ f i j 
ˆ d 

k ; Store arcs ( ̄y i j )

7: A 

pot = { (i, j) ∈ A | ˆ y i j + ȳ i j ≥ 1 } ;A 

0 = A\A 

pot ;A 

1 ← ∅ 
8: for t ∈ T do 

9: t max ← min { t + 1 , | T |} 
10: ˆ f i j ← { w 

t f t 
i j 

+ 

1 −w 

t 

| T |−t max +1 

∑ | T | 
l= t max f l 

i j 
, ∀ (i, j) ∈ A 

pot ; 0 , ∀ (i, j) ∈ A 

1 } 
11: ˆ c k 

i j 
← c k 

i j 
max t d 

kt 

1 
| T | 

∑ 

t d 
kt 

; ˆ d k ← d kt 

12: ˆ y t 
i j 

← SlvSnPer ( ̂  d k , ˆ f i j , ̂  c k 
i j 
, u i j , b 

k 
i 
| y i j = 1 , ∀ (i, j) ∈ A 

1 ; y i j = 0 , ∀ (i, j) ∈ A 

0 ) � Fix opened & closed arcs; solve for

period t; store ˆ y t 
i j 

13: for (i, j) ∈ A 

pot do � Find open arcs 
14: if ˆ y t 

i j 
= 1 then 

15: A 

pot ← A 

pot \{ (i, j) } � If opened, remove from potential 
16: A 

1 ← A 

1 ∪ { (i, j) } � Save opening 

17: end if 

18: end for 

19: end for 

20: (y t 
i j 
, x kt 

i j 
, v H ) ← SlvMltPerLP (d kt , f t 

i j 
, c k 

i j 
, u i j , b 

k 
i 
| y t 

i j 
= ˆ y t 

i j 
, ∀ (i, j) ∈ A , ∀ t ∈ T ) 

abbreviated as S&T. 

Selecting good arcs . We first solve two single-period instances. The first one outputs a good set of candidate arcs, by

incorporating cost and demand information from the entire horizon, and the second one adopts a worst-case demand per- 

spective, to make sure the proposed set of arcs leads to feasible solutions. We start by calculating weights w 

t that are used

to average the fixed cost of each arc over the horizon. The weight of each period is determined in two steps. First, we set
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it equal to the fraction of the remaining cumulative demand over the total demand, and then we normalize between zero

and one (line). The first single-period model we solve has a fixed cost per arc (i, j) that is a weighted average of that arc’s

cost across the horizon, i.e., ˆ f i j = 

∑ 

t w 

t f t 
i j 

(line). In order to capture future demand growth, we use the first period demand

of each commodity scaled by max t d 
kt / 1 T 

∑ 

l d 
kl (line). That way we obtain an instance with fixed costs that are more rep-

resentative of the entire horizon, and demands that anticipate the growth of future periods. After solving this problem, we 

store which arcs are opened (line). These arcs may not be enough to guarantee feasibility throughout the horizon, and to

tackle this we create an instance that has no arc opening cost and maximum demand from each commodity (line). This can

be seen as a “worst-case” scenario from a demand perspective, because all commodity demands take their maximum values 

simultaneously. This instance can be solved efficiently as follows: since there are no arc opening costs, we solve an LP that

allows positive flows via all arcs, and then select those arcs that have a strictly positive flow in the optimal solution. After

solving this formulation (line), we form the set of arcs that are selected in either the first ( ̂  y i j ) or the second ( ̄y i j ) model

(line). After this initial selection of arcs, i.e., A 

pot , is determined, the decision of when to open an arc is considered. 

Arc opening timing. In order to decide when to open arcs, we iteratively solve single-period instances for each period 

in the horizon, using only arcs from the set A 

pot , whose fixed cost is a weighted average of each period’s cost and the

average cost of the remaining periods, and the variable cost is inflated by max t d 
kt / 1 

| T | 
∑ 

t d 
kt (lines –). This way we take

into account the variable cost of future periods, anticipating the potential increase in demand. Every time an arc is newly

opened, we mark it as such and do not consider its cost further (lines –). During early periods, we give more weight to the

actual fixed costs rather than the anticipated future costs, acknowledging that early capacity opening decisions are more 

important, since they impact the routing decisions of the entire horizon. Thus, fixed costs for the first periods carry the

largest weights, while for later periods the weights of each period become smaller. Having decided when to open each arc,

the problem reduces to solving a series of linear multi-commodity flow problems for each period in the planning horizon 

(line). 

The advantage of the S&T heuristic is that although it works with a reduced problem size, it takes into account informa-

tion from multiple periods. We thus use it to efficiently warm-start the decomposition schemes we develop. 

5. Solution methods 

We next exploit structural characteristics of capacitated and uncapacitated variants to utilize Lagrange relaxation and 

Benders decomposition, respectively. 

5.1. Capacitated problems 

5.1.1. Lagrange relaxation of M-NEP 

By dualizing constraints (2) in the objective function (1) , M-NEP decomposes into a series of single-arc multi-period 

subproblems. We let π kt 
i 

denote the dual values associated with constraints (2) . To miminize notation clutter, we remove 

the indices (i, j) and formulate the single-arc problems as follows: 

v πi j = min 

∑ 

t∈ T 

∑ 

k ∈K 
(c k d kt + π kt 

i − π kt 
j ) x 

kt + 

∑ 

t∈ T 
f t y t [ SUB ] (8) 

s . t . 
∑ 

k ∈K 
d kt x kt ≤ u 

t ∑ 

l=1 

y l , ∀ t ∈ T (9) 

x kt ≤ min { 1 , 
u 

d kt 
} 

t ∑ 

l=1 

y l , ∀ k ∈ K, ∀ t ∈ T (10) 

∑ 

t∈ T 
y t ≤ 1 , (11) 

0 ≤ x kt ≤ 1 , ∀ k ∈ K, t ∈ T (12) 

y t ∈ { 0 , 1 } , ∀ t ∈ T . (13) 

Then, the Lagrange dual optimization problem can be expressed as 

v ∗LR = max 
π

v (π ) = max 
π

{ ∑ 

(i, j) ∈A 
v πi j −

∑ 

t∈ T 

∑ 

i ∈N 

∑ 

k ∈K 
b k i π

kt 
i 

} 

. (14) 
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It is well-known that (14) is a concave optimization problem and that v (π ) is piece-wise linear ( Fisher, 1981 ). In order

to calculate v ∗LR , we evaluate v (π ) pointwise and apply subgradient optimization. To this end, we note the following remark.

Remark 1. For a given vector with y t ∈ { 0 , 1 } , t ∈ T values that satisfy (11) , problem [ SUB ] decomposes into a series of

single-period, linear bounded knapsack problems, each of which can be solved in O( |K| log |K| ) time. Given such a vector, 

[ SUB ] can be solved in O( |K| | T | log |K| ) time. 

We next provide information on how strong the bound obtained by the Lagrange relaxation is. To this end, we note that

the linear relaxation of [SUB] has the integrality property , i.e., its basic feasible solutions have y t ∈ { 0 , 1 } for all t ∈ T without

imposing the integrality restrictions explicitly ( Fisher, 1981 ). 

Proposition 1. Problem [SUB] has the integrality property, thus v ∗LP = v ∗LR . 

Proof. See Appendix A of the electronic companion. �

5.1.2. Lower bounds and approximate primal solutions 

When solving the Lagrange dual problem (14) with regular subgradient optimization, the obtained primal solution typ- 

ically violates the dualized constraints (2) . Our aim is to leverage the information of this solution to find promising areas

of the search space and apply local-search heuristics therein. This typically involves fixing a number of variables, where the 

fixing decisions are driven by the values of the LP relaxation, when one is available. However, devising good quality fixing

rules from the solution of (14) is challenging, because the arc opening decisions obtained by subgradient optimization ( y t 
i j 

)

are integral. To tackle this issue, we employ the volume algorithm of Barahona and Anbil (20 0 0) , an extension of the sub-

gradient algorithm that returns, alongside the Lagrangian lower bound, a y -solution with small violations of (2) . This way,

we have a solution with fractional binary variables at each subgradient iteration, which we then use to direct our heuristic

search. 

5.1.3. Finding upper bounds 

Within the framework of the volume algorithm we find feasible solutions of the original problem, M-NEP, by employ- 

ing three local search heuristics. The first heuristic checks if moving the arc opening decisions later in time provides an

improved solution. Algorithm 2 shows the details. 

Algorithm 2 Single-arc search heuristic. 

Input: Period t , feasible solution ( ̄y t 
i j 
, ̄x kt 

i j 
) , objective value z t 

Output: Improved feasible solution ( ̄y t 
i j 
, ̄x kt 

i j 
) , objective value z t 

1: Ā ← { (i, j) ∈ A : ȳ t 
i j 

= 1 } 
2: M 

t ← LP model for period t with x kt 
i j 

≤ ∑ t 
l=1 ȳ 

l 
i j 
, ∀ (i, j) ∈ A , ∀ k ∈ K 

3: for (i, j) ∈ Ā do 

4: � f c ← f t 
i j 

− f t+1 
i j 

5: Solve M 

t with x kt 
i j 

= 0 , ∀ k ∈ K 

6: z ′ ← Objective (M 

t ) if M 

t is feasible, otherwise z ′ = ∞;�z ← z ′ − z t 

7: If � f c − �z > 0 then � Fixed cost reduction > flow cost increase 

8: ȳ t 
i j 

← 0 , ̄y t+1 
i j 

← 1 , ̄x kt 
i j 

← Solution (M 

t ) , z t ← 

∑ 

(i, j) ∈ ̄A c 
k 
i j 

d kt x̄ kt 
i j 

9: end for 

10: return ( ̄y t 
i j 
, ̄x kt 

i j 
, z t ) 

For large models, however, attempting to check all arcs might be prohibitive. We thus restrict the search to a neigh-

borhood defined by comparing the arc-opening variables of the best feasible solution (the incumbent) and the possibly 

fractional arc-opening variables, retrieved by the volume algorithm. Concretely, for a cutoff point δ ∈ (0 , 1) and for each arc

(i, j) , we set y t 
∗

i j 
= 1 if t ∗ = argmax t { y t i j 

: y t 
i j 

> δ} exists and y t 
i j 

= 0 , ∀ t ∈ T , otherwise. Then, we compare the resulting vector

with the incumbent solution. For each period, we invoke Algorithm 2 only for the arcs that are different in the incumbent

and the rounded solution. In addition, we sort the arcs in order of decreasing � f c, in order to ensure that we first check

those that give the highest period-on-period reduction in fixed costs. This procedure utilizes a small set of relevant arcs, 

for which there are discrepancies between the rounded approximate primal solution of the Lagrange relaxation and the 

incumbent solution. 

Our second heuristic checks if changing the period when an arc is opened leads to improved solutions. Thus, given a

feasible solution ȳ t 
i j 

we define Ā t = { (i, j) ∈ A| ̄y t 
i j 

= 1 } , ∀ t ∈ T and impose the constraints 

min {| T | ,t+ τ+ } ∑ 

l= max { t−τ−, 1 } 
y l i j = 1 , ∀ t ∈ T , ∀ (i, j) ∈ Ā t (15) 
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to the original problem M-NEP. This explores a neighborhood of the incumbent where the arc opening decisions remain 

the same, but their timing can be shifted up to τ+ periods later or τ− periods earlier. Note that this heuristic is a local

branching procedure ( Fischetti and Lodi, 2003 ) in which we impose a customized search neighborhood structure. 

Our third and last heuristic applies a simple fixing procedure based on the values of the fractional y variables recovered

by the volume algorithm, as follows. First, it interprets each fractional value as signifying a degree of “ambiguity”, meaning 

that the exploration of variables closer to 0.5 takes priority. To this end, it sorts the y variables in increasing values of

| y t 
i j 

− 0 . 5 | and, for a given fraction f, it finds l f and u f in (0,1) such that the first f |A|| T | variables lie in the interval [ l f , u f ] .

Finally, in M-NEP, it fixes to zero those variables that are lower than l f and to one those that are higher than u f , respectively,

and solves the remaining MIP model. The advantage of this heuristic is that it can be tuned easily by only changing f, while

it searches a promising neighborhood of the fractional solution. 

5.2. Uncapacitated problems 

Removing constraints (3) from M-NEP gives rise to the uncapacitated variant, M-UNEP. The resulting model exhibits a 

decomposable structure: for fixed arc opening decisions, it decomposes into a series of independent shortest path problems, 

per commodity and per period. In this part, we leverage this property to develop Benders decomposition formulations. 

5.2.1. Regular benders decomposition. 

Let Y denote the set of binary vectors y that satisfy 
∑ 

t∈ T y t i j 
≤ 1 , ∀ (i, j) ∈ A . Then, for a given ȳ ∈ Y, the uncapacitated

model reduces to the following linear program: 

z( ̄y ) = min 

∑ 

t∈ T 

∑ 

k ∈K 

∑ 

(i, j) ∈A 
c k i j d 

kt x kt 
i j (16) 

s . t 
∑ 

j :(i, j ) ∈A 
x kt 

i j −
∑ 

j:( j,i ) ∈A 
x kt 

ji = b k i , [ π kt 
i ] , ∀ i ∈ N , ∀ k ∈ K, ∀ t ∈ T , (17) 

0 ≤ x kt 
i j ≤

t ∑ 

l=1 

ȳ l i j , [ λkt 
i j ] , ∀ (i, j) ∈ A , ∀ k ∈ K, ∀ t ∈ T , (18) 

Then, the original problem can be expressed as min y ∈ Y { z(y ) + 

∑ 

t∈ T 
∑ 

(i, j) ∈A f t i j 
y t 

i j 
} . Note that (16) –(18) decomposes into a

series of shortest path problems, each one corresponding to a commodity–period pair. The dual of (16) –(18) is then 

z( ̄y ) = max 
∑ 

t∈ T 

∑ 

k ∈K 

(
π kt 

O − π kt 
D 

)
−

∑ 

(i, j) ∈A 

∑ 

k ∈K 

∑ 

t∈ T 
( 

t ∑ 

l=1 

ȳ l i j ) λ
kt 
i j (19) 

s . t . π kt 
i − π kt 

j − λkt 
i j ≤ c k i j d 

kt , ∀ (i, j) ∈ A , k ∈ K, t ∈ T (20) 

λkt 
i j ≥ 0 , ∀ (i, j) ∈ A , k ∈ K, t ∈ T . (21) 

The dual polyhedron � = { ( πππ, λλλ) | (20) − (21) } is non-empty, and therefore can be represented by a finite set of extreme

rays, denoted by R �, and a finite set of extreme points, denoted by P � ( Schrijver, 1998 ). Using this representation, the

Benders reformulation of M-UNEP is as follows: 

min 

∑ 

t∈ T 

∑ 

(i, j) ∈A 
f t i j y 

t 
i j + z (22) 

s . t . 
∑ 

t∈ T 

∑ 

k ∈K 

(
π̄ kt 

O − π̄ kt 
D 

)
−

∑ 

(i, j) ∈A 

∑ 

k ∈K 

∑ 

t∈ T 

( | T | ∑ 

l= t 
λ̄kl 

i j 

) 

y t i j ≤ 0 , ∀ ( ̄π kt 
i , ̄λkt 

i j ) ∈ R � (23) 

∑ 

t∈ T 

∑ 

k ∈K 

(
π̄ kt 

O − π̄ kt 
D 

)
−

∑ 

(i, j) ∈A 

∑ 

k ∈K 

∑ 

t∈ T 

( | T | ∑ 

l= t 
λ̄kl 

i j 

) 

y t i j ≤ z ∀ ( ̄π kt 
i , ̄λkt 

i j ) ∈ P � (24) 

∑ 

t∈ T 
y t i j ≤ 1 , ∀ (i, j) ∈ A (25) 

y kt 
i j ∈ { 0 , 1 } , ∀ (i, j) ∈ A , ∀ t ∈ T . (26) 
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Constraints (23) , the feasibility cuts , prevent the objective function of the dual problem (19) –(21) from being unbounded,

and therefore the corresponding primal problem (16) –(18) from becoming infeasible. Constraints (24) are the optimality 

cuts , which impose that z corresponds to the optimal objective value function of the dual subproblem (19) –(21) . This for-

mulation is conceptually useful, but since the cardinalities of P � and R � are usually large, adding all constraints (23) and

(24) is computationally inefficient. Benders himself noted that (22) - (26) can be solved for a limited number of feasibility

and optimality cuts, in which case it delivers a lower bound on the optimal objective function value, and new cuts can be

added dynamically. Specifically, in each iteration the optimal y t 
i j 

values can be used to solve the pair of primal-dual sub-

problems (16) –(18) and (19) –(21) , respectively. If the primal subproblem is infeasible, then the dual subproblem returns a

feasibility cut, (23) , whereas when the primal subproblem is feasible, the dual subproblem returns an optimality cut, (24) .

These cuts are added to the master problem and the algorithm proceeds to the next iteration. If no optimality or feasibility

cut is violated, then the algorithm has converged to an optimal solution. 

Modern implementations of Benders decomposition employ additional computational enhancements. First, the decompo- 

sition of the subproblem into a series of |K|| T | subproblems allows the generation of individual cuts from each commodity–

period pair. To this end, z is replaced by 
∑ 

k ∈K 
∑ 

t∈ T z kt in (22) , the summations over periods and commodities are dropped

in (23) and (24) , and the sets of extreme rays and points are defined over the polyhedra �kt = { ( πππ, λλλ) | π kt 
i 

− π kt 
j 

− λkt 
i j 

≤
c k 

i j 
d kt ;λkt 

i j 
≥ 0 , ∀ (i, j) ∈ A} . The corresponding cuts are denser and tend to be more effective than a single cut generated from

the aggregated master problem (22) –(26) ( Cordeau et al., 2001 ). Second, instead of solving the master program (22) –(26)

to optimality in each iteration, we take advantage of the callback capabilities of modern solvers to solve it only once and

add the cuts dynamically in the branch-and-bound tree. Concretely, we start by solving the master program with a limited 

number of cuts, use a callback to invoke the cut-generating procedure every time a feasible solution is found and to add

the generated cuts, and then return control to the solver ( Bai and Rubin, 2009; Adulyasak et al., 2015 ). In addition, we add

cuts from individual subproblems, and two classes of valid inequalities which warm-start the master problem, as detailed 

in Section 5.2.5 . 

5.2.2. FSZ Benders decomposition 

Fischetti et al. (2010) suggest an alternative normalization approach that uses the best known flow cost values z̄ kt in the

subproblem formulation. Let ( ̄y t 
i j 
; z̄ kt ) denote a feasible solution of the master problem (22) –(26) with disaggregated Benders 

cuts. For notational brevity, we suppress the commodity and period notation when we refer to a single subproblem. Using 

this notation, Fischetti et al.’s subproblem (FSZ) can be formulated as follows: 

max πO − πD −
∑ 

(i, j) ∈A 
( 

t ∑ 

l=1 

ȳ l i j ) λi j − z̄ η [ F SZ] (27) 

s . t . πi − π j − λi j ≤ c i j d η, ∀ (i, j ) ∈ A (28) 

∑ 

(i, j) ∈A 
w i j λi j + w 0 η = 1 (29) 

η ≥ 0 ; λi j ≥ 0 , ∀ (i, j) ∈ A . (30) 

In this formulation, the user is able to select non-negative weights w i j and w 0 to better configure the normalization hy-

perplane (29) . The regular Benders subproblem arises as the special case of w 0 = 1 and w i j = 0 . Our implementation sets

the convexity condition w 0 = w i j = 1 for each arc (i, j) ∈ A . As long as non-negative weights are selected, FSZ always has

a feasible solution and is bounded. Therefore, a cut πO − πD −
∑ 

(i, j) ∈A ( 
∑ t 

l=1 ȳ 
l 
i j 
) λi j − z̄ η ≤ 0 can always be generated. Note 

also that if no arc has been opened until period t, i.e., 
∑ t 

l=1 ȳ 
l 
i j 

= 0 for each (i, j) ∈ A , an optimal solution will generate a

cut with η = 0 and 

∑ 

(i, j) ∈A λi j = 1 . Thus, this subproblem can generate both optimality and feasibility cuts. 

5.2.3. Pareto-optimal cuts 

The cut selection problem becomes relevant when the dual subproblem (19) –(21) has multiple optimal solutions, and 

therefore one has to select the best among alternative cuts. A criterion that partially quantifies cut quality is cut dominance

( Magnanti and Wong, 1981 ): a cut generated from the extreme point ( πππ1 , λλλ1 ) is said to dominate another cut generated

from ( πππ2 , λλλ2 ) iff

π1 
O − π1 

D −
∑ 

(i, j) ∈A 

( 

t ∑ 

l=1 

y l i j 

) 

λ1 
i j ≥ π2 

O − π2 
D −

∑ 

(i, j) ∈A 

( 

t ∑ 

l=1 

y l i j 

) 

λ2 
i j 

holds for all y t 
i j 

∈ Y = { y t 
i j 

∈ { 0 , 1 } | ∑ 

t∈ T y t i j 
≤ 1 , ∀ (i, j) ∈ A} with strict inequality for at least one point. A cut is non-

dominated, or Pareto optimal (PO) if there is no other cut that dominates it. Magnanti and Wong (1981) devised a mecha-

nism that generates PO cuts by solving an additional linear program, formulated as follows. First, let y y y r = (y t,r 
i j 

) t∈ T 
(i, j) ∈A denote
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a core point , i.e., a point that lies in the relative interior of con v (Y ) . Then, denoting by ȳ t 
i j 

the master problem solution and

by z ∗ = max { πO − πD −
∑ 

(i, j∈A 
∑ t 

l=1 ȳ 
l 
i j 
λt 

i j 
: ( πππ, λλλ) ∈ �kt } the subproblem solution for the pair (k, t) , one can identify a PO

cut by solving the following subproblem: 

max πO − πD −
∑ 

(i, j) ∈A 

( 

t ∑ 

l=1 

y l,r 
i j 

) 

λi j [ P O − SUB ] (31) 

s . t . πi − π j − λi j ≤ c i j d , ∀ (i, j ) ∈ A (32) 

πO − πD −
∑ 

(i, j) ∈A 

( 

t ∑ 

l=1 

ȳ l i j 

) 

λi j = z ∗ (33) 

λi j ≥ 0 ∀ (i, j) ∈ A . (34) 

Constraint (33) ensures that the new point is an optimal solution to the original subproblem, while the objective function 

ensures that it is a PO cut. 

Although finding a core point is N P -hard in general ( Papadakos, 2008 ), the simple structure of Y makes it possi-

ble to characterize a family of core points: given a feasible point, ȳ t 
i j 

∈ Y, the perturbed point y t,r 
i j 

= { 1 − ε| T | if ȳ t 
i j 

=
1 ; ε, otherwise } is a core point for ε ∈ (0 , 1 / | T | ) . Selecting a small ε guarantees that we generate a core point which lies

in the neighborhood of ȳ t 
i j 

. Thus, we make use of this selection policy in our implementation. We also note that an optimal

solution to the regular Benders subproblem is feasible to the PO subproblem. 

5.2.4. Efficient generation of Pareto-optimal cuts 

For single-period uncapacitated problems, Magnanti et al. (1986) have shown that a PO cut can be generated by solving 

a single minimum cost flow problem instead of two generally structured LPs. We show here that their main argument can

be extended to our setting. To this end, we rewrite the dual of (31) –(34) as follows: 

max d 
∑ 

(i, j) ∈A 
c i j x i j − z ∗x 0 (35) 

s . t . 
∑ 

j∈A + 
i 

x i j −
∑ 

j∈A −
i 

x ji = b i (1 + x 0 ) , ∀ i ∈ N [ πi ] (36) 

0 ≤ x i j ≤ x 0 

t ∑ 

l=1 

ȳ l i j + 

t ∑ 

l=1 

y l,r 
i j 

, ∀ (i, j) ∈ A [ λi j ≥ 0] , (37) 

where x 0 represents the dual price of constraint (33) . Magnanti et al. (1986) observe that x 0 can be fixed to any value greater

than or equal to 
∑ 

(i, j) ∈A 
∑ t 

l=1 y 
l,r 
i j 

at an optimal solution. In our computational experiments, we set x 0 = |A| . Therefore, the

objective term z ∗x 0 becomes a constant and (35) –(37) is recast as a minimum cost flow problem, while its dual solution

corresponds to a PO cut. 

5.2.5. Strengthening the master problem 

We use two families of cutting planes that strengthen the formulation of the master problem. First, we employ origin- 

destination cuts, which impose that at least one arc from each origin and to each destination should be opened, respectively.

To explain our second set of inequalities, let p ∗ denote the shortest path cost for a certain commodity-period pair and p ∗
i j 

the shortest path cost when arc (i, j) is removed from the graph. Then, the cut z ≥ p ∗
i j 

+ (p ∗ − p ∗
i j 
) 
∑ t 

l=1 y 
l 
i j 

is a valid cut

( Magnanti et al., 1986 ), since it expresses the fact that the flow cost for a commodity cannot be lower than the shortest

path cost when the complete graph is considered ( 
∑ t 

l=1 y 
l 
i j 

= 1 ) or p ∗
i j 

when arc (i, j) is not opened ( 
∑ t 

l=1 y 
l 
i j 

= 0 ). In our

implementation, instead of adding |T ||K||A| such inequalities, we find for each commodity the arc whose removal increases 

the shortest path cost the most and add inequalities only for this arc. 

6. Computational experiments 

The purpose of our computational study is twofold. First, we aim to illustrate the efficiency of the developed solution 

methods. To this end, we conduct a series of experiments that assess the quality of (i) the lower bound obtained by Lagrange

relaxation (LR); (ii) the upper bound returned by the S&T heuristic; (iii) the LR algorithm integrated with S&T and the

heuristics described in Section 5.1.3 and (iv) the various Benders implementations. Second, we investigate how different 

instance characteristics influence the solution structure. In particular, we are interested in deriving insights on when arcs 

are opened, what is the influence of the fixed versus variable cost ratio, how capacity tightness influences the timing of arc

opening and how cost correlations influence solution characteristics. 
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Table 2 

Characteristics of the networks of Pazour et al. (2010) . The variable range refers to 

the generated multi-period instances, for | T | = 5 and | T | = 20 , respectively. 

Instance |N | |A| |K| Variable range Constraint range 

USC30 30 126 87 [55,440 - 221,760] [13,680 - 54,720] 

USC53 53 278 245 [341,940 - 1,367,760] [66,315 - 265,260] 

JBH50 50 198 62 [620,730 - 2,482,920] [157,490 - 629,960] 

Table 3 

Design parameters of single-period network design instances. 

Parameter Levels Symbols Explanations 

Fixed cost Low, Medium, High L, M, H Ratio f r = 

∑ 

f i j ∑ 

d k 
∑ 

c i j 
∈ 

{ 0 . 01 , 0 . 5 , 0 . 1 } , respectively 

Capacity Loose, Medium, Tight L, M, T Ratio 

cr = 

|A| ∑ 

k ∈K d 
k ∑ 

u i j 
∈ { 1 , 2 , 8 } , 

respectively 

Correlation structure Positive correlation (Original), Negative correlation PC, NC If negative, fixed and 

variable costs have 

correlation -70% 

Routing cost mode Euclidean, Mixed, Random E, M, R Costs proportional to 

distance (E), 50% of costs 

shuffled randomly (M), all 

costs shuffled randomly 

(R) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1. Instances 

We utilize three real-world networks introduced in Pazour et al. (2010) , which originate from high-speed rail network 

design for cargo distribution. Specifically, two of these networks are constructed using data from the US Census Bureau 

and one from the annual shipments of J.B. Hunt transport services. We use these networks to construct 648 instances

with horizons varying from 5 to 20 periods, 624 of which are feasible for capacitated problems. Pazour et al. (2010) use

a single-period network design formulation but recognize that “due to the high costs of these systems, it is likely that a

high-speed network, [... ], would be implemented in phases throughout a planning horizon of many years ”. Therefore, these 

instances are appropriate use cases for our formulation. We then repeat our analysis using a subset of the R instances

constructed by Crainic et al. (2001) , which we extend to 20, 40, 60 and 80 periods, for a total of 432 instances, 408 of

which are feasible for capacitated problems. Although such long horizons are rarely found in transportation networks, they 

are relevant in problems arising in telecommunication networks, such as in Idzikowski et al. (2011) , where the authors use

15-minute epochs to analyze networks with daily dynamic demand, resulting in problems with 96 periods. For brevity, we 

have included the detailed analysis of this experiment in the electronic companion, and give a summary of results in the

main paper, focusing on the instances originating from real transportation networks. In total, our complete dataset consists 

of 1080 instances, which are used to assess algorithmic performance and gain insights in the problem structure. Next, we 

provide a brief overview of the multi-period Pazour networks. Further details of how the instances are constructed and to 

what cost structure each label corresponds can be found in Appendix B.1 of the electronic companion of this paper. 

In order to keep the instances tractable in a multi-period setting, we have kept commodities that cover 80% of the

total original demand by eliminating the commodities with the smallest demand. Table 2 shows the characteristics of these 

instances. Gurobi is able to eliminate about 4% of variables via pre-processing, for capacitated instances using the M-CNDP 

formulation. Therefore, the reported model sizes are accurate representations of the actual model sizes tackled by Gurobi. 

We used these three instances and the methodology in Crainic et al. (2001) to construct instances with loose, medium

and tight capacities and with low, medium and high fixed cost ratios. In addition, we further extend the design space

by considering instances that have correlations between fixed and variable costs and instances where these costs can be 

proportional to the original distance matrix, random or mixed. Table 3 presents in detail the levels of each parameter we

considered. 

Using a full factorial design, we have constructed 54 instances from each original instance, which we then extended to 

multiple periods. The fixed cost per arc is assumed to decrease linearly with the remaining periods, such that (i) the average

fixed cost per arc equals that of the single-period instance, and (ii) the last period has 10% of the single-period fixed cost.

For demand expansion, we use a sigmoid curve which consists of a convex, a linear and a concave part. This generic profile

represents a period of rapid growth in demand, a subsequent linear trend and then a stabilization phase. The curves are

constructed so that the average demand coincides with that of the original instance, and that demand expands from 50% to

150% of the original demand. Further details can be found in the electronic companion of this paper. 
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Table 4 

Average Lagrange relaxation gaps and CPU Time for instances where the exact lower bound is found (columns 1–6) 

and where Gurobi returns another lower bound at the root node (columns 7–10). 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Instances GRB LR < GRB LP CPU Time (s) LR > GRB Root LR < GRB Root CPU Time (s) 

|N | # Solved LB Gap (%) GRB LR LB Gap (%) LB Gap (%) GRB LR 

30 216 216 0.43 4 147 0.09 (59) 0.61 (157) 33 147 

50 164 97 0.86 1301 733 16.11 (56) 1.17 (108) 3652 913 

53 216 181 2.16 991 639 9.68 (48) 2.20 (168) 3473 683 

| T | 
5 159 151 0.23 670 278 2.59 (29) 0.27 (130) 1828 289 

10 155 130 0.76 670 422 6.40 (52) 0.89 (103) 2306 478 

15 148 119 1.69 638 578 12.54 (41) 1.80 (107) 2480 681 

20 134 94 2.48 447 564 10.98 (41) 2.94 (93) 1828 808 

Total 596 494 1.15 620 442 8.42 (163) 1.37 (433) 2276 552 

Total ( R ) 408 257 0.85 760 166 12.83 (101) 1.10 (283) 4258 206 

Notes. Columns (4) and (8) are calculated as (LB GRB − LB LR ) /LB GRB , while column (7) as (LB LR − LB GRB ) /LB LR . Columns 

(9) and (10) report the average CPU time for instances in (7) and (8) combined. Numbers in parentheses denote 

the number of instances. For the Pazour instances, we report results for 596 out of 624 instances, because Gurobi 

ran out of memory or returned a segmentation fault at the remaining 28 instances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2. Computational performance 

The experiments of this section aim to illustrate the usefulness of the developed algorithms, and to benchmark them 

against solving the MIP formulation (1) –(7) . When it comes to the inclusion of the strong inequalities (4) in the LP relaxation

of (1) –(7) , we implemented and tested four alternative strategies: (i) not including strong inequalities; (ii) adding all of them

a priori in the model; (iii) adding them dynamically (via a callback) when they are violated, and (iv) adding them in a lazy

cut pool and resorting to Gurobi’s pool management mechanism. Note that Gurobi does not allow to use lazy cuts for an LP.

Therefore, we formulated the problem as a MIP and added the constraints as lazy constraints. Then, Gurobi thinks we solve

a MIP model but in practice we solve the LP relaxation, by setting the parameter ‘cuts’ to zero and setting the node limit

to one. Strategy (iv) gave the best results overall, when considering CPU time and optimality gap quality, and therefore we

adopt this strategy throughout our computational experiments. To this end, we study capacitated and uncapacitated variants 

separately, since they utilize different solution methods. In each table, we report results disaggregated per number of nodes 

and periods for the Pazour instances, and provide aggregate results for the R instances. 

6.2.1. Capacitated instances 

The first matter of interest is to assess the quality of the lower bound returned by Lagrange relaxation (LR). In theory, the

Lagrange dual provides the same lower bound as the LP relaxation of (1) –(7) when the tight inequalities (4) are included

as lazy cuts. In practice, when LR is solved by subgradient optimization a lower approximation is obtained, which may or

may not be close to the LP bound, depending on implementation-specific details ( Fisher, 1981 ). We therefore solve the LP

relaxation of (1) - (7) with Gurobi, adding all strong inequalities as default constraints, and compare this bound with the one

obtained by LR. Table 4 reports the results, showing in column (3) the number of instances for which Gurobi could solve the

LP relaxation within a time limit of 7200s, in column (4) the lower bound gap, defined as (LB GRB − LB LR ) /LB GRB , and the CPU

time consumed by Gurobi and LR in columns (5) and (6), respectively, for the instances solved to optimality. These results

suggest that the lower bound returned by LR is close to the exact bound, having a gap of approximately 1%. For the Pazour

instances, Gurobi consumes 40% more CPU time, and although it is faster than LR for small instances, its performance does

not scale up equally well for larger instances. To see this, note that for 20-period instances Gurobi fails to solve the LP

relaxation for 40 out of 134 instances, while for the remaining 94 instances it is marginally faster than LR. Furthermore, for

the R instances with 20 to 80 periods, the CPU time of LR is one fifth of the CPU time for Gurobi. 

Next, we compare the LR bound against the actual bound Gurobi returns at the root node, in columns (7) to (10) of

Table 4 . The reason for doing so is that Gurobi does not necessarily utilize all strong inequalities when solving the root node

of the MIP formulation, but rather a subset of them combined with generic cutting planes. In fact, while the LP relaxation

with strong inequalities could not be solved within the time limit for 130 Pazour instances and for 151 R instances, when

solved as a MIP Gurobi was able to return a lower bound at the root node for 596 Pazour instances and 384 R instances.

However, since not all strong inequalities are included by default, this lower bound is no longer guaranteed to be better than

the one of LR. This leads us to partition the instances in those where LR or GRB returned the best lower bound, respectively,

and assess each category separately. 

Column (7) reveals that in cases where LR returns a stronger lower bound for the Pazour instances, this is 8.42% stronger

than that of Gurobi, while column 8 suggests that when Gurobi finds a stronger lower bound this is only 1.37% stronger

than that of LR. These conclusions also apply to the R instances. Overall, Gurobi is four times slower for the Pazour and 20

times slower for the R instances, respectively, in calculating a root node lower bound compared to LR. These findings are

qualitatively persistent across planning horizons of various lengths. Although Gurobi seems more efficient for the USC30 in- 
72 



I. Fragkos, J.-F. Cordeau and R. Jans Transportation Research Part B 144 (2021) 60–80 

Table 5 

Upper bound quality of various heuristics. Gaps are calculated as (U B heur − U B GRB ) /U B GRB . The last column shows 

total time and, in parenthesis, the time Gurobi consumed to find the optimal solution. 

UB Gap (%) CPU Time (s) 

|N | Optimal MH RH(5,1) S&T LR MH RH(5,1) S&T LR GRB 

30 216 14.37 1.30 4.09 0.39 12 107 9 189 128 (81) 

53 117 12.98 2.75 4.80 0.47 767 2077 209 1277 1389 (1171) 

50 89 6.59 3.78 2.99 0.16 854 1749 300 1599 1415 (1312) 

| T | 
5 110 5.81 1.57 9.41 0.35 312 632 92 495 500 (439) 

10 111 11.7 2.34 3.17 0.36 410 890 142 752 559 (598) 

15 107 14.79 2.39 1.82 0.36 493 1231 162 995 716 (849) 

20 94 17.96 2.67 1.38 0.41 381 1296 103 938 832 (699) 

Total 422 12.34 2.23 4.06 0.37 399 999 125 788 649 (643) 

Total ( R ) 163 27.88 2.85 4.84 0.86 249 1634 47 332 2092 (1591) 

Table 6 

Optimality gap quality of LR. Gaps are calculated as (UB − LB ) /UB . The last two columns refer to instances 

in which Gurobi terminated after 7200 s without an upper bound. 

Instances Integrality Gap (%) CPU Time (s) Only LR 

|N | All GRB Gap < 1 GRB LR GRB LR Gap (%) CPU Time (s) 

30 216 216 0.00 0.96 128 189 - - 

50 192 128 4.61 2.11 1953 1726 2.63 2849 

53 216 192 5.49 4.26 2481 1608 6.88 2440 

| T | 
5 159 153 3.13 1.80 2121 825 7.48 2033 

10 156 141 3.18 1.87 1966 1048 2.70 2838 

15 155 129 3.03 2.71 1836 1235 4.09 2949 

20 154 113 2.89 3.58 1854 1215 4.75 2532 

Total 624 536 3.07 2.41 1951 1065 4.33 2686 

Total ( R ) 408 357 7.51 5.14 4868 517 9.76 3738 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

stances, which are the smallest ones in size and can all be solved optimally, its advantage is not retained for larger instances.

The conclusion from this experiment is that LR delivers high quality lower bounds, which are close to the theoretically best

ones, while its performance scales well to large instances. 

Next, we assess the quality of upper bounds, as obtained by the S&T heuristic and by the integrated LR algorithm, i.e.,

the LR bounding scheme combined with our incremental and local branching heuristics, when it is initialized by the S&T 

heuristic, as described in Section 5.1.3 . To this end, we utilize the instances that Gurobi could solve to proven optimality, and

compare their bounds to the ones obtained by our heuristics. In addition, we utilize two other benchmark approaches: one 

that myopically solves single-period problems, fixes the arcs to be opened and proceeds to the next period, and a rolling

horizon one which solves a problem of length l < T , fixes the arc opening decisions of the first m periods and repeats,

starting from period m + 1 , until the end of the horizon. After some preliminary tuning, we select l = 5 and m = 1 when

T > 5 and l = 3 , m = 1 for T = 5 . Table 5 reports the results. 

A first observation is that the myopic heuristic (MH) delivers solutions that deviate considerably from optimality. In 

particular, solution quality deteriorates consistently for problems with longer horizons. The rolling horizon heuristic (RH) 

finds much better solutions, but also consumes a considerably larger CPU time, while its performance also deteriorates with 

longer horizons. The S&T heuristic finds solutions with a larger gap compared to RH, but it does so in a fraction of the time

RH requires to terminate. Given that the purpose of S&T is to find good solutions to inject in LR, its performance is aligned

with its objective. In addition, it delivers lower gaps for longer horizons and the main difference with RH is in five-period

instances. Finally, we note that LR finds solutions of excellent quality, having an average gap of 0.37% for the Pazour and

0.86% for the R instances, respectively. In terms of CPU time, LR is slightly slower than Gurobi for the small Pazour instances

but six times faster for the R instances. The slower performance on the Pazour instances can be partly attributed to the fact

that our algorithm is tuned to be efficient across a wider set of instances. Specifically, we made some critical design choices,

such as the number of subgradient iterations, so that not only a good upper bound is found but also a strong lower bound

is returned consistently across all instances, at the expense of longer CPU times for easier instances. 

Finally, Table 6 reports the overall performance of the LR algorithm on all instances. 

Specifically, column 3 reports the number of instances in which Gurobi could find non-trivial upper and lower bounds, 

i.e., which have a gap less than 100%, and columns 4 and 5 the corresponding optimality gaps for each method, with respect

to their own upper and lower bound. Next, columns 6 and 7 report the corresponding CPU times. The results suggest that

LR delivers a better overall gap, while it consumes less CPU time compared to Gurobi. This is true for all but the smaller

instances, USC30, and for instances with 20 periods. For the latter, Gurobi returns a smaller gap, but note that it does not
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Table 7 

Optimality gaps and CPU times of Gurobi and Benders implementations. 

Optimality Gap (%) CPU Time (s) 

|N | # GRB B-REG B-MW1 B-MW2 B-FSZ GRB B-REG B-MW1 B-MW2 B-FSZ 

30 216 0.00 0.03 0.01 0.48 0.00 28 622 777 86 28 

50 216 48.92 23.40 9.12 3.30 0.67 3264 5161 5175 4171 2240 

53 216 17.5 11.57 5.92 3.57 1.38 3852 6650 6818 4809 2888 

| T | 
5 162 8.66 7.21 3.38 2.34 1.21 2384 3952 3910 3103 1959 

10 162 15.43 9.62 3.54 2.57 0.68 2456 4107 4624 2983 1710 

15 162 30.79 13.65 2.86 2.23 0.49 2334 4276 4975 3047 1465 

20 162 33.69 16.20 10.27 2.65 0.35 2351 4243 3517 2956 1630 

Total 648 22.14 11.67 5.01 2.45 0.68 2381 4144 4257 3022 1696 

Total ( R ) 432 15.12 6.47 2.33 1.52 0.42 1902 2191 2866 1583 1572 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

manage to return a gap for 41 instances. In both cases, LR remains competitive. It is worth noting that columns 3 to 7

subsume instances that Gurobi solved to optimality. If we consider instances which Gurobi could not solve to optimality but 

for which it did find an upper and lower bound, then the difference is even more profound: for example, for the Pazour

instances LR returns an average gap of 5.09% and 2088 s of CPU time, as opposed to a gap of 14.41% and 7200 s of CPU,

reported by Gurobi. Finally, the last two columns report the optimality gap and CPU time of LR when run on instances for

which Gurobi could not find an upper bound. For these difficult instances, our algorithm seems to scale very well, with

an average CPU time of 2686 s (3738 for the R instances) and an optimality gap of 4.33% (9.76% for the R instances).

Interestingly, it seems that instances with five periods are quite challenging to solve. 

In summary, these experiments suggest that the S&T heuristic and the Lagrange relaxation constitute efficient bounding 

techniques that are competitive with Gurobi for small instances, scale better for medium instances and attain good opti- 

mality gaps for the most difficult instances. We then proceed to uncapacitated instances and assess the performance of the 

various Benders decomposition implementations. 

6.2.2. Uncapacitated instances 

We investigate the efficiency of our Benders decomposition implementations by utilizing the same set of multi-period 

instances but without considering their capacity. Specifically, we benchmark (i) a modern implementation of the regu- 

lar formulation (22) –(26) , (B-Reg); (ii) Adding PO cuts (B-MW1); (iii) Adding PO cuts solving only one subproblem, as in

Magnanti et al. (1986) (B-MW2) and finally (iv) the FSZ formulation of Fischetti et al. (2010) (B-FSZ). All implementations

exploit modern callback technology to avoid solving the master problem multiple times ( Bai and Rubin, 2009 ) and make use

of the cutting planes described in Section 5.2.5 , while the Pareto-optimal formulations update the core point using Remark 

3. In addition, all methods other than B-FSZ use a subroutine that detects if a primal subproblem is infeasible, by either

finding a path between each o − d pair or by detecting an edge cut set, which is then used to generate a feasibility cut. This

is not necessary for B-FSZ, since the FSZ subproblem generates both optimality and feasibility cuts. Similar to the capacitated 

experiments, our basic benchmark is the best Gurobi (GRB) formulation, which uses the cut pool to handle the separation 

of the strong inequalities (18) . Table 5 shows the average optimality gaps and CPU times obtained by each method. The time

limit is set to 7200 s for all algorithms. 

A careful analysis of Table 7 suggests some important conclusions. First, Benders reformulations seem to be intrinsically 

more efficient compared to branch-and-cut (GRB). Specifically, our best implementation (B-F), attains an average gap which 

is approximately 30 times lower, and consumes about 70% of GRB’s CPU time (80% for the R instances). This performance

difference has been observed for other problems as well, such as facility location ( Fischetti et al., 2016b ), suggesting that a

modern implementation of Benders decomposition can be a superior alternative to an off-the-shelf, state-of-the-art solver. 

Second, with respect to the basic Benders implementation, we note that although it achieves a far better gap than branch-

and-cut, it falls behind the more sophisticated implementations by a large margin. Third, when assessing the impact of PO 

cuts, we observe a non-trivial gap improvement between the basic Benders B-R and the basic PO Benders B-MW1 imple- 

mentations, implying that the impact of adding PO cuts significantly enhances performance. However, these improvements 

come at a high CPU time cost, because two LPs are solved to generate every optimality cut, resulting in B-MW1 having

the worst time performance across all methods. Fourth, implementation B-MW2, which generates PO cuts using a single 

subproblem per iteration dominates B-MW1 in terms of both gap and CPU time performance. Finally, B-FSZ is the best- 

performing implementation, having clearly the lowest gap and CPU time. In particular, it was able to solve optimally 99 (54

for R) instances that GRB failed to solve to optimality, and 58 (39 for R) instances that no other algorithm solved optimally.

The ability of this model to incorporate the current flow cost in the cut-generating subproblem and to generate cuts that

unify feasibility and optimality leads to important improvements over the Magnanti-Wong implementations. Finally, the 

breakdown per original network shows that the USC30 instances can all be solved to near-optimality rather easily, while 

JBH50 and USC53 are more challenging. In addition, problems with more periods are generally more challenging to solve, 

but interestingly B-FSZ seems to attain a better gap performance for longer horizons, using about the same amount of CPU 

time. 
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Fig. 1. Cuts generated by each implementation. Optimality and feasibility refer to the totals generated during branch-and-cut. Binding are the cuts binding 

at an optimal solution. Numbers in parentheses are proportions of total generated cuts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In an attempt to further improve the performance of our algorithms for hard instances, we have experimented 

with adding cuts at the master problem root node prior to branching by using an in-out scheme as described in

Fischetti et al. (2016a) . To demonstrate the potential of this scheme, we considered the ten hardest instances defined as

those with the largest integrality gap when solved by the B-FSZ method, and benchmarked B-FSZ with and without the 

in-out cuts. For these instances, the average root node lower bound improvement is 9.13%, while the overall average gap 

improves from 9.65% to 4.42%. Detailed results are reported in Appendix D. 

Generated Benders cuts. On further analysis, it is interesting to investigate the number and type of cuts each Benders 

implementation generates. To this end, Fig. 1 shows the average number of binding and total cuts (Panel (a)) and feasibility

and optimality cuts (Panel (b)) each algorithm generated in a subset of 306 Pazour instances for which all algorithms could

find an optimal solution. Note that we do not report a breakdown into feasibility and optimality cuts for the B-FSZ method,

because its implementation does not use the feasibility detection subroutine which the other methods use, and therefore 

the numbers of feasibility and optimality cuts it generates are not directly comparable. 

The average number of Benders cuts generated over a large number of instances may lead to some notable insights. First,

in terms of cuts binding at an optimal solution, regular Benders is outperformed by all other algorithms, followed by B-MW1,

B-MW2 and B-F. The regular implementation MW1, which solves two LPs to generate a single PO cut, generates a very large

number of optimality cuts, and the smallest number of feasibility cuts. Interestingly, B-FSZ generates the smallest number of 

binding and total optimality cuts and the second largest proportion of binding cuts, suggesting that the generated cuts are 

more likely to be active at an optimal solution. This experiment underlines that there may be a considerable spectrum when

it comes to the performance variability of PO cuts. In particular, generating the cuts by solving LPs could result in strong

cuts, since there exists some variability embedded in the pivoting rules that return one among multiple optimal solutions. 

An interesting direction for future research is to devise a mechanism that exploits this variability in a systematic way. 

6.3. Solution analysis 

A focal question pertinent to multi-period settings is how the inclusion of the multi-period structure influences the 

characteristics of the resulting solutions. Specifically, we investigate the timing of the arc opening decisions, the variable 

versus fixed costs composition and commodity flow changes over the horizon. To this end, we partition the problem horizon 

in early, middle and late periods, and report aggregate statistics for each segment. This partition is made so that each

segment captures | T | / 3 periods, with the middle segment capturing more periods when rounding is necessary. Since we

did not observe any major differences in the behavior of capacitated or uncapacitated instances, we report our analysis for 

capacitated instances of the Pazour dataset, based on the solutions we obtained from our integrated Lagrange Relaxation 

algorithm. For brevity, we only summarize conclusions that (i) have an interesting interpretation and (ii) are persistent 

across capacitated and uncapacitated instances. In particular, we do not report results for different correlations and routing 

cost modes because the differences are small across the corresponding configurations. The complete results of our solution 

analysis study, including the uncapacitated instances and the R instances, are available from the authors upon request. 

Arc opening timing. The first matter of interest is the timing of arc opening. Overall, 80% of the arcs used are opened

during early, 7% during middle and 13% during late periods. Despite the lower demand in early periods, the fact that all

commodities have to be routed from their origins to their destinations induces the majority of the arcs to be opened early

on. Yet another factor that could influence early opening is that the original networks are very sparse and have a relatively

large number of commodities, and therefore the number of feasible and cost-efficient paths per commodity may be limited. 

In addition, since commodity demands increase through the horizon, it becomes more important to contain the routing cost, 

resulting in relatively more arcs opening in late periods than in middle periods. When considering arc opening separately 

for different horizon lengths, however, Fig. 2 shows that for an horizon of five periods there are significantly fewer arcs

opened early, and more arcs opened late. This suggests that models with too short horizons used as approximations to long

horizon problems could underestimate the number of arcs to be opened early, leading to suboptimal solutions. This is not 
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Fig. 2. Proportion of arcs opening over early, middle and late periods. 

Fig. 3. Proportion of arcs opening per capacity (a) and fixed cost level (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the case for horizons with 10 or more periods, where the proportion of arcs opened early seems to stabilize. In addition,

the more periods are considered, the more arcs are opened in middle periods, leading to a “smoother” opening plan, with a

decreasing number of arcs opening as we approach the end of the horizon. This is also the case with the R instances, which

extend to 80 periods. 

It is also interesting to investigate the impact that capacity tightness and cost ratio have on arc opening. To this end,

Fig. 3 shows the proportion of opened arcs for each capacity and fixed cost level. The impact of capacity tightness is more

pronounced over middle and late periods, where more arcs need to be opened when capacity is tight, leaving fewer arcs to

be opened early. In other words, the higher percentage of arcs that are opened late is a consequence of the overall demand

increase, coupled with tight network capacities. When it comes to fixed costs, it is more beneficial to defer arc opening

when the fixed cost is high relative to the variable cost. Interestingly, this does not make a significant difference in middle

periods, where commodity demand is linear, but a significant difference in early and late periods. 

Cost composition. Another matter of interest is how the arc opening decisions influence the proportion of the resulting 

fixed versus variable cost over time. To this end, recall that fixed costs decrease linearly as we approach the end of the

horizon, while commodity routing costs remain constant and demand increases. The combined effect of those trends is that 

the proportion of fixed costs decreases from 54% in early to 5% and 3%, in middle and late periods, respectively. In other

words, after the initial arc opening phase, the predominant cost results from routing the commodities through the network. 

However, this composition depends heavily on the magnitude of fixed costs, as Fig. 4 shows. 

Reflecting on Fig. 4 , we observe that high fixed costs account for 70% of the overall cost in early periods despite the

observation that fewer arcs are opened in this case, as shown by Fig. 3 b. Taken together, when the opening cost is high, as

is typically the case for constructing rail segments, it seems beneficial to selectively construct certain arcs early, even if they

bear a high initial cost, since the increase in demand can be tackled in later periods, where fixed costs are less expensive. 
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Fig. 4. Fixed cost composition per horizon segment. 

Fig. 5. Proportion of rerouted commodities per capacity (a) and fixed cost level (b). 

Fig. 6. Average capacity utilization per capacity (a) and fixed cost level (b). 

 

 

 

 

 

Commodity Rerouting. Another consequence of increasing commodity demands is that more commodities change their 

routes in late periods, compared to their initial routes. Specifically, in early and middle periods, only 3% and 4% of com-

modities are rerouted, respectively, compared to 12% in late periods. Fig. 5 shows that this increases to 15% when capacities

are tight and to 17% when fixed costs are high. This latter case of high fixed costs reflects a higher proportion of arcs

opening late, as suggested by panel b of Fig. 2 , which in turn allows more commodities to reroute their original paths. 

Capacity Utilization. We conclude this part by commenting on the capacity utilization, defined as the average proportion 

of capacity that is being used by routing commodities across opened arcs and horizon segments. The average capacity uti- 

lization is 8%, 12% and 13% for early, middle and late periods, respectively. Such low utilization is likely to be related to the

nature of the underlying networks, which are quite sparse and have a large number of commodities with diverse origins 

and destinations. This diversity implies that it may be necessary to open specific arcs only to route a small number of com-

modities, thereby reducing the average capacity utilization. In contrast, the R instances, which are randomly generated and 
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significantly denser, reach utilization rates of 59%, 65% and 70% for early, middle and late periods, respectively. Fig. 6 shows

how capacity utilization varies among instances with varying capacity and fixed cost levels. 

The disproportionate impact of tight capacities is depicted in panel Fig. 6 a, while panel Fig. 6 b shows that the higher the

fixed cost, the more beneficial it is to increase capacity utilization, suggesting that expensive arcs should be better utilized. 

However, note that the differences are small, and utilization practically stabilizes for middle and late periods. To interpret 

this finding, recall that in single-period problems the core trade-off is to balance (i) excessive fixed costs by opening a 

few key arcs through which many commodities can be routed with (ii) routing each commodity through its minimum cost 

paths. In a multi-period setting, however, fixed costs have a one-off impact, while routing costs are recurrent, and rise 

when demand is increasing. Therefore, for problems such as designing and expanding a freight rail network, the impact of 

arc construction decisions on the year-to-year operational costs can be detrimental, and a low capacity utilization should 

not be perceived as inefficient a priori. This is a key insight coming from the temporal interplay of opening and routing

decisions, but research that utilizes actual cost data is required to validate this claim. 

7. Extensions and future research 

We introduce a multi-period extension of the multi-commodity network design problem that arises in an array of appli- 

cations, and study its capacitated and uncapacitated variants. By taking advantage of problem structure, we develop heuris- 

tic and decomposition-based algorithms that exhibit better performance than a commercial, state-of-the-art branch-and-cut 

solver. For capacitated problems, Lagrange relaxation scales very well with problem size and delivers high quality lower and 

upper bounds across a large range of problem sizes. For uncapacitated problems, we employ a variety of Benders decompo- 

sition formulations and show that the best one solves very large instances to optimality. Our algorithms are tested on two

sets of networks, for which we analyze the temporal characteristics of solutions. 

A potential limitation of our study is that it assumes deterministic commodity demands. For freight rail applications, it 

is common to assume a target demand ( Bärmann et al., 2017 ) which reflects anticipated growth and strategic targets. In

other contexts, such as DHL’s strategic service network design case ( Cheung et al., 2001 ), deterministic network design may

be combined with a simulation model to assess the network’s operational characteristics and solution quality in a stochas- 

tic environment, although for such problems using a deterministic solution may lead to fewer consolidation opportunities 

( Lium et al., 2009 ). Further, deterministic solutions can be used to decide which arcs to open and when ( Thapalia et al.,

2012 ), and then solve the corresponding stochastic LPs. While conceptually simple, this heuristic may substantially improve 

the deterministic solution, by as much as 97% ( Sun et al., 2017 ). For multi-period problems, where the routing costs are

predominant over fixed costs, it is likely that such a method delivers good results. 

There are several avenues for future research. For capacitated problems, volume-based branch-and-bound appears to be 

an approach worth exploring. Investigating the efficiency of well-established heuristics, such as large neighborhood search 

( Ropke and Pisinger, 2006 ), evolutionary algorithms ( Paraskevopoulos et al., 2016 ), slope scaling ( Crainic et al., 2004 ) or

column and row generation ( Katayama et al., 2009 ) can lead to further improved solutions. For uncapacitated problems,

further improvements on the Benders cut generation mechanism can be investigated, particularly the incorporation of in- 

out schemes ( Fischetti et al., 2016a ) that have the potential to improve the root node lower bound. We hope that our study

inspires future work on such problems. 
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