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Abstract
Research has shown a bi-directional association between the (perceived) amount of
invested effort to learn or retrieve information (e.g., time, mental effort) and
metacognitive monitoring judgments. The direction of this association likely depends
on how learners allocate their effort. In self-paced learning, effort allocation is usually
data driven, where the ease of memorizing is used as a cue, resulting in a negative
correlation between effort and monitoring judgments. Effort allocation is goal driven
when it is strategically invested (e.g., based on the importance of items or time pressure)
and likely results in a positive correlation. The current study used a meta-analytic
approach to synthesize the results from several studies on the relationship between effort
and monitoring judgments. The results showed that there was a negative association
between effort and monitoring judgments (r = − .355). Furthermore, an exploration of
possible moderators of this association between effort and monitoring was made. The
negative association was no longer significant when goal-driven regulation was manip-
ulated. Furthermore, it was found that the type of monitoring judgment (i.e., a weaker
association for prospective judgments) and type of task (stronger association for problem-
solving tasks relative to paired associates) moderated the relation between effort and
monitoring. These results have important implications for future research on the use of
effort as a cue for monitoring in self-regulated learning.

Keywords Effort .Monitoring . Cue utilization .Meta-analysis .Metacognitive judgments

Monitoring is a central concept in most models of self-regulated learning (SRL, for an
overview of SRL models, see Panadero, 2017). According to the cue utilization perspective
(Koriat 1997), monitoring judgments are inferential. That is, learners use a variety of cues to
estimate the probability that they will remember or recognize specific knowledge or proce-
dures later on a test. Examples of these cues are learners’ beliefs about their memory and how
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confident they are about remembering learning materials. Next, important aspects of the study
situation, like the number of trials, the type of encoding strategies, and the type of test learners
expect, can be used as cues. Also, previous task-specific experiences and the perceived relative
difficulty of the items could be potential cues (Koriat 1997). Research has shown an associ-
ation between effort and monitoring judgments which, in line with the cue utilization perspec-
tive, suggests that the perceived amount of invested effort in the learning task is being used as a
cue to make monitoring judgments (Koriat and Ma’ayan 2005; Koriat et al., 2014b; Undorf
and Erdfelder 2011). For example, several studies by Baars and colleagues showed that effort
ratings were negatively correlated to monitoring judgments in primary and secondary educa-
tion when learning to solve problems (Baars et al., 2018; Baars et al., 2014; Baars et al., 2013).
Yet, it is still largely unclear what and how aspects of the learning process affect the
association between effort and monitoring. For example, if and how the type of monitoring
judgment or the type of effort measurement could affect the association between effort and
monitoring. Therefore, the current study aimed to assess the association between effort and
monitoring judgments made by students in the context of studies on learning and performance
and investigated possible moderators in this association.

Data-Driven and Goal-Driven Self-Regulation

Processing fluency, such as study or response time, during encoding, and retrieving, seems to
be an important cue for learners’ metacognitive judgments. Koriat et al. (2006) proposed a
memorizing effort heuristic. According to this heuristic, learners use invested memorizing
effort (e.g., mental effort, study time) as a cue. They believe that they will more likely
remember easily learned items than items that require more study effort. Subsequently, this
belief results in a negative correlation between effort and monitoring judgments, that is, with
increasing effort, the monitoring judgments tend to decrease from more confident to less
confident of being able to recall or understand the materials (e.g., Koriat et al., 2009a, 2009b;
Undorf and Erdfelder 2011). Following this view, metacognitive monitoring judgments are
data driven. The time needed to encode or retrieve information or the mental effort invested is
taken, retrospectively, as a cue for the learners’ competence and mastery of the learning
material (Koriat et al. 2006; Schneider and Löffler, 2016). This process has also been referred
to as the “control affects monitoring” (CM) model (Koriat et al. 2006, 2009a, 2009b). Data-
driven self-regulation often takes place during self-paced learning, where learners can spend as
much time or effort on learning the material as needed. Therefore, the ease of memorizing can
be used as a cue (e.g., Koriat et al., 2014a; Undorf and Erdfelder 2011).

Evidence for the memorizing effort heuristic and how effort is used to make monitoring
judgments has been found for word pairs (e.g., Undorf and Erdfelder 2011) as well as
problem-solving tasks (Ackerman and Zalmanov 2012). The memorizing effort heuristic
was found in children and adults (Koriat et al. 2009a; Koriat et al., 2014a). However, research
also suggests age-related improvements in cue utilization, because the negative correlation was
found to be weaker or nonsignificant for 7-to-8-year old children compared with older children
(Hoffmann-Biencourt et al., 2010; Koriat et al. 2009a).

Research by Koriat and colleagues has shown that the correlation between effort and
monitoring judgments is not always negative (Koriat 2008; Koriat et al. 2006; Koriat et al.,
2014b). If learners prioritize, i.e., attach a particular value to learning an item or completing a
learning task, the correlation between effort and monitoring judgments becomes positive. In
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that case, goal-driven self-regulation takes place where “monitoring affects control” (i.e., MC
model). In goal-driven self-regulation, learners allocate effort based on the importance of the
items or their interest in it. In prior research, goal-driven self-regulation has been manipulated
by increasing the relative importance of items, such as the number of points that can be
obtained when the item is remembered correctly or by inducing time pressure (e.g., Ackerman
2014; Koriat et al. 2006). Goal-driven self-regulation has also been manipulated by giving
learners a sense of agency, e.g., by asking learners how much effort they chose to invest
instead of asking how much effort studying the item required (Koriat 2018).

Research has shown that children and adult learners can be steered to self-regulation in
either a data- or goal-driven way by using incentives (e.g., Koriat et al., 2014a). For example,
incentives can be provided by assigning 1 or 5 points to the correct recall of items. With higher
incentives, the correlation between effort and monitoring judgments was positive instead of
negative, indicating goal-driven learning. Also, by instructing students to adopt a facial
expression that creates a feeling of effort (i.e., contracting eyebrows toward the center of the
forehead), monitoring judgments were found to be lower, indicating a negative relation
between experienced effort and monitoring (i.e., data driven). Yet, when adding time pressure
to this situation, students started to learn in a goal-driven way and decided to allocate their
study time to the easier items to recall as many items as possible at the end (Koriat and
Nussinson 2009).

Koriat et al. (2014a) demonstrated an age-related increase in the ability to respond to data-
and goal-driven manipulations in a task. Children between 14 and 15 years and college
students were able to use data- and goal-driven self-regulation in the same task, whereas
children aged 10–12 years could not use them both on the same task. In the current meta-
analysis, we will examine the moderating effect of data- and goal-driven manipulations (e.g.,
manipulation of incentives, time pressure) on the strength and direction of the correlation
between monitoring judgments and effort. Furthermore, we will examine the role of age
differences by examining age and school level (i.e., grades 1–6, 7–12, or higher education)
as moderators.

The Type of Effort Measurement

Looking at the different studies in which both monitoring and effort were measured, it is clear
that effort can be measured in several different ways. Some studies use an objective measure of
invested effort. Examples of objective measures are the study time needed to encode the
learning materials (e.g., Ackerman 2014; Koriat et al. 2009a; Koriat and Ma’ayan, 2005), the
time the participants needed to answer (i.e., response latency; Ackerman and Koriat, 2011;
Ackerman and Zalmanov, 2012), or the number of trials needed before perfect recall (e.g.,
Koriat et al. 2009b). Other studies have measured effort by asking for learners’ subjective
ratings of mental effort (e.g., Baars et al. 2013; Kostons et al., 2012). For example, participants
are asked to rate their experienced mental effort during a learning or test task after the task has
been completed (Paas 1992). Presumably, there are more ways to conceptualize effort and
measure it (Paas et al., 2003).

As the conceptualization and measurement of effort differ across the studies included in the
current study, one of the questions in the present study is whether the type of effort
measurement affects the relation between effort and monitoring. Firstly, Koriat (2018) showed
that the level of agency reflected in mental effort rating (i.e., choosing to invest effort vs. rating
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the required effort) influenced the direction of the association. Furthermore, mental effort
ratings of required/invested effort may be more strongly correlated with monitoring judgments
than objective measures as both are self-reported by the learner. We, therefore, examine if the
different types of effort measurements relate in the same direction and with similar strength
with monitoring judgments.

The Types of Monitoring Judgments

There are many different types of metacognitive monitoring judgments (see Dunlosky and
Metcalfe 2008; Schraw 2009). Although the association between monitoring and effort has
been found in various studies, different types of monitoring judgments were measured. Schraw
(2009) describes three main categories of metacognitive monitoring judgments. Prospective
judgments that are made before the task that is judged (i.e., predictions), concurrent judgments
that are made during the performance on the task that is judged, or retrospective judgments
which are made after completing the task that is judged (i.e., post-dictions). Examples of
prospective judgments are judgments of learning (JOLs), feeling-of-knowing judgments
(FOKs), and ease-of-learning judgments (EOLs). JOLs are often measured by asking learners
to indicate the likelihood of remembering materials they just studied on a future test. FOKs can
be measured by asking learners to predict whether they would be able to recognize the
currently unrecallable information on a future test. EOLs are often measured by asking learners
to indicate how easy or difficult it will be to learn certain learning materials (Dunlosky and
Metcalfe 2008).

Examples of concurrent monitoring judgments are online confidence judgments, ease of
solution judgments, and online performance accuracy judgments during an ongoing task
(Schraw 2009). These types of judgments are made immediately after learners answer an item
or perform a criterion task and require learners to rate their confidence in their answer, ease of
problem solution, or performance accuracy. An important characteristic of concurrent judg-
ments is that they are made on an item-by-item basis instead of over a set of items, which is
typical for retrospective judgments. It, therefore, indicates a person’s ability to judge their
performance while it occurs.

Finally, retrospective judgments are, for example, EOLs and performance accuracy judg-
ments made after a set of items or a criterion task is completed (Schraw 2009). Retrospective
judgments can occur on an item-by-item level and global level. Still, they are always made
after all items of all aspects of the criterion task have been completed. In the current meta-
analysis, we examine if the strength of the association between monitoring judgments and
effort is affected by the type of monitoring judgment that is measured.

The Type of Task

Next to the type of monitoring judgments and the type of effort measurement, the type of task a
participant has to study, perform, or solve could be an interesting moderator of the relationship
between effort and monitoring. There is evidence for the idea that effort informs monitoring
for various types of tasks. For example, associations between effort and monitoring judgments
have been found for studying word pairs (e.g., Koriat et al. 2009b), learning to solve problems
(e.g., Baars et al. 2013), and other types of materials such as medical diagnoses (e.g., Blissett
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et al., 2018). However, from the literature on the accuracy of monitoring judgments and how to
improve them, it has become clear there are differences between different types of tasks in the
accuracy of monitoring judgments and the effectiveness of interventions to improve this aspect
(e.g., Ackerman and Thompson 2017; Baars et al. 2014; Thiede, Griffin, Wiley, and Redford
2009). For example, the delayed JOL effect was found to be most robust when studying word
pairs (Rhodes and Tauber, 2011) but was not found for studying expository text (e.g., Maki
1998) or learning to solve problems (e.g., Baars et al. 2018). Therefore, it is examined if the
strength of the correlation between monitoring judgments and invested effort is sensitive to
different task types. In the current meta-analysis, most tasks concerned problem-solving tasks
or learning words, word pairs, or other paired associates.

The Present Study

The current study aimed to assess the association between effort and monitoring by students in
the context of studies on learning and performance. We used a meta-analytic approach to
synthesize the results obtained in previous studies and to provide insight into the strength and
direction of the estimated effect in the population. Specifically, the meta-analysis addresses the
following questions:

1. What is the relation between students’ effort and monitoring judgments during perfor-
mance, learning, or training?

2. How do school level (i.e., grade 1–6, grade 7–12, higher education) and age influence the
effect sizes?

3. How do goal-driven manipulations influence the effect sizes (e.g., incentives, time
pressure)?

4. How do different types of effort measurements influence the effect sizes?
5. How do different types of monitoring judgments influence the effect sizes?
6. How does the type of task affect the effect sizes?

In line with the cue utilization perspective, we expected to find a negative association between
monitoring judgments and invested effort (Hypothesis 1). Because some studies have found a
weaker correlation for younger learners, we expected that the association would be weaker for
children in grades 1–6, when compared with learners in grades 7–12, or higher education
(Hypothesis 2).

We further expect that goal-driven regulation manipulations can influence the direction and
strength of the association. A significant negative association is expected when self-paced
study takes place, whereas a positive or nonsignificant association is expected when time
pressure is applied (Hypothesis 3a). Furthermore, a significant negative association is expected
when all items are equally important (i.e., no incentive). In contrast, a positive or nonsignif-
icant association is expected when different incentives/points are awarded to the recall of
different items in a learning task (Hypothesis 3b).

Furthermore, we hypothesized that mental effort ratings that express a sense of self-agency
(choice to invest effort) would result in a positive association. In contrast, other mental effort
ratings and objective effort measures will show a negative association with monitoring
judgments (Hypothesis 4a). Additionally, we expected a stronger negative association for
subjective mental effort ratings that ask learners to rate invested or required effort than for
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objectively logged measures (Hypothesis 4b). For the type of monitoring judgments used, no
particular differences were expected between confidence judgments, JOLs, or other
metacognitive judgments. Furthermore, no specific differences were expected for the task type.

Method

Literature Search and Eligibility Criteria

A search was conducted in the internet databases ERIC (ProQuest interface) and Web of
Science Core collection to locate relevant studies. We chose a time frame from 2000 to
May 2020, because one of the first and often cited articles on the relation between effort
and monitoring was published in 2008 (Koriat 2008). We conducted an initial search with the
search terms “effort,” “monitoring,” and “learning.” that was further restricted by only
including English articles published in peer-reviewed journals in the field of education,
educational, and cognitive psychology research. This first search resulted in 224 articles from
Web of Science (WOS) and 146 articles from ERIC. A more expanded search was conducted
on May 12, 2020 by including additional search terms for effort (i.e., effort* OR “response
latency” OR “response time*” OR “study time”), monitoring (monitoring OR “judgment* of
learning”OR “confidence judgment*” OR “confidence rating*” OR “metacognit* judgment*”
OR “latency-confidence”), and learning (learning OR “self-regulation” OR “metacognition”
OR “accuracy”). Again, search results were restricted by only including English, peer-
reviewed articles. In WOS, the search was further restricted to only publications in psycho-
logical or educational sciences research domains. The second search resulted in 384 articles in
WOS and 211 articles in ERIC. After removing duplicates from the initial and expanded
search, 675 articles remained. Furthermore, we checked the references of selected studies for
additional studies.

To select all relevant studies on the association between effort and monitoring, specific
criteria for inclusion were developed.

1. The (cor) relation between effort and monitoring judgments and the sample size was
reported or received after a request via email to the corresponding author.

2. Both effort and monitoring judgments were measured on a quantitative scale in the
context of learning or performance.

3. Effort and monitoring were measured in one study or experiment in the same trial for the
same item or criterion task. If there were multiple parts of the study in which effort and
monitoring were measured (e.g., pretest, learning phase, and posttest), data from the
learning phase and/or posttest were used.

4. The description of the measurement of both effort and monitoring judgments is reported in
such a way that it could be coded what type of effort measurement and monitoring
judgments were used in the study.

As can be seen in Fig. 1, from the 675 articles found, 617 articles were immediately excluded
based on criteria 2–4, whereas 58 articles were selected for further coding. Furthermore, based
on a snowball search (e.g., references in selected articles), an additional 16 articles were
identified. Of the 74 articles selected for further coding, five were removed because they did
not meet criteria 2–4 (e.g., effort and monitoring judgment not measured in the same trial).
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Additionally, 23 articles were excluded because the correlation between monitoring judgment
and effort could not be obtained. The search and selection process resulted in a final subset of
46 articles with 164 correlations between effort and monitoring found in 123 participant
groups with a total of 5819 participants (see Table 3 Appendix).

Coding

A coding scheme was used to describe the articles included in the current study. In addition to
effect size data (i.e., r and N), several moderators were coded.

Sample Characteristics

Because research suggests both data- and goal-driven self-regulation have been sensitive to
age-differences, we coded the school level (i.e., grades 1–6, grades 7–12, or higher education)
of the sample. Also, the mean age of the participant sample was coded. For some higher
education samples, the mean age was not reported. For these studies, we used the average age
of the other included higher education samples (M = 23.02).

Data- and Goal-Driven Manipulations

Data- and goal-driven self-regulation can co-occur in the same task (Koriat et al., 2014a).
Therefore, the presence of goal-driven manipulations was coded. Goal-driven self-regulation is
often elicited by using time pressure or item incentives, but can also be manipulated by
promoting a sense of self-agency by asking learners how much effort they chose to invest
(Koriat 2018). If participants experienced one or more of these three elements, it was coded
that a goal-driven manipulation was present. We further included separate variables on the

Fig. 1 Flow chart of selection of articles
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presence of time pressure during the learning or performance phase (compared with sufficient
or self-paced study time) and the presence of incentives (i.e., differential point distribution for
correctly recalling an item or solving a task) or not.

Effort Measurement

We further made a distinction between effort measures that were (a) objectively logged (i.e.,
time or number of trials), (b) subjective ratings of invested/required mental effort, or (c)
subjective ratings of learners’ choice to invest effort (i.e., measures to promote self-agency
and goal-driven self-regulation; Koriat 2018). Objectively logged measures were further
subdivided in study time, response latency, and the number of trials needed before perfect
recall/acquisition.

Monitoring Judgments

We coded type of monitoring judgment (i.e., JOLs, confidence ratings, or other measures) and
the timing of the judgment (i.e., prospective, concurrent, retrospective) according to the
descriptions we have provided earlier in the paper.

Type of Task

We coded task type with the categories: (a) word learning and paired associations, (b) problem
solving, and (3) other. The first category included studies on learning Chinese words (e.g., Jia
et al. 2016), word pairs (e.g., Koriat et al. 2006), or other paired associates (e.g., Ackerman and
Koriat, 2011). The category problem solving included, for example, hereditary problem
solving in biology (e.g., Baars et al. 2014), misleading math/reasoning problems (e.g.,
Ackerman and Zalmanov 2012), and compound remote associates problems (e.g., Ackerman
2014). The “other” category included tasks such as diagnosing medical cases (Blissett et al.
2018), reading/studying a text (e.g., Kostons and De Koning 2017), or a general knowledge
test (Koriat and Ackerman 2010a).

Data Analyses

All analyses were performed in Comprehensive Meta-Analysis statistical software (version
3.0.1.0; Biostat, Englewood, NJ; Borenstein et al., 2009). The correlation was used as the
effect size measure based on the correlation and sample size reported in the articles or retrieved
from the authors of the study. Most studies concerned experiments that reported the correlation
between effort and monitoring judgment per experimental condition; of some studies, only the
correlation for the whole study was available. If a study reported several correlations of the
same participants (i.e., two or more correlations of participants from the same condition), a
combined, mean effect size was computed. The mean correlation was estimated using a
random-effects model. To assess statistical heterogeneity, we calculated the Q and I2 statistics
(Borenstein et al. 2009; Higgins and Thompson 2002). The I2 is an index of heterogeneity in
percentages (i.e., 25% = low, 50% =moderate, 75% = high heterogeneity). Moderator analyses
for the categorical variables were conducted based on analyses of variances (ANOVAs).
Between-group differences in the categorical mixed-effects analyses were tested with the Q
statistic for between group means. Furthermore, we conducted a random effects meta-
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regression model (using method of moments) to examine the effect of age (see Borenstein
et al. 2009). Finally, we conducted a random effects meta-regression model (using method of
moments) in which multiple moderators were included to test which moderators remained
significant after controlling for the effects of other moderators. Additionally, we assessed
publication bias.

Results

The effect size reported is a correlation coefficient (r), for which values of .10 are considered
small, .30 medium, and .50 large effects (Cohen 1988).

Research Question 1: The Relation Between Monitoring and Effort

Because in some studies more than one correlation was reported for the same group of
participants, a combined effect size was calculated in which the mean of the outcomes is used
for the analysis. To answer Research Question 1, we analyzed the mean correlation between
effort and monitoring judgment (k = 123). In support of Hypothesis 1, a negative, small
correlation was found, r = − .355 (95% CI [− .408, − .300]). The effect was heterogenous,
Q(122) = 597.12, p < .001, I2 = 79.57, T2 = 0.09 (SE = .02).

Research Questions 2–6: Moderators

Table 1 presents the results of the moderator analyses. To answer Research Question 2, we
examined the effect of age and school level on the association between effort and monitoring
judgments. In contrast to Hypothesis 2, results from the meta-regression revealed that the mean
age of the participant sample was not a significant predictor of the correlation between effort and
monitoring judgments, b = .009 (SE = .005), Q(1) = 2.95, p = .086. However, results from the
moderator analysis with school level as a categorical variable showed that school level was a
significant moderator of the relationship between effort and monitoring, Q(2) = 14.66, p = .001.
The results demonstrated a higher negative correlation between effort and monitoring judgments
for grades 7–12 when compared with grades 1–6 and higher education. These results suggest
there is no linear effect of school level on the association between effort and monitoring.

To answer Research Question 3, we examined the effect of goal-driven manipulation on the
correlations between effort andmonitoring judgments. Firstly, we compared the overall effect of the
presence of goal-driven manipulators on the effect size, such as the presence of incentives, time
pressure, or self-agency manipulations. The analysis revealed a significant moderation effect,
Q(1) = 6.39, p= .011. Although there was still a significant negative correlation between effort
and monitoring judgments, the correlation was lower than when goal-driven self-regulation was not
manipulated. We further examined the effect of using incentives and time pressure separately. In
support of Hypotheses 3a and 3b, we found that the association between effort and monitoring
judgments became nonsignificant when incentives or time pressure were used (see Table 1).

We further examined the effects of mental effort measures. As mentioned, goal-driven self-
regulation can be manipulated by the question that is asked when participants rate their effort
by promoting self-agency (i.e., how much effort did you choose to invest?). We examined the
effect of self-agent mental effort ratings compared with objectively logged effort ratings, and
other subjective mental effort ratings. Because the study by Koriat et al. (2014b) included two
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types of effort measures (i.e., objective self-study time measure and self-agent/other mental
effort ratings) for the same participants, we either had to exclude the study from the analysis or
only use the data from one of the measures to be able to include it in the moderator analysis.
Because the role of self-agent mental effort ratings was only examined in a few studies, we
excluded the correlations resulting from the objective measure of this study to ensure that the
sample did not appear twice in the analysis. In support of Hypothesis 4a, mental effort ratings
that promote a sense of self-agency result in a nonsignificant positive association between
effort and monitoring judgments, in line with goal-driven self-regulation. In support of
Hypothesis 4b, subjective mental effort ratings resulted in a higher relationship relative to
objectively logged effort ratings. When we made a further distinction between the type of
objective effort measure, results revealed that study time measures resulted in a lower
correlation than response latency measures (see Table 1).

Table 1 Results of the moderator analyses (mixed-effects model)

Moderator k r 95% CI z Q df p

School level 14.66 2 .001
Grades 1–6 32 − .349 [− .447, − .243] − 6.14***
Grades 7–12 18 − .553 [− .645, − .445] − 8.47***
Higher education 73 − .296 [− .363, − .226] − 7.95***

Goal-driven manipulation 3.39 1 .011
Not present 102 − 0.385 [− .440, − .327] − 12.01***
Present 21 − 0.193 [− .332, − .046] − 2.57*

Time pressure 5.55 1 .019
Time pressure 10 − .117 [− .325, .102] − 1.05
Self-paced/sufficient 113 − .373 [− .426, −.318] − 12.02***

Incentives 4.34 1 .037
No incentives 111 − .374 [− .428, − .354] − 12.02***
Incentives 12 − .174 [− .354, .018] −1.76

Effort measure 25.38 2 < .001
Objective measure 89 − .310 [− .371, − .247] − 9.10***
Self-agent rating 3 .283 [− .078, .578] 1.55
Other ME rating 31 −.502 [− .578, − .418] − 10.09***

Effort measure 42.50 4 < .001
Study time 54 − .210 [− .291, − .126] − 4.84***
Response latency 30 − .464 [− .548, − 369] − 8.61***
Number of trials 5 − .337 [− .571, − .052] − 2.30*
Self-agent rating 3 .284 [− .066, .571] 1.60

Other ME rating 31 − .501 [− .575, −.420] − 10.41***
Monitoring judgment 14.12 2 .001
Confidence rating 30 − .488 [− .573, − .393] − 8.86***
JOL 82 347 [− .432, − .216] − 8.00***
Other 11 − .457 [− .581, − .312] − 5.67***

Timing monitoring judgment 16.71 1 < .001
Concurrent 39 − .492 [− .562, −.562] − 10.94***
Prospective 84 − .281 [− .343, −.217] − 8.25***

Type of task 32.20 2 < .001
Problem solving 38 − .533 [− .597, − .462] − 12.33***
Word/paired associated 71 − .250 [− .318, − .179] − 6.76***
Other task 14 − .267 [− .408, − .113] − 3.35**

ME mental effort

*p < .05

**p < .01

***p < .001
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To answer Research Question 5, we examined the effect of the type of monitoring judgment
that was used. Type of monitoring judgment (i.e., JOL, confidence rating, other) was a
significant moderator to the relation between effort and monitoring (see Table 1). Although a
significant, negative correlation was found for all judgment types, the association was smaller
for JOLs. We further made a distinction between the timing of the judgment and found that
concurrent judgments resulted in a higher negative correlation than prospective judgments.

Finally, we examined the role of task type (i.e., problem solving, word learning/paired
associates, and other). Because the study by Dentakos, Saoud, Ackerman, and Toplak (2019)
included multiple task types, we only included the two problem-solving tasks. We excluded the
other task (i.e., answering general knowledge questions from the analysis). It seemed that
problem-solving tasks had a stronger negative correlation compared with the other types of tasks.

Meta-regression

For several moderators, significant effects were found. However, closer inspection of Table 3
Appendix reveals that some moderators share substantial overlap. For example, most of the
studies conducted in secondary education (i.e., grades 7–12) used problem-solving task.
Therefore, we conducted a meta-regression with multiple moderators (i.e., one moderator
per research question), to examine which of the moderators had a unique effect on the
correlation between effort and monitoring judgments controlling for the effect of other
moderators. Table 2 presents the results of the meta-regression. Again, from the study by
Koriat et al. (2014b), only the mental effort ratings were included, and from Dentakos et al.
(2019), only the problem-solving tasks.

The model including all moderators (excluding the intercept) was significant, Q(7) = 51.86,
p < .001, R2 = .39. The goodness of fit test showed that the covariates in the model did not
explain all heterogeneity, T2 = .05, Q(115) = 380.68, p < .001. School level and mental effort
measure (i.e., subjective vs. objective measure) were no longer significant predictors when
other moderators were included in the model. Goal-driven manipulations had a significant
effect. When a study manipulated goal-driven self-regulation, the correlation between effort
and monitoring judgments became less negative. Also, prospective monitoring judgments
resulted in a weaker negative correlation relative to concurrent judgments. Finally, problem-
solving tasks resulted in a stronger negative correlation compared with other tasks.

Table 2 Meta-regression

b SE 95% CI z p Q

Intercept − .357 .09 [− .536, − .178] − 3.91 < .001
School level 2.84
Grades 7–12 vs. grades 1–6 .017 .12 [− .211, .246] 0.15 .882
HE vs. grades 1–6 .100 .07 [− .033, .234] 1.47 .142

Goal manipulation vs. no manipulation .190 .07 [.044, .335] 2.55 .011
Subjective vs. objective effort − .072 .08 [− .236, .093] − 0.85 .395
Prospective vs. concurrent judgments .171 .08 [.023, .312] 2.27 .023
Task 11.15**
Problem solving vs. other − .340 .10 [− .544, − .136] − 3.27 .001
Paired associates vs. other − .154 .11 [− .361, .034] − 1.45 .147

For moderators with more than two categories, the combined effect is tested with the Q statistic

**p < .01
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Publication Bias

To assess publication bias, we inspected the funnel plot by plotting each individual study effect
size against its standard error, Egger’s regression intercept (Egger et al., 1997), and Duval and
Tweedie’s (2000) trim-and-fill technique, and conducted a classic fail-safe N analysis. The fail-
safeN estimated the number of studies with an effect size of zero that are required to nullify the
overall effect size. See Fig. 2 for the funnel plot. Egger’s linear regression test for asymmetry
did not suggest publication bias, t(121) = 0.39, p = .348. Duval and Tweedie’s trim-and-fill
technique (31 studies trimmed at the right side) resulted in an adjusted correlation from − .355
to − .227 (95% CI [− .291, − .162]. The fail-safe N suggested that 20,731 missing studies are
needed for the result of this meta-analysis to be nonsignificant (p > .05).

Discussion

Research has shown that without any additional instructional support, learners experience
difficulties in making accurate monitoring judgments (e.g., Ackerman and Thompson 2017;
Baars et al. 2014; Thiede et al. 2009). As a result of this, students’ regulation of further learning
is harmed, and thereby learning outcomes decreased (e.g., Dunlosky andRawson 2012). Hence,
it is crucial to knowmore about how students makemonitoring judgments and specifically what
cues they use as a basis for their monitoring judgments to support effective monitoring and
regulation during self-regulated learning. In the current study, the association between effort
and monitoring judgments made by students in the context of learning and performance was
investigated. Furthermore, the role of possible moderators was examined. Using ameta-analytic
approach, we integrated the results from previous studies on effort and monitoring to provide
insight into the strength and direction of the estimated effect in the population.

Fig. 2 Funnel plot with observed and imputed studies. The white dots represent the observed study samples
included in the meta-analysis (k = 123), and the black dots represent the 31 studies trimmed at the right side using
Duval and Tweedie’s trim-and-fill technique, resulting in an adjusted correlation from − .355 to − .227 between
effort and monitoring judgments

Educational Psychology Review (2020) 32:979–1002990



Main Findings

The results showed a negative, medium correlation between effort and monitoring judgments
(r = − .355). These results are in line with the cue utilization perspective (Koriat 1997), in which
effort is described as a potential cue. That is, the perceived invested effort in a learning task is
supposedly used as a cue to make monitoring judgments. Furthermore, several moderators were
examined. The role of age and school level was investigated because earlier studies demon-
strated age-related improvements in cue utilization (e.g., Hoffmann-Biencourt et al. 2010;
Koriat et al. 2009a). In our meta-analysis, we did not find age-related differences in the
correlation between effort and monitoring judgments. Koriat et al. (2009a) showed that the
critical development in the reliance of the memorizing effort heuristic develops somewhere in
the third grade. In our study, we only were able to include a few young samples in our analyses
(e.g., learners in grades 1 and 2); this might explain why no age-related differences were found.

Concerning data- and goal-driven self-regulation, the meta-analysis provides evidence for
both types of processes. Overall, learners tend to focus on data-driven self-regulation in which
monitoring judgments are based on the amount of effort that was needed to learn the study
material or to solve the problem, as indicated by the negative correlations between effort and
monitoring judgments. However, the results of the moderator analyses and meta-regression
showed that the use of incentives, time pressure, or promoting feelings of self-agency resulted
in a nonsignificant correlation between effort and monitoring judgments. These results suggest
that students use data- as well as goal-driven self-regulation (e.g., Koriat et al., 2014a; Koriat and
Nussinson 2009). However, a significant positive correlation was not obtained in the moderator
analyses, which suggests that it is challenging to promote goal-driven self-regulation in students.

We furthermore examined the role of differences in the measurement of effort and
monitoring judgments. We hypothesized that mental effort ratings of invested/required effort
would result in a stronger negative association with monitoring judgments than when the effort
was objectively logged (e.g., study time and response latency), because effort ratings and
monitoring judgments were both self-reported by the learner. In our initial moderator analysis,
we found evidence for this hypothesis, but the effect of effort measures disappeared when
other moderators were included in the analysis (see Table 2).

Type of monitoring judgment (i.e., JOL, confidence rating, other) was found to be a significant
moderator to the relation between effort and monitoring. That is, the correlation was weaker for
prospective JOLs compared with concurrent confidence judgments and other judgments. When
we examined the effect of timing, we found evidence that prospective judgments resulted in a
weaker correlation compared with concurrent judgments. We did not have prior expectations
about differences in monitoring judgments. Possibly, the phrasing or the timing (i.e., concurrent
vs. prospective) of monitoring judgments prompts learners to use effort as a cue to a certain extent.
For example, concurrent judgments often ask learners to rate their confidence in their answers or
to self-assess howwell they have performed a certain task; these judgments are typicallymeasured
during a performance/test phase. In contrast, prospective judgments are more focused on future
recall or performance and are measured during the learning phase. Possibly, learners rely more on
effort during performance when compared with learning phases.

Interestingly, the type of task (i.e., problem solving, word learning/paired associates, other
tasks) was found to be a significant moderator of the relationship between effort and moni-
toring judgments. Specifically, results showed that the negative correlation was higher for
problem-solving tasks relative to learning words or paired associates and other tasks (e.g.,
reading). We did not have prior expectations about the effect of different tasks. Perhaps
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specific processes or features of the task affect the use of effort as a cue. Possibly learners
believe that effort is a better cue for judging how well you (will) perform on a problem-solving
task than for how well you can recall words or paired associated in the future.

Limitations and Future Studies

The current study has some limitations that should be taken into consideration when
interpreting the findings. One limitation is that we did not include “gray literature.” Future
research on effort and monitoring using review and meta-analysis could benefit from a more
in-depth search also covering dissertations, conference papers, or other reports. Furthermore,
the role of the moderators that were tested in the current study requires more attention. Firstly,
it remains unclear why certain types of tasks, such as problem solving, yield a higher negative
correlation compared with others. Furthermore, it is unclear why concurrent judgments result
in a stronger negative correlation than prospective judgments. Future studies could examine
this further by examining the association between effort and monitoring judgments in a within-
subjects design in which effort and monitoring judgments are measured for different task types
and during different phases (i.e., learning phases and performance phases).

Concerning the school level, earlier work has shown that primary education students
showed a smaller correlation indicating a developmental trajectory in using effort as a cue
for monitoring (Koriat et al. 2009b). More research with younger learners (e.g., learners in
grade 1) will give more insight into age-related differences in cue utilization. Although our
meta-analysis revealed evidence for both goal- and data-driven self-regulation, in our study,
we were only able to include a small number of studies in which goal-driven self-regulation
was manipulated. With more future studies on goal vs. data-driven scenarios during learning,
future meta-analyses could further investigate the moderating role of goal- vs. data-driven self-
regulation in the correlation between effort and monitoring.

Furthermore, although many studies have shown a negative linear correlation between
effort and monitoring, some studies reported an inverted U-shaped curvilinear relationship
between effort and monitoring, such as between study time and JOLs (see Undorf and
Ackerman 2017). This curvilinear relationship could not be explained by a data-driven or
goal-driven approach alone. In their study, Undorf and Ackerman (2017) investigated different
models for study time allocation (i.e., Discrepancy reduction model, DRM, Nelson and Narens
1990; Region of proximal learning model, RPL, Metcalfe and Kornell 2005; Diminishing
criterion model, DCM, Ackerman 2014) to explain the curvilinear findings. The results
showed that learners set time for learning an item (i.e., a criterion), and after this time had
passed, the relationship between study time and monitoring judgments changed. These results
confirmed the DCM model (Ackerman 2014) which predicts that for more complex learning
tasks, such as problem-solving tasks, learners invest effort in a goal-driven way at first but after
time passes the goal could be compromised, and the relation between effort and
monitoring becomes negative (i.e., data driven). These results suggest there is a
different type of relation between effort and monitoring compared with the relation
found in the current meta-analysis. Future studies could investigate this curvilinear
relationship between effort and monitoring and advance our understanding of effort as
a cue using multilevel modeling techniques.

The main finding of this meta-analysis is a negative correlation between effort and
monitoring, which suggests effort is being used as a cue to make monitoring judgments.
However, we did not investigate whether effort is a good cue for performance (i.e., cue
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diagnosticity); neither did we examine monitoring accuracy. For example, Raaijmakers et al.
(2017) found that feedback valence alters mental effort ratings. This could mean that the
invested effort is not a good predictor of performance. Yet, because monitoring judgments are
inferential, their accuracy depends on the relation between the cue and performance (Koriat
1997). In a future study, meta-analytic structural equation modeling could be conducted in
which cue diagnosticity, cue utilization, and monitoring accuracy are investigated in the same
analysis (see Dunlosky et al., 2016).1 Furthermore, according to cognitive load theory (CLT;
Sweller et al., 1998, 2019), two main types of cognitive load are affecting the learning
processes differently, i.e., intrinsic and extraneous cognitive load. Intrinsic load caused by
the learning material itself is inherent to the material and the learning process. If perceived
effort would be based on this type of cognitive load, it could potentially be a valid cue for
monitoring and self-regulated learning as a whole. That is, if the effort is too high or too low,
learning is probably not optimal. Extraneous load is caused by the design of the learning
materials, which does not aid the learning process. If this type of load contributes to perceived
effort, it could blur the relationship between effort and learning because it increases invested
effort without adding to learning performance. This would leave the learner with a very
complicated situation of perceiving effort and using that as a cue to their self-regulated learning
process. Future research could look into how different types of cognitive load affect perceived
effort and if they are being used as a cue for monitoring.

Conclusion

The current study was the first to investigate the association between effort and monitoring
using a meta-analytic approach. The findings showed that there is a medium, negative
correlation between effort and monitoring judgments suggesting effort is used as a cue for
monitoring. Interestingly, the type of monitoring judgment (i.e., concurrent confidence ratings
vs. prospective JOLs), the type of task, and goal-driven manipulations (e.g., incentives, time
pressure) moderate this relation. This can have important implications for future research on
the use of effort as a cue for monitoring in self-regulated learning.
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