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Abstract

In recent years, machine learning has been
used increasingly more often in most areas
of science and engineering. One such area
is the analysis of data from the medical
environment. This master thesis is con-
cerned with the application of machine
learning on the analysis of histopatholog-
ical images. The main challenge of the
analysis of such images is their size. Each
image has a size of up to a few gigabytes.
For this reason, it is not possible to use
conventional methods of machine learn-
ing for their analysis. In this work, we
propose a robust classifier, which can de-
tect tumours in the images and classify
them, despite the challenges that come
with it. To reach this goal, data prepro-
cessing as well as deep learning and mul-
tiple instance learning methods are used.
The implementation of used methods has
been verified on known datasets.

Keywords: Digital Pathology, Deep
Learning, Machine learning, Whole Slide
Images

Supervisor: prof. Dr. Ing. Jan Kybic

Abstrakt

V poslední době stoupá frekvence použití
strojového učení v celé řadě oblastí vědy a
techniky. Jednou z těchto oblastí je i ana-
lýza dat z medicinského prostředí. Tato
diplomová práce se zabývá využitím stro-
jového učení k analýze histopatologických
snímků. Hlavní výzvou při zpracování digi-
tálních histopatologických snímků je jejich
velikost. Každý snímek dosahuje velikosti
až několik gigabytů. Z tohoto důvodu není
možné použít k jejich analýze konvenční
metody strojového učení. Cílem práce je
navrhnout a naimplementovat robustní
klasifikátor, který zvládne ve snímcích de-
tekovat a klasifikovat nádory, navzdory
výzvám, které jsou s tím spjaty. K dosa-
žení cíle je využíváno předzpracování dat,
prvky hlubokého učení a metoda "mul-
tiple instance learning". Implementace po-
užitích metod byly ověřeny na známých
datasetech.

Klíčová slova: Digitální patologie,
Hluboké učení, Strojové učení,
Histopatologické snímky

Překlad názvu: Klasifikace typu
nádoru z histopatologických obrazů
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Chapter 1

Introduction

Gigapixel image analysis is the task of analysing images with more than
a billion pixels. This is by no means a trivial task, mainly because of the
sheer size of each image. Such a large size prevents the use of conventional
machine learning methods, such as the direct use of convolutional neural
networks, which have been the leading instrument in automatic segmentation
and classification of images in recent years [56, 29].

One type of gigapixel images is the Whole-slide images (or WSIs). A WSI is
a high-resolution image of a whole microscope slide. This format is often used
in histopathology and many other areas of medicine such as neuroanatomy,
proteomics(the large-scale study of proteins), connectomics(the study of maps
of connections in an organism’s neural system) and genomics(the study of
the function, structure and editing of genes) [11]. The analysis of whole-
slide images is one of the leading challenges in computer vision in medicine.
Competitions are held yearly to evaluate existing and new algorithms for their
classification and segmentation[3]. The state-of-the-art algorithms that are
devised in these competitions have the potential to make predictions about
these images faster and more precisely.

The PETACC3 trial was a phase III trial (a trial where the new drug is
compared to the standard-of-care drug) with random assignment of treatment
in multiple medical centers to test the effectivity of the addition of irinotecan
to other forms of medication for patients with stage 3 colorectal cancer [3].
In this thesis, we are working with microscopy images extracted during this
trial.
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1. Introduction .....................................
1.1 Task Definition

Given the histological microscopy images from the PETACC3 trial, the goal
of this thesis is defined as to:

. Get acquainted with the data and the related software. Perform literature
survey on CNN-based image segmentation and classification methods.

.Design, implement and evaluate a method for segmenting the images
into normal tissue, tumour tissue and background.

.Design, implement and evaluate a method for classifying the images
according to tumour type, i.e. whether it is mucinous, serrated or
Crohn-like.

In order to accomplish this task, we propose an extensive survey of state-
of-the-art methods of image segmentation and WSI analysis. Then, we adopt
some of these methods and implement them. Finally, experiments are done
to evaluate the performance of these methods on the PETACC3 dataset. An
example image from the dataset can be seen in Figure 1.1.

Figure 1.1: Example WSI from the PETACC3 dataset.
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................................... 1.2. Thesis Structure

1.2 Thesis Structure

Chapter 2: Literature Review
This chapter contains an overview of modern image segmentation and
classification methods, focusing on convolutional neural networks. The
aspects of Whole Slide Imaging are also reviewed in this chapter.

Chapter 3: Essential Algorithms and Structures
This chapter contains descriptions of the algorithms and structures used
in this thesis. A more in-depth approach is taken to acquaint the reader
with the methods used in this thesis.

Chapter 4: Methodology of WSI Segmentation into Tumour and Normal Tissue

The proposed methods for WSI segmentation into tumorous and normal
tissue are discussed in this chapter.

Chapter 5: Methodology
The proposed methods for WSI segmentation as well as the proposed
methods of classifying the WSIs according to tumour type is presented
in this chapter.

Chapter 5: Experiments
We propose several experiments to evaluate the performance of our
proposed method in this chapter

Chapter 6: Conclusion and Future Work
Conclusions are made about the results of our experiments. Future work
on this subject is also discussed.
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Chapter 2

Literature review

Whole-slide imaging is the process of digitising an entire microscopy slide into
a single image file. With the emerging of this method using the appropriate
scanners, digital images have seen a substantial increase in use in pathology
and other areas of medicine and medical research [79]. Many studies have
shown the feasibility of using these images in practical use[14, 78]. The main
benefits of digital images in pathology are their remote accessibility, the
possibility of easy, long-term storage, and, with the development of machine
learning algorithms for image processing, their automatic processing and
analysis.

2.1 Digital Imaging in Medicine

The practical use of digital imaging comes with many challenges. First of
all, scanners that are used for image digitisation have to be approved by
regulatory institutes in each respective country. For example, in the United
States of America, only one such scanner has been approved to date for
primary diagnosis [2]. Even with approved scanners, introducing digitisation
is always very expensive. Each scanner goes for as much as hundreds of
thousands of US dollars [45]. Further costs come from training the staff to
operate these scanners and obtaining new hardware for storing and processing
these images. Despite these challenges, most modern medical facilities are
using some digitisation. Often, the digital images are used for second opinions,
long-term storage, or teaching purposes [45, 79].

5



2. Literature review ...................................
2.2 Aspects of Whole Slide Imaging

In the last decade, WSI has shown promise as a base for the analysis of
pathological images by deep learning algorithms. Deep learning has stood
as the best means of automatic image analysis for some time since the
introduction of convolutional neural networks at the end of the last century
[48, 49, 29]. Applying such a powerful tool to WSIs has the potential to
make very fast, precise and robust predictions about these digital images.
However, to successfully design and implement such an algorithm, we must
first understand what features, challenges and anomalies can occur when
dealing with digital histological images. Many such challenges occur, especially
when aiming for clinical relevance [40, 52, 69, 70]. Essential challenges and
their solutions or workarounds are mentioned in this section.

2.2.1 Data Availability

When using DL algorithms, a sufficient amount of training samples is necessary
for achieving high accuracy [85, 50, 35]. Ideally, these samples should also
be well-annotated by experts. However, labelling histopathological images
is a very long, costly and tiresome process, especially when dealing with
more complex classes (e.g. mucinous), as opposed to binary classification (e.g.
existence of a tumour anywhere in the image) [40, 70]. Furthermore, medical
data is often under restrictions due to its sensitive and private nature[10].

In spite of these aspects, labelled rich datasets have started emerging in
the last couple of years. To name a few:

. CAMELYON: 1399 H&E-stained (Hematoxylin and eosin) sentinel lymph
node sections of breast cancer patients [51]

. BACH: 400 H&E stained breast histology microscopy and whole-slide
images used for the ICIAR 18 challenge [1]

. BreCaHAD: a dataset for breast cancer histopathological annotation and
diagnosis [13]

6



............................ 2.2. Aspects of Whole Slide Imaging

2.2.2 Data Variability and Artefacts

There is a high level of variability when it comes to WSI datasets. This is the
case for two reasons. Firstly, a WSI dataset can come from multiple sources
at once. For this reason, each image might have been obtained using different
methods specific to the source (e.g. different staining methods, different
scanning device). Secondly, artefacts are often introduced when the images
are being processed. This includes, but is not limited to uneven illumination
and focus, tissue tears and fold, and pen marks[26, 70]. This variability needs
to be addressed when dealing with such datasets, and proper generalisation
must be ensured.

Kothari, Phan and Wang in [42] suggest the use of saturation and intensity
values to classify each pixel of the image and detect tissue folds in this manner.
They show a significant increase in the performance of cancer detection models
after applying their method to WSIs.

Figure 2.1: An example of artefact detection in WSI. Source:[12]

2.2.3 Large Data Size

With a typical resolution of 100 000x100 000 pixels and a typical size of a few
gigabytes, WSIs become difficult to analyse. This difficulty applies to both
classification and segmentation. Such a size prevents the use of conventional
DL methods (e.g. the direct use of convolutional neural networks), due to
hardware limitations. Instead, some workarounds need to be implemented[26].

7



2. Literature review ...................................
The most common way of dealing with this issue is the patch extraction

method. Many researchers have used this method to achieve state-of-the-art
results [16, 18, 19]. By using this method, the image is split into smaller,
square patches(typically 200-1000 pixels in each dimension).

Figure 2.2: An example of patch extraction. Images were created using the
PETACC3 dataset [72]. A WSI from the dataset on the left, extracted patches
on the right.

2.2.4 Low Signal to Noise Ratio

WSIs often have a low signal to noise ratio. Only a small part of the image is
linked to the image label (e.g. malignant cells), while the rest of the image is
irrelevant (e.g. background, healthy cells). The image’s spatial distribution
can also be important but can be lost when making simplifying assumptions
about the task[26, 69]. This limits the use of the patch method, described in
the previous section, and assumptions have to be made about the images.

One such assumption is that each extracted patch shares its label with the
image. This leads to a naive solution, where many labelled small images are
classified with an implemented classifier, and then the whole WSI is classified,
using some prediction rule [69]. However, for this assumption to be feasible,
the work of an expert is required, who needs to provide pixel-level annotations
to training data. Methods using these strongly annotated patches are known
to achieve an impressive prediction accuracy [74, 64]. Very often, however,
we have to work with weakly annotated data, where the label is provided
only on the image level. In this case, we can not make the same assumption
without the loss of performance.

In the weakly annotated case, researchers have made a different assump-
tion. They assumed that although the labelled aspect of the image is not
recognisable in all of its extracted patches, it is still recognisable in some of

8



....................... 2.3. Deep Learning Methods for Image Analysis

them. This leads to solutions in the multiple instance learning algorithms,
which have also shown impressive results [77, 71].

The patch extraction method has been proven to be a very powerful tool
in the WSI analysis. Nevertheless, spatial information about the image is
always lost in the process. For this reason, other means of dimensionality
reduction are being researched. In the scope of pathology, this is especially
important for the detection of metastasis, which is usually not detectable
using the patch extraction method [40]. Tellez et al., 2019 [69] suggest the
use of neural image compression, which is the technique of mapping WIS to
a higher-level latent space. The researchers in [41] propose the use of their
novel network Spatio-Net, which uses a CNN to compress each patch and a
2D-Long-Short Term Memory network to classify all the compressed patches.
Li and Ping, 2018 [74] make use of a neural conditional random field to take
advantage of the spatial information in WSIs.

2.2.5 Low Interpretability of DL Methods

Finally, it is not easy to extract clinically relevant results from DL methods.
Due to their low interpretability, deep neural networks are often treated as
black boxes [21]. In other words, DL methods might provide seemingly very
accurate predictions and features; however, interpreting them can very often
be near impossible. For this reason, their application in the medical field might
be difficult to employ completely and independently, as providing reasoning
behind decisions is often required in the medical field [40, 70]. Methods
of interpreting artificial neural network decisions are being researched (e.g.
[57, 62, 82]), however, their applicability in medical decisions is still unclear
[21].

2.3 Deep Learning Methods for Image Analysis

With the introduction of convolutional neural networks, deep learning methods
have taken over as state of the art in image classification, and analysis [56].
What follows in this section is a brief history of CNNs, a summary of modern
innovations, and a short survey of methods of their use in image segmentation.

9



2. Literature review ...................................
2.3.1 History of Convolutional Neural Networks

One of the first introductions of a convolutional neural network was done
in the late 1980s by Yann Lecun et al. [48], using backpropagation for
recognition of handwritten characters. In 1998, Lecun et al. showed that
their CNN LeNet-5 outperformed other techniques of handwritten character
recognition [49]. However, CNNs require scaling, if they are to be applied
to high-resolution images, which was not possible with the hardware at the
time.

Figure 2.3: LeNet-5 architecture Source: [49]

The popularity of convolutional neural networks rose significantly with
their reimplementation for Graphics Processing Units (GPUs) by Chellapilla
et al. in 2006 [22]. The authors also introduced more efficient methods
of the implementation of convolution, using matrix multiplications. The
combination of this and the use of a GPU decreased the learning wall clock
time 3-4 times. It was also predicted that this could increase significantly
with larger networks.

With the establishment of the immense ImageNet database [25], and the
corresponding annual ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [6], where new algorithms for object detection and image classifica-
tion are evaluated, the superiority of CNNs became clear. In 2012, AlexNet, a
deep convolutional neural network architecture designed by Alex Krizhevsky
[43], won the competition, beating its runner ups by more than 10% on the
top-5 error [4]. Two years later, during the ILSVRC 2014, GoogLeNet [67]
and its close runner up VGG-16 [63] achieved near human-level accuracy of
6.66% and 7.32% respectively [5] on the top-5 error.

Finally, at ILSVRC 2015, ResNet was introduced. This deep convolutional
neural network architecture had 152 layers (as opposed to GoogleNet and
VGG-16 with 19 and 16 respectively[67, 63]), and contained skip connections
to reduce spatial complexity, with only 25.5 million parameters, roughly five

10



....................... 2.3. Deep Learning Methods for Image Analysis

times less than VGG-16 [33]. This network achieved a classification error of
only 3.57%, beating human experts for the first time [7].

Till this day, VGG-16 and GoogleNet (and its newer iterations InceptionV2
and InceptionV3 [68]), remain the most used deep convolutional neural net-
work architectures, due to their simple design with a high level of performance.

2.3.2 CNN Innovations

In the last couple of years, many new innovations in convolutional neural
networks have been popping up, which make clever use of spatial properties,
data flows and residual links (a.k.a. skip connections). What follows is a table
summarising these innovative network architectures, adopted from Khan et al.
2020 [39], including previously mentioned CNN architectures for comparison.

Architecture Name Year Main contribution Ref
LeNet 1998 First popular CNN architecture [49]
AlexNet 2012 Deeper and wider than the LeNet [43]
ZfNet 2014 Visualisation of intermediate layers [83]
VGG 2014 Homogenous topology, Small kernels [63]

GoogLeNet 2015 Split transform and merge idea [67]
InceptionV3 2015 Handles representational bottleneck [68]
InceptionV4 2016 Uses asymmetric filters [66]

Inception-ResNet 2016 Split transform and merge + res. links [66]
ResNet 2016 Identity mapping based skip connections [33]

DelugeNet 2016 Cross layer information flow [44]
FractalNet 2016 Multi-path architecture without residuals [47]
WideResNet 2016 Incresed width, decreased depth [81]
Xception 2017 Depth wise conv followed by point wise conv [24]
DenseNet 2017 Cross-layer information flow [37]
PolyNet 2017 Structural diversity, generalised residual units [84]

PyramidalNet 2017 Gradual increase in width per unit [32]

Figure 2.4: CNN architectures. Adapted from: [39]

2.3.3 CNN-based Image Segmentation Methods

With the establishment of CNNs as state of the art in image classification,
researchers have studied ways of their application in image segmentation.
Many such novel methods have been derived [56]. Some of these methods are
described in the next sections. Specifically, we talk about:

11



2. Literature review ...................................
. Fully Convolutional Networks

. Convolutional Models With Graphical Models

. Deep Encoder-Decoder Models

. U-net and V-net architectures

2.3.4 Fully Convolutional Networks

One of the architectures for image segmentation that was derived from the
CNNs are the Fully convolutional networks (FCN). This architecture is used
for semantic segmentation, which means the output of the network is the same
size as its input, mapping each pixel to a single class. The FCN architecture
was first proposed by Long at al. in 2015 [54], who implemented FCNs by
modifying existing CNN architectures, namely the aforementioned Alexnet,
GoogLeNet and VGG-16 architectures.

As the name implies, Fully convolutional networks do not have any fully
connected layers, and therefore only consist of convolutional and pooling layers.
Such a network must, therefore, also have a spatial output. When modifying
existing classifiers, the author first uses a process called convolutionalisation,
where they replace all fully connected layers by convolutional layers with
a kernel size equal to the size of the entire input. An output layer is then
added, in the form of a convolutional layer with a kernel size of 1x1 and
channel size equal to the number of classes + 1 for the background which
represents scores for each class. Finally, a backwards convolutional layer can
be added to upsample the output back to the original image size. A backwards
convolutional layer is a convolutional layer that has had its backwards and
forwards message switched, resulting in convolution with a stride of 1/f . The
whole network is then trained using a standard Stochastic Gradient Descent
algorithm.

Fully convolutional neural networks were shown to achieve great perfor-
mance for image segmentation, achieving a relative 20% increase in accuracy
on the PASCAL VOC 2011 and 2012 challenge datasets [9, 8] compared to
state of the art. They have also been used to tackle several computer vision
tasks, including the segmentation of medical images [75, 55].
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Figure 2.5: FCN architecture. Source: [54]

2.3.5 Convolutional Models with Graphical Models

Another recent innovation in Deep Learning for Image Segmentation is the
use of Probabilistic Graphical Models. Conditional Random Fields are one
such example of a graphical model. They are known to consider a whole scene
(context) when predicting, making them particularly useful for analysing
structured data such as images [46]. For this reason, researchers have studied
their combination with CNNs, which ignore contextual information altogether,
to create precise image segmentation frameworks.

Chen et al., 2016 [23] show that CNNs alone are not sufficient for image
segmentation, but that their combination with fully connected CRFs achieves
state-of-the-art results. In their work, the output of a CNN is used as input
of the FC-CRF, after it was upscaled using interpolation.

Figure 2.6: CNN + CRF architecture. Source: [23]

13



2. Literature review ...................................
Schwing and Urtasun, 2015 [61] manage to combine CNN and CRF into a

single trainable framework, passing the error of the CRF into the CNN. Finally,
Liu et al., 2015 [53] propose an efficient implementation of the CNN+Graphical
Model combination, using extra hidden layers to approximate the Mean Field
algorithm for Markov Random Field learning.

2.3.6 Deep Encoder-Decoder Models

As the name suggests, Encoder-Decoder models make use of two components;
an encoder which transforms the input of the model into a latent state, and a
decoder, which takes this state as input and decodes it into an interpretable
output. This architecture has become increasingly more popular in DL-
based image segmentation, and many state-of-the-art algorithms fall into this
framework [56].

Noh et al., 2015 suggest the use of a CNN, namely the VGG-16 for its
uniformity, as an encoder, which uses a reversed architecture to the encoder
(see Figure 2.7) [58]. Each convolutional layer in the decoder is replaced by
deconvolution, and each pooling layer is replaced by unpooling.

Figure 2.7: Encoder-Decoder architecture using deconvolution. Source: [58]

As described earlier, the deconvolution layer is identical to the convolutional
layer, except its messages are switched. A similar relationship applies to the
pooling and the unpooling layers. The output of the decoder is then the
segmented image directly.

An improvement to this architecture was proposed by Badrinarayanan et
al., 2015 [17]. Their SegNet architecture is similar to what was proposed by
Noh et al.; however, its encoder network is fully convolutional, and it uses
learnt parameters of the pooling layers with the unpooling layers.
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U-net Architecture

The U-net architecture technically belongs to the Deep Encoder-Decoder
Models; however, it was designed with the segmentation of high-resolution
medical images in mind. For this reason, their aspects are relevant to this
thesis and to potential follow-up work especially.

The U-net architecture was proposed by Ronneberger, Fisher and Brox,
2015 [60]. The motivation behind this architecture was to make use of the Fully
convolutional network architecture in combination with the Encoder-Decoder
structure to train a working network on only little data.

Figure 2.8: U-net architecture. Source: [60]

As is shown in the architecture schema, the U-net consists of a fully
convolutional encoder and a fully convolutional decoder. Furthermore, the
input to each layer of the decoder is concatenated with the output of the
corresponding encoder layer, ensuring that the high-level information is not
lost. The authors also make use of data augmentations during training,
achieving good performance with only a small amount of training images.

The U-net has become a popular framework for image segmentation, seeing
multiple applications [80, 28].
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Chapter 3

Essential Algorithms and Structures

This chapter covers the principles behind the algorithms and structures used in
the scope of this thesis. Namely, convolutional neural networks and algorithms
from the multiple-instance learning framework are discussed. Some prior
knowledge of machine learning algorithms is expected from the reader, as
elementary concepts (e.g. Multi-Layer Perceptron) are not explained in full.

3.1 Convolutional Neural Networks

Convolutional neural networks make up the base of our proposed methods.
To understand the used network structures, the basic layers types and other
components first need to be set out. Typically, a CNN consists of alternating
Convolution and pooling layers, followed by a block of Fully-connected layers.
Some additional techniques can also be implemented to improve performance
or the speed of convergence, such as Dropout and Batch normalisation. All
these components, as well as different activation functions, are described in
this section of the thesis. The basic component definitions were adopted from
Khan et al., 2020 [39].
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3.1.1 Convolutional Layer

Convolutional layers are the basic building block of every convolutional neural
network. They consist of a set of learnable kernels (also known as filters),
which come in the form of spatially small matrices (a couple of units in height
and width), with a depth equal to the depth of the input (e.g. 3 for RGB
images). Furthermore, each input is divided into slices, equal in size to the
defined kernels. These slices are also known as receptive fields and help with
the capturing of spatial features of the input. Commonly, receptive fields
are chosen such that they cover the entire input, organised into a regular
grid with a defined stride (distance from neighbouring receptive fields’ centre
locations). The kernel can then be seen as a window sliding across the input.

The outputs of the convolutional layer are computed as the dot products
(sums of element-wise multiplications) between the kernels and the receptive
fields. Therefore, we get one output per kernel, and each output has the
size equal to the number of receptive fields (1 value per receptive field). For
example, when designing a convolutional layer for inputs of size [5x5x3], we
could use two kernels of size [3x3x3] and complete coverage of the input with
nine receptive fields (organised into a 3x3 grid with stride equal to 0). The
size of the output of this layer would therefore be [3x3x2].

Formally, the convolution operation for one kernel can be expressed as:

f(m,n) =
∑

c

∑
i

∑
j

K[i, j]Fm,n[i, j] (3.1)

where f [m,n] is the value of the output matrix at position [m,n], c is the
channel index, i, j are indices of the kernel, K is the kernel in matrix form,
and Fm,n is the receptive field in matrix form, corresponding to the position
[m,n] in the output matrix.

An example operation of a convolutional layer with one kernel of size [3x3]
and input with one channel can be seen it Figure 3.1.

3.1.2 Pooling Layer

The pooling layer is a layer type designed to reduce data dimensions in CNNs.
Similarly to the convolutional layer, it uses receptive fields in the form of a
sliding window to split the input into regions. However, there is no learnable
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Figure 3.1: Example convolutional layer operation. One receptive field and its
corresponding output value have been marked blue.

kernel as part of the pooling layer. Instead, a function is applied locally to
the regions of the input covered by the receptive fields.

The most common in practice are the max-pooling layer and the average-
pooling layer. As their names suggest, the max-pooling layer outputs the
maximum value in each receptive field, and the average-pooling layer outputs
the average. These two types of pooling layers are also used in the widely-used
VGG [63] and Inception [67, 68] networks.

Figure 3.2: Example max-pooling layer operation. One receptive field and its
corresponding output value have been marked blue.
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3.1.3 Fully-connected Layer

A fully connected layer connects all neurons from one layer to all neurons
in the next layer. If the layer input is in multi-dimensional form, it is first
flattened. Fully connected layers are typically at the end of the network and
serve as classifiers that work with features extracted with the convolutional
and pooling layers. The structure of the layer is the same as that of a layer
in the standard Multi-Layer Perceptron algorithm.

3.1.4 Activation Functions

Activation functions are an essential part of any deep neural network. Many
different activation functions have been used in CNNs; however, the ReLU
(Rectified Linear Unit) and its derivatives are the standards, as they deal
with the vanishing gradient problem [36].

The ReLU activation function can be represented as:

φ(z) = max(0, z)

One of the functions derived from the ReLU function is the Leaky ReLU. It is
designed to deal with the "Dying ReLU" problem. The Dying ReLU problem
occurs, when a ReLU activated neuron always outputs 0 due to its input
always being negative. The Leaky ReLU solves this problem by outputting
small negative values for negative inputs.

The Leaky ReLU activation function can be represented as:

φ(z) = max(αz, z)

where α is a small positive constant (e.g. 0.01).
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(a) : ReLU (b) : Leaky ReLU

Figure 3.3: Standard CNN activation functions.

Frequently, the Softmax activation function is also used in CNNs. This
activation function takes a vector of values (scores) as input and outputs values
that are positive and sum up to 1, which can be interpreted as probabilities.
For this reason, it is regularly used with the last layer of a neural network.

The Softmax activation function can be expressed as:

φi(~z) = ezi∑n
j=1 e

zj

where ~z is the input of the Softmax function in the form of a vector of length
n.

3.1.5 Batch-normalisation

Batch normalisation was first introduced by Ioffe and Szegedy, 2015 [38] to
increase the speed of convergence of the Inception network. It normalizes the
input values for each mini batch by setting their distributions to zero mean
and unit variance. It can be expressed as:

ẑi = zi − µB√
σ2

B + ε

,where µB is the mean of input values for a mini batch, σB is the standard
deviaton of input values for a mini batch, ε is a small constant value, added
for numerical stability.
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3.1.6 Dropout

Dropout is a technique used to prevent overfitting in deep neural networks.
It works by temporarily removing units from the network. The removed units
are chosen at random at each iteration of training [65].

(a) : Neural network before
dropout

(b) : Neural network after dropout

Figure 3.4: A visualisation of Dropout.

3.1.7 Inception Architecture

In our proposed method, we adopt the InceptionV3 architecture proposed
by Szegedy et al., 2015 [68]. This architecture is a direct successor to the
GoogLeNet, which is an incarnation of the first Inception architecture [67].
The main motivation behind the Inception architecture was to build deeper
and wider networks for image classification while keeping them computation-
ally feasible.

The authors achieve this by using "Inception blocks", which consist of
convolutional layers with kernel sizes 1x1, 3x3 and 5x5 pixels, and pooling
layers, all used in parallel. To reduce the number of computations necessary,
the authors also add convolutional layers with a kernel size of 1x1 before each
3x3 and 5x5 convolutional layer, as well as after every pooling layer. The
authors show that this reduces the number of parameters by a factor of 10
while experiencing no decrease in performance. The outputs from all parts of
the Inception blocks are concatenated. The whole network is then created
by connecting many inception blocks in a series. A schema of the Inception
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block can be observed in Figure 3.5.

Previous layer

3x3 max pooling1x1 convolutions1x1 convolutions

1x1 convolutions

Filter concatenation

1x1 convolutions5x5 convolutions3x3 convolutions

Figure 3.5: Schema of the Inception block. Adapted from [67].

3.2 Multiple Instance Learning Algorithms

Multiple instance learning (MIL) is a type of weakly supervised learning.
Instead of processing training instances separately, they are grouped together
to form "bags". In this case, the instance-level labels are hidden; only the
label of the bag is known. Most algorithms from this framework work with
the standard MIL assumption, which can be expressed as:

. All instances (feature vectors) have a hidden label yi ∈ {−1,+1}

. A bag is labelled positive if at least one of its instances has a positive
label.

. A bag is labelled negative if all its instances have a negative label.

Two algorithms belonging to this framework are used in the scope of this
thesis: mi-SVM [15] (short for multiple instance support vector machines)
and a ratio-constrained multiple instance Markov network (RMIMN) [30].
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3.2.1 mi-SVM

The mi-SVM algorithm was proposed by Andrews et al., 2002 [15]. It also
works with the aforementioned standard MIL assumption.

The mi-SVM algorithm works by iteratively applying the SVM algorithm
to predict the hidden instance labels (i.e. labels are imputed to each instance).
If all instances in a positive bag are given negative labels, the instance closest
to the separating hyperplane of the SVM is labelled positive, to satisfy the
MIL assumption. The pseudocode of the algorithm can be seen in Figure 3.6.

Figure 3.6: Pseudocode of the mi-SVM algorithm. Source: [15].

3.2.2 Ratio-constrained Multiple Instance Markov Network
(RMIMN)

The use of Markov networks for multiple instance learning was proposed by
Hajimirsadeghi and Mori, 2015 [30]. The schema of their proposed network
can be seen in Figure 3.7. The authors define a scoring function for this
network as a sum of several potentials. One potential is the instance-label
potential, which is between each feature vector (instance) and its label. This
potential is labelled φI

w in the schema. The second potential is the labels-
clique potential, which is between all the instance labels and the bag label,
denoted by φC

w. Finally, a bag-label potential is defined, which is the potential
between the bag label and some feature vector X, which describes the whole
bag. The bag-label potential is labelled φB

w.

We adopt the Markov network architecture in our proposed method. In
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Figure 3.7: Schema of the proposed RMIMN model. Source: [30].

our case, we have no feature vector X describing bags as a whole, and for
this reason, we do not define a bag-label potential. The scoring function of
our network can then be expressed as:

fw(x,y, Y ) =
m∑

i=1
φI

w(xi, yi) + φC
w(y, Y ) (3.2)

where m is the size of the bag.

Similarly to the authors [30], we define the potential function between one
feature vector xi and its label yi as:

φI
w(xi, yi) = yi(wT xi + b) (3.3)

,where w is a vector of learnable weights and b is the learnable intercept point
(bias).

Next, we define the labels-clique potential. This potential represents the
multiple instance learning assumption. For this model, we step away from
the standard MIL assumption, and instead, we use the generalised MIL
assumption. Algorithms from the generalised MIL framework have been
shown to improve the prediction accuracy when applied to similar datasets
[34]. We denote the number of instances with a positive label in a bag by m+

and the number of all instances in a bag by m. Given a constant ρ ∈ (0, 1),
we can express the generalised MIL assumption as:

. All instances (feature vectors) have a hidden label yi ∈ {−1,+1}
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. A bag is labelled positive iff. m+

m > ρ.

To represent this assumption in the Markov network, two cardinality
potential functions are used, one for bags with a positive label (denoted
by C+

w), the other for bags with a negative label (denoted by C+
w). These

functions are defined as:

C+
w(m+,m) = −∞ 0 ≤ m+

m
< ρ

C+
w(m+,m) = 0 ρ ≤ m+

m
< 1

C−
w(m+,m) = 0 0 ≤ m+

m
< ρ

C−
w(m+,m) = −∞ ρ ≤ m+

m
< 1

The optimal value of ρ is found experimentally. This value is likely to be
different for each attribute.

Finally, the labels-clique potential is defined as:

φC
w(y, Y ) = C+

w(m+,m)(Y=1) + C−
w(m+,m)(Y=− 1) (3.4)

Using a labels-clique potential designed in this way, our scoring function
outputs −∞ for every labelling that does not satisfy the generalised MIL
assumption.

Inference

The inference problem is to find the optimal values of yi given the bag-level
label Y . These values can be found by solving:

y∗ = max
y

m∑
i=1

φI
w(xi, yi) + φC

w(y, Y ) (3.5)

An efficient algorithm is described in [30], which solves the problem in
O(m logm) time. We adopt this algorithm to solve the inference problem for
our model. We implement it as follows:

. Sort all instances according to φI
w(xi,+1). For k = 0, ...,m, compute sk = ∑k

i=1 φ
I
w(xi,+1) + C+

w(k,m)(Y=1) +
C−

w(k,m)(Y=− 1)
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. Choose k∗ for which sk is maximal. Label top k∗ instances as positive, label rest of the instances as negative

Training

The RMIMN is trained by alternating between inference and learning. During
inference, the instance labels are predicted. Next, the instance-label potential
function weights and bias are learned by running a standard SVM algorithm
on all the instances together, using the predicted instance labels as the ground
truth. A linear kernel is used for the SVM, the weights and bias of which are
used directly as the weights and bias of the instance-label potential function
after each learning step. The algorithm is run until there is no change in the
inferred instance labels.
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Chapter 4

Methodology

In this chapter, the methodology of the thesis is discussed.

In the first part of this chapter, the proposed method for segmenting WSI
images into normal tissue, tumour tissue and background is described. Firstly,
the dataset is described in more detail. Secondly, the proposed method of
segmentation, using a convolutional neural network, is outlined. Next, a
method of distinguishing tissue and background is talked about. Then, the
means of patch extraction is reported. Afterwards, the design and aspects of
the proposed patch-classifier architecture are described. Finally, the training
of the classifier is talked about.

In the second part of the chapter, the proposed methods of classification
according to three attributes is described. Both methods make use of the
patch method. Firstly, we propose a method from the MIL framework,
treating each image as a bag of extracted patches. Secondly, we propose a
method of classifying each patch independently.

4.1 PETACC3 Dataset

As has been reported, The PETACC3 trial was a phase III trial (a trial
where the new drug is compared to the standard-of-care drug) with random
assignment of treatment in multiple medical centres to test the effectivity
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of the addition of irinotecan to other forms of medication for patients with
stage 3 colorectal cancer [3]. The working dataset for this thesis consists of
microscopy images scanned during this trial. It spans 1140 images belonging
to 28 anonymous patients (30 to 54 images per patient), each labelled on
the image-level by an expert pathologist. The labelling was done across 3
attributes: mucinous, serrated and Crohn-like.

The labels are defined as follows:

.Mucinous class: 1=no; 2=minimal; 3=moderate ; 4=yes (>50%). Serrated class: 1=no; 2= minimal; 3=moderate; 4=abundant. Crohn-like class: 1=yes; 2=no; 3= not able to determine

Furthermore, the expert marked 150 images as "pure-case" with respect
to the mucinous attribute. These images are well-defined without many
unwanted artefacts (e.g. tissue tears) and with an abundance of class-specific
indicators (i.e. mucus) or their complete absence.

Additionally, pixel-level annotations are provided for most images. These
annotations were created to distinguish areas with tumorous cells. For
this reason, they are used as ground truth for the tumorous/normal tissue
segmentation.

From the example image in Figure 4.1, it is clear, that images in the dataset
contain many marker lines. Furthermore, a large part of the image is the
background, which should not be considered when training a classifier. The
means of removing the artefacts and segmenting the image is described in
the next sections of this chapter.

4.2 WSI Segmentation Methodology

When designing the method for WSI segmentation for this part of the thesis,
a few assumptions were made.

The first assumption is that when segmenting images into background and
tissue, the high-resolution information (e.g. cell shape) is not necessary. The
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Figure 4.1: Example image from the PETACC3 dataset. Marked pure-case with
labels: mucinous=1, serrated=2, Crohn-like=2.

feasibility of this assumption has been shown by Hering and Kybic, 2020 [34].
This allows the segmentation of this type to be sufficiently precise when using
down-sampled images.

The second assumption is that the segmentation of tissue into normal and
tumour tissue only requires small-scale information. It is further assumed,
that the necessary low-level signal is fully recognisable in any sufficiently large
area. In other words, the image can be segmented by classifying sufficiently
large patches extracted from it. Using this patch method, we lose the large-
scale information, which is assumed to be unnecessary. This has been shown to
be a feasible method for tumor/normal tissue segmentation, when pixel-level
annotations are available, which is is also the case in this thesis [16, 18].

Using these assumptions, a method of segmentation into normal tissue,
tumour tissue and background is proposed as follows: Firstly, segmentation
masks are created, by segmenting down-sampled WSIs into background and
tissue. Secondly, these masks are applied to extract sufficiently large patches,
forming a dataset by labelling each patch according to the provided pixel-level
annotations. Thirdly a patch classifier is designed, implemented and trained
on these labelled patches. Finally, WSI segmentation is achieved by labelling
each pixel according to the corresponding patch label.
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Figure 4.2: Schema of the entire proposed WSI segmentation method.

4.3 Segmentation into Tissue, Background and
Pen Marks

We use a random forest classifier to segment down-sampled images from
the dataset. We use the Ilastik image segmentation software [20] to create
a tissue/background/pen-mark pixel mask for each image of the dataset.
The weights of the classifier are provided by the thesis supervisor, using the
same values as in Hering and Kybic, 2020 [34], so no additional training was
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necessary. An example segmentation can be found in Figure 4.3.

Figure 4.3: Example Background/Tissue segmentation. Original down-sampled
image on the left, segmentation mask on the right. Tissue in light grey, marker
lines in darker grey, background in dark grey.

4.4 Patch Extraction

By using the expert annotations and the generated tissue masks, patches
were then extracted from the WSI. The patch size of 1024x1024 pixels was
chosen from early validation. Only patches containing at least 80% of tissue
were chosen for further use, the rest was omitted. The patch extraction was
done using software provided by the group of Biomedical imaging algorithms
at the Czech Technical University in Prague.

During patch extraction, data was split into 75% training data, 10%
validation data and 15% testing data. As patches were created in a per-
image manner, it was easy to ensure no patient was used in two data splits
simultaneously, therefore making it easier to avoid potential overfitting. Each
output patch is labelled either TU/NO depending on the annotation of the
area it originated from. The TU label means there are tumorous cells in the
annotated area, the NO label means there are none.

4.5 Model Architecture and Training

We use a convolutional neural network as our patch classifier, specifically the
InceptionV3 architecture which was described in section 3.1.7. The training
of the Inception model was done using the PyTorch library, which is a deep
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(a) : Patch labelled "TU" (b) : Patch labelled "NO"

Figure 4.4: Example extracted patches from the PETACC 3 dataset. Patches
were labelled TU and NO respectively. Both patches have dimensions of
1024x1024 pxs.

learning library, designed mainly for the Python programming language [59].
It provides efficient implementation of deep learning techniques, including
various optimisation algorithms. It relies on the use of tensors, optimised
for use with graphics processing units. Furthermore, the implementations
of many neural network architectures are included in this library, including
the InceptionV3 architecture. We use the InceptionV3 model pretrained on
the ImageNet [25] database, to make use of transfer learning, which has been
shown to significantly increase speed of convergence in some cases [73].

4.5.1 Input Transformations

During training, the input data was downscaled to the size of 299x299 pixels,
which is the input size of the InceptionV3 network. Next, the input images
are randomly flipped, and normalised with µ = (0.485, 0.456, 0.406) and
σ = (0.229, 0.224, 0.225) which are the mean and standard deviation values
of the ImageNet dataset, on which the Inception network was pre-trained.
Finally, the input values were transformed from the RGB (Red, Green, Blue)
spectrum to HSV (Hue, Saturation, Value), as suggested in Halcek et al., 2019
[31]. The authors show, that such a transformation can lead to a performance
increase in WSI segmentation using CNNs.
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4.5.2 Network Parameters and Training

For the purpose of binary classification of patches into tumorous and regular
tissue, the output layer of the standard InceptionV3 model was replaced with
an output layer of only one neuron.

Binary softmax cross entropy loss was chosen as the loss function, which
is the standard loss function for binary classification [76]. It combines the
softmax activation function described in section 3.5.4 with the binary cross
entropy loss function. The binary cross entropy loss function can be expressed
as:

CE = − 1
m

m∑
i=1

yi · log ŷi + (1− yi) · log (1− ŷi)

where y is the target label, ŷ is the label predicted by the classifier and m is
the number of instances.

The loss function was optimised using the stochastic gradient descent
method. The initial learning rate of the network was set to 0.1, reduced by a
factor of 10 on plateau (i.e. when the validation error no longer decreases).
The minimal learning rate was set to 10−5.

The network was trained on a Nvidia RTX 2070 GPU. The training
was done over a maximum of 30 epochs, with early stopping if no further
improvement to the validation error was detected and the minimal learning
rate was reached.

4.6 WSI Classification Methodology

In this section of the thesis, the method of classifying whole WSIs from the
PETACC3 dataset according to tumour type is discussed. The WSIs are to
be classified according to three attributes: mucinous, serrated and Crohn-
like. These attributes are not mutually exclusive; an image can therefore be
classified as any combination of the three.

Furthermore, numerical labels are provided for each image, rather than
binary labels (see Section 4.1). Consequently, we threshold these expert
labels to create a positive and negative class for each attribute. The following
thresholding was decided:
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Attribute Values for Negative Class Values for Positive CLass
Mucinous {1, 2} {3, 4}
Serrated {1, 2} {3, 4}
Crohn-like {2} {1}

Accordingly, the task can be thought of as three independent cases of
binary classification.

The images have only image-level labels with respect to these attributes,
therefore the assumption, that the signal is fully recognisable on small patches
extracted from the image, that was made when segmenting images according
to tumorous and normal tissue might not be feasible. For this reason, we
treat the classification problem as a multiple instance learning task.

4.7 MIL Approach

The motivation behind the MIL approach is to treat the given WSIs as bags
of unique tissue patches. We apply the same tissue/background/pen mark
segmentation and patch extraction as when segmenting the images according
to tumour type (see Section 4.3 and Section 4.4). However, the size of the
generated patches is too large to process entire bags at once. For this reason,
we need to design a patch descriptor to reduce the dimensionality of the
patches. The feature vectors generated from the patches using this descriptor
are then classified as bags using MIL algorithms.

4.7.1 Patch Description

To reduce the dimensionality of the generated patches, we propose to train a
convolutional neural network on them to be used as a patch descriptor. For
this purpose, we use the InceptionV3 architecture, with the output layer of
the network replaced by two fully connected layers with 32 neurons and 1
neuron respectively. The network is trained to classify patches into tumorous
and normal, using the training process from Section 4.5. The last layer serves
to learn the weights of the network and is removed after training. We are then
left with a CNN with 32 outputs, which we assume to sufficiently describe
the information from each patch. Finally, 32 features are extracted from all
the patches, that were labelled as tumorous, using this network. We omit
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the patches extracted from normal tissue, as they would add noise to the
classification task (normal tissue can not belong to any of the attributes).

4.7.2 Bag Classification

The features that were extracted (by the patch description step) from patches
belonging to the same image are grouped together to form "bags". The bags
are then labelled either positive or negative for each attribute, according
to their expert labels. We then use algorithms from the multiple instance
learning framework to classify these bags and consequently classify the whole
WSIs (the bag label is equal to the image label).

Two algorithms are adopted for this purpose: mi-SVM (described in Sec-
tion 3.2.1) and ratio-constrained multiple instance Markov network. (de-
scribed in Section 3.2.2).

mi-SVM

We implement the mi-SVM algorithm, according to Andrews et al., 2002 [15].
We first evaluate our implementation on known MIL datasets, then apply it
to the bags of described patches. We adapt the standard MIL assumption for
our case. By an instance, we mean the feature vector extracted from a patch
by the patch descriptor. We formulate the MIL assumption as:

. All instances (and their respective patches) have a hidden label yi ∈
{−1,+1}. A bag (and its respective image) is labelled positive if at least one of its
instances has a positive label.. A bag is labelled negative if all its instances have a negative label.

The pseudocode of the implemented mi-SVM algorithm, as well as other
details can be seen in Section 3.2.1.
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4. Methodology.....................................
Ratio-constrained Multiple Instance Markov Network

We implement the RMIMN algorithm, proposed by Hajimirsadeghi and Mori,
2015 [30]. We implement a simplified means of optimisation, using a linear
kernel SVM to learn the network parameters. We adapt the generalised MIL
assumption when implementing the algorithm.

We denote the number of instances with a positive label in a bag by m+

and the number of all instances in a bag by m. Given a constant ρ ∈ (0, 1),
we can express the generalised MIL assumption for out case as:

. All instances (and their respective patches) have a hidden label yi ∈
{−1,+1}. A bag (and its respective image) is labelled positive iff. m+

m > ρ.

We learn the optimal value of ρ experimentally, independently for each
attribute.

4.7.3 Schema of the MIL Approach

The entire proposed MIL approach is illustrated in Figure 4.5

4.8 Direct Approach

For the direct approach, the same model, which was described in Section 4.5,
is used. Unlike the MIL approach, where we acquire image-level labels,
we classify the images at the patch-level. For this purpose, we use the
InceptionV3 network, with the last layer replaced by a fully-connected layer
with three neurons, one for each attribute. The network was trained using
the stochastic gradient descent algorithm, with the same hyperparameters.
The same transformations were applied to the input.
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Figure 4.5: Schema of the proposed MIL approach.
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Chapter 5

Experiments

The performed experiments are discussed in this chapter. For each experiment,
we describe how the experiment was done, the purpose of the experiment, as
well as the results and their discussion.

5.1 Experiment 1 - WSI Segmentation into
Tumorous and Normal Tissue, CNN Trained on
Pure-case Images

In this experiment, we test the implemented CNN architecture on the
PETACC3 dataset. The CNN is trained and evaluated only on the im-
ages the expert marked as "pure case" (see Section 4.1). 15% of the data is
used for testing. The test set consists of histopathological images, taken from
patients that are not a part of the training and validation sets. Each classifier
is trained for a maximum of 30 epochs, stopping early if there is no further
improvement to the validation error.

The purpose of this experiment is to evaluate the correctness of the CNN
implementation, as well as its performance on the PETACC3 dataset, given
a smaller amount of high-quality data (about 1/6th of the whole dataset is
used). The performance of the segmentation is measured with patch-level
classification accuracy (e.g. 90% segmentation accuracy implies 90% of the
generated patches were classified correctly).
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5.1.1 Results

The trained classifier achieved the following segmentation performance:

Accuracy Precision Recall
91.33% 94.99% 89.80%

We observed an accuracy of 91.33% which we consider sufficient. We also
see a much higher precision (94.99%) than recall (89.90%). This could be
caused by the expert annotating larger areas as tumorous than is necessary.
This is common in practice, as it is often important for all tumorous tissue to
be included in an annotated area. Therefore, it is possible for some extracted
patches, with a positive label to, in fact, have no tumorous tissue. To better
evaluate the results of this experiment, a ground truth label for each extracted
patch would be necessary.

5.1.2 Example Segmentations

Figure 5.1: Example Normal/Tumorous tissue segmentation. Tissue patches
classified as normal tissue are marked with a green border. Patches classified as
tumorous are marked with a red border. The image is from the pure-case set.

We can see an example of WSI segmentation in Figure 5.1. Area annotated
"N" means the area has a normal expert label. Area annotated as "T" means
the area has a "tumorous" expert label. We can see 9 misclassified tumorous
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tissue patches and 1 misclassified normal tissue patch. This supports the low
measured recall of the classifier, compared to its accuracy.

Figure 5.2: Example Normal/Tumorous tissue segmentation. Tissue patches
classified as normal tissue are marked with a green border. Patches classified as
tumorous are marked with a red border. The image is from the pure-case set.

Another example WSI segmentation can be observed in Figure 5.2. We
see a lower accuracy than in the image in Figure 5.1. However, it is still
sufficiently segmented.

5.2 Experiment 2 - WSI Segmentation into
Tumorous and Normal Tissue, CNN Trained on All
Images

In this experiment, we train the Inception network on patches extracted from
all images from the PETACC3 dataset. The purpose of this experiment is to
decide whether using all images from the dataset increases the performance
of the classifier on the test set.

43



5. Experiments .....................................
5.2.1 Results

The classifier achieved an accuracy of 93.43%. This suggests that the use of
the entire dataset increases the performance of the trained classifier. However,
it is important to note, that, due to error, some images in the training and
test set share the patient they originate from. This could have increased the
performance of the classifier on the test set. Due to time constraints, it was
not possible to remake this experiment in time, as training takes a lot of time
on such a large dataset.

5.3 Experiment 3 - WSI Classification According
to Tumour Type - Direct Method

For this experiment, we train a CNN to classify extracted patches from
the WSI according to the mucinous, Crohn-like and serrated attributes and
evaluate it on the test set. We assume each extracted tumorous tissue patch
from the image has the same labels as the image. We use "pure-case" images
to train the classifier. The purpose of the experiment is to evaluate the
feasibility of the aforementioned assumption. Since the train and test sets
consist of "pure-case" images with respect to the mucinous class, we expect
better performance with respect to this attribute.

5.3.1 Results

The classifier achieved the following per-patch accuracy results:

Mucinous Serrated Crohn-like
81.30% 63.58% 52.43%

It is difficult to make conclusions from the results of this experiment, as we
apply the same assumption that the image label is fully recognisable in all
its extracted patches also during evaluation. However, the expectation that
the classification accuracy is best for the mucinous attribute holds true. We
conclude the classification accuracy is not sufficiently high for the serrated
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and Crohn-like attributes, and the assumption is therefore not feasible for
these attributes. For the mucinous class, the results are not conclusive.

5.4 Experiment 4 - mi-SVM trained on MUSK
and MUSK2 datasets

In this experiment, we evaluate the correctness of the implemented mi-SVM
algorithm by training it on the MUSK and MUSK2 datasets. These are two
datasets from the UCI ML Repository [27] which are often used to evaluate
algorithms from the MIL framework. We use 10-fold cross-validation when
obtaining the accuracy results, averaging over the results. We compare the
results with the original paper proposing the mi-SVM algorithm [15].

5.4.1 Results

We acquired the following accuracy results on the two datasets:

MUSK1 MUSK2
Our Results 83.3% 79.8%
Cited Paper 87.4% 83.6%

We achieved similar results to the paper proposing the mi-SVM algorithm.
The performance of our implementation is, nevertheless, worse than the cited
paper. This could be caused by generating different validation folds or by
suboptimal hyperparameters of the algorithm. We conclude our mi-SVM
implementation is correct.

5.5 Experiment 5 - WSI Classification According
to Tumor Type - mi-SVM

For the fifth experiment, we train the mi-SVM algorithm on extracted bags of
features from the "pure-case" images of the PETACC3 dataset (see Section 4.7

45



5. Experiments .....................................
for the used method) to classify them according to the mucinous, serrated
and Crohn-like attributes. The accuracy results are measured at the image
level. The purpose of this experiment is to evaluate whether the standard
MIL assumption is feasible for bags of features defined this way. We use the
Linear SVM kernel with C=100. We evaluate using 10-fold cross-validation.

5.5.1 Results

We obtained the following image-level accuracy results for the given attributes:

Mucinous Serrated Crohn-like
70.45% 62.33% 54.54%

We can see that the performance of the mi-SVM classification method is
not exceptional. This might be caused by the standard MIL assumption being
too strict, or by a badly designed method of feature extraction; the features
extracted from training the CNN to classify tissue into tumorous and normal
might not sufficiently describe the patches for the purpose of classification
according to tumour type. We hope to evaluate this in the last experiment.

5.6 Experiment 6 - WSI Classification According
to Tumor Type - RMIMN

For the last experiment, we train the implemented Ratio-constrained multiple
instance Markov network on the extracted bags of feature vectors. The
experiment is done to decide, whether by generalising the MIL assumption, we
achieve a higher classification accuracy. We use the same training and testing
sets as in Experiment 5. We again evaluate using 10-fold cross-validation.

5.6.1 Results

We obtained the following image-level accuracy results for the given attributes:
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Mucinous Serrated Crohn-like
77.81% 64.53% 56.27%

The optimal ratio of positive instances to all instances ρ for the generalised
assumption was found to be 0.3 for all three attributes.

We can see a substantial increase in accuracy for the mucinous attribute.
While the accuracy also increases for the other two attributes, the results still
remain poor. We conclude that generalising the MIL assumption increases
the accuracy of classification; however we were not able to train a satisfactory
classifier for the serrated and Crohn-like attributes.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we provided a thorough report of the state-of-the-art methods
of image segmentation and classification, with a focus on the processing of
whole slide images. Then we introduced and described several algorithms,
which we then implemented and used to segment histopathological images
into tumorous and normal tissue and to classify these images according to
three attributes: mucinous, serrated and Crohn-like.

We achieved satisfactory accuracy results on the task of segmenting the
WSIs into tumorous and normal tissue, which point at a correct choice of
method for this task as well as a correct implementation of said methods.

For the task of classifying the pathological images according to three
attributes, we achieved poor results for two of the three attributes. Several
issues might be causing these poor results:

. Features extracted from a network trained to classify patches into normal
and tumorous tissue might not be suited to describe the patches with
respect to the attributes. High-resolution information which is lost by splitting the images into
patches might be necessary to classify the images according to the two
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attributes. The conversion of the classification problem into binary classification by
thresholding the expert values. Incorrect thresholds might have been
chosen when defining the task.. The expert labels with respect to the attributes are vaguely described
(1=no, 2=minimal, 3=moderate; 4=yes). This could cause some images
to be given wrong labels when thresholding these expert values.

6.2 Future Work

Several experiments had to be omitted due to time constraints. Due to the
dimensionality of the data, experiments take up to a couple of days to finish.
A CNN should be retrained on all the available WSIs from the dataset, to
reevaluate the results of Experiment 2. Different CNN architectures should
also be tried out for segmenting the WSIs into tumorous and normal tissue.
Furthermore, more means of patch description should be evaluated and used
with the proposed MIL methods (e.g. a longer feature vector).

It would also be interesting to formulate the classification task (w.r.t. the
three attributes) as a regression task, predicting the actual numerical expert
values instead. This could show how precisely tuned the expert values are.

Finally, a method that processes the images as a whole (instead of the
patches) should be implemented. This could increase the accuracy of classifi-
cation on the serrated and Crohn-like (assuming the high-resolution lost by
using the patch method is necessary).
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Appendix A

Attachments

The attached files are described here. We distinguish three types of files.

. Files marked "I" were implemented from scratch (using imported li-
braries).

. Files marked "A" were provided by the thesis supervisor, however, changes
were made to these files for the use in this thesis.

. Files marked "U" were provided by the thesis supervisor and were used
completely unchanged.

Some program files are dependent on other files that fall into the CMP group
framework and are not included as attachments with the thesis. Please
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A. Attachments.....................................
contact the thesis supervisor to gain access to these files if necessary.

Filename Description Label
train_model.py Implements training of the CNN network. I

create_dataset.py Generates a dataset of patches from WSIs I
create_bag_dataset.py Generates a dataset of bags of patches I

create_patch_descriptions.py Generates feature vectors from patches I
evaluate_model.py Generates performance measures of a model A
patch_extraction.py Extracts patches from a WSI U

petacc_patches_dataset.py Dataset representation for use with CNN I
classification.py Classify a folder of WSIs A

mil.py Implemented MIL methods I
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