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CHAPTER 1 INTRODUCTION 

Research in educational evaluation is an important strategy for improving the quality of ed-

ucation in universities, which may lead to a better understanding of the strengths of education. Re-

searchers are always interested to study the relationship between a response variable and one or 

more independent predictors, either for the purpose of explanation or prediction. However, a weak-

ness invariably occurring and often found in studies of educational research are the presence of data 

outliers in the response variable or both in response variable and predictor variable. The presence of 

outliers can increase error variance and reduce the power of statistical tests. Unfortunately, outliers 

can often times be impossible to prevent even when data has been carefully collected from respect-

able sources. Since outliers affect analysis and interpretation of statistical outcomes, a greater un-

derstanding of statistical procedures for handling the presence of outliers in educational datasets is 

needed. Specifically, identifying which procedures operate best in identifying and handling data 

corruption from outliers would be a welcome contribution to the field for scholars, data analysts, 

and educational researchers. Institutions can benefit from the results of this research by providing 

recommendations useful in practice and substantive interest, leading to more accurate and reliable 

conclusions and decision making. 

In statistics, correlation and regression are commonly used statistical techniques to study the 

relationship between two or more numerical variables. Correlation is used to measure the linear re-

lationship between the variables in terms of a correlation coefficient. The Pearson’s linear correla-

tion coefficient (r), measures the strength and direction of the relationship between �E and �E. A 

positive value of r indicates an increasing linear relationship where as a negative value of r indi-

cates a negative linear relationship. A value of r equal 0, indicate no linear relationship between the 

variables.  A negative linear relationship is said to be strong if the value of r close to -1 and for a 

strong positive linear relationship the value of r is close to +1. On the other hand, a linear relation-
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ship is said to be weak if the value of r close to zero. If the two variables are correlated, the value of 

a (the response) variable can be predicted from the value of other (the predictor) variable using the 

recreation analysis. 

 One purpose of a regression analysis is to determine if there is a relationship between a re-

sponse variable �E and one or more independent predictors  �E with a link function �, either for the 

purpose of explanation or prediction. The response variable �E cannot be predicted exactly from the 

independent predictors  �E. Normally, the behavior of response variable �E is summarized for each 

given predictor  �E with typically used measures of location called mean, median or mode. 

For n pair of data (�E, �E  ) this relationship can be modeled as  

�E = �(�E) + FE, 
 = 1,2, . . . , �                          , 
where � could be a linear or nonlinear function of �E, FE are the random errors, independently and 

normally distributed, i.e. FE∼�(0, HI), and FE and FJ are uncorrelated, i.e. Cov (FE, FJ ) = 0; ∀ 
 ≠ M. 

There are two main approaches to model the link function �. They are (1) the parametric approach 

and (2) the nonparametric approach. 

Ordinary Least Square (OLS) Regression is a parametric approach used to study the rela-

tionship between a response variable �E  with at least one predictor �E, also called an independent 

variable by describing the mean of response variable for each value of the given predictors, using a 

function called the conditional mean of the response variable. This relationship can be created by 

developing a statistical model with certain unknown population parameters called regression coef-

ficients. The parameters are then estimated by the method of lease square and the fitted model is 

used to get an approximate idea of the trend for prediction and forecasting of the data. A linear re-

gression is reported when one of the estimated regression coefficients called slop of the fitted line is 

demonstrated to be statistically significant from zero, using a Student's t-test, a slope greater than 

zero indicates an increasing trend and a slope less than zero indicates a decreasing trend.  
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Mosteller and Tukey (1977) stated 

What the regression curve does is give a grand summary for the averages of the dis-

tributions corresponding to the set of �’	. We could go further and compute several 

different regression curves corresponding to the various percentage points of the dis-

tribution and thus get a more complete picture of the set. Ordinarily this is not done, 

and so regression often gives a rather incomplete picture. Just as the mean gives an 

incomplete picture of a single distribution, so the regression curve gives a correspond-

ingly incomplete picture for a set of distributions. (p 266) 

Ordinary Least Square (OLS) Regression has certain attractive properties 

• OLS estimators are linear and unbiased to their correspond parameters. 

• The variance of the estimators is the indicator of the accuracy of the estimators. 

• OLS estimators are best linear unbiased estimators (BLUE) of their correspond parameters. 

• OLS estimators are consistent estimators i.e. as n larger and larger, the estimator become 

closer and closer to their correspond estimator. 

• OLS estimators have the minimum variance among all the unbiased linear or nonlinear es-

timators. 

There are certain disadvantages of OLS. It provides only a partial view of the relationship 

between response and independent variable(s) through a conditional mean point of the response 

variable. There may be interest in studying the relationship at different points in the conditional dis-

tribution of response variable. Also, it does not fit well when there are some regular outliers present 

in the response variable, or if the data were sampled from a non-normal distribution. Therefore, the 

OLS regression estimator is not robust (e.g., Hampel et al., 1987; Huber & Ronchetti, 2009; 

Maronna et al. 2006; Staudte & Sheather, 1990; Wilcox, 2012a, b). 
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There are various alternatives to the OLS modeling has roots that can be traced to the mid 

of the 18th century. There are several alternative to the OLS, one of the alternative approaches can 

be referred to as median regression, where focus of the modeling is the median instead of mean. It 

is to me noted that median is the special case of quantile, which can be used to model the non-

central position of a distribution. This idea can be extended to other quantile like quartile; decile 

and percentile can be used to specify any position of the distribution. 

Quantile Regression is another very flexible approach that can be used to study the relation-

ship between a response variable �E with at least one predictor �E at different points in the condi-

tional distribution of response variable, using the conditional median or other quantile functions, 

where the median is the 50th percentile; and the quartiles are the 25th, 50th and 75th percentiles. Sim-

ilarly, the deciles are the 10th, 20th and so on until the 90th percentile of the empirical distribution 

can be used to study the response variable. For example, we can study different factors affecting 

student scores along their score distribution and we can imagine those factor could be different or 

they might affect differently those student scores for the students for their very high performance 

with their high scores and for those who have low student scores. In this case we can use regression 

procedure. 

A generalization, aimed at dealing with any Quantile Regression model first introduced and 

derived by Koenker and Bassett (1978), which models the conditional quantiles of a response vari-

able as a function of predictors. The regression procedure is the natural extension of OLS, where 

instead of specifying the change in conditional mean of the response variable associated with a unit 

change in the predictor variable, the regression procedure specifies the change in conditional quan-

tile of the response variable associated with a unit change in the predictor variable. Regression pro-

cedure does not assume a particular distribution for the response, nor does it assume a constant var-

iance for the response, unlike ordinary least squares regression. 
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OLS regression does not fit well when there are some regular outliers present in the re-

sponse variable, or if the data were sampled from a non-normal distribution. Statisticians are used 

statistical methods in regression that are resistant to the outliers and non-normality of the distribu-

tion. Robust methods are invoked to refine the conditional mean and heterogeneity of the variance. 

They are not only sensitive to the non-normality of the data, but also minimize the effect of as-

sumptions about data below detection limits, and the effect of outliers on the determination of rela-

tions between variables (Helsel & Hirsch, 2002). 

 The first step toward a robust regression estimator came from Edgeworth (1887), improv-

ing a proposal of Boscovich. Kendall (1938) provided a non-parametric method of detecting a rela-

tionship between two variables and to find a suitable fit when there is a problem of outliers in the 

data, it provides different option to examine lines between all pairs of points, and estimate the slope 

by the median of all slopes, and intercept by the median of all intercepts.  

In a simple linear regression, Theil (1950) first proposed another robust linear regression 

method where there are one response and one predictor variable and is robust to outliers in the re-

sponse variable. In this method, the slope of the regression line is estimated as the median of all 

pairwise slopes between each pair of points in the dataset. Sen (1968) extended this estimator to 

handle ties. The Theil-Sen estimator (TSE) is robust with a high breakdown point 29.3%, has a 

bounded influence function, and possesses a high asymptotic efficiency.  

A modified and preferred method is Siegel (1982), where the repeated median is used, the 

repeated median algorithm is a robustified U-statistic (Hoeffing, 1948), in which nested medians 

replaces the single median and has a 50% breakdown point. This is the best that can be expected, 

because for larger amounts of contamination, it becomes impossible to distinguish between the 

good and the bad parts of the sample. When the dependent variable is continuous, the Theil–Sen 
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estimator enjoys good theoretical properties and it performs well in simulations in terms of power 

and Type I error probabilities when testing hypotheses about the slope (e.g., Wilcox, 2012b). 

Regular outliers and non-normality are problems in statistics, an outlier is a value that is far 

from the general distribution of the other observed values, and can often perturb the results of a sta-

tistical analysis (Michael Greenacre & H. Ayhan, 2015). As a result of these outliers there may be a 

breakdown in the model at the 
Oℎ point produce a location shift and the variance exceed the error 

variance at the other data points, also there may be a large random disturbance that can be produced 

by chance. By contrast, an inlier is a data value that lies within a statistical distribution and is in 

error. Although the normality of the data takes center place in statistics, most of the data in behav-

ioral and social sciences follow a non- normal data. A non- normality describes the shape of a data 

as being in that of not a bell curve when a variable along the x-axis and the corresponding frequen-

cies of the variables along the y-axis is plotted. 

As discussed, OLS estimates are seriously affected by outliers and non-normality, especial-

ly when the sample size is not very large. Although the log transformation can be used to handle 

the non-normality of the data, but this does not always work and still underline assumptions of OLS 

need to satisfy. Regression procedure with median not only more robust to outliers and non-normal 

errors but also provides a richer characterization of the data, allowing us to consider the impact of a 

covariate on the entire distribution of y, not merely its conditional mean (Christopher Baum, 2013). 

Numerical experiments indicate that the Kendall-Theil slope estimator is almost as efficient as OLS 

regression under ideal conditions for OLS and is much more efficient than OLS even when condi-

tions do not depart substantially from the ideal (Hussain and Sprent, 1983; Dietz, 1987; Hirsch and 

others, 1991; Brauner, 1997; Nevitt and Tam, 1998; Helsel and Hirsch, 2002). 
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Objectives of the Study 

Several comparisons are made between Ordinary Least Square Regression, Quantile Re-

gression, Kendall–Theil Sen and Siegel Regression, but no direct comparison is yet made between 

Quantile Regression and Kendall–Theil Sen Siegel Regression in the presence of outliers. The re-

search hypotheses of the dissertation are 

• In the presence of outliers, Theil Sen Siegel Regression will have narrower confidence in-

tervals for the regression coefficients than either Ordinary Least Square or Quantile Regres-

sion. 

• In the presence of outliers, Theil Sen Siegel Regression will have lower Root Mean Square 

Error, Standard Errors and Average bias index values than either Ordinary Least Square or 

Quantile  Regression 

• In the presence of outliers, Theil Sen Siegel Regression will be more robust to maintain 

Type I and Type II error rates either Ordinary Least Square or Quantile Regression across 

three non-normal density functions. 

In all four approaches, outliers will be modeled as (a) outliers, and (b) non-normal distributions. 

Different test statistics, such as biases, Standard Deviation (S.D), Standard Error (SE), R-squared, 

the overall F-test, Median Absolute Error (RMEDAE) and Root Mean Square Error (RMSE) will 

be used to evaluate the model fit. 

Assumptions in Parametric and Non-Parametric Regressions 

Linear regression as a parametric statistical technique makes several underlying assump-

tions. Among those the most important assumptions are  

• Linearity of outcome variable with a predictor. 

• Normality of residuals/errors. 

• The variability in response variable at different levels of predictors should be homogeneous. 
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• Independence of residuals/errors. 

Significant lack of symmetry and outliers can produce invalid and bias results. As a non-parametric 

regression, procedures do not require any specific underlying distribution for the given set of data. 

The only assumption is  

• The errors are assumed to be statistically independent. 

Limitations 

• With non-parametric regression approach, confidence Interval's construction is sometimes 

difficult.  

• Non-parametric regression approach is not as powerful in terms of inference as parametric 

regression. 

•  This study did not evaluate effects of missing or inconsistent data. 

• There are several other non-parametric regression methods, but our focus is on Quantile 

Regression and Kendall–Theil Sen Siegel Regression. 

• This study focused on 50th percentile i.e. median in Quantile Regression only. 

• This study focused on simple linear regression only. 

Definitions and Terminologies 

Alternative Hypothesis: 

Any hypothesis which is different from null hypothesis and set parallel to the null hypothesis called 

an alternative hypothesis. An alternative hypothesis is usually denoted by H₁ (or Hₐ) and must con-

tain a sign of inequality (≠, > or <). 

Alpha Level (Level of significance): 

An Alpha level or level of significance denoted by α is the probability that the test statistic will fall 

in the rejection region when the null hypothesis is actually true, in other words level of significance 

is the probability of making type-I error. Common levels of significant are 5%, 2%, and 1%. By 5% 
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level of significant means there is 1 chance out of 20 that a true null hypothesis RS is rejected this is 

rare that’s not happen by chance but it is happen due to the intervention. 

So, 

α = P (Type-I Error) = P (Reject Ho | Ho is True) = Level of Significance 

Assumptions: 

In parametric statistical analysis, assumptions are the certain pre assumed characteristics about the 

data. 

Confidence Interval: 

Confidence Interval is an interval that contains the unknown population parameter (θ) with certain 

degree of confidence. In general, a confidence interval can be written as 

Point estimate ± (reliability coefficient) *(standard error of the point estimate) 

Confidence Limits: 

Confidence limits are the lower and upper boundaries / values of a confidence interval which define 

the range of a confidence interval. 

Correlation: 

The correlation is an association or relationship (in terms of variability) between two variables �E 
and �E. Most people equate �E and �E being correlated to mean that �E and �E are associated, related, 

linearly overlap, or dependent upon each other. However, correlation is only a measure of the 

strength and direction of a linear relationship. 

Deciles: 

Deciles are the process of dividing the data in to ten equal parts. The 1st decile (TU) has the 

1/10(10%) of the data below it, the 2nd decile (TI) has the 2/10(20%) of the data below it so on, 

the 9th decile (TV) has the 9/10(90%) of the data below it. 
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Distribution Function: 

The distribution function of a random variable Y is denoted by F(Y) and defines as W(�) = X(� ≤
Z) i.e. the function W(�) gives the probability of an event Y takes a value less than or equal to a 

specific value of y. 

Estimation of Parameters: 

Estimation of parameters is the process of making judgment about the unknown parameters on the 

bases of sample statistics. 

Estimate: 

The results obtained after applying the formula called an estimate.  

Estimator: 

A rule or formula that can be used to estimate the unknown population parameters called an estima-

tor. 

Inferential Statistics: 

Inferential statistics allows a researcher to draw conclusion about the unknown population parame-

ters based upon sample statistics. 

Level of Confidence (or Confidence Coefficient): 

The probability associated with a confidence interval called level of confidence; normally, 90%, 

95%, or 99% level of confidence are used. 

Linear Regression: 

Linear regression is a statistical technique used to study the relationship between a response varia-

ble �E with at least one predictor variable �E by developing a model with conditional mean and cer-

tain parameters, these parameters are estimated and the fitted model is then used for forecasting and 

prediction. 
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Linear Relationship: 

If a scatter plot of dependent variable �E and an independent variable �Eshows a straight-line trend 

then the relationship between the two variables is said to be linear. 

Linearity:  

Linearity is one of the important assumptions in simple linear regression, when the given predictor 

�E does have a linear relationship with outcome variable �E. 
Mean: 

Mean (or Arithmetic Mean) is just a sum of given values, divided by the number of values. 

Mean Absolution Deviation: 

Mean Absolution Deviation is the ratio of sum of absolute deviation from mean to the total number 

of observations. 

Median: 

Median is a value which divides the data in to two equal parts, after arranging the values into in-

creasing or decreasing order of magnitude. 

Method of Least Square: 

It is a method by which the curves and equations are fitted to the data, this method consists of min-

imizing the sum of square of errors. 

Model: 

Model is a relationship between the variables in terms of mathematical equation i.e. �E=a+b�E+ε. 

Monte Carlo methods:  

A method used for making inference or exploring distribution properties by repeated sampling; it is 

especially useful when an analytic solution is difficult to obtain (Nelson, 1998, p. 287). 
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Non-parametric statistical methods: Statistical methods designed to be used when the data being 

analyzed depart from the distributions that can be analyzed with parametric statistics (Vogt, 1993, 

p. 155). 

Normal distribution: 

 A theoretical continuous probability distribution in which the horizontal axis represents all possi-

ble values of a variable and the vertical axis represents the probability of those values occurring 

(Vogt, 1993, p. 155). 

Null Hypothesis: 

A null hypothesis is any hypothesis which is to be tested for possible rejection under the assump-

tion that it is true. A null hypothesis is denoted by Hₒ and must contain a sign of equality (=, ≤ or 

≥). 

Outliers: 

Outliers are the data points that do not fit well with the pattern of the rest of the data. 

Predictor Variable: 

A predictor (Independent, covariate, explanatory, regressor, or factor) variable is a presumed cause 

in an experimental study. The values of the independent variable are under researcher control. 

P-value: 

A p-value is the probability of getting a value of the sample test statistic that is at least as extreme 

as the one found from the sample data, assuming that null hypothesis is true. 

Parameter: 

Parameters are the numerical information obtained from a population data. 

Parametric statistical Methods: 

 Statistical techniques designed when data have certain characteristics-usually when they approxi-

mate a normal distribution and are measurable with interval or ratio scales (Vogt, 1993, p. 165). 
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Percentiles:  

Percentiles are the process of dividing the data in to hundred equal parts. The 1st percentile (XU) has 

the 1/100(1%) of the data below it, the 2nd percentile (XI) has the 2/100(2%) of the data below it so 

on, the 99th percentile (XVV) has the 99/100(99%) of the data below it. 

Probability Density Function: 

A function �([) is said to be a probability density function (pdf) over an interval [a, b] where � <
#, if the area between the given points [ = � to [ = # gives the probability that [ lies between � 

and #, i.e.  
X(� ≤ [ ≤ #) = W(#) − W(�) = ] �([E

^
_ )�[ 

Population: 

In statistics, a population consist of all possible observations (or individuals or subjects, or content) 

of interest. 

Quartiles:  

Quartiles are the process of dividing the data in to four equal parts. The 1st quartile (`U) has the 

1/4(25%) of the data below it, the 2nd quartile (`I or Median) has the 2/4(50%) of the data below 

it, the 3rd quartile (`a) has the 3/4(75%) of the data below it. 

Quantile Regression: 

Quantile Regression is a non-parametric statistical technique used to study the relationship between 

a response variable �E  with at least one predictor variable �E by developing a model with condition-

al quantiles and certain parameters, these parameters are estimated and the fitted model is then used 

for forecasting and prediction. 
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Regression: Regression is a statistical technique used to study the relationship between a response 

variable �E with at least one predictor variable �Eby developing a model with certain parameters, 

these parameters are estimated and the fitted model is then used for forecasting and prediction. 

Regression Models: 

The mathematical models that allows predicting the value of response variable from known values 

of one or more predictor variables. 

Regression Coefficient (or Slope): 

In statistics, regression coefficient is a change in response variable �E due to unit changes in predic-

tor �E. A slope of 2 means that for every 1-unit change in a predictor, yields a 2-unit change in re-

sponse variable. 

Relative Root Mean Square Error (RRMSE): 

A statistic used to measure the relative performance of two estimation methods based on mean.  

Relative Median Absolute Error (RRMEDAE): 

A statistic used to measure the relative performance of two estimation methods based on median.  

Response Variable: 

A response (outcome, explained, dependent) variable is a presumed effect in an experimental study 

whose values depend upon another variable, called independent variable. 

Robust:  

A statistical method that is relatively insensitive to departures from a postulated assumption (Hol-

lander & Wolfe, 1996, p. 132). 

Robust Estimator:  

A robust estimator is one that has a high breakdown point. 

Sample: 

A sample is a set of observations drawn from a population. 
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Sampling Distribution: 

The probability distribution of a sample statistic is called sampling distribution. 

Scatter Plot: 

A scatter plot is used to show the score on one variable plotted against score of a second variable. 

Standard Deviation: 

Standard Deviation is the ratio of sum of squared deviation from mean to the total number of ob-

servation and is used to measure the variability of a set of data. 

Standard Error (S.E):  

It is the standard deviation of sampling distribution of a sample statistic.  

Statistic: 

Statistics are the numerical information obtained from sample data. 

Test of Significance: 

Test of Significance is a process of assessing evidence provided by the data in favor of, or against 

some claim about the characteristics of population.  

Test Statistic: 

A test statistic is a rule or formula used in test of significance and its value is calculated from the 

sample data that is used in making the decision about the rejection of the null hypothesis. 

Type I error: 

A Type-I error occurs when we reject a null hypothesis RS when, in fact, RS is True. 

Type II error: 

A Type-II error occurs when we fail to reject a null hypothesis RS when, in fact, RS is False. 
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CHAPTER 2 LITERATURE REVIEW 

Ordinary Least Square Regression 

Ordinary Least Square Regression is a statistical method which helps in estimating an aver-

age relationship between two or more variables by using the method of least square. This method 

allows explanation and prediction of the unknown value of one variable called response variable �E  
from known value of related variable called predictor variable �E. Normally in Ordinary Least 

Square Regression the behavior of response variable �E is summarized for each given predictor  �E 
with typically used measures of location called mean. In order to estimate this average relationship, 

the concept of sampling distribution must be employed. 

Sampling Distribution of Sample Statistic: 

The sampling distribution of a sample statistic b c is the probability distribution or the relative 

frequency distribution of all possible random samples of the same size that could be selected form a 

given population.  

Sampling Distribution of Sample Mean: 

The sampling distribution of sample mean �d is the probability distribution or the relative 

frequency distribution of all possible random samples of the same size that could be selected form a 

given population? The mean of this distribution represented by efd  and the standard deviation of 

this distribution is called standard error of estimate denoted by Hfdwhich indicates the variability of 

the distribution of all possible sample means. 

Standard Error of Estimates in Ordinary Least Square Regression: 

The degree of scatterness of the observed values about the regression line is measured by 

what is called standard error of regression or standard deviation of Y on X, denoted by gh.i and de-

fine as 
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gh.i = j∑(� − �l)I� − 2  

It is to be noted that if gh.i = 0, this shows that all the given data points lie of the Ordinary Least 

Square Regression line. 

Ordinary Least Square Regression Model with Single Independent Predictor: 

Ordinary Least Square (OLS) regression is a parametric approach used to study the relation-

ship between a response variable (�E) with at least one predictor or independent variable (�E). In a 

simple linear regression model, suppose a sample of � pair of observation (�E, �E), 
 = 1, 2, . . . � 

was taken from a normal population to fit a model such that it will best fit the data. In order to do 

that a straight line with an equation below is used 

�E = mS + mU�E + FE, 
 = 1, 2, … , � 

Where, FE′	 are random errors (residuals) and assumed to be independent of �E and normally dis-

tributed with zero mean i.e. p(FE) = 0 and variance HI i.e. Var (FE) = HI, a constant for all �E. 
These assumptions also imply that �E also have common variance HI as the only element in the 

model is FE. 
 A method of least square (LS) in which curves and equations are fitted to the data is used. 

This method consists of minimizing the sum of squared error FE from the fitted straight line to the 

observed outcome variable �E, i.e. ∑ FEIqErU . 

Let the equation of the least square model is  

�E = mS + mU�E + FE. 
Then the conditional mean of �E given �Ecan be written as, 

�l = p(�E|�E) = mS + mU�E + p(FE) 

�l = p(�E|�E)= mS + mU�E , 
as p(FE) = 0 and p(�E) = �E. 
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The sum of squared error is 

∑ FEIqErU = ∑ (�E − �l)IqErU . 

To minimize it, partially differentiate it with respect to mS and mU and equate to zero the derivatives. 

Estimation of parameters in Ordinary Least Square Regression with Single Independent 

Predictor: 

Suppose, mtS & mtU are the estimates of the corresponding parameters mS and mU in an Ordi-

nary Least Square Regression model. The method of least square estimates the parameters by min-

imizing the sum of squared errors, denoted by gI and given by 

gI = ∑ FEIqErU = ∑ (�E − �l)IqErU  

=∑ (�E − mS − mU�E)IqErU  

Now to minimize sum of squared errors, partially differentiate gI with respect to mS and mU and 

equate to zero the, i.e. 

vwx
vyz =2∑ (�E − mS −  mU�E)(−1) = 0qErU  

vwx
vy{ =2∑ (�E − mS −  mU�E)(−�E) = 0qErU . 

After solving the equations, the estimates of mS and mU are given below, 

mtU = � ∑ �E�E − ∑ �E ∑ �E� ∑ �EI − (∑ �E)I  

mtS = �|} − #�|} . 

Hence, the estimated ordinary lease square regression line is given as 

�l = mtS + mtU�E. 
It is evident in an Ordinary Least Square Regression line, the quantities mtS, mtU, �l  and �d will vary 

from one sample of data to another. They are thus random variables and hence have their sampling 

distribution. 
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Interpretation of Ordinary Least Square Regression Estimates with Single Independent Pre-

dictor: 

 In an Ordinary Least Square Regression, mtU is the estimated rate of change in the average 

value of the response variable  �E for a one-unit change in predictor variable �E. Similarly, mtS is the 

estimated average value of �E when the value of �Eis zero (which may not always be sensible). 

Reference and comparison in Ordinary Least Square Regression Estimates: 

 When a predictor variable in an Ordinary Least Square Regression is categorical, and to fa-

cilitate the interpretation of the categorical OLS estimates, uses the notation of reference and com-

parison with some ideas related to the quantification of effects can be used. For example, in a di-

chotomous categorical variable, one category may be used as reference and compared other catego-

ry to study the effect of a unit change in response variable. This idea can be extended to more than 

categories in a categorical predictor. In OLS, the fitted categorical coefficient can be interpreted as 

an estimated effect i.e. estimates of the change in the mean of the response variable that results 

from a 1-unit change between reference category and comparison category. 

Statistical Inference in Ordinary Least Square Regression with Single Independent Predictor: 

 For purpose of statistical inference, the concept of means, variances and the shapes of these 

sampling distributions must be known. The mean and variance of the sampling distribution of esti-

mated regression coefficient mtU can be driven as  

~����mtU� = eyc{ = mU 

����mtU� = Hyc{
I = HI ∑(�E − �d)I� . 

Because the random errors FE′	 are assumed to be independent of �E and normally distributed, 

therefore the distribution of mtU is also normally distributed with mean eyc{ = mU and 
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 Hyc{ I = HI ∑(�E − �d)I� . Generally, HI is unknown, it is, therefore, requiring an estimate for HI 

from the sample data by gIh.i= ∑(����l)x
q�I . Similarly, the mean and variance of the sampling distribu-

tion of y-intercept mtS, can be driven as  

~����mtS� = eycz = mS  

����mtS� = Hycz I = HI[1� + �dI∑(�E − �d)I] 
Because the random errors FE′	 are assumed to be independent of �E and normally distributed, leads 

to the fact that the distribution of a is also normally distributed with mean eycz = mS and   

Hycz I = HI[Uq + fdx
∑(f��fd)x], 

where HI can be estimated from the sample data by gIh.i= ∑(����l)x
q�I . 

Interval Estimation in Ordinary Lease Square Regression with Single Independent Predictor: 

Confidence Interval for Population regression coefficients can be obtained as follows.  A 

100(1 − �) % Confidence Interval for Population regression coefficient mS is given by 

(mtS± O�/I(q�I)g. p(mtS)). 

Similarly, 

A 100(1 − �) % Confidence Interval for Population regression coefficient mU is given by 

(mtU± O�/I(q�I)g. p(mtU)). 

Test of Significance in Ordinary Least Square Regression with Single Independent Predictor:  

To test the null hypothesis about the slop of the regression line, RS: mU = 0   against 

 RS: mU = 0 a test statistic O =  ^�y{w.�(^) with (� − 2) d.f can be used. Similarly, to test the null hypoth-

esis about the y-intercepts of the regression line RS: mS = 0 against R�: mS ≠ 0 , a test statistic O =
 _�yzw.�(_) with (� − 2) d.f. can be used. 



21 

 

 

Measures of Variability in Ordinary Lease Square Regression: 

To determine the regression coefficients for a given set of data by the method of least 

square, there are normally three important measures of variability are used, named as total variabil-

ity measured by total sum of square (TSS), explained variability measured by regression sum of 

square (RSS) and unexplained variability measured by error sum of square (SSE). Note that the to-

tal variability of the data can be partitioned into two explained variability and unexplained variabil-

ity, i.e.  �gg = �gg + ggp. 

The Coefficient of Determination in Ordinary Lease Square Regression with Single Predic-

tor: 

A coefficient of determination is the proportion of total variability in the response variable 

�E that is explained by the (variability in  �E ) regression model, denoted by �I and given by 

�I =1-(SSR/SST). The value of �I varies from o to 1 and is free from the unit of measurement. 

The value of �I close to 1 implies that most of the variability in the response variable �E is ex-

plained by the regression but this does not mean that the regression is predicting accurately. 

Ordinary Least Square Regression Model with Multiple Independent Predictors: 

Suppose a response variable (�E) along with � independent predictors (�EU, �EI, … , �E�) 

were selected with � pair of observation, then a multiple linear regression model with � predictors 

can be written as 

�E = mS + mU�EU + mI�EI + ⋯ m��E� + FE, 
where, FE′	 are again random errors (residuals).The random errors FE′	 are again assumed to be in-

dependent of �E� and normally distributed with zero mean i.e. p(FE) = 0 and variance HI i.e. Var 

(FE) = HI, a constant for all �E�. These assumptions also imply that �E also have common variance 

HI as the only element in the model is FE. 
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 Again, by the method of least square (LS) which consists of minimizing the sum of squared 

error from the fitted plane instead of straight line to the observed outcome variable �E, i.e. ∑ FEIqErU . 

 Let the equation of the least square model be 

�E = mS + mU�EU + mI�EI + ⋯ m��E� + FE. 
Then, the conditional mean of �E given �E�can be written as, 

�l = p(�E|�E�) = mS + mU�EU + mI�EI + ⋯ m��E� + p(FE) 

�l = p(�E|�E)= mS + mU�EU + mI�EI + ⋯ m��E� 

as p(FE) = 0 and p(�E�) = �E�. 

The sum of squared error is 

∑ FEIqErU = ∑ (�E − �l)IqErU  

To minimize it, partially differentiate with respect to mE′	 equate to zero the derivatives. Computer 

can be used to estimates for mE′	 and called partial regression coefficients denoted by mtE′	. 

Estimation of parameters in Ordinary Least Square Regression with Multiple Independent 

Predictors: 

Suppose a response variable (�E) with � independent predictors (�EU, �EI, … , �E�). A multi-

ple linear regression model with k predictors can be written as 

� = �m + � 

Where, � is an (� × 1) matrix of the response variable, � is an � × � matrix of the predictor varia-

bles, m is a (� × 1) matrix of the regression coefficients and � is a (� × 1)  matrix of the error 

terms with p(�) = 0, ���(�) = HI�, p(�) = �m and � is the identity matrix. 

Now, 

gI = ��� = (� − �m)�(� − �m) = ��� − m���� − ���m + m����m 

= ��� − 2m���� + m����m 

Partially differential with respect to β and equate to zero the derivative 
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�gI�m = −2��� + 2���m = 0 

��� = ���m 

mt = (���)�U(���) 

So, the fitted plane is 

�l = �mt  

Interpretation of Ordinary Least Square Regression Estimates with Multiple Independent 

Predictors: 

 In multiple least square regressions m�c  is the estimated rate of change in the average value of 

the response variable  �E for a one-unit change in predictor variable �J, keeping all other ���J pre-

dictors constant. For example, mtU is the estimated rate of change in the average value of the re-

sponse variable  �E for a one-unit change in predictor variable �U, keeping all other ���U predictors 

constant. 

Confidence Interval in Ordinary Least Square Regression with Multiple Independent Predic-

tors:  

The Confidence intervals for individual parameters are given by 

m�c ± O�/I(q���U)g. p�m�c �, M = 0,1,2, … , �. 

The Coefficient of Determination in Multiple Lease Square Regression with Multiple Predic-

tors: 

A coefficient of determination is the proportion of total variability in the response variable 

�E that is explained by the (variability in  �E ) regression model, denoted by �I and given by 

�I =SSR/SST. The value of �I varies from o to 1 and is free from the unit of measurement. The 

value of �I close to 1 implies that most of the variability in the response variable �E is explained by 

the regression but this does not mean that the regression is predicting accurately. 
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Goodness of Fit in Multiple Lease Square Regression: 

In ordinary least squares regression models, the goodness of fit of the model is measured by 

coefficient of determination method after the different regression models have been estimated to 

select the most appropriate model. A coefficient of determination is denoted by �I and defined as 

�I = ww�ww� = 
∑ (�l���d)x� ∑ (����d)x�  

 Akaike Information Criterion (AIC) and Schwarz Criterion (SC) can be used for the goodness of 

fit of the regression model. 

Outliers and Lease Square Regression: 

Regular outliers and non-normality are the well-known problems in statistics, an outlier is a 

value that is far from the general distribution of the other observed values, and can often perturb the 

results of a statistical analysis (Michael Greenacre & H. Ayhan, 2015). As a result of these outliers 

there may be a breakdown in the model at the 
Oℎ point produce a location shift and the variance 

exceed the error variance at the other data points, also there may be a large random disturbance that 

can be produced by chance. Least square estimates are seriously affected by outliers and non-

normality, especially when the sample size is not very large. Although log transformation can be 

used to handle the non-normality of the data, but this does not always work and still underline as-

sumptions of OLS need to satisfy. 

Quantile Regression 

Quantile  Regression is another very flexible approach developed by Koenker and Bassett 

(1978), that can be used an alternative of ordinary lease square regression and allows researcher to 

study the relationship between a response variable �E  with at least one predictor �E at different 

points in the conditional distribution of response variable �E , at several points using the conditional 

median function `�(�E|�E) , or other quantile function where median is the 50th percentile and is the 

best-known quantile, similarly, the other quartiles, e.g. 25th , 30th , 75th , and so on 95th  percentiles or 
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simply a �Oℎ quantile �, of the empirical distribution W(�) can be defined. It is to be noted that 

quantile and percentiles are synonymous i.e. the 0.90 quantile is the 90th percentile. Using Quantile 

Regression investigator/researcher can see a more comprehensive picture of the effect of the pre-

dictors on the response variable. 

Cumulative Distribution Function (cdf) and Quantile Function: 

In order to describe the empirical distribution of a random variable Y, in Quantile Regres-

sion, the concept of distribution function or cumulative distribution function (cdf) can be used. The 

cumulative distribution function of a random variable Y is denoted by W(�) and defines as 

W(�) = X(� ≤ Z), 

i.e. the function W(�) gives the probability of an event Y takes a value less than or equal to a spe-

cific value of y. It is to be noted that W(−∞) = 0 and W(∞) = 1. Also W(�) is a non-decreasing 

function and is continuous at least on the right of each y. 

W(�) = X(� ≤ Z) = ∑ �(ZEE ), if � is discrete random variable 

W(�) = X(� ≤ Z) = ¡ �(ZE¢£�£ )�Z, if � is continuous random variable 

Note 

X(� ≤ Z ≤ #) = W(#) − W(�) = ¡ �(ZE_̂ )�Z. 

Continuing the explication of a cdf, F, for some population characteristics, the �¤¥quantile of the 

distribution, dented by `� such that `� = � ∗. In a standard normal distribution, W(1.96) = .96.  So 

`S.V¨ = 1.96. The quantile function for �¤¥ quantile, 0 < � < 1 split the response variable �E into 

proportion � below and 1 − � above such that W���� = X(� ≤ Z) = � and �� = W�U(�). Another 

way to express the quantile function is  

`h(�) = Wh�U(�) = 
��©Z/W�(Z) ≥ �« 

A graph of a typical quantile function is shown in Figure. 
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The empirical quantile function can be given as 

l̀h(�) = Whc �U(�) = 
�� ¬Z/ #(��®h)q ≥ �¯. 

A graph of a typical empirical quantile function is shown in Figure. 
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Sampling Distribution of Sample Quantile: 

Suppose ZU, ZI, … , Zq, is a large random sample from a distribution function of `� and 

probability density function of �(Z) = vvh (W(Z), then the distribution of l̀h is approximately nor-

mal with mean  `� and variance �(U��)q . U°(±²)x. The variance of the sampling distribution is com-

pletely determined by the probability density evaluated at the quantile. 

Standard Error of Estimates in Quantile Regression: 
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Koenker and Bassett (1982) described the method of estimating standard errors of the 

Quantile Regression coefficients. However, Rogers (1992), reported this method preforms well for 

homoscedastic distribution of residuals (i.e., the distribution of the residuals has uniform variance), 

but it appears to underestimate the standard errors when the distribution of the residuals is hetero-

scedastic (i.e., the distribution of the residuals has non-uniform variance). Efron and Tibshirani 

(1993) suggested bootstrap methods as an alternative approach to estimate the standard errors of 

estimates for Quantile Regression. 

Quantile Regression Model with Single Independent Predictor: 

The �¤¥ quantile, 0 < � < 1 split the response variable �E into proportion � below and 1 −
� above such that W���� = � and �� = W�U(�) for the median � = 0.5. Quantile Regression uses 

an asymmetric weighting system of data points and therefore, all data points are weighted based on 

their distance from the researcher-specified quantile for that estimation. Consequently, Quantile 

Regression is not synonymous with fitting a separate OLS regression line at each quantile (Petscher 

& Logan, 2014; Petscher et al., 2013). 

In Quantile Regression the fitted model is  

�E = m�S + m�U�E + F�E, 
 = 1, 2, . . . �, 

Where F�E′	 are random errors 

m�S and m�U are the unknown parameters associated with �¤¥ quantile, and 0 < � < 1. 

Recall in the Ordinary Least Square Regression model, the conditional mean is 

p(�E|�E) = mS + mU�E. 
In contrast, for the corresponding Quantile Regression model, the �¤¥ conditional quantile given �E 
is specified as, 

`�(�E|�E) = m�S+m�U �E. 
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Thus, the �¤¥ quantile is determined by the quantile specific parameters m�S and m�U, with a 

specific predictor value of �E. Like, Ordinary Least Square Regression the p(FE) = 0, in Quantile 

Regression `��F�E� = 0. It is to be noted that for different values of the quantile � of interest, the 

error terms F�E for fixed 
 are related. By extending the idea of several equations can be expressed 

at different quantiles. For example, if the Quantile  Regression model specifies the 9th quantiles, the 

9 different models yields 9 Quantile  Regression coefficients for �E, one at each of the 9 conditional 

quantiles, i.e. mS.US, mS.IS, …, mS.VS.  

In ordinary lease square regression, the least squares (LS) method tries to minimize 

∑ FEIqErU , the sum of squared error from the fitted straight line to the observed outcome variable �E 
whereas, in Quantile  Regression absolute sum of error from the fitted �¤¥ line to the observed out-

come variable �E, is tried to minimize, i.e. ∑ ³F�E³qErU  is to minimize. 

Estimation of parameters in Quantile Regression with Single Independent Predictor: 

Suppose, in a Quantile Regression mt�S, and mt�U are the estimates of the corresponding un-

known parameters m�S and m�U respectively. A method of the absolute sum of error is used to esti-

mate the parameters by minimizing the sum of absolute errors. The attempt is to mini-

mize ∑ ³F�E³qErU . The Quantile Regression minimizes the ∑ �³F�E³ + ∑ (1 − �)³F�E³qErUqErU , a sum that 

gives the asymmetric penalties �³F�E³ for under prediction and (1 −  �)³F�E³ for over prediction. For 

example, in a median regression, if � = 0.5 then the quantity  ∑ ³F�E³qErU  will collapse to a median 

regression. 

In ordered to find the quartile regression coefficients, a criterion function is defined for �¤¥  

Quantile  Regression estimator mt�U  that minimizes `(m�) with objective function along with pen-

alty � when response variable is higher than the predicted values i.e.�E´f�µ  and penalty 1 − � when 

response variable is higher than the predicted values i.e. �E¶f�µ . 
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`�m�� = · �³F�E³ + · (1 − �)³F�E³q
ErU

q
ErU  

`�m�� = ∑ �³�E − m�S − m�U�E³E:��¸¹�µ + ∑ (1 − �)³�E − m�S − m�U�E³E:��º¹�µ , 

Where F�E = �E − m�S − m�U�E equivalently, it can be written as 

 `�m�� = ∑ [qErU �¬��¸¹�µ¯ �³�E − m�S − m�U�E³ + �¬��º¹�µ¯(1 − �)³�E − m�S − m�U�E³],  

Where 0 < � < 1 and I is an indicator function. 

In contrast to ordinary lease square regression or maximum likelihood, the Quantile Regres-

sion computational implementation uses linear programming method to find the regression coeffi-

cients. 

Quantile Regression Model with Multiple Independent Predictors: 

Given that, �U, �I, … , �� ∈ (0,1) , are the quantiles of a response variable (�E) with � inde-

pendent predictors (�EU, �EI, … , �E�), then a multiple Quantile Regression model with � predictors 

can be written as 

`��(�E|��E) = �m�� + �, 

where, � is an (� × 1) matrix of the response variable, � is an � × (� + 1) matrix of the predictor 

variables, m�� is a (� × 1) matrix of the regression coefficients at ��Oℎ quantile level and � is a 

(� × 1)  matrix of the error. 

Interpretation of Quantile Regression Estimates with Multiple Independent Predictors: 

In a multiple Quantile Regression, mt�J estimates the change in specific quartile � of the re-

sponse variable �E produces by one unit change in the predictor variable �J, keeping all other ���J 

predictors constant. For example, mt�U is the estimated rate of change in specific quartile � in a re-

sponse variable �E for a one unit change in predictor �U, keeping all other ���U predictors constant. 
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Again, it is to be noted that unlike to the Ordinary Least Square Regression, the interpretation of 

Quantile Regression results needs to specify which quantile of response variable are used. 

Reference and comparison in Quantile Regression Estimates: 

 Again, when a predictor variable in Quantile Regression is categorical, and to facilitate the 

interpretation of the categorical Quantile Regression estimates, the notation of reference and com-

parison with some ideas related to the quantification of effects can be used. For example, in a di-

chotomous categorical variable, one category as reference can be used to compare other category to 

study the effect of a unit change in response variable, this idea can be extended to more than cate-

gories in a categorical predictor. In Quantile Regression, the fitted categorical coefficient can be 

interpreted as an estimated effect i.e. estimates of the change in the �Oℎ quantile of the response 

variable that results from a 1-unit change between reference category and comparison category. 

Goodness of Fit in Quantile Regression: 

Koenker and Machado (1999) suggest measuring goodness of fit by comparing the sum of 

the weighted absolute deviations when the explanatory variables are not used in the prediction of 

the �¤¥ quantile (i.e. the reduced model) with the sum of the weighted absolute deviations when the 

explanatory variables are used in the prediction of the �¤¥ quantile (i.e. the full model). 

Suppose,�l(�) is the sum of the weighted absolute deviations when the explanatory varia-

bles are used in the prediction of the �¤¥quantile (i.e. the full model) and �¼(�) is the sum of the 

weighted absolute deviations when the explanatory variables are not used in the prediction of the 

�¤¥quantile (i.e. the reduced model), then goodness of fit for Quantile Regression defined as 

�(�) = 1 − ½c(�) ½¾(�) . 

The value of �(�) varies from o to 1 and is free from the unit of measurement, with larger �(�) 

indicating a batter model fit. 

Test of Significance in Quartile Regression: 
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There are mainly two types of significance that are important in Quantile Regression coeffi-

cients. 

• Test of significance about the quantile coefficients different from zero. 

•  Test of significance based on the quantile coefficients different from OLS coefficients, 

showing the significant effect along the distribution of the response variable. 

To test the significance about the regression coefficient of the Quantile Regression line  RS: m� = 0 

against   RS: m� ≠ 0 , there are normally three kinds of tests are used, the likelihood ratio (LR) tests, 

Wald test (W) and Langrage multiplier (LM). Koenker and Machado (1999) recommended the as-

ymptotic test statistics called likelihood ratio (LR) test for the contribution of response variable to 

the prediction of the �¤¥  quantile as, 

¿� = ¿q(�) = I�½¾(�)�½c(�)��(U��)À°Á²(S)ÂÃ{, 

where, �¼(�) is the sum of the weighted absolute deviations when the explanatory variables are not 

used in the prediction of the �¤¥ quantile (i.e. the reduced model). 

 �¼(�) = ∑ ³�E − mS + mU�UE + ⋯ + m��U����E³E ,  

�l(�), is the sum of the weighted absolute deviations when the explanatory variables are used in the 

prediction of the �¤¥ quantile (i.e. the full model).  

�l(�) = ·³�E − mS + mU�UE + ⋯ + m���E³E  

The term 	(�) represents the sparsity function which measures the density of observations near the 

quantile of interest. The test statistics ¿� is asymptotically distributed as a ÄI�, where q is the dif-

ference in the number of predictors included in the full model and the number of predictors includ-

ed in the reduced model. 
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Suppose four independent predictors were selected, then a multiple Quantile Regression 

model can be written as 

�E = mS + mU�UE + mI�IE + ma�aE + mÅ�ÅE + �E. 
After fitting OLS and Quantile Regression at different quantiles suppose �I and �a are not statisti-

cally significant in any of the fitted equations, and it is relevant to test the null hypothesis 

RS = mI = ma = 0. 

This hypothesis involves a reduced model. The test function for LR test can be defined as 

¿� = I�½¾(�)�½c(�)��(U��)À°Á²(S)ÂÃ{. 

At the median, to test the null hypothesisRS = mI = ma = 0, the two-objective function with re-

stricted and unrestricted models can be define as 

�¼(�) = ·|�E − mS + mU�UE + mÅ�ÅE|E  

�l(�) = ∑ |�E − mS + mU�UE + mI�IE + ma�aE + mÅ�ÅE|E . 

After the estimation process, the value of LR can be estimated and compared with the critical value 

of ÄI with 2 degrees of freedom at 5% level of significance. A decision can be made whether to 

reject the null hypothesis. If so, it means the restricted and unrestricted models yield similar results, 

and drop �I and �a safely. 

Koenker and Basset (1982) explained another test to test the significance of more than on 

Quantile Regression coefficient at a time is LM test. It considers the gradient Æ which is a function 

of the sign of the errors, of their position above and below the Quantile Regression line excluding 

the variables under test. The test function is defined as 

¿~ = Æ�[T��]�UÆ. 

Weiss (1990) suggested the LM test can be implemented by estimating an auxiliary regres-

sion. The residuals of the reduced model become the dependent variable of the additional regres-
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sion having an explanatory variable those predictors excluded from the model. The term ��Iis as-

ymptotically  ÄI with degree of freedom equal to the number of predictors under test. 

Consider four independent predictors were selected. The multiple Quantile Regression model can 

be written as 

�E = mS + mU�UE + mI�IE + ma�aE + mÅ�ÅE + �E. 
The objective function of median regression is given by  

∑ Ç�(�E) = 0.5 ∑ |�E|EE . 

It considers the gradient Æ at median which is a function of the sign of the errors, of their position 

above and below the Quantile Regression line. Under the null hypothesis RS = mI = ma = 0, the 

residuals of the constraint model estimated at median are given by 

�|È(�) = �E − mS + mU�UE + mÅ�ÅE, 
and is the dependent variable in the auxiliary equation: 

�|È(�) = �S + �U�UE + �I�ÅE + $E. 
��I is estimated and compared with  ÄI with 2 degree of freedom at 5% level of significance under 

test. 

Finally, Koenker and Basset (1982b) suggested the Wald test, denoted by É, considers es-

timates of the model including the predictors under the tests. The test function is defined as 

É = � Ê�(1 − �)À�Ë�(0)Â�UÌI mt(�)�[T��]�Umt(�) 

= �[�(1 − �)�Ë�(0)]�Imt(�)�[T��]�Umt(�). 

Consider four independent predictors were taken. A multiple Quantile Regression model can be 

written as 

�E = mS + mU�UE + mI�IE + ma�aE + mÅ�ÅE + �E. 
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To test the null hypothesis RS = mI = ma = 0, the estimated median regression coefficients under 

the test id given by  

mt(0.5) = ÍmtImtaÎ, matrix TII=Í ∑ �IEI ∑ �IE�aE∑ �aE�IE ∑ �aEI Î and �(1 − �)�Ë�(0) =0.25(.25), where 

�ËS.¨(0) = 0.25 at � = 0.5. 

The function É in equation 27 can be estimated and compared with  ÄI with 2 degree of freedom 

at 5% level of significance under test. Again, a decision can be made weather to reject the null hy-

pothesis. If it is rejected, it means the restricted and unrestricted models yield similar results, and 

drop �I and �a safely. 

In testing the significance of the quantile coefficients different from OLS coefficients which 

showing the significant effects along the distribution of the response variable. It may have lower 

effect for lower quantile and higher effect of higher quantile or the reverse; this differential effect 

across the quantiles can be showed and may be important that the quartiles coefficients differ from 

the OLS coefficients. 

Interval Estimation in Quantile Regression: 

In Quantile Regression, the confidence interval for  m� can be estimated by using three dif-

ferent methods named as sparsity, rank, and resampling. 

Sparsity: 

The sparsity method is the fastest, but it involves estimation of the sparsity function, which is not 

robust for data that are not independently and normally distributed. 

Rank Method: 

The rank method, which computes confidence intervals by inverting the rank score test, 

does not suffer from the problem of data that are not independently and normally distributed, but it 

uses the simplex algorithm and is computationally expensive with large data sets. 
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Resampling (Bootstrapping): 

Resampling or bootstrapping may give two alternatives to make inferences about parame-

ters. The first alternative is counting standard deviation of parameters and using it to obtain a t-

value and its p-value of related parameters. Confidence intervals (CI) can be approximated using 

this method. The second alternative is by constructing 95% CI (or other CIs) using 97.5th percen-

tile and 2.5th percentile of the samples of bootstrap estimates. If the CI captured the parameter, an 

inference can be made that the parameter is significant at � = .05 (Hao and Naiman, 2007). 

Robustness and Regression Modeling: 

Robustness is a degree to which a statistical test maintain Type I error and Type II errors 

rates in the presence of the violation of assumptions relates to the outcome variable �E . As mention 

earlier, OLS does not fit well when there are some regular outliers present in the response variable, 

or if the data were sampled from a non-normal distribution. Statistical methods in regression are 

generally considered resistant to the outliers and non-normality of the distribution.  

In contrast, the Quantile Regression model estimates are not sensitive to outliers also they 

are robust to the distributional assumptions because the regression coefficients weigh the local be-

havior of the distribution near the specific quantile more than the remote behavior of the distribu-

tion. Robust method invoked in order to refine the conditional mean and heterogeneity of the vari-

ance. Robust methods are not only sensitive to the non-normality of the data, but also minimize the 

effect of assumptions about data below detection limits, and the effect of outliers on the determina-

tion of relations between variables (Helsel & Hirsch, 2002). The first step toward a robust regres-

sion estimator came from Edgeworth (1887), improving a proposal of Boscovich. Kendall (1938) 

provided a non-parametric method of detecting a relationship between two variables and to find a 

suitable fit when there is a problem of outliers in the data, it provides different option to examine 
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lines between all pairs of points, and estimate the slope by the median of all slopes, and intercept by 

the median of all intercepts.  

As mentioned, in a simple linear regression, Theil (1950) first proposed another robust line-

ar regression method where there are one response and one predictor variable and is robust to outli-

ers in the response variable. In this method, the slope of the regression line is estimated as the me-

dian of all pairwise slopes between each pair of points in the dataset. Sen (1968) extended this es-

timator to handle ties. The Theil-Sen estimator (TSE) is robust with a high breakdown point 29.3%, 

has a bounded influence function, and possesses a high asymptotic efficiency. A modified and pre-

ferred method is named after Siegel (1982), who proposed the repeated median with a 50% break-

down point. Indeed, 50% is the best that can be expected (for larger amounts of contamination, it 

becomes impossible to distinguish between the good and the bad parts of the sample). When the 

dependent variable is continuous, the Theil–Sen estimator enjoys good theoretical properties and it 

performs well in simulations in terms of power and Type I error probabilities when testing hypoth-

eses about the slope (e.g., Wilcox, 2012b). 

Kendall–Theil Sen Siegel Regression 

Kendall–Theil (1950) regression is another completely nonparametric approach to linear re-

gression with one predictor and one response variable. The Theil estimator provides a robust esti-

mator for linear regression and outliers in the response variable. When the estimator is a line, then 

the Ordinary Least Square estimate corresponds with the mean, and is not robust estimate. A single 

point can easily affect the slope of the line. The Theil estimator is a robust version of a linear re-

gression. It simply computes all the lines between each pair of points and uses the median of the 

slopes of these lines. This procedure is sometimes called Theil–Sen procedure. 

 A modified, and more robust, method is named after Siegel. The method yields a slope and 

intercepts for the fit line, and a p-value for the slope can be determined as well.  Typically, no 
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measure analogous to r-squared is reported. Theil-Sen single (1950) median method computes 

slopes of lines crossing all possible pairs of points, when x coordinates differ. After calculating 

these � (� − 1)/2 slopes (these values are true only if �E is distinct), the median of them is taken as 

slope estimator. Next, the intercepts of � lines, crossing each point and having calculated slope are 

calculated. The median from them is intercept estimator.  

Sen (1968) extended this estimator to handle ties and obtained unbiasedness and asymptotic 

normality of the estimator for absolutely continuous error distribution and a no identical covariate. 

 A variability of the Theil-Sen estimator due to Siegel (1982) determines, for each sample 

point, the median �E of the slopes of lines through that point, and then determines the overall esti-

mator as the median of these medians. These repeated medians are sometime more complicated. 

For each point, the slopes between it and the others are calculated (resulting (� − 1) slopes) and 

the median is taken. This results in � medians and median from these medians is slope estimator. 

Intercept is calculated in similar way. The breakdown point of Theil-Sen method is about 29% and, 

Siegel extended it to 50%, so these regression methods are very robust. Additionally, if the errors 

are normally distributed and no outliers are present, the estimators are very similar to classic least 

squares. 

Estimation of parameters Kendall–Theil Sen Siegel Regression with Single Independent Pre-

dictor: 

In the Kendall-Theil Sen Regression, suppose a sample of � pair of observation (�E, �E), 
 =
1, 2, . . . � were taken. Suppose a straight line given below is used as a best fit model to the given 

set of data.  

�E = mS + mU�E + FE, 
 = 1, 2, . . . � 
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where, �E is the response variable for each data point (
), �E is the predictor variable for each data 

point (
), FE is the residual in prediction of � for each data point (
), mtU is the estimated regression 

coefficient, mtS is the estimated � intercept, and n is the number of �� data points in the sample. 

In Kendall–Theil Sen Regression, the regression coefficient mU can be estimated by the me-

dian of all pairwise slopes between each pair of points in the given data set (Theil, 1950; Sen, 1968; 

Helsel and Hirsch, 2002). Each regression coefficient passing through (�E, �E) and (�J, �J), the data 

point can be estimated by the 

mtU = ~��
��J Ï (�J − �E) (�J − �E) , for 
 = 1, 2, . . . (� − 1), �J ≠  �Eand M =  2, . . . �Ð 

The number of possible regression coefficients between data pairs can be calculated by 

�Ñ = q(q�U)I . 

All possible estimated #EJ are sorted and ranked by ascending order. Sorting is a computa-

tionally intensive process because each slope estimate in the array of slopes must be compared to 

other values and put in the proper order. If �Ñ is an odd number, the median slope is selected as the 

middle value of the array otherwise, the median is calculated as the arithmetic average of the two 

center points.  

The Y-intercept of the line can be estimate by the equation used by Conover (1980) as 

mtS = Ò�¼ − mtU�¼Ó 

Where, mtS is the estimated Y-intercept, �¼ is the median of the response variable, mtU is the estimated 

slope, and �¼ is the median of the predictor variable. The error tem FE are the random errors, should 

be independently and normally distributed, i.e. FE∼ �(0,HI). However, In Kendall-Theil regression 

model these assumptions associated with error term are not bounded to fulfill. 
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If �Ñ is an odd number, the median regression coefficient is selected as the middle value of the ar-

ray, otherwise, median regression coefficient is selected by taking the mean of the two middle val-

ues of an array. Hence the estimated Theil Sen Regression line is 

�g: �l�w = mtS + mtU �E 
Siegel (1982) considered repeated medians. For each observation (�E, �E), the regression co-

efficients between it and the others (� − 1) are calculated and the median is taken. This results in � 

medians and median from these medians is a regression coefficients estimator. A robust estimator 

m¼q of the regression coefficient mtU can be estimated by taking the medians of these least square es-

timates i.e. 

m¼q = ~��
��E ÔmtU = (�Õ� ��) (fÕ� f�) : �E ≠ �J , 1 ≤ 
 < M ≤ �Ö. 

Similarly, the y-intercept can be estimated by the medians of all possible least square estimates 

�×q = ~��
��E ÔmtS = (�Õf�� ��fÕ) (fÕ� f�) : �E ≠ �J, 1 ≤ 
 < M ≤ �Ö. 

Hence the estimated Theil Sen Siegel Regression line is 

�gg: �l�ww = �×q + m¼q�E 
Interval Estimation in Kendall–Theil Sen Regression with Single Independent Predictor 

 Three methods were considered to estimate confidence interval for Theil Sen Regression 

coefficient mU. They are, 

Theil Sen method to handle ties: Confidence interval for Theil regression coefficient mUcan be 

calculated based on ordering the #EJ values such that #(U) ≤ #(I) … ≤ #(ØÙ). Let �Ú = (�Ñ − Û)/2 

and �Ü = (�Ñ + Û)/2+1, where w is the 1-α/2 quantile of Kendall’s statistics and is given by Û =
Ý� IÞ (ßq(q�U)(Iq¢¨)Uà ). So, 
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A 100(1 − �) % confidence interval for Theil Sen Regression coefficient mUcan be calculated by 

using large sample approximation equations describe by Helsel and Hirsch (2002). The lower 

�Úand upper �Üconfidence limits can be estimated as, 

�Ú =
áâ
âã�Ñ − Ý� IÞ (ß�(� − 1)(2� + 5)18 )2 äå

åæ 
and 

        �Ü =
áâ
âã�Ñ + Ý� IÞ (ß�(� − 1)(2� + 5)18 )2 äå

åæ + 1 

where, �Ú is the lower rank order of the regression coefficient, �Ü is the upper-rank order of the re-

gression coefficient, �Ñ is the number of pairwise slopes calculated from �Ñ = q(q�U)I ,  Ý is the ta-

ble value taken from a standard normal table. 

Percentile bootstrap method: 

In this method, let (�E∗, �E∗), 
 = 1, 2, … , � bootstrap sample obtained by randomly sampling, with 

replacement, of � pair of observation (�E, �E)∶  
 = 1, 2, . . . �. Label the resulting estimates of the 

slope as #∗ and repeat this process B times resulting #(U)∗ , #(I)∗ , … , #(è)∗ .  

A 100(1 − �) % confidence interval for Theil Sen Regression coefficient mUgiven by (Wilcox, 

1998) is (#(é)∗ , #(ê)∗ ) where ¿ = �!/2 and � = (1 − �I)! and #(U)∗ ≤ #(I)∗ … ≤ #(è)∗  are the B boot-

strap values written in ascending order. 

Bootstrap estimated method: 

This method uses the bootstrap estimate of ���(#), say Hë Î based on B=200 bootstrap samples. 

Then,  
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A 100(1 − �) % confidence interval for Theil Sen Regression coefficient mUgiven by (Efron, 

1987) is (# ± ì�/xHë Î). 

Root Mean Square Error: 

The RMSE, also known as standard error of the regression or standard deviation of residu-

als, indicates lack of precision (spread) in the population of residual errors (Helsel and Hirsch, 

2002). The RMSE is calculated as 

�~gp = j∑ FEIqErU� − 2  

Test of Significance in Kendall–Theil Sen Regression with Single Independent Predictor: 

Sen (1968), Helsel & Hirsch (2002) provided a method for testing a hypothesis about the 

regression coefficient. In Testing the hypothesis RS: m¼q = 0 for Kendall–Theil Sen Regression can 

be done by testing the hypothesis RS: í = 0, where í is the Kendall rank correlation coefficient. 

The í can be expressed as follows 

í = Iwq(q�U), 
where, g is the Kendall’s g statistic and is given by  

g = ∑ ∑ 	Æ�(qJrE¢Uq�UErU �J −  �E), 

and,  

	Æ�([) = î+1, 
� [ > 0    0, 
� [ = 0−1, 
� [ < 0 

z testing  RS: í = 0 is equivalent to  RS: g = 0 (Helsel & Hirsch, 2002). 

Estimation of parameters Kendall–Theil Sen Regression with Multiple Independent Predic-

tors 
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Suppose a response variable (�E) with " independent predictors (�EU, �EI, … , �EÑ) were se-

lected. Xin Dang et al., (2009) proposed after following the above procedure defined in Kendall-

Theil Sen Regression model, first an estimator of b = (mS, mU¤)¤ can be found as the solution to the 

" + 1 equations  

 �E = mS + mU�E¤, 
 ∈ ðÑ¢U = Ò
U, … , 
Ñ¢UÓ , 

Where ðÑ¢Uis the (" + 1)-sunset of ©1, … , �« such that (" + 1) ∗ (" + 1) matrix (��: � ∈ ðÑ¢U) is 

invertible. To stress the dependence on the " + 1 observations, they denote this estimator by bcñÙò{ . 

Then a natural extension of the Theil-Sen estimator from a simple linear regression to a 

multiple linear regression is the multivariate median 

 bcq = ~��� ¬ bcñÙò{: ∀ ðÑ¢U¯. 

This  bcñÙò{  is also the least square estimator of θ based on " + 1 observation {(�E, �E) : 
 ∈ ðÑ¢U«. 

From this point of view and slightly more generally, an arbitrary combination of m distinct obser-

vations ©(�
, �
) ∶  
 ∈  ðó«, where " + 1 ≤  � ≤  � may be chosen to construct a least squares 

estimator bc�ó . Then a multiple Theil-Sen estimator  bcq of the parameter b is naturally defined to 

be the multivariate median of all possible least square estimators: 

 bcq = ~���Ò bc�ó: ∀ ðóÓ 
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CHAPTER 3 METHODOLOGY 

Monte Carlo simulation technique will be used to generate from randomly sampled observa-

tion with replacement from different distributions and estimate of regression coefficients, standard 

errors, median absolute deviation, p-values, confidence intervals and test of significance will be 

calculated, based on Ordinary Least Square Regression, Quantile  Regression, Theil Sen Regres-

sion and Theil Sen Siegel Regression. A comparison will be made using these four regression 

methods. The author will write several essential codes in R in order to compare regression coeffi-

cient, confidence intervals, test of significance and to generate different figures. 

Three theoretical distributions and eight empirical distributions identified by Micceri (1989) 

will be randomly sampled. The simulations will be run on a Dell PC with an Intel (R) Core (TM) 

i5-4590 CPU processor. 

Procedure: 

Observations for the Monte Carlo simulations will be randomly generated with replacement 

from the Normal, Uniform, and Poisson distributions using statistical software R. Similarly, obser-

vations for the Monte Carlo simulations will be randomly generated with different sample sizes in 

the presence of 10% and 20%, 30% and 50% outliers. Values of regression coefficients, confidence 

intervals and test of significance will be obtained and tested by fitting four regression models to the 

simulated data. Parametric values of regression coefficients were sat at certain values to generate 

response variable �E.  
Specific Procedure: 

Observations will be randomly sampled with replacement from the Normal, Uniform, and 

Poisson distributions. Similarly, observations will be randomly sampled with replacement from the 

Micceri family distributions. After each sample has been generated, the regression coefficients, 

confidence intervals and test of significance will be constructed based on Ordinary Least Square 
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Regression, the Quantile Regression and the Theil Sen Siegel Regression. A comparison based on 

Biasedness through mean and median, Standard Deviation (S.D), Standard Errors (S.E), Median 

Absolute Error (MEDAE), Root Mean Square Error (RMSE), Relative Root Mean Square Error 

(RMSE), and Relative Median Absolute Error (RMEDAE) of the four regression methods will be 

used to evaluate the model fit. A negative value of Relative Root Mean Square Error (RRMSE) re-

fer to a proportional increase in RMSE of mUobtained by other regression model, on the other hand 

positive value of Relative Root Mean Square Error (RRMSE) indicates a proportional decrease in 

RMSE of mUobtained other regression model (Syed et al., 2016). This procedure will be repeated 

some hundred thousand times for different sample sizes. 

Selected Distributions: 

In statistics there are several statistical distributions that could have been selected for this 

study; however, only eleven of them are selected and the observations are randomly generated from 

these distributions with replacement. They are the Normal distribution, a Uniform distribution, a 

Poisson distribution, and eight Micceri family distributions. 

The Normal Distribution: 

If � is a continuous random variable with mean e and variance HI, then a normal distribu-

tion is defined by the "�� as (Chaudhary and Kamal, 2000) 

�([) = 1H√2õ ��UI (i�ö÷ )x ��� − ∞ ≤ [ ≤ +∞ 

Where, 

e =  ~��� �� ������ �
	O�
#øO
�� 
H =  gO������ ���
�O
�� �� Oℎ� ������ �
	O�
#øO
�� 

õ =  ù ú��	O��O ℎ��
�Æ ���ø� 3.1414 
� =  ù ú��	O��O ℎ��
�Æ ���ø� 2.718 
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[ =  ���ø� �� ú��O
�ø�ø	 ������ ���
�#�� 

The shape of normal distribution is given in Figure below: 

 
The Uniform Distribution: 

If � is a continuous random variable over the interval [�, #], with mean e = _¢^I  and vari-

ance HI = (^�_)x
UI , then a uniform distribution is defined by the "�� as (Chaudhary and Kamal, 

2000) 

�([) = ý 1# − � , ��� � ≤ [ ≤ # 0, �Oℎ��Û�	�  

The shape of uniform distribution is given in Figure below. 
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The Poisson Distribution: 

Suppose that we can expect some independent event to occur λ time over a specified period of time 

or space. Let a discrete random variable X be the occurrence of event, we call it a Poisson random 

variable. Then, its probability function is: 

X(� = [) = ��þ$i[!  for x = 0,  1,  2, … 

Where, 

 λ =average( or mean) number of events in a given time t, e= a constant=2.718 

The shape of exponential distribution is given in Firure below. 

 

The Micceri Data Sets: 

Random samples will be generated from eight of the empirical distributions identified by 

Micceri (1989). The large sample distributions were categorized into general achievement/ability 

tests, criterion/mastery tests, psychometric measures, pre-test measures, and post-test measures. It 

included 265 distributions that were derived from journal articles, 30 from national tests, 64 from 

statewide tests, 65 from district-wide tests, and 17 from college entrance and GRE tests (Lawson, 

2006). A brief description of the eight distributions with mean, median, and variance are summa-

rized below. 
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Smooth Symmetric Distribution: 

 The smooth symmetric distribution consists of achievement observations with a light skew. 

This distribution has a mean = 13.91, median = 13, and variance = 24.11(Sawilowsky, 1992). 

The shape of smooth symmetric distribution is given in fiqure below. 

 

Extreme Asymmetric Distribution:  

The extreme asymmetric distribution consists of achievement observations with a fairly 

large skew. This distribution has a mean = 24.5, median = 27, and variance = 33.53 (Sawilowsky, 

1992). 

The shape of extreme asymmetric distribution is given in figure below. 
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Extreme Asymmetric-Decay Distribution:  

The extreme asymmetric distribution consists of achievement observations with a fairly 

large skew on right hand side. This distribution has a mean = 13.67, median = 11, and variance = 

33.06 (Sawilowsky, 1992). 

The shape of extreme asymmetric distribution is given in given below 

 

Extreme Bimodal Distribution:  

The extreme bimodal distribution consists of psychometric observations with a mean = 

2.97, median = 4, and variance = 2.86 (Sawilowsky, 1992). The shape of extreme bimodal 

distribution is given in Figure below. 
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Multi-modal Lumpy Distribution:  

The multi-modal and lumpy distribution consists of achievement observations with a mean 

= 21.15, median = 18, and variance = 141.61(Sawilowsky, 1992). 

The shape of multi-modal lumpy distribution is given in Firure below. 

 

 

Mass at Zero Distribution:  

The Mass at Zero distribution consists of achievement observations with a mean = 12.92, 

median = 13, and variance = 19.54 (Sawilowsky, 1992). 

The shape of multi-modal lumpy distribution is given in Firure below. 
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Mass at Zero with Gap Distribution:  

The Mass at Zero distribution consists of achievement observations with a mean = 1.85, 

median = 0.00, and variance = 14.44 (Sawilowsky, 1992). 

The shape of multi-modal lumpy distribution is given in Firure below. 

 

Digit Preference Distribution:  

The Mass at Zero distribution consists of achievement observations with a mean = 536.95, 

median = 535.00, and variance = 1416.77 (Sawilowsky, 1992). 

The shape of multi-modal lumpy distribution is given in Firure below. 
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CHAPTER 4 RESULTS 

The Monte Carlo technique was used to estimate the regression coefficients, standard errors, 

median absolute deviation, p-values, confidence intervals and test of significance based on Ordi-

nary Least Square Regression, the Quantile Regression, the Theil Sen Regression and Theil Sen 

Siegel Regression. A visual as well as numerical comparison was made using these four regression 

methods. For visual comparison scatter plots with fitted regression lines using all four regression 

procedures were used. For numerical compression, standard errors, median absolute deviation, con-

fidence intervals, mean bias, median bias, root mean square error (RMSE), median absolute error 

(MEDAE), relative mean square error and relative median absolute error were used. 

Observations for the Monte Carlo simulations were randomly generated with replacement 

and the process was repeated 1000 times to generate independent sample of size � for an outcome 

variable Y and a predictor variable X. The sample sizes studied were n=10, 30, 50 and 100. In order 

to study the effect of various situations of the regression coefficients and robustness of the selected 

regression models, samples were classified in to different cases as.  

Regression Model with slop and intercept under the Normality Assumption with no Outliers: 

If the errors (�E) are independent and normally distributed with zero mean and 2 standard 

deviation then a random sample of size � for a predictor variable X was generated from a uniform 

distribution with min=0 and max=1, and an outcome variable Y was defined as � = 2 + 3 ∗ � + �. 

Regression Model with slop, intercept and dichotomous predictor variable with no Outliers: 

If the errors (�E) are independent and normally distributed with zero mean and 2 standard 

deviation then a random sample of size � for a predictor variable X was generated from a binomial 

distribution with a single trial and " = 0.5, and an outcome variable Y was defined as � = 2 + 3 ∗
� + �. 

Regression Model under the Normality Assumption with Outliers in both X and Y direction: 
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If the errors (�E) are independent and normally, then a random sample of size � was generated 

from a bivariate normal distribution with mean (0, 0) and variances equal to 1, and a correlation 

coefficient equal to 0.80. Outliers of 10%, 30% 50% and 100% of � was generated in both X and Y 

variables from a bivariate normal distribution with means (2, 6) with variances 0.1*variance of the 

above bivariate normal distribution, i.e. the variances (0.1, 0.1). 

Regression Model under the Normality Assumption with Outliers in Y direction only: 

If the errors (�E) were independent and normally, then a random sample of size � was generated 

from a bivariate normal distribution with mean (0, 0) and variances equal to 1, and a correlation 

coefficient equal to 0.80. Outliers of 10%, 30% 50% and 100% of � was introduced in Y variable 

only from a bivariate normal distribution with means (0, 6) with variances 0.1*variance of the 

above bivariate normal distribution, i.e. the variances (0.1, 0.1). 

Regression Model under the Non-Normality Assumption: 

If an outcome variable Y id non- normally distributed, a random sample of size � was gen-

erated from non-normal distribution using a log link function for a predictor variable X. We as-

sumed Y~ Poisson (λ), and ��Æ ($)  = 1 + 0.2 ∗ �. It was assumed X is uniformly distributed with 

min=0 and max=1. A Monte Carlo Simulation was conducted with Nsim=1000 repetitions. 

Regression Model under the Micceri distributions: 

Eight Micceri distributions were used to generate a random sample for an outcome variable Y, 

with a uniform distribution of predictor variable X with min=0 and max=1. 

Finally, these Micceri distributions were used to generate a random sample for an outcome variable 

Y, with a binomial distribution of predictor variable X. 

For simulation, an open source software program R version 3.5.1 was downloaded from the 

CRAN website link and several codes were written with package include “mblm”, “quantreg”, and 
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“MASS”. The packages were then verified for their accuracy and reliability with some textbook 

examples. 

Regression Model passing through origin under the Normality Assumption with no Outliers: 

If the errors (�E) were independent and normally distributed, then a random sample of size � 

from a bivariate normal distribution was generated with mean (0, 0), variances equal to 1, and a 

correlation coefficient equal to 0.80. 

Table 1: Descriptive Statistics of (X, Y) for Regression Model passing through origin under 

the Normality Assumption with no Outliers: 

Variables n Min Max Mean Median SD IQR 

Y 10 -1.05 1.56 -0.24 -0.40 0.77 0.68 

X 10 -1.61 0.98 -0.26 -0.47 0.83 1.06 

Y 30 -1.74 2.44 0.19 0.37 0.95 1.13 

X 30 -1.79 2.19 0.20 0.03 0.99 1.30 

Y 50 -1.74 2.44 0.19 0.37 0.95 1.13 

X 50 -1.79 2.19 0.20 0.03 0.99 1.30 

Y 100 -1.74 2.44 0.19 0.37 0.95 1.13 

X 100 -1.79 2.19 0.20 0.03 0.99 1.30 
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Table 2: Results from the four regression procedures with   � = ��,��,��,���, ��	
 =
����, �~��
��(�,�,�), �~��
��(�,�,�),��� ��(�,�) = �.�� 

 

 

n=10 

Regression mtS mtU S.E(mtU) P-value 95% CI for mU RMSE Bias 

OLS -0.08 0.60 0.25 0.043 (0.02, 1.17) 0.555 0.00 

QR -0.29 0.46 0.32 0.193 (-0.31, 1.39) 0.590 0.17 

TS -0.30 0.34 0.27 0.246 (-0.29, 0.97) 0.610 0.51 

TSS -0.38 0.30 0.28 0.344 (-0.37, 0.96) 0.643 0.22 

 

n=30 

OLS 0.02 0.82 0.10 <0.001 (0.62, 1.02) 0.499 0.00 

QR 0.04 0.76 0.14 <0.001 (0.49, 1.12) 0.503 0.00 

TS 0.03 0.80 0.09 <0.001 (0.60, 1.00) 0.499 0.00 

TSS 0.02 0.77 0.09 <0.001 (0.57, 0.97) 0.502 0.02 

 

n=50 

OLS 0.11 0.85 0.11 <0.001 (0.64, 1.07) 0.659 0.00 

QR 0.15 0.79 0.17 <0.001 (0.49, 1.15) 0.662 0.05 

TS 0.15 0.81 0.11 <0.001 (0.60, 1.03) 0.661 0.05 

TSS 0.05 0.81 0.11 <0.001 (0.59,1.03) 0.662 0.05 

n=100 OLS 0.06 0.81 0.06 <0.001 (0.70, 0.92) 0.538 0.00 

QR 0.02 0.83 0.08 <0.001 (0.64, 0.96) 0.539 0.04 

TS 0.01 0.80 0.86 <0.001 (0.69, 0.91) 0.541 0.06 

TSS 0.03 0.82 0.06 <0.001 (0.71, 0.93) 0.539 0.04 
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Table 3: Results of Relative Root Mean Square Error of the four regression procedures at 

n=10, 30, 50, 100, ��	
 = ����,�~��
��(�,�,�), �~��
��(�,�,�),��� ��(�,�) =
�.�� 

 Relative Root Mean Square Error Value 

 

 

 

n=10 

OLS vs QR -0.063 

OLS vs TS -0.099 

OLS vs TSS -0.158 

QR vs TS -0.034 

QR vs TSS -0.089 

TS vs TSS -0.054 

 

 

 

n=30 

OLS vs QR -0.007 

OLS vs TS -0.001 

OLS vs TSS -0.006 

QR vs TS 0.006 

QR vs TSS 0.001 

TS vs TSS -0.005 

 

 

 

n=50 

OLS vs QR -0.005 

OLS vs TS -0.004 

OLS vs TSS -0.005 

QR vs TS 0.002 

QR vs TSS 0.001 

TS vs TSS -0.001 

 

 

 

n=100 

OLS vs QR -0.004 

OLS vs TS -0.007 

OLS vs TSS -0.003 

QR vs TS -0.003 

QR vs TSS 0.001 

TS vs TSS 0.004 
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Figure 1: Four regression lines are shown in each plot with � = ��,��,��,���, ��	
 =
����,   �~��
��(�,�,�), �~��
��(�,�,�),��� ��(�,�) = �.��: 
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Regression Model with slop and intercept under the Normality Assumption with no Outliers: 

If the errors (�E) were independent and normally distributed with zero mean and 2 standard 

deviation then a random sample of size � for a predictor variable X was generated from a uniform 

distribution with min=0 and max=1, and an outcome variable Y was defined as � = 2 + 3 ∗ � + �. 

Table 4: Descriptive Statistics of (X, Y) in regression procedures with n= ��,��,��,���, 

��	
 = ����, �~��	�(�,�,�),�~��
��(�,�,�), ��� � = � + � ∗ � + �: 

Variables n Min Max Mean Median SD IQR 

Y 10 -0.24 5.68 2.89 2.98 2.01 2.82 

X 10 0.10 0.89 0.39 0.33 0.25 0.17 

Y 30 -0.28 9.93 3.39 3.53 2.34 2.95 

X 30 0.02 0.90 0.48 0.51 0.29 0.49 

Y 50 -0.84 6.14 3.26 3.29 1.71 2.15 

X 50 0.00 0.95 0.43 0.41 0.29 0.54 

Y 100 -1.58 8.26 3.80 3.59 2.16 3.15 

X 100 0.00 0.99 0.52 0.50 0.29 0.53 
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Table 5: Results of the four regression procedures with  � = ��,��,��,���  ��	
 = ����, 
 �~��	�(�,�,�), �~��
��(�,�,�), � = � + � ∗ � + �: 

 

 

n=10 

Regression mtS mtU S.E(mtU) P-value 95% CI for mU RMSE Bias 

OLS 1.75 2.94 2.67 0.30 (-3.24, 9.12) 1.78 0.00 

QR 1.89 1.68 5.75 0.77 (-5.72, 9.68) 1.83 0.35 

TS 1.29 2.66 2.81 0.37 (-3.84, 9.15) 1.86 0.57 

TSS 0.91 5.38 2.82 0.09 (-1.12, 11.88) 1.87 -0.10 

 

n=30 

OLS 2.55 1.74 1.48 0.25 (-1.30, 4.78) 2.242 0.00 

QR 2.64 1.47 1.47 0.33 (-1.36, 4.37) 2.243 0.04 

TS 2.54 1.68 1.49 0.38 (-1.37, 4.73) 2.242 0.04 

TSS 2.59 1.41 1.49 0.35 (1.64, 4.47) 2.246 0.11 

 

n=50 

OLS 2.34 2.16 0.78 <0.01 (0.58, 3.75) 1.569 0.00 

QR 2.00 2.65 1.20 0.032 (0.01, 3.94) 1.580 0.12 

TS 2.25 2.01 0.79 0.014 (0.42, 3.60) 1.577 0.15 

TSS 2.18 2.20 0.79 <0.01 (0.62, 3.79) 1.575 0.13 

n=100 OLS 1.84 3.77 0.65 <0.001 (2.48, 5.06) 1.859 0.00 

QR 1.99 3.49 0.81 <0.001 (2.44, 5.60) 1.860 0.00 

TS 1.78 4.00 0.65 <0.001 (2.71, 5.30) 1.861 -0.06 

TSS 1.93 4.01 0.66 <0.001 (2.71, 5.31) 1.872 -0.21 
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Table 6: Results of Relative Root Mean Square Error of the four regression procedures with 

n= ��,��,��,���, ��	
 = ����, �~��	�(�,�,�), �~��
��(�,�,�),��� � = � + � ∗
� + �: 

 Relative Root Mean Square Error Value 

 

 

 

n=10 

OLS vs QR -0.063 

OLS vs TS -0.099 

OLS vs TSS -0.158 

QR vs TS -0.034 

QR vs TSS -0.089 

TS vs TSS -0.054 

 

 

 

n=30 

OLS vs QR -0.001 

OLS vs TS -0.001 

OLS vs TSS -0.002 

QR vs TS 0.001 

QR vs TSS -0.001 

TS vs TSS -0.002 

 

 

 

n=50 

OLS vs QR -0.007 

OLS vs TS -0.005 

OLS vs TSS -0.004 

QR vs TS 0.002 

QR vs TSS 0.003 

TS vs TSS 0.001 

 

 

 

n=100 

OLS vs QR -0.001 

OLS vs TS -0.001 

OLS vs TSS -0.007 

QR vs TS -0.000 

QR vs TSS -0.006 

TS vs TSS -0.006 
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Figure 2: Four regression lines are shown in each plot with n= ��,��,��,���,��	
 =
����,�~��	�(�,�,�), �~��
��(�,�,�), ��� � = � + � ∗ � + �: 
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Regression Model with slop, intercept and dichotomous predictor variable with no Outliers: 

If the errors (�E) were independent and normally distributed with zero mean and 2 standard 

deviation then a random sample of size � for a predictor variable X was generated from a binomial 

distribution with a single trial and " = 0.5, and an outcome variable Y was defined as � = 2 + 3 ∗
� + �. 

Table 7: Descriptive Statistics of Y variable in regression procedures with n= ��,��,  
��,���,  ��	
 = ����, �~�	��
	��(�,�,�.�),�~��
��(�,�,�), ��� � = � + � ∗ � +
�: 

Variables n Min Max Mean Median SD IQR 

Y 10 -1.15 6.43 2.33 2.46 2.36 3.27 

Y 30 -0.87 10.99 3.55 3.10 2.54 2.29 

Y 50 -1.32 7.42 3.29 3.58 2.03 2.82 

Y 100 -2.35 8.74 3.74 3.44 2.55 3.72 

 

Table 8 Frequency distribution of X variable in regression procedures with n= ��,��,��,  
���,  ��	
 = ����, �~�	��
	��(�,�,�.�), �~��
��(�,�,�),��� � = � + � ∗ � + �: 

 

n=10 

X Frequency Percentage  

n=30 

X Frequency Percentage 

0 8 80% 0 14 47% 

1 2 20% 1 16 53% 

 

n=50 

X Frequency Percentage  

n=100 

X Frequency Percentage 

0 28 56% 0 50 50% 

1 22 44% 1 50 50% 
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Table 9: Results of the four regression procedures with  � = ��,��,��,���  ��	
 = ����, 
�~�	��
	��(�,�,�.�), �~��
��(�,�,�), ��� � = � + � ∗ � + �: 

 

 

n=10 

Regression mtS mtU S.E(mtU) P-value 95% CI for mU RMSE Bias 

OLS 1.64 3.43 1.56 0.06 (-0.17, 7.04) 1.760 0.00 

QR 1.34 2.37 1.95 0.26 (0.00, 5.93) 1.889 0.50 

TS 1.18 3.05 1.64 0.10 (-0.73, 6.83) 1.855 0.53 

TSS 1.18 3.89 1.61 0.04 (0.19, 7.60) 1.816 0.36 

 

n=30 

OLS 2.35 2.55 0.84 0.01 (0.52, 3.99) 2.239 0.00 

QR 2.59 1.85 0.90 0.05 (0.11, 3.93) 2.249 -0.03 

TS 2.50 2.05 0.85 0.02 (0.31, 3.79) 2.242 -0.04 

TSS 2.55 1.95 1.85 0.03 (0.21, 3.69) 2.245 -0.03 

 

n=50 

OLS 2.18 2.52 0.45 <0.01 (1.61, 3.44) 1.569 0.00 

QR 2.25 2.27 0.67 <0.01 (0.98, 3.41) 1.574 0.04 

TS 2.15 2.47 0.45 <0.01 (1.55, 3.39) 1.570 0.05 

TSS 2.18 2.20 0.79 <0.01 (0.62, 3.79) 1.575 0.13 

n=100 OLS 2.01 3.46 0.37 <0.01 (2.72, 4.21) 1.857 0.00 

QR 2.05 3.36 0.47 <0.01 (2.46, 4.48) 1.858 0.01 

TS 1.84 3.58 0.38 <0.01 (2.84, 4.33) 1.862 0.01 

TSS 1.93 3.49 0.38 <0.01 (2.75, 4.24) 1.858 0.07 
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Table 10: Results of Relative Root Mean Square Error of the four regression procedures 

with n= ��,��,��,���, ��	
 = ����,�~�	��
	��(�,�,�.�),  �~��
��(�,�,�) 

 ��� � = � + � ∗ � + �. 
 Relative Root Mean Square Error Value 

 

 

 

n=10 

OLS vs QR -0.067 

OLS vs TS -0.048 

OLS vs TSS -0.026 

QR vs TS  0.018 

QR vs TSS  0.038 

TS vs TSS  0.021 

 

 

 

n=30 

OLS vs QR -0.004 

OLS vs TS -0.001 

OLS vs TSS -0.002 

QR vs TS  0.003 

QR vs TSS  0.002 

TS vs TSS  -0.001 

 

 

 

n=50 

OLS vs QR -0.004 

OLS vs TS -0.008 

OLS vs TSS -0.001 

QR vs TS  0.003 

QR vs TSS  0.002 

TS vs TSS  -0.004 

 

 

 

n=100 

OLS vs QR -0.001 

OLS vs TS -0.002 

OLS vs TSS -0.001 

QR vs TS - 0.002 

QR vs TSS  -0.038 

TS vs TSS  0.002 
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Figure 3: Four regression lines are shown in each plot with n= ��,��,��,���,��	
 =
����,  �~�	��
	��(�,�,�.�), �~��
��(�,�,�), ��� � = � + � ∗ � + �: 
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Regression Model with Outliers in both X and Y direction: 

If the errors (�E) were independent and normally distributed, then a random sample of size 

� was generated from a bivariate normal distribution with mean (0, 0) and variances equal to 1, 

and a correlation coefficient equal to 0.80. Outliers of 10%, 20%, 30%, and 50% of � were intro-

duced in both X and Y variables from a bivariate normal distribution with means (2, 6) with vari-

ances 0.1*variance of the above bivariate normal distribution, i.e. the variances (0.1, 0.1). 

Regression analysis with � = 10 and outliers of 10%, 20%, 30% and 50% of � = 10 in both X 

and Y variables: 

Table 11: Descriptive Statistics of (X, Y) in regression analysis with � = �� and outliers of 

10%, 20%, 30% and 50% of � = �� in both X and Y variables: 

Outliers Variables n Min Max Mean Median SD IQR 

10% Y 11 -1.86 5.79 0.25 0.16 1.97 0.86 

X 11 -1.68 2.41 -0.002 -0.19 1.18 1.31 

20% Y 12 -1.24 5.81 1.21 0.48 2.23 1.03 

X 12 -1.74 1.85 0.45 0.26 1.09 1.55 

30% Y 13 -1.23 5.81 1.22 0.48 2.24 1.04 

X 13 -1.74 1.85 0.45 0.26 1.09 1.55 

50% Y 15 -1.31 6.30 1.91 0.45 2.95 5.94 

X 15 -1.11 2.06 0.84 0.82 0.99 1.63 
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Table 12: Results from the four regression procedures with outliers of 10%, 20%, 30% and 

50% of � = ��, ��	
 = ����, �~��
��(�,�,�), �~��
��(�,�,�),��� ��(�,�) =
�.��: 
Outliers Regression mtS mtU S.E(mtU) P-value 95% CI for mU MEDAE Median 

Bias 

 

 

10% 

OLS 0.25 1.46 0.278 <0.001 (0.83, 2.09) 0.706 -0.12 

QR 0.09 0.74 0.194 0.004 (0.36, 2.27) 0.198 0.00 

TS 0.12 0.79 0.784 

(MAD) 

0.055 (0.65, 1.25) 0.163 0.00 

TSS 0.08 0.74 0.204 

(MAD) 

<0.001 (0.64, 1.39) 0.205 0.00 

 

 

20% 

OLS 0.54 1.50 0.441 <0.01 (0.52, 2.48) 0.718 -0.36 

QR 0.28 0.87 0.201 0.01 (0.46, 2.36) 0.298 0.00 

TS 0.28 0.80 0.753 

(MAD) 

<0.001 (0.68, 1.69) 0.280 0.00 

TSS 0.28 0.87 0.427 

(MAD) 

<0.01 (0.65, 2.06) 0.298 0.00 

 

 

30% 

OLS 0.14 1.99 0.526 <0.01 (0.83, 3.15) 1.267 -0.00 

QR -0.08 1.60 0.430 <0.01 (0.75, 2.44) 0.902 0.50 

TS -0.16 1.70 2.460 

(MAD) 

<0.001 (1.49, 3.02) 0.944 0.51 

TSS -0.38 1.11 0.448 

(MAD) 

<0.001 (0.85, 2.80) 0.523 1.15 

 

 

50% 

OLS -0.20 2.52 0.444 <0.001 (1.56, 3.47) 1.309 0.46 

QR -0.05 2.84 0.614 <0.001 (1.63, 4.04) 0.957 0.00 

TS 0.28 2.42 2.69 

(MAD) 

<0.001 (1.89, 3.04) 1.337 0.00 

TSS -0.51 1.90 1.197 

(MAD) 

<0.01 (1.51, 2.65) 1.477 0.82 
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Table 13: Results of Relative Median Absolute Error of the four regression procedures with 

outliers of 10%, 20%, 30% and 50% of � = ��, ��	
 = ����, �~��
��(�,�,�),  
�~��
��(�,�,�),  ��� ��(�,�) = �.��: 

Outliers Relative Median Absolute Error  Value 

 

 

 

10% 

OLS vs QR 0.719 

OLS vs TS 0.769 

OLS vs TSS 0.710 

QR vs TS 0.175 

QR vs TSS -0.034 

TS vs TSS -0.253 

 

 

 

20% 

OLS vs QR  0.585 

OLS vs TS  0.609 

OLS vs TSS  0.585 

QR vs TS  0.061 

QR vs TSS  0.000 

TS vs TSS  -0.001 

 

 

 

30% 

OLS vs QR  0.288 

OLS vs TS  0.255 

OLS vs TSS  0.587 

QR vs TS  -0.046 

QR vs TSS  0.421 

TS vs TSS  -0.004 

 

 

 

50% 

OLS vs QR  0.268 

OLS vs TS  -0.022 

OLS vs TSS  -0.128 

QR vs TS  -0.297 

QR vs TSS  -0.543 

TS vs TSS   -0.1.5 
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Figure 4: Four regression lines are shown in each plot with � = �� and outliers of 10%, 

20%, 30% and 50% of � = �� in both X and Y with ��	
 = ����, �~��
��(�,�,�),   
�~��
��(�,�,�),  ��� ��(�,�) = �.��: 
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Regression analysis with � = 30 and outliers of 10%, 20%, 30% and 50% of � = 30 in both X 

and Y variables: 

Table 14: Descriptive Statistics of (X, Y) in regression analysis with � = �� and outliers of 

10%, 20%, 30% and 50% of � = �� in both X and Y variables: 

Outliers Variables n Min Max Mean Median SD IQR 

10% Y 33 -1.57 6.11 0.80 0.36 1.80 0.95 

X 33 -1.09 2.54 0.30 0.32 0.94 1.20 

20% Y 36 -1.29 6.49 1.25 0.47 2.32 1.75 

X 36 -1.70 2.43 0.45 0.39 1.12 1.60 

30% Y 39 -2.19 6.50 1.65 1.00 2.74 3.02 

X 39 -1.43 2.38 0.61 0.60 1.21 1.94 

50% Y 45 -2.42 6.47 1.90 0.96 3.18 6.72 

X 45 -1.86 2.58 0.54 0.69 1.37 2.17 
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Table 15: Results from the four regression procedures with outliers of 10%, 20%, 30% and 

50% of � = ��, ��	
 = ����, �~��
��(�,�,�), �~��
��(�,�,�),��� ��(�,�) =
�.��: 
Outliers Regression mtS mtU S.E(mtU) P-value 95% CI for mU MEDAE Median 

Bias 

 

 

10% 

OLS 0.25 1.46 0.278 <0.001 (0.83, 2.09) 0.706 -0.12 

QR 0.09 0.74 0.194 0.004 (0.36, 2.27) 0.198 0.00 

TS 0.12 0.79 0.784 

(MAD) 

0.055 (0.65, 1.25) 0.163 0.00 

TSS 0.08 0.74 0.204 

(MAD) 

<0.001 (0.64, 1.39) 0.205 0.00 

 

 

20% 

OLS 0.78 1.99 0.183 <0.01 (1.62, 2.35) 1.325  0.00 

QR 0.89 2.07 0.296 <0.01 (1.49, 2.65) 1.156  -0.15 

TS 1.23 1.90 1.890 

(MAD) 

<0.01 (1.67, 1.94) 1.291  -0.40 

TSS 0.52 2.05 0.620 

(MAD) 

<0.01 (1.70, 2.14) 1.226  0.24 

 

 

30% 

OLS 0.46 1.94 0.194 <0.01 (1.44, 2.34) 1.211  0.00 

QR 0.31 1.78 0.334 <0.01 (1.13, 2.44) 1.025  0.25 

TS 0.37 1.82 1.540 

(MAD) 

<0.01 (1.78, 2.09) 1.109  0.16 

TSS -0.06 1.52 0.670 

(MAD) 

<0.01 (1.39, 2.03) 0.920  0.77 

 

 

50% 

OLS 0.78 1.99 0.183 <0.01 (1.62, 2.35) 1.325  0.00 

QR 0.89 2.07 0.296 <0.01 (1.49, 2.65) 1.156  -0.15 

TS 1.23 1.90 1.890 

(MAD) 

<0.01 (1.67, 1.94) 1.291  -0.40 

TSS 0.52 2.05 0.620 

(MAD) 

<0.01 (1.39, 2.03) 0.920  0.77 
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Table 16: Results of Relative Median Absolute Error of the four regression procedures with 

outliers of 10%, 20%, 30% and 50% of � = ��, ��	
 = ����, �~��
��(�,�,�), 
 �~��
��(�,�,�),  ��� ��(�,�) = �.��: 

Outliers Relative Median Absolute Error  Value 

 

 

 

10% 

OLS vs QR 0.301 

OLS vs TS 0.195 

OLS vs TSS 0.209 

QR vs TS -0.151 

QR vs TSS -0.131 

TS vs TSS  0.018 

 

 

 

20% 

OLS vs QR 0.547 

OLS vs TS 0.505 

OLS vs TSS 0.511 

QR vs TS -0.092 

QR vs TSS -0.079 

TS vs TSS  0.012 

 

 

 

30% 

OLS vs QR 0.154 

OLS vs TS 0.084 

OLS vs TSS 0.242 

QR vs TS -0.082 

QR vs TSS 0.104 

TS vs TSS  0.171 

 

 

 

50% 

OLS vs QR 0.128 

OLS vs TS 0.025 

OLS vs TSS 0.074 

QR vs TS -0.117 

QR vs TSS -0.061 

TS vs TSS  0.050 
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Figure 5: Four regression lines are shown in each plot with � = �� and outliers of 10%, 

20%, 30% and 50% of � = �� in both X and Y with ��	
 = ����, �~��
��(�,�,�), 
 �~��
��(�,�,�),��� ��(�,�) = �.��: 
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Regression analysis with � = 50 and outliers of 10%, 20%, 30% and 50% of � = 50 in both X 

and Y variables: 

Table 17: Descriptive Statistics of (X, Y) in regression analysis with � = �� and outliers of 

10%, 20%, 30% and 50% of � = �� in both X and Y variables: 

Outliers Variables n Min Max Mean Median SD IQR 

10% Y 55 -2.88 6.54 0.66 0.30 1.98 1.40 

X 55 -3.14 2.44 0.32 0.42 1.23 1.61 

20% Y 60 -2.53 6.59 0.88 0.09 2.42 1.40 

X 60 -1.66 2.88 0.20 0.14 1.17 1.71 

30% Y 65 -2.37 6.49 1.17 0.23 2.76 1.69 

X 65 -3.50 2.56 0.25 0.14 1.26 1.59 

50% Y 75 -2.92 6.55 2.03 0.82 2.97 6.06 

X 75 -1.84 2.69 0.62 0.45 1.23 2.09 
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Table 18: Results from the four regression procedures with outliers of 10%, 20%, 30% and 

50% of � = ��, ��	
 = ����, �~��
��(�,�,�), �~��
��(�,�,�),��� ��(�,�) =
�.��: 
Outliers Regression mtS mtU S.E(mtU) P-value 95% CI for mU MEDAE Median 

Bias 

 

 

10% 

OLS 0.26 1.26 0.140 <0.01 (0.98, 1.53) 0.660  0.00 

QR 0.06 0.94 0.103 <0.01 (0.73, 1.14) 0.425  0.31 

TS 0.08 0.90 1.00 

(MAD) 

<0.01 (0.95, 1.09) 0.416  0.30 

TSS -0.03 0.80 0.217 

(MAD) 

<0.01 (0.77, 0.92) 0.418  0.44 

 

 

20% 

OLS 0.55 1.69 0.155 <0.01 (1.38, 2.00) 0.944  0.00 

QR 0.18 1.12 0.143 <0.01 (0.84, 1.40) 0.575  0.48 

TS 0.16 1.06 1.53 

(MAD) 

<0.01 (1.27, 1.44) 0.558  0.52 

TSS 0.11 0.91 0.412 

(MAD) 

<0.01 (0.87, 1.34) 0.516  0.59 

 

 

30% 

OLS 0.69 1.89 0.140 <0.01 (1.16, 2.17) 0.960  0.00 

QR 0.44 2.10 0.167 <0.01 (1.77, 2.43) 1.050  0.19 

TS 0.42 1.56 1.740 

(MAD) 

<0.01 (1.55, 1.71) 0.951  0.35 

TSS 0.19 1.24 0.723 

(MAD) 

<0.01 (1.20, 1.72) 0.743 0.66 

 

 

50% 

OLS 0.71 2.13 0.133 <0.01 (1.87, 2.40) 1.081  0.00 

QR 0.76 2.36 0.174 <0.01 (2.02, 2.70) 0.968  -0.19 

TS 0.89 1.94 1.784 

(MAD) 

<0.01 (1.78, 1.93) 1.204  -0.06 

TSS 0.58 1.80 0.669 

(MAD) 

<0.01 (1.20, 1.72) 0.743 0.66 
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Table 19: Results of Relative Median Absolute Error of the four regression procedures with 

outliers of 10%, 20%, 30% and 50% of � = ��, ��	
 = ����, �~��
��(�,�,�),  
�~��
��(�,�,�),  ��� ��(�,�) = �.��: 

Outliers Relative Median Absolute Error  Value 

 

 

 

10% 

OLS vs QR 0.355 

OLS vs TS 0.369 

OLS vs TSS 0.366 

QR vs TS 0.021 

QR vs TSS 0.016 

TS vs TSS -0.005 

 

 

 

20% 

OLS vs QR 0.391 

OLS vs TS 0.409 

OLS vs TSS 0.454 

QR vs TS 0.031 

QR vs TSS 0.103 

TS vs TSS 0.074 

 

 

 

30% 

OLS vs QR -0.092 

OLS vs TS 0.009 

OLS vs TSS 0.227 

QR vs TS 0.093 

QR vs TSS 0.291 

TS vs TSS 0.219 

 

 

 

50% 

OLS vs QR 0.105 

OLS vs TS -0.113 

OLS vs TSS -0.187 

QR vs TS -0.244 

QR vs TSS -0.327 

TS vs TSS -0.067 
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Figure 6: Four regression lines are shown in each plot with � = �� and outliers of 10%, 

20%, 30% and 50% of � = �� in both X and Y with ��	
 = ����, �~��
��(�,�,�), 
 �~��
��(�,�,�),��� ��(�,�) = �.��: 
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Regression analysis with � = 100 and outliers of 10%, 20%, 30% and 50% of � = 100 in both X 

and Y variables: 

Table 20: Descriptive Statistics of (X, Y) in regression analysis with � = ��� and outliers of 

10%, 20%, 30%, and 50% of � = ��� in both X and Y variables: 

Outliers Variables n Min Max Mean Median SD IQR 

10% Y 110 -2.57 6.80 0.59 0.21 2.01 1.94 

X 110 -2.35 2.80 0.20 0.18 1.13 1.60 

20% Y 120 -3.18 6.78 1.00 0.22 2.43 1.60 

X 120 -2.81 2.93 0.31 0.35 1.30 1.80 

30% Y 130 -2.72 6.84 1.12 0.15 2.80 2.38 

X 130 -3.01 2.86 0.29 0.12 1.39 2.38 

50% Y 150 -2.21 6.41 2.07 0.74 2.84 5.80 

X 150 -1.95 3.31 0.77 0.77 1.17 1.98 
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Table 21: Results from the four regression procedures with outliers of 10%, 20%, 30% and 

50% of � = ���, ��	
 = ����, �~��
��(�,�,�), �~��
��(�,�,�),  
��� ��(�,�) = �.��: 
Outliers Regression mtS mtU S.E(mtU) P-value 95% CI for mU MEDAE Median 

Bias 

 

 

10% 

OLS 0.31 1.01 0.101 <0.001 (1.23, 1.63) 0.638  -0.17 

QR 0.04 2.26 0.067 <0.001 (0.88, 1.14) 0.428  0.00 

TS 0.06 1.07 1.13 

(MAD) 

<0.001 (1.15, 1.23) 0.417  0.00 

TSS 0.03 1.00 0.241 

(MAD) 

<0.001 (0.98, 1.11) 0.439 0.01 

 

 

20% 

OLS 0.53 1.56 0.090 <0.001 (1.37, 1.75) 0.991  -0.09 

QR 0.27 1.16 0.072 <0.001 (1.01, 1.30) 0.651  0.00 

TS 0.25 1.11 1.348 

(MAD) 

<0.001 (1.28, 1.36) 0.643  0.00 

TSS 0.23 0.95 0.367 

(MAD) 

<0.001 (0.92, 1.11) 0.600 0.35 

 

 

30% 

OLS 0.63 1.73 0.091 <0.001 (1.55, 1.91) 1.083  -0.14 

QR 0.44 1.66 0.155 <0.001 (1.36, 1.97) 1.088  0.00 

TS 0.32 1.37 1.383 

(MAD) 

<0.001 (1.48, 1.55) 0.935  0.00 

TSS 0.09 1.10 0.442 

(MAD) 

<0.001 (1.12, 1.50) 0.715 0.16 

 

 

50% 

OLS 0.48 2.08 0.101 <0.001 (1.88, 2.28) 1.092  0.04 

QR 0.50 2.33 0.132 <0.001 (2.07, 2.59) 0.994  0.00 

TS 0.52 1.93 1.977 

(MAD) 

<0.001 (1.86, 1.95) 1.188  0.00 

TSS 0.33 1.74 0.844 

(MAD) 

<0.001 (1.73, 1.97) 1.303 0.16 
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Table 22: Results of Relative Median Absolute Error of the four regression procedures with 

outliers of 10%, 20%, 30% and 50% of � = ���, ��	
 = ����, �~��
��(�,�,�),  
�~��
��(�,�,�),  ��� ��(�,�) = �.��: 

Outliers Relative Median Absolute Error  Value 

 

 

 

10% 

OLS vs QR 0.328 

OLS vs TS 0.346 

OLS vs TSS 0.311 

QR vs TS 0.027 

QR vs TSS -0.026 

TS vs TSS -0.044 

 

 

 

20% 

OLS vs QR 0.343 

OLS vs TS 0.351 

OLS vs TSS 0.394 

QR vs TS 0.011 

QR vs TSS 0.077 

TS vs TSS 0.074 

 

 

 

30% 

OLS vs QR -0.005 

OLS vs TS 0.137 

OLS vs TSS 0.339 

QR vs TS 0.141 

QR vs TSS 0.343 

TS vs TSS 0.235 

 

 

 

50% 

OLS vs QR 0.089 

OLS vs TS -0.087 

OLS vs TSS -0.194 

QR vs TS -0.195 

QR vs TSS -0.311 

TS vs TSS -0.097 
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Figure 7: Four regression lines are shown in each plot with � = ��� and outliers of 10%, 

20%, 30% and 50% of � = ��� in both X and Y with ��	
 = ����, �~��
��(�,�,�),
�~��
��(�,�,�),  ��� ��(�,�) = �.��: 
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Regression Model with Outliers in Y direction only: 

If the errors (�E) were independent and normally distributed, then a random sample of size 

� was generated from a bivariate normal distribution with mean (0, 0) and variances equal to 1, 

and a correlation coefficient equal to 0.80. Outliers of 10%, 30% 50% and 100% of � were intro-

duced in Y variable only from a bivariate normal distribution with means (0, 6) and variances 

0.1*variance of the above bivariate normal distribution, i.e. the variances (0.1, 0.1). 

Regression analysis with � = 10 and outliers of 10%, 20%, 30% and 50% of � = 10 in Y variable 

only: 

Table 23: Descriptive Statistics of (X, Y) in regression analysis with � = �� and outliers of 

10%, 20%, 30%, and 50% of � = �� in Y variable only: 

Outliers Variables n Min Max Mean Median SD IQR 

10% Y 11 -1.86 5.79 0.25 0.16 1.97 0.86 

X 11 -1.68 1.07 -0.18 -0.19 0.88 1.05 

20% Y 12 -1.24 5.81 1.21 0.48 2.23 1.03 

X 12 -1.74 1.85 0.11 0.12 0.95 0.67 

30% Y 13 -1.23 5.81 1.22 0.48 2.24 1.04 

X 13 -1.27 1.26 0.25 0.33 0.80 1.34 

50% Y 15 -1.31 6.30 1.91 0.45 2.95 5.94 

X 15 -1.11 1.55 0.17 0.05 0.64 0.56 
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Table 24: Results from the four regression procedures with outliers of 10%, 20%, 30% and 

50% of � = �� , in Y direction only with ��	
 = ����, �~��
��(�,�,�),  
�~��
��(�,�,�),��� ��(�,�) = �.��: 
Outliers Regression mtS mtU S.E(mtU) P-value 95% CI for mU MEDAE Median 

Bias 

 

 

10% 

OLS 0.46 1.17 0.636 0.100 (-0.27, 2.61) 0.480  0.27 

QR 0.07 0.74 0.25 0.017 (0.24, 1.23) 0.211  0.00 

TS 0.08 0.74 0.80 

(MAD) 

<0.001 (0.57, 1.24) 0.198  0.00 

TSS 0.08 0.74 0.204 

(MAD) 

<0.001 (0.62, 3.07) 0.205  0.00 

 

 

20% 

OLS 1.20 0.13 0.740 0.860 (-1.52, 1.78) 0.409  -0.75 

QR 0.33 0.48 0.171 0.018 (0.15, 0.82) 0.151  0.00 

TS 0.33 0.49 0.800 

(MAD) 

0.403 (-0.99, 0.65) 0.152  0.00 

TSS 0.36 0.46 0.226 

(MAD) 

0.224 (-1.32, 0.67) 0.145  -0.01 

 

 

30% 

OLS 1.68 -0.50 0.93 0.603 (-2.55, 1.55) 2.034  -0.28 

QR 0.43 0.43 0.57 0.459 (-0.69, 1.56) 0.418  0.00 

TS 0.88 0.02 2.99 

(MAD) 

0.601 (-1.38, 0.51) 0.988  0.00 

TSS 0.82 0.46 0.226 

(MAD) 

0.224 (-1.62, 0.44) 1.141  0.51 

 

 

50% 

OLS 2.05 -0.87 1.28 0.499 (-3.56, 1.83) 1.729  -0.89 

QR 0.19  0.31 0.56 0.584 (-0.79, 1.41) 0.588    0.00 

TS 0.46 -0.02 5.47 

(MAD) 

0.284 (-2.94, 0.44) 1.125  0.00 

TSS 0.52 -0.18 0.815 

(MAD) 

0.359 (-1.73, 0.25) 1.289  0.07 
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Table 25: Results of Relative Median Absolute Error of the four regression procedures with 

outliers of 10%, 20%, 30% and 50% of � = ��, in Y direction only with ��	
 = ����, 
�~��
��(�,�,�),�~��
��(�,�,�),��� ��(�,�) = �.��: 

Outliers Relative Median Absolute Error  Value 

 

 

 

10% 

OLS vs QR 0.560 

OLS vs TS 0.588 

OLS vs TSS 0.574 

R vs TS 0.063 

QR vs TSS 0.032 

TS vs TSS  -0.034 

 

 

 

20% 

OLS vs QR 0.632 

OLS vs TS 0.628 

OLS vs TSS 0.646 

R vs TS -0.011 

QR vs TSS 0.038 

TS vs TSS  0.049 

 

 

 

30% 

OLS vs QR 0.794 

OLS vs TS 0.514 

OLS vs TSS 0.439 

R vs TS -1.362 

QR vs TSS -1.172 

TS vs TSS  -0.156 

 

 

 

50% 

OLS vs QR 0.660 

OLS vs TS 0.349 

OLS vs TSS 0.254 

R vs TS -0.915 

QR vs TSS -1.195 

TS vs TSS  -0.146 
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Figure 8: Four regression lines are shown in each plot with � = �� and outliers of 10%, 

20%, 30% and 50% of � = �� in Y only with ��	
 = ����,  �~��
��(�,�,�), 
 �~��
��(�,�,�),��� ��(�,�) = �.��: 
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Regression analysis with � = 30 and outliers of 10%, 20%, 30% and 50% of � = 30 in Y variable 

only: 

Table 26: Descriptive Statistics of (X, Y) in regression analysis with � = �� and outliers of 

10%, 20%, 30%, and 50% of � = �� in Y variable only: 

Outliers Variables n Min Max Mean Median SD IQR 

10% Y 33 -1.57 6.11 0.80 0.36 1.80 0.95 

X 33 -1.09 1.46 0.12 0.21 0.70 1.14 

20% Y 36 -1.70 2.04 0.12 0.09 0.85 1.10 

X 36 -1.70 2.43 0.45 0.39 1.12 1.60 

30% Y 39 -2.19 6.50 1.65 1.00 2.74 3.02 

X 39 -1.43 1.88 0.15 0.18 0.86 0.77 

50% Y 45 -2.42 6.47 1.90 0.96 3.18 6.72 

X 45 -1.86 2.58 -0.13 -0.19 0.96 1.00 
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Table 27: Results from the four regression procedures with outliers of 10%, 20%, 30% and 

50% of � = �� , in Y direction only with ��	
 = ����, �~��
��(�,�,�), 
�~��
��(�,�,�),��� ��(�,�) = �.��: 
Outliers Regression mtS mtU S.E(mtU) P-value 95% CI for mU MEDAE Median 

Bias 

 

 

10% 

OLS 0.71 0.72 0.440 0.109 (-0.17, 1.62) 0.443  -0.37 

QR 0.36 0.60 0.251 0.024 (0.10, 1.09) 0.395  0.00 

TS 0.31 0.65 1.660 

(MAD) 

<0.001 (0.59, 0.96) 0.198  0.00 

TSS 0.23 0.68 0.491 

(MAD) 

<0.001 (0.53, 0.94) 0.434  0.07 

 

 

20% 

OLS 1.17 0.63 0.454 0.171 (-0.29, 1.56) 0.475  -0.73 

QR 0.35 0.70 0.199 <0.01 (0.31, 1.09) 0.434  0.00 

TS 0.36 0.73 1.660 

(MAD) 

<0.001 (0.51, 0.84) 0.423  0.00 

TSS 0.35 0.72 0.280 

(MAD) 

<0.001 (0.55, 0.84) 0.434  0.01 

 

 

30% 

OLS 1.51 0.89 0.503 0.084 (-0.13, 1.91) 0.668  -1.18 

QR 0.31 0.98 0.120 <0.01 (0.74, 1.21) 0.665  0.00 

TS 0.32 0.90 2.891 

(MAD) 

<0.001 (0.61, 1.07) 0.667  0.00 

TSS 0.38 0.89 0.452 

(MAD) 

<0.001 (0.53, 1.02) 0.667  -0.05 

 

 

50% 

OLS 1.98 0.94 0.481 0.057 (-0.03, 1.92) 1.021  -1.18 

QR 0.39 0.92 0.293 <0.01 (0.34, 1.49) 0.946  0.00 

TS 0.35 0.82 4.149 

(MAD) 

<0.001 (0.70, 1.23) 0.929  0.00 

TSS 0.68 0.83 1.091 

(MAD) 

<0.001 (0.43, 1.04) 0.944  -0.31 
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Table 28: Results of Relative Median Absolute Error of the four regression procedures with 

outliers of 10%, 20%, 30% and 50% of � = ��, in Y direction only with ��	
 = ����, 
�~��
��(�,�,�),�~��
��(�,�,�),��� ��(�,�) = �.��: 

Outliers Relative Median Absolute Error  Value 

 

 

 

10% 

OLS vs QR 0.108 

OLS vs TS 0.105 

OLS vs TSS 0.019 

R vs TS -0.003 

QR vs TSS -0.099 

TS vs TSS  -0.096 

 

 

 

20% 

OLS vs QR 0.086 

OLS vs TS 0.108 

OLS vs TSS 0.085 

R vs TS 0.024 

QR vs TSS -0.002 

TS vs TSS -0.025 

 

 

 

30% 

OLS vs QR 0.003 

OLS vs TS 0.001 

OLS vs TSS 0.001 

R vs TS -0.002 

QR vs TSS -0.002 

TS vs TSS  -0.000 

 

 

 

50% 

OLS vs QR 0.073 

OLS vs TS 0.089 

OLS vs TSS 0.075 

R vs TS  0.018 

QR vs TSS  0.003 

TS vs TSS  -0.015 
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Figure 9: Four regression lines are shown in each plot with � = �� and outliers of 10%, 

20%, 30% and 50% of � = �� in Y direction only with ��	
 = ����, �~��
��(�,�,�),  
�~��
��(�,�,�),��� ��(�,�) = �.��: 
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Regression analysis with � = 50 and outliers of 10%, 20%, 30% and 50% of � = 50 in Y variable 

only: 

Table 29: Descriptive Statistics of (X, Y) in regression analysis with � = �� and outliers of 

10%, 20%, 30%, and 50% of � = �� in Y variable only: 

Outliers Variables n Min Max Mean Median SD IQR 

10% Y 55 -2.88 6.54 0.66 0.30 1.98 1.40 

X 55 -3.14 2.14 0.14 0.13 1.10 1.34 

20% Y 60 -2.53 6.59 0.88 0.09 2.42 1.40 

X 60 -1.66 2.88 -0.13 -0.25 0.88 1.00 

30% Y 65 -2.37 6.49 1.17 0.23 2.76 1.69 

X 65 -3.50 1.56 -0.21 -0.09 0.83 0.77 

50% Y 75 -2.92 6.55 2.03 0.82 2.97 6.06 

X 75 -1.84 2.44 -0.05 -0.07 0.77 0.72 
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Table 30: Results from the four regression procedures with outliers of 10%, 20%, 30% and 

50% of � = �� , in Y direction only with ��	
 = ����, �~��
��(�,�,�),  
�~��
��(�,�,�),��� ��(�,�) = �.��: 
Outliers Regression mtS mtU S.E(mtU) P-value 95% CI for mU MEDAE Median 

Bias 

 

 

10% 

OLS 0.56 0.76 0.224 <0.01 (0.31, 1.21) 0.467  -0.54 

QR 0.00 0.74 0.110 <0.01 (0.53, 0.96) 0.486  0.00 

TS 0.01 0.76 0.947 

(MAD) 

<0.001 (0.68, 0.80) 0.471  0.00 

TSS 0.04 0.73 0.305 

(MAD) 

<0.001 (0.67, 0.82) 0.493  -0.04 

 

 

20% 

OLS 0.99 0.80 0.347 0.025 (0.10, 1.49) 0.452  -0.89 

QR 0.10 0.70 0.117 <0.01 (0.47, 0.93) 0.438  0.00 

TS 0.10 0.73 1.625 

(MAD) 

<0.001 (0.70, 0.90) 0.424  0.00 

TSS 0.15 0.75 0.400 

(MAD) 

<0.001 (0.66, 1.02) 0.420  -0.04 

 

 

30% 

OLS 1.40 1.13 0.393 <0.01 (0.35, 1.92) 0.693  -1.17 

QR 0.25 0.72 0.122 <0.001 (0.04, 0.45) 0.539  0.00 

TS 0.31 0.81 3.158 

(MAD) 

<0.001 (0.79, 1.08) 0.594  0.00 

TSS 0.27 0.85 0.551 

(MAD) 

<0.001 (0.74, 1.11) 0.589  -0.04 

 

 

50% 

OLS 2.07 0.86 0.441 0.054 (-0.01, 1.74) 0.856  -1.66 

QR 0.49 0.73 0.251 <0.01 (0.25, 1.22) 0.915  0.00 

TS 0.39 0.84 4.801 

(MAD) 

<0.001 (0.75, 1.05) 0.852  0.00 

TSS 0.65 0.72 0.711 

(MAD) 

<0.001 (0.60, 0.98) 0.920  -0.15 
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Table 31: Results of Relative Median Absolute Error of the four regression procedures with 

outliers of 10%, 20%, 30% and 50% of � = ��, in Y direction only with ��	
 = ����, 
�~��
��(�,�,�),�~��
��(�,�,�),��� ��(�,�) = �.��: 

Outliers Relative Median Absolute Error  Value 

 

 

 

10% 

OLS vs QR -0.042 

OLS vs TS -0.009 

OLS vs TSS -0.054 

R vs TS  0.031 

QR vs TSS  -0.012 

TS vs TSS  -0.044 

 

 

 

20% 

OLS vs QR 0.033 

OLS vs TS 0.064 

OLS vs TSS 0.071 

R vs TS  0.032 

QR vs TSS  0.039 

TS vs TSS  0.008 

 

 

 

30% 

OLS vs QR 0.223 

OLS vs TS 0.141 

OLS vs TSS 0.148 

R vs TS  -0.105 

QR vs TSS  -0.095 

TS vs TSS  0.008 

 

 

 

50% 

OLS vs QR -0.069 

OLS vs TS 0.004 

OLS vs TSS -0.075 

R vs TS  0.069 

QR vs TSS  -0.005 

TS vs TSS  -0.080 
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Figure 10: Four regression lines are shown in each plot with � = �� and outliers of 10%, 

20%, 30% and 50% of � = �� in Y direction only with ��	
 = ����, �~��
��(�,�,�),  
�~��
��(�,�,�),��� ��(�,�) = �.��: 
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Regression analysis with � = 100 and outliers of 10%, 20%, 30% and 50% of � = 100 in Y vari-

able only: 

Table 32: Descriptive Statistics of (X, Y) in regression analysis with � = �� and outliers of 

10%, 20%, 30%, and 50% of � = ��� in Y variable only: 

Outliers Variables n Min Max Mean Median SD IQR 

10% Y 110 -2.57 6.80 0.59 0.21 2.01 1.94 

X 110 -2.35 2.80 0.02 0.07 0.98 1.29 

20% Y 120 -3.18 6.78 1.00 0.22 2.43 1.60 

X 120 -2.81 2.93 -0.03 0.06 1.00 1.31 

30% Y 130 -2.72 6.84 1.12 0.15 2.80 2.38 

X 130 -3.01 2.02 -0.17 -0.05 0.98 1.06 

50% Y 150 -2.21 6.41 2.07 0.74 2.84 5.80 

X 150 -1.95 3.31 0.10 0.11 0.77 0.83 
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Table 33: Results from the four regression procedures with outliers of 10%, 20%, 30% and 

50% of  � = ��� , in Y direction only with ��	
 = ����, �~��
��(�,�,�),  
�~��
��(�,�,�),��� ��(�,�) = �.��: 
Outliers Regression mtS mtU S.E(mtU) P-value 95% CI for mU MEDAE Median 

Bias 

 

 

10% 

OLS 0.58 0.87 0.177 <0.001 (0.52, 1.23) 0.458  -0.53 

QR 0.03 0.93 0.069 <0.001 (0.80, 1.07) 0.409  0.00 

TS 0.07 0.89 1.11 

(MAD) 

<0.001 (0.83, 0.91) 0.469  0.00 

TSS 0.05 0.90 0.247 

(MAD) 

<0.001 (0.80, 0.92) 0.469  0.02 

 

 

20% 

OLS 1.03 0.96 0.205 <0.001 (0.55, 1.36) 0.593  -0.81 

QR 0.23 0.75 0.088 <0.001 (0.58, 0.93) 0.517  0.00 

TS 0.23 0.75 1.52 

(MAD) 

<0.001 (0.73, 0.82) 0.516  0.00 

TSS 0.27 0.76 0.406 

(MAD) 

<0.001 (0.80, 0.92) 0.524  -0.03 

 

 

30% 

OLS 1.32 1.12 0.230 <0.001 (0.69, 1.60) 0.735  -1.01 

QR 0.15 0.79 0.106 <0.001 (0.58, 1.00) 0.574  0.00 

TS 0.10 0.86 2.19 

(MAD) 

<0.001 (0.95, 1.07) 0.587  0.00 

TSS 0.14 0.76 0.897 

(MAD) 

<0.001 (0.87, 1.13) 0.615  -0.03 

 

 

50% 

OLS 2.02 0.49 0.301 0.104 (-0.10, 1.09) 0.891  -1.47 

QR 0.48 0.71 0.153 <0.001 (0.41, 1.01) 0.885  0.00 

TS 0.50 0.60 4.677 

(MAD) 

<0.001 (0.35, 0.51) 0.899  -0.00 

TSS 0.57 0.44 0.732 

(MAD) 

<0.001 (0.23, 0.52) 0.960  0.01 
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Table 34: Results of Relative Median Absolute Error of the four regression procedures with 

outliers of 10%, 20%, 30% and 50% of � = ���, in Y direction only with ��	
 = ����, 
�~��
��(�,�,�),�~��
��(�,�,�),��� ��(�,�) = �.��: 

Outliers Relative Median Absolute Error  Value 

 

 

 

10% 

OLS vs QR 0.106 

OLS vs TS -0.026 

OLS vs TSS -0.026 

R vs TS  -0.148 

QR vs TSS  -0.147 

TS vs TSS  0.000 

 

 

 

20% 

OLS vs QR 0.128 

OLS vs TS 0.128 

OLS vs TSS 0.116 

R vs TS  0.001 

QR vs TSS  -0.014 

TS vs TSS  -0.014 

 

 

 

30% 

OLS vs QR 0.218 

OLS vs TS 0.200 

OLS vs TSS 0.163 

R vs TS  -0.023 

QR vs TSS  -0.071 

TS vs TSS  -0.047 

 

 

 

50% 

OLS vs QR 0.007 

OLS vs TS -0.009 

OLS vs TSS -0.078 

R vs TS  -0.017 

QR vs TSS  -0.086 

TS vs TSS  -0.067 
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Figure 11: Four regression lines are shown in each plot with � = ��� and outliers of 10%, 

20%, 30% and 50% of � = ��� in Y only with ��	
 = ����, �~��
��(�,�,�),  
�~��
��(�,�,�),��� ��(�,�) = �.��: 
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Regression Model under the Non-Normality Assumption: 

An outcome variable Y was generated by using the log link function so for a predictor vari-

able X, was assumed Y~ Poisson (λ), and ��Æ ($)  = 1 + 0.2 ∗ �. It was assumed X is uniformly 

distributed with min=0 and max=1. A Monte Carlo Simulation was conducted with Nsim=1000 

repetitions. 

Regression analysis with  � = 10 30, 50, 100, �	
� = 1000, �~��
�(�, 0,1), 
�~"�
	(�, ���#�� = $): 

Table 35: Descriptive Statistics of (X, Y) in regression analysis with  � = �� ��,��,���,
��	
 = ����, �~��	�(�,�,�), ��� �~��	�(�, ��
��� = �): 

Variables n Min Max Mean Median SD IQR 

Y 10 1.00 5.00 2.40 2.00 1.35 1.74 

X 10 0.16 0.90 0.53 0.51 0.26 0.42 

Y 30 0.00 6.00 2.53 2.00 1.38 1.75 

X 30 0.03 0.89 0.49 0.57 0.25 0.39 

Y 50 0.00 6.00 2.53 2.00 1.38 1.75 

X 50 0.03 0.89 0.49 0.57 0.25 0.39 

Y 100 0.00 7.00 3.11 3.00 1.64 2.00 

X 100 0.01 0.99 0.50 0.52 0.28 0.49 
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Table 36: Results from the four regression procedures with � = ��,��,��,��� ���,
��	
 = ����, �~��	�(�,�,�), ��� �~��	�(�, ��
��� = �): 

 

 

n=10 

Regression mtS mtU S.E(mtU) P-value 95% CI for mU MEDAE Median 

Bias 

OLS 0.52 3.51 1.40 0.036 (0.29, 6.73) 0.808 -0.30 

QR 0.55 2.72 2.39 0.289 (0.00, 8.30) 0.671 0.00 

TS 0.36 3.15 4.66 

(MAD) 

<0.01 (0.21, 6.08) 0.776 0.00 

TSS 0.44 2.92 0.63 

(MAD) 

<0.01 (0.01, 5.91) 0.720 0.00 

 

n=30 

OLS 2.35 0.38 1.03 0.710 (-1.74, 2.49) 1.021 -0.42 

QR 2.00 0.00 1.28 1.000 (-2.46, 3.06) 1.000 0.00 

TS 2.00 0.00 7.93 

(MAD) 

0.080 (-2.18, 2.18) 1.000 0.00 

TSS 2.00 0.00 2.10 

(MAD) 

0.587 (-2.18, 2.18) 1.000 0.00 

 

n=50 

OLS 2.45 1.25 0.78 0.120 (-0.34, 2.83) 0.854 -0.22 

QR 3.00 0.00 1.05 1.000 (-4.31, 4.31) 1.000 0.00 

TS 2.00 0.00 7.99 

(MAD) 

0.095 (-1.59, 1.59) 1.000 0.00 

TSS 2.79 0.00 2.36 

(MAD) 

0.050 (-1.63, 1.63) 1.000 0.28 

n=100 OLS 2.61 0.99 0.58 0.093 (-0.17, 2.15) 1.068 -0.05 

QR 3.00 0.00 1.00 1.000 (-4.05, 4.05) 1.000 0.00 

TS 3.00 0.00 8.07 

(MAD) 

0.072 (-1.16, 1.16) 1.000 0.00 

TSS 3.00 0.00 2.72 

(MAD) 

0.063 (-1.16, 1.16) 1.000 0.00 
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Table 37: Results of Relative Median Absolute Error of the four regression procedures with  

� = ��,��,��,���,��	
 = ����, �~��	�(�,�,�), �~��	�(�, ��
��� = �): 

 Relative Median Absolute Error Value 

 

 

 

n=10 

OLS vs QR 0.618 

OLS vs TS 0.039 

OLS vs TSS 0.109 

QR vs TS 0.155 

QR vs TSS 0.071 

TS vs TSS 0.072 

 

 

 

n=30 

OLS vs QR 0.021 

OLS vs TS 0.021 

OLS vs TSS 0.021 

QR vs TS 0.000 

QR vs TSS 0.000 

TS vs TSS 0.000 

 

 

 

n=50 

OLS vs QR -0.172 

OLS vs TS -0.172 

OLS vs TSS -0.172 

QR vs TS 0.000 

QR vs TSS 0.000 

TS vs TSS 0.000 

 

 

 

n=100 

OLS vs QR -0.063 

OLS vs TS -0.063 

OLS vs TSS -0.063 

QR vs TS 0.000 

QR vs TSS 0.000 

TS vs TSS 0.000 
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Figure 12: Four regression lines are shown in each plot with � = ��,��,��,���. ��	
 =
����, �~��	�(�,�,�), �~��	�(�, ��
��� = �): 
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Regression Model under the Micceri distributions: 

Eight Micceri distributions were used to generate a random sample for an outcome variable Y, 

with a uniform distribution of predictor variable X with min=0 and max=1. 

1. Smooth Symmetric distribution: 

An outcome variable Y was generated from a Smooth Symmetric distribution and a predictor 

variable X was generated from uniform distributed with min=1 and max=10. A Monte Carlo Simu-

lation was conducted with Nsim=1000 repetitions. 

Regression analysis with  � = 10 30, 50, 100, �	
� = 1000, �~��
�(�, 1,10), 
�~Smooth Symmetric(�) : 
Table 38: Descriptive Statistics of (X, Y) in regression analysis with  � = �� ��,��,���,
��	
 = ����, �~��	�(�,�,��),  ��� �~�����  �!��"�#$%(�) : 
Variables n Min Max Mean Median SD IQR 

Y 10 6.00 18.00 13.80 14.50 3.46 3.25 

X 10 2.48 9.09 5.81 5.57 2.30 3.78 

Y 30 4.00 20.00 13.13 14.00 3.97 5.75 

X 30 1.26 8.97 5.42 6.10 2.27 3.54 

Y 50 4.00 23.00 14.08 14.00 4.75 7.00 

X 50 1.11 9.97 5.81 6.06 2.55 4.01 

Y 100 3.00 25.00 13.10 13.00 5.02 8.00 

X 100 1.09 9.96 5.25 5.69 2.52 4.40 
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Table 39: Results of the four regression procedures with  � = �� ��,��,���, ��	
 =
����, �~��	�(�,�,��), ��� �~�����  �!��"�#$% (�) : 
 

 

n=10 

Regres-

sion 

mtS mtU S.E(mtU) P-value 95% CI for mU MEDAE Median 

Bias 

OLS 14.70 -0.15 0.529 0.777 (-1.37, 1.06) 2.366 0.46 

QR 13.00 0.25 0.988 0.806 (-2.38, 1.23) 1.373 0.00 

TS 13.44 0.18 2.186 

(MAD) 

0.748 (-0.90, 1.26) 1.409 0.00 

TSS 13.50 0.13 0.521 

(MAD) 

0.833 (-0.94, 1.19) 1.586 0.25 

 

n=30 

OLS 17.18 -0.75 0.298 0.019 (-1.36, -0.13) 1.651 0.17 

QR 17.38 -0.75 0.337 0.034 (-1.63, -0.39) 1.653 0.00 

TS 17.41 -0.76 2.159 

(MAD) 

<0.001 (-1.34, -0.17) 1.654 0.00 

TSS 17.78 -0.81 0.511 

(MAD) 

<0.001 (-1.40, -0.23) 1.684 -0.04 

 

n=50 

OLS 14.89 -0.14 0.268 0.602 (-0.68, 0.40) 3.542 0.09 

QR 16.94 -0.49 0.390 0.217 (-1.24, 0.26) 3.376 0.00 

TS 15.19 -0.17 2.683 

(MAD) 

0.165 (-0.70, 0.36) 3.449 0.00 

TSS 16.30 -0.50 0.744 

(MAD) 

0.099 (-1.04, 0.04) 3.344 0.71 

n=100 OLS 12.91 0.03 0.195 0.863 (-0.35, 0.42) 3.915 -0.06 

QR 13.00 0.00 0.504 1.000 (-0.99, 0.99) 4.000 0.00 

TS 13.00 0.00 2.471 

(MAD) 

0.251 (0.00, 0.14) 4.000 0.00 

TSS 11.96 0.24 0.828 

(MAD) 

0.135 (-0.16, 0.63) 3.691 -0.26 
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Table 40: Results of Relative Median Absolute Error of the four regression procedures with  

� = ��,��,��,���, ��	
 = ����,�~��	�(�,�,��), ��� �~�����  �!��"�#$%(�):  
 Relative Median Absolute Error Value 

 

 

 

n=10 

OLS vs QR 0.419 

OLS vs TS 0.404 

OLS vs TSS 0.329 

QR vs TS -0.027 

QR vs TSS -0.155 

TS vs TSS -0.125 

 

 

 

n=30 

OLS vs QR 0.000 

OLS vs TS -0.001 

OLS vs TSS -0.019 

QR vs TS 0.000 

QR vs TSS -0.019 

TS vs TSS -0.018 

 

 

 

n=50 

OLS vs QR 0.047 

OLS vs TS 0.026 

OLS vs TSS 0.055 

QR vs TS -0.022 

QR vs TSS 0.009 

TS vs TSS 0.031 

 

 

 

n=100 

OLS vs QR -0.012 

OLS vs TS -0.012 

OLS vs TSS 0.067 

QR vs TS 0.000 

QR vs TSS 0.077 

TS vs TSS 0.077 
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Figure 13: Four regression lines are shown in each plot with � = ��,��,��,���. ��	
 =
����, �~��	�(�,�,��), �~�����  �!��"�#$%(�):  
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2. Extreme Asymmetric distribution: 

An outcome variable Y was generated from an Extreme Asymmetric distribution and a predic-

tor variable X was generated from uniform distributed with min=1 and max=10. A Monte Carlo 

Simulation was conducted with Nsim=1000 repetitions. 

Regression analysis with  � = 10 30, 50, 100, �	
� = 1000, �~��
�(�, 1,10), 
�~Extreme Asymmetric(�): 

Table 41: Descriptive Statistics of (X, Y) in regression analysis with  � = �� ��,��,���,
��	
 = ����, �~��	�(�,�,��),  ��� �~&'�#"�" ()!��"�#$%(�): 

Variables n Min Max Mean Median SD IQR 

Y 10 17.00 30.00 27.00 28.50 3.50 4.03 

X 10 2.48 9.09 5.81 5.57 2.30 3.78 

Y 30 14.00 30.00 26.13 27.00 4.00 5.00 

X 30 1.26 8.98 5.43 6.10 2.27 3.55 

Y 50 11.00 30.00 24.54 26.00 5.23 5.00 

X 50 1.11 9.97 5.81 6.06 2.56 4.00 

Y 100 8.00 30.00 24.21 26.00 5.74 5.25 

X 100 1.09 9.96 5.52 5.69 2.52 4.40 
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Table 42: Results of the four regression procedures with  � = �� ��,��,���, ��	
 =
����, �~��	�(�,�,��),��� �~&'�#"�" ()!��"�#$%(�):  
 

 

n=10 

Regression mtS mtU S.E(mtU) P-value 95% CI for mU MEDAE Median 

Bias 

OLS 32.46 -0.94 0.522 0.109 (-2.14, 0.26) 1.428 0.53 

QR 31.38 -0.56 0.752 0.479 (-2.67, 0.25) 0.627 0.00 

TS 31.71 -0.63 1.457 

(MAD) 

0.002 (-1.73, -0.01) 0.780 0.00 

TSS 31.46 -0.59 0.208 

(MAD) 

0.008 (-1.69, -0.01) 0.706 0.09 

 

n=30 

OLS 25.19 0.17 0.332 0.604 (-0.51, 0.85) 1.914 1.35 

QR 25.87 0.33 0.391 0.412 (-0.34, 1.09) 1.926 0.00 

TS 26.35 0.23 2.111 

(MAD) 

0.305 (-0.47, 0.92) 1.896 0.00 

TSS 26.79 0.11 0.518 

(MAD) 

0.173 (-0.58, 0.79) 2.143 -0.07 

 

n=50 

OLS 25.61 -0.18 0.298 0.539 (-0.78, 0.42) 2.737 1.73 

QR 26.00 0.00 0.243 1.000 (-0.78, 0.28) 3.000 0.00 

TS 27.22 -1.57 2.224 

(MAD) 

0.002 (-0.78, -0.01) 2.709 0.00 

TSS 27.38 0.00 0.566 

(MAD) 

0.033 (-0.67, -0.01) 3.000 -1.38 

n=100 OLS 24.95 -1.35 0.229 0.557 (-0.59, 0.32) 2.716 1.70 

QR 26.00 0.00 0.220 1.000 (-0.51, 0.21) 2,667 0.00 

TS 26.00 0.00 2.224 

(MAD) 

0.101 (-0.47, -0.47) 3.000 0.00 

TSS 26.96 0.00 0.070 

(MAD) 

0.183 (-0.50, 0.50) 3.000 -0.96 
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Table 43: Results of Relative Median Absolute Error of the four regression procedures with  

� = ��,��,��,���, ��	
 = ����, �~��	�(�,�,��),��� �~&'�#"�" ()!��"�#$%(�):  
 Relative Median Absolute Error Value 

 

 

 

n=10 

OLS vs QR 0.560 

OLS vs TS 0.454 

OLS vs TSS 0.505 

QR vs TS -0.243 

QR vs TSS -0.126 

TS vs TSS 0.095 

 

 

 

n=30 

OLS vs QR -0.006 

OLS vs TS -0.009 

OLS vs TSS -0.119 

QR vs TS 0.016 

QR vs TSS -0.011 

TS vs TSS -0.130 

 

 

 

n=50 

OLS vs QR -0.096 

OLS vs TS 0.009 

OLS vs TSS -0.096 

QR vs TS 0.096 

QR vs TSS 0.000 

TS vs TSS -0.107 

 

 

 

n=100 

OLS vs QR -0.104 

OLS vs TS -0.104 

OLS vs TSS -0.104 

QR vs TS 0.000 

QR vs TSS 0.000 

TS vs TSS 0.000 
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Figure 14: Four regression lines are shown in each plot with � = ��,��,��,���. ��	
 =
����, �~��	�(�,�,��), ��� �~&'�#"�" ()!��"�#$%(�):  
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3. Extreme Bimodal distribution: 

An outcome variable Y was generated from an Extreme Bimodal distribution and a predictor 

variable X was generated from uniform distributed with min=1 and max=10. A Monte Carlo Simu-

lation was conducted with Nsim=1000 repetitions. 

Regression analysis with  � = 10 30, 50, 100, �	
� = 1000, �~��
�(�, 1,10), 
�~Extreme Bimodal(�): 

Table 44: Descriptive Statistics of (X, Y) in regression analysis with  � = �� ��,��,���,
��	
 = ����, �~��	�(�,�,��),  ��� �~&'�#"�" *$��+,-(�): 

Variables n Min Max Mean Median SD IQR 

Y 10 1.00 5.00 2.60 1.50 1.90 3.75 

X 10 2.48 9.09 5.81 5.57 2.30 3.77 

Y 30 1.00 5.00 3.03 4.00 1.80 4.00 

X 30 1.26 8.97 5.42 6.10 2.27 3.55 

Y 50 1.00 5.00 3.50 4.00 1.58 2.75 

X 50 1.11 9.97 5.81 6.06 2.55 4.00 

Y 100 1.00 5.00 3.19 4.00 1.80 4.00 

X 100 1.09 9.96 5.23 5.69 2.52 4.40 
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Table 45: Results of the four regression procedures with  � = �� ��,��,���, ��	
 =
����, �~��	�(�,�,��),��� �~&'�#"�" *$��+,-(�):  
 

 

n=10 

Regression mtS mtU S.E(mtU) P-value 95% CI for mU MEDAE Median 

Bias 

OLS 0.77 0.32 0.260 0.276 (-0.31, 0.94) 1.138 -0.71 

QR -1.51 0.71 0.403 0.114 (-0.71, 0.78) 0.928 0.00 

TS 0.58 0.17 0.904 

(MAD) 

0.060 (-0.46, 0.80) 0.676 0.00 

TSS 0.44 0.19 0.001 

(MAD) 

0.035 (-0.45, 0.00) 0.693 0.05 

 

n=30 

OLS 4.16 -0.21 0.143 0.158 (-0.50, 0.09) 1.830 0.33 

QR 4.91 -0.35 0.255 0.183 (-0.66, 0.15) 1.538 0.00 

TS 4.00 0.00 1.027 

(MAD) 

0.005 (-0.33, 0.00) 1.000 0.00 

TSS 4.00 0.00 0.001 

(MAD) 

0.025 (-0.33, 0.00) 1.000 0.00 

 

n=50 

OLS 3.36 0.02 0.089 0.801 (-0.16, 0.20) 1.013 0.48 

QR 4.00 0.00 0.088 1.000 (-0.19, 0.25) 1.000 0.00 

TS 4.00 0.00 0.860 

(MAD) 

0.036 (-0.18, 0.00) 1.000 0.00 

TSS 4.00 0.00 0.001 

(MAD) 

0.175 (-0.18, 0.18) 1.000 0.00 

n=100 OLS 3.05 0.04 0.066 0.525 (-0.09, 0.17) 1.100 0.68 

QR 4.00 0.00 0.108 1.000 (-0.48, 0.48) 1.000 0.00 

TS 4.00 0.00 0.860 

(MAD) 

0.041 (-0.14, 0.00) 1.000 0.00 

TSS 4.00 0.00 0.001 

(MAD) 

0.233 (-0.14, 0.14) 1.000 0.00 
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Table 46: Results of Relative Median Absolute Error of the four regression procedures with  

� = ��,��,��,���, ��	
 = ����, �~��	�(�,�,��),��� �~&'�#"�" *$��+,-(�):  
 Relative Median Absolute Error Value 

 

 

 

n=10 

OLS vs QR 0.185 

OLS vs TS 0.406 

OLS vs TSS 0.390 

QR vs TS 0.272 

QR vs TSS 0.252 

TS vs TSS -0.026 

 

 

 

n=30 

OLS vs QR 0.015 

OLS vs TS 0.453 

OLS vs TSS 0.453 

QR vs TS 0.349 

QR vs TSS 0.349 

TS vs TSS 0.000 

 

 

 

n=50 

OLS vs QR 0.014 

OLS vs TS 0.014 

OLS vs TSS 0.014 

QR vs TS 0.000 

QR vs TSS 0.000 

TS vs TSS 0.000 

 

 

 

n=100 

OLS vs QR 0.088 

OLS vs TS 0.088 

OLS vs TSS 0.088 

QR vs TS 0.000 

QR vs TSS 0.000 

TS vs TSS 0.000 
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Figure 15: Four regression lines are shown in each plot with � = ��,��,��,���. ��	
 =
����, �~��	�(�,�,��), �~&'�#"�" *$��+,-(�):  
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4. Mass at Zero distribution: 

An outcome variable Y was generated from Mass at Zero distribution and a predictor variable 

X were generated from uniform distributed with min=1 and max=10. A Monte Carlo Simulation 

was conducted with Nsim=1000 repetitions. 

Regression analysis with  � = 10 30, 50, 100, �	
� = 1000, �~��
�(�, 1,10), 
�~Mass at Zero (�): 

Table 47: Descriptive Statistics of (X, Y) in regression analysis with  � = �� ��,��,���,
��	
 = ����, �~��	�(�,�,��),  ��� �~.,)) ,� /"#� (�): 

Variables n Min Max Mean Median SD IQR 

Y 10 9.00 20.00 12.70 11.50 3.40 2.50 

X 10 2.48 9.09 5.81 5.57 2.30 3.78 

Y 30 6.00 20.00 13.03 12.50 3.43 4.00 

X 30 2.48 9.09 5.81 5.57 2.30 3.78 

Y 50 0.00 21.00 12.82 14.00 4.85 5.00 

X 50 1.11 9.97 5.81 6.06 2.55 4.00 

Y 100 0.00 23.00 13.12 13.00 4.54 4.40 

X 100 1.09 9.96 5.53 5.69 2.52 4.40 
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Table 48: Results of the four regression procedures with  � = �� ��,��,���, ��	
 =
����, �~��	�(�,�,��),��� �~.,)) ,� /"#� (�):  
 

 

n=10 

Regression mtS mtU S.E(mtU) P-value 95% CI for mU MEDAE Median 

Bias 

OLS 7.44 0.91 0.413 0.060 (-0.05, 1.86) 2.140 0.18 

QR 9.47 0.50 0.363 0.206 (-0.21, 1.21) 1.493 0.00 

TS 9.19 0.54 1.444 

(MAD) 

0.015 (0.32, 1.39) 1.570 0.00 

TSS 9.29 0.52 4.488 

(MAD) 

0.009 (0.35, 1.38) 1.530 0.05 

 

n=30 

OLS 15.94 -0.54 0.266 0.054 (-1.08, 0.01) 1.930 -0.24 

QR 15.66 -0.53 0.363 0.031 (-0.98, -0.07) 1.919 0.00 

TS 16.16 -0.62 1.950 

(MAD) 

<0.001 (-1.15, -0.10) 2.200 0.00 

TSS 15.55 -0.55 0.373 

(MAD) 

0.002 (-1.08, -0.02) 1.961 0.22 

 

n=50 

OLS 12.49 0.06 0.274 0.835 (-0.49, 0.61) 2.862 1.04 

QR 14.00 0.00 0.363 1.000 (-0.72, 0.72) 3.000 0.00 

TS 14.00 0.00 2.406 

(MAD) 

0.521 (-0.55, 0.55) 3.000 0.00 

TSS 13.24 0.00 0.659 

(MAD) 

0.617 (-0.54, 0.54) 3.000 -0.05 

n=100 OLS 13.05 0.01 0.182 0.943 (-0.35, 0.37) 2.994 -0.08 

QR 13.00 0.00 0.363 1.000 (-0.72, 0.72) 3.000 0.00 

TS 13.00 0.00 2.540 

(MAD) 

0.995 (-0.36, 0.36) 3.000 0.00 

TSS 13.00 0.00 0.850 

(MAD) 

0.967 (-0.36, 0.36) 3.000 -0.05 
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Table 49: Results of Relative Median Absolute Error of the four regression procedures with  

� = ��,��,��,���, ��	
 = ����, �~��	�(�,�,��), ��� �~.,)) ,� /"#� (�):  
 Relative Median Absolute Error Value 

 

 

 

n=10 

OLS vs QR 0.302 

OLS vs TS 0.267 

OLS vs TSS 0.285 

QR vs TS -0.049 

QR vs TSS -0.024 

TS vs TSS 0.024 

 

 

 

n=30 

OLS vs QR 0.006 

OLS vs TS -0.047 

OLS vs TSS -0.016 

QR vs TS -0.054 

QR vs TSS -0.022 

TS vs TSS 0.030 

 

 

 

n=50 

OLS vs QR -0.048 

OLS vs TS -0.048 

OLS vs TSS -0.048 

QR vs TS 0.000 

QR vs TSS 0.000 

TS vs TSS 0.000 

 

 

 

n=100 

OLS vs QR -0.002 

OLS vs TS -0.002 

OLS vs TSS -0.002 

QR vs TS 0.000 

QR vs TSS 0.000 

TS vs TSS 0.000 
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Figure 16: Four regression lines are shown in each plot with � = ��,��,��,���. ��	
 =
����, �~��	�(�,�,��), �~.,)) ,� /"#� (�): 
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5. Mass at Zero with Gap distribution: 

An outcome variable Y was generated from Mass at Zero with Gap distribution and a predictor 

variable X was generated from uniform distributed with min=1 and max=10. A Monte Carlo Simu-

lation was conducted with Nsim=1000 repetitions. 

Regression analysis with  � = 10 30, 50, 100, �	
� = 1000, �~��
�(�, 1,10), 
�~Mass at Zero with Gap (�): 

Table 50: Descriptive Statistics of (X, Y) in regression analysis with  � = �� ��,��,���,
��	
 = ����, �~��	�(�,�,��),  ��� �~.,)) ,� /"#� 0$�  1,2 (�): 

Variables n Min Max Mean Median SD IQR 

Y 10 0.00 9.00 0.90 0.00 2.85 0.00 

X 10 2.48 9.09 5.81 5.57 2.30 3.78 

Y 30 0.00 10.00 0.93 0.00 2.85 0.00 

X 30 1.26 8.98 5.43 6.10 2.27 3.55 

Y 50 0.00 9.00 1.14 0.00 2.85 0.00 

X 50 1.11 9.97 5.81 6.06 2.55 4.00 

Y 100 0.00 11.00 1.92 0.00 3.77 0.00 

X 100 1.09 9.96 5.53 5.69 2.52 4.40 
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Table 51: Results of the four regression procedures with  � = �� ��,��,���, ��	
 =
����, �~��	�(�,�,��),��� �~.,)) ,� /"#� 0$�  1,2 (�): 
 

 

n=10 

Regression mtS mtU S.E(mtU) P-value 95% CI for mU MEDAE Median 

Bias 

OLS -1.99 0.50 0.401 0.250 (-0.43, 1.42) 0.889 -0.32 

QR 0.00 0.00 NA NA NA 0.000 0.00 

TS 0.00 0.00 0.000 

(MAD) 

0.097 (-0.90, 0.09) 0.000 0.00 

TSS 0.00 0.00 0.000 

(MAD) 

1.000 (-0.90, 0.09) 0.000 0.000 

 

n=30 

OLS 1.03 -0.02 0.240 0.941 (-0.50, 0.47) 0.030 -0.91 

QR 0.00 0.00 NA NA NA 0.000 0.00 

TS 0.00 0.00 0.000 

(MAD) 

0.691 (-0.49, 0.49) 0.000 0.00 

TSS 0.00 0.00 0.000 

(MAD) 

1.000 (-0.49, 0.49) 0.000 0.00 

 

n=50 

OLS 0.76 0.08 0.161 0.621 (-0.24, 0.40) 0.182 -1.17 

QR 0.00 0.00 NA NA NA 0.000 0.00 

TS 0.00 0.00 0.000 

(MAD) 

0.691 (-0.34, 0.34) 0.000 0.00 

TSS 0.00 0.00 0.000 

(MAD) 

0.205 (-0.34, 0.34) 0.000 0.000 

n=100 OLS 2.08 -0.03 0.151 0.851 (-0.33, 0.27) 0.082 -1.89 

QR 0.00 0.00 NA NA NA 0.000 0.00 

TS 0.00 0.00 0.000 

(MAD) 

0.789 (-0.34, 0.34) 0.000 0.00 

TSS 0.00 0.00 0.000 

(MAD) 

0.562 (-0.33, 0.33) 0.000 0.000 
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Table 52: Results of Relative Median Absolute Error of the four regression procedures with  

� = ��,��,��,���,��	
 = ����, �~��	�(�,�,��),��� �~.,)) ,� /"#�0$�  1,2 (�):  
 Relative Median Absolute Error Value 

 

 

 

n=10 

OLS vs QR 1.000 

OLS vs TS 1.000 

OLS vs TSS 1.000 

QR vs TS NA 

QR vs TSS NA 

TS vs TSS NA 

 

 

 

n=30 

OLS vs QR 1.000 

OLS vs TS 1.000 

OLS vs TSS 1.000 

QR vs TS NA 

QR vs TSS NA 

TS vs TSS NA 

 

 

 

n=50 

OLS vs QR 1.000 

OLS vs TS 1.000 

OLS vs TSS 1.000 

QR vs TS NA 

QR vs TSS NA 

TS vs TSS NA 

 

 

 

n=100 

OLS vs QR 1.000 

OLS vs TS 1.000 

OLS vs TSS 1.000 

QR vs TS NA 

QR vs TSS NA 

TS vs TSS NA 
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Figure 17: Four regression lines are shown in each plot with � = ��,��,��,���. ��	
 =
����, �~��	�(�,�,��), �~.,)) ,� /"#� 0$�  1,2(�): 

 

 

 

 

 



121 

 

 

6. Multimodal Lumpy distribution: 

An outcome variable Y was generated from Multimodal Lumpy distribution and a predictor 

variable X was generated from uniform distributed with min=1 and max=10. A Monte Carlo Simu-

lation was conducted with Nsim=1000 repetitions. 

Regression analysis with  � = 10 30, 50, 100, �	
� = 1000, �~��
�(�, 1,10), 
�~Multimodal Lumpy (�): 

Table 53: Descriptive Statistics of (X, Y) in regression analysis with  � = �� ��,��,���,
��	
 = ����, �~��	�(�,�,��),  ��� �~.3-�$��+,- 43�2! (�): 

Variables n Min Max Mean Median SD IQR 

Y 10 1.00 40.00 19.90 16.50 12.88 17.75 

X 10 2.48 9.09 5.81 5.57 2.30 3.78 

Y 30 5.00 41.00 18.10 15.50 9.77 9.50 

X 30 1.26 8.98 5.43 6.10 2.27 3.55 

Y 50 4.00 42.00 23.54 21.50 12.10 23.25 

X 50 1.11 9.97 5.81 6.06 2.55 4.00 

Y 100 0.00 43.00 22.60 23.00 11.80 20.00 

X 100 1.09 9.96 5.53 5.69 2.52 4.40 
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Table 54: Results of the four regression procedures with  � = �� ��,��,���, ��	
 =
����, �~��	�(�,�,��),��� �~.3-�$��+,- 43�2!(�): 
 

 

n=10 

Regression mtS mtU S.E(mtU) P-value 95% CI for mU MEDAE Median 

Bias 

OLS 19.35 0.09 1.978 0.963 (-4.47, 4.66) 5.806 -3.40 

QR 15.62 0.51 3.385 0.965 (-6.48, 6.79) 5.688 0.00 

TS 11.85 0.75 8.100 

(MAD) 

0.647 (-3.33, 4.83) 4.138 0.00 

TSS 15.05 1.11 1.420 

(MAD) 

0.359 (-2.87, 5.08) 4.064 -5.44 

 

n=30 

OLS 23.56 -1.01 0.789 0.213 (-2.62, 0.61) 4.400 -2.77 

QR 21.00 -1.04 0.763 0.182 (-2.54, 0.45) 4.390 0.00 

TS 19.79 -0.76 5.662 

(MAD) 

0.024 (-2.37, 0.84) 4.690 0.00 

TSS 18.70 -0.58 1.195 

(MAD) 

0.035 (-2.19, 1.03) 4.868 -0.007 

 

n=50 

OLS 28.37 -0.83 0.674 0.223 (-2.19, 0.52) 11.178 -2.28 

QR 33.24 -2.19 0.931 0.023 (-4.01, -0.37) 9.573 0.00 

TS 25.77 -0.78 6.702 

(MAD) 

0.003 (-2.13, 0.57) 11.167 0.00 

TSS 30.27 -1.39 2.422 

(MAD) 

0.004 (-2.73, -0.05) 10.512 -1.12 

n=100 OLS 25.60 -0.54 0.469 0.251 (-1.47, 0.39) 10.060 -0.23 

QR 28.25 -0.93 0.825 0.263 (-2.55, 0.69) 9.555 0.00 

TS 26.11 -0.64 6.857 

(MAD) 

<0.001 (-1.56, 0.28) 10.009 0.00 

TSS 27.79 -0.93 2.278 

(MAD) 

0.002 (-1.85, -0.01) 9.555 0.47 
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Table 55: Results of Relative Median Absolute Error of the four regression procedures with  

� = ��,��,��,���, ��	
 = ����, �~��	�(�,�,��),��� �~.3-�$��+,- 43�2!(�):  
 Relative Median Absolute Error Value 

 

 

 

n=10 

OLS vs QR 0.020 

OLS vs TS 0.287 

OLS vs TSS 0.300 

QR vs TS 0.272 

QR vs TSS 0.286 

TS vs TSS 0.018 

 

 

 

n=30 

OLS vs QR 0.001 

OLS vs TS -0.066 

OLS vs TSS -0.107 

QR vs TS -0.067 

QR vs TSS -0.108 

TS vs TSS -0.037 

 

 

 

n=50 

OLS vs QR 0.143 

OLS vs TS 0.001 

OLS vs TSS 0.059 

QR vs TS -0.166 

QR vs TSS -0.098 

TS vs TSS 0.059 

 

 

 

n=100 

OLS vs QR 0.052 

OLS vs TS 0.005 

OLS vs TSS 0.050 

QR vs TS -0.047 

QR vs TSS -0.000 

TS vs TSS 0.045 
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Figure 18: Four regression lines are shown in each plot with � = ��,��,��,���. ��	
 =
����, �~��	�(�,�,��), �~.3-�$��+,- 43�2!(�): 
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7. Extreme Asymmetry – Decay distribution: 

An outcome variable Y was generated from Extreme Asymmetry – Decay distribution and a 

predictor variable X was generated from uniform distributed with min=1 and max=10. A Monte 

Carlo Simulation was conducted with Nsim=1000 repetitions. 

Regression analysis with  � = 10 30, 50, 100, �	
� = 1000, �~��
�(�, 1,10), 
�~Extreme Asymmetry –  Decay(�): 

Table 56: Descriptive Statistics of (X, Y) in regression analysis with  � = �� ��,��,���,
��	
 = ����, �~��	�(�,�,��),  ��� �~&'�#"�" ()!��"�#! –  5"%,!(�): 

Variables n Min Max Mean Median SD IQR 

Y 10 10.00 30.00 12.80 10.00 6.42 0.75 

X 10 2.48 9.09 5.81 5.57 2.30 3.78 

Y 30 10.00 30.00 12.93 10.00 5.67 2.75 

X 30 1.26 8.97 5.43 6.10 2.27 3.55 

Y 50 10.00 30.00 13.88 11.00 6.09 4.00 

X 50 1.11 9.97 5.81 6.06 2.55 4.00 

Y 100 10.00 30.00 14.07 11.00 6.05 6.25 

X 100 1.09 9.96 5.53 5.69 2.52 4.40 
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Table 57: Results of the four regression procedures with  � = �� ��,��,���, ��	
 =
����, �~��	�(�,�,��),��� �~&'�#"�" ()!��"�#! –  5"%,!(�):  
 

 

n=10 

Regression mtS mtU S.E(mtU) P-value 95% CI for mU MEDAE Median 

Bias 

OLS 6.98 1.00 0.922 0.309 (-1.12, 3.13) 1.817 -0.71 

QR 10.00 0.00 1.096 1.000 (-0.20, 5.18) 0.000 0.00 

TS 10.00 0.00 0.397 

(MAD) 

0.119 (-2.13, 2.13) 0.000 0.00 

TSS 10.00 0.00 0.000 

(MAD) 

0.181 (-2.13, 2.13) 0.000 0.05 

 

n=30 

OLS 17.33 -0.81 0.446 0.080 (-1.72, 0.10) 1.817 -1.61 

QR 10.00 0.00 0.461 1.000 (-1.38, 0.23) 0.000 0.00 

TS 10.00 0.00 1.189 

(MAD) 

0.011 (-1.04, 0.00) 0.000 0.00 

TSS 10.00 0.00 0.000 

(MAD) 

0.415 (-1.04, 1.04) 0.000 0.05 

 

n=50 

OLS 12.29 0.27 0.340 0.429 (-0.42, 0.96) 1.334 -2.77 

QR 10.00 0.00 0.231 1.000 (-0.18, 0.63) 1.000 0.00 

TS 11.00 0.00 1.876 

(MAD) 

<0.001 (-0.75, -0.01) 1.000 0.00 

TSS 10.00 0.00 0.000 

(MAD) 

0.207 (-0.80, 0.80) 1.000 1.00 

n=100 OLS 13.48 0.11 0.242 0.662 (-0.37, 0.59) 1.012 -3.16 

QR 11.00 0.00 0.155 1.000 (-0.18, 0.31) 1.000 0.00 

TS 11.00 0.00 2.083 

(MAD) 

<0.01 (-0.53, -0.01) 1.000 0.00 

TSS 10.00 0.00 0.000 

(MAD) 

0.398 (-0.57, 0.57) 1.000 1.00 

  

 



127 

 

 

Table 58: Results of Relative Median Absolute Error of the four regression procedures with  

� = ��,��,��,���, ��	
 = ����, �~��	�(�,�,��),��� �~&'�#"�" ()!��"�#! −
5"%,!(�):  

 Relative Median Absolute Error Value 

 

 

 

n=10 

OLS vs QR 1.000 

OLS vs TS 1.000 

OLS vs TSS 1.000 

QR vs TS NA 

QR vs TSS NA 

TS vs TSS NA 

 

 

 

n=30 

OLS vs QR 0.001 

OLS vs TS -0.066 

OLS vs TSS -0.107 

QR vs TS -0.067 

QR vs TSS -0.108 

TS vs TSS -0.037 

 

 

 

n=50 

OLS vs QR 0.251 

OLS vs TS 0.251 

OLS vs TSS 0.251 

QR vs TS 0.000 

QR vs TSS 0.000 

TS vs TSS 0.000 

 

 

 

n=100 

OLS vs QR 0.013 

OLS vs TS 0.013 

OLS vs TSS 0.013 

QR vs TS 0.000 

QR vs TSS 0.000 

TS vs TSS 0.000 
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Figure 19: Four regression lines are shown in each plot with � = ��,��,��,���. ��	
 =
����, �~��	�(�,�,��), �~&'�#"�" ()!��"�#! –  5"%,!(�): 
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8. Digit Preference distribution: 

An outcome variable Y was generated from Digit Preference distribution and a predictor varia-

ble X was generated from uniform distributed with min=1 and max=10. A Monte Carlo Simulation 

was conducted with Nsim=1000 repetitions. 

Regression analysis with  � = 10 30, 50, 100, �	
� = 1000, �~��
�(�, 1,10), 
�~Digit Preference (�): 

Table 59: Descriptive Statistics of (X, Y) in regression analysis with  � = �� ��,��,���,
��	
 = ����, �~��	�(�,�,��),  ��� �~5$6$� 7#"8"#"9%" (�): 

Variables n Min Max Mean Median SD IQR 

Y 10 495.0 595.0 540.5 545.0 30.95 37.5 

X 10 2.48 9.09 5.81 5.57 2.30 3.78 

Y 30 470.0 590.0 539.7 547.5 32.32 53.75 

X 30 1.26 8.98 5.43 6.10 2.27 3.55 

Y 50 460.0 610.0 534.7 532.5 36.82 53.75 

X 50 1.11 9.97 5.81 6.06 2.55 4.00 

Y 100 450.0 615.0 528.5 530.0 37.15 56.25 

X 100 1.09 9.96 5.53 5.69 2.52 4.40 
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Table 60: Results of the four regression procedures with  � = �� ��,��,���, ��	
 =
����, �~��	�(�,�,��),��� �~5$6$� 7#"8"#"9%" (�): 
 

 

n=10 

Regression mtS mtU S.E(mtU) P-value 95% CI for mU MEDAE Median 

Bias 

OLS 541.0 -0.19 4.76 0.968 (-11.0, 10.8) 27.43 4.34 

QR 568.7 -4.72 9.45 0.631 (-14.0, 13.4) 23.87 0.00 

TS 550.1 -1.03 18.79 

(MAD) 

0.695 (-10.4, 8.4) 27.13 0.00 

TSS 559.3 -2.36 11.84 

(MAD) 

0.555 (11.9, 7.2) 26.66 -2.50 

 

n=30 

OLS 551.8 -2.95 2.04 0.154 (-7.05, 1.15) 23.41 -5.17 

QR 546.8 -2.98 2.98 0.321 (-9.5, 1.98) 23.38 0.00 

TS 548.4 -3.19 19.97 

(MAD) 

<0.001 (-7.23, 0.00) 23.08 0.00 

TSS 545.6 -2.25 7.43 

(MAD) 

0.011 (-6.27, 0.00) 24.37 -2.14 

 

n=50 

OLS 12.29 0.27 0.340 0.429 (-0.42, 0.96) 1.334 -2.77 

QR 10.00 0.00 0.231 1.000 (-0.18, 0.63) 1.000 0.00 

TS 11.00 0.00 1.876 

(MAD) 

<0.001 (-0.75, -0.01) 1.000 0.00 

TSS 10.00 0.00 0.000 

(MAD) 

0.207 (-0.80, 0.80) 1.000 1.00 

n=100 OLS 514.9 2.46 1.47 0.097 (-0.45, 5.37) 28.79 0.85 

QR 512.5 2.93 2.46 0.237 (-1.24, 7.22) 28.84 0.00 

TS 516.2 2.41 21.45 

(MAD) 

0.687 (-0.46, 5.29) 28.72 0.00 

TSS 511.4 2.57 6.39 

(MAD) 

0.083 (-0.31, 5.45) 28.96 3.54 
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Table 61: Results of Relative Median Absolute Error of the four regression procedures with  

� = ��,��,��,���, ��	
 = ����, �~��	�(�,�,��),��� �~5$6$� 7#"8"#"9%" (�):  
 Relative Median Absolute Error Value 

 

 

 

n=10 

OLS vs QR 0.130 

OLS vs TS 0.011 

OLS vs TSS 0.028 

QR vs TS -0.136 

QR vs TSS -0.116 

TS vs TSS 0.017 

 

 

 

n=30 

OLS vs QR 0.002 

OLS vs TS -0.092 

OLS vs TSS -0.092 

QR vs TS -0.095 

QR vs TSS -0.095 

TS vs TSS 0.000 

 

 

 

n=50 

OLS vs QR 0.001 

OLS vs TS 0.014 

OLS vs TSS -0.041 

QR vs TS -0.013 

QR vs TSS -0.042 

TS vs TSS -0.055 

 

 

 

n=100 

OLS vs QR -0.002 

OLS vs TS 0.002 

OLS vs TSS -0.006 

QR vs TS 0.004 

QR vs TSS -0.004 

TS vs TSS -0.009 

 



132 

 

 

Figure 20: Four regression lines are shown in each plot with � = ��,��,��,���. ��	
 =
����, �~��	�(�,�,��), �~5$6$� 7#"8"#"9%" (�): 
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CHAPTER 5 DISCUSSION 

Overview: 

Monte Carlo techniques were used to estimate the regression coefficients, standard errors, 

p-values, confidence intervals and median absolute deviation based on Ordinary Least Square Re-

gression, the Quantile Regression, the Theil Sen Regression, and the Theil Sen Siegel Regression 

procedures. Visual as well as numerical comparisons were made using these four regression pro-

cedures. For visual comparison scatter plots with fitted regression lines using all four regression 

procedures were used. For numerical compression, standard errors (in case of normal data with no 

outliers), median absolute deviation (in case of non-normal data or outliers), confidence intervals, 

mean bias (in case of normal data with no outliers), median bias (in case of non-normal data or 

outliers), root mean square error (RMSE), Relative Root Mean Square Error (in case of normal da-

ta with no outliers), median absolute error (MEDAE), and Relative Median Absolute Error (in case 

of non-normal data or outliers) were used. 

The results from the simulation study, compiled above were indicated in the Tables 1 to 61 and 

based on � = 10, 30, 50, 100 and 1,000 simulations. Provided in these tables were descriptive sta-

tistics for both X and Y variables in different regression procedures and the estimates of regression 

coefficients i.e., mS and mUalong with the standard error, p-value, 95% confidence interval, RMSE, 

MEDAE, and biasness of mUin Ordinary Least Square Regression, the Quantile Regression, the 

Theil Sen Regression, and the Theil Sen Siegel Regression procedures. Tables also provide the es-

timates of Relative Root Mean Square Error to measure the relative performance of OLS, QR, TS, 

and TSS. A negative value of Relative Root Mean Square Error (RRMSE) refer to the proportional 

increase in RMSE of first vs second regression procedure, on the other hand positive value of 
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Relative Root Mean Square Error (RRMSE) indicates a proportional decrease in RMSE of first vs 

second regression procedure. 

The performance of Ordinary Least Square Regression, the Quantile Regression, the Theil Sen 

Regression, and the Theil Sen Siegel Regression lines are also presented for visual comparison 

with scatter plots and fitted regression lines.   

Regression Model passing through origin under the Normality Assumption with no Outliers: 

If the errors (�E) were independent and normally distributed from a double exponential distri-

bution then a random sample of size � for both predictor variable X, and outcome variable y from 

a bivariate normal distribution were generated with mean (0, 0), variances equal to 1, and a corre-

lation coefficient equal to 0.80. The results from simulation study are indicated from Table 1, to 

Table 3 with � = 10, 30, 50, 100 and 1000 simulations. Provided in Table 1 were the descriptive 

statistics for both X and Y variables and it can be seen as sample size increase all descriptive sta-

tistics become stable. 

Provided in Table 2 were the estimates, of regression coefficients i.e., mS and mUalong with the 

standard error, p-value, 95% confidence interval, RMSE, and biasness of mUwith Ordinary Least 

Square Regression, the Quantile  Regression, the Theil Sen Regression, and the Theil Sen Siegel 

Regression procedures. It can be seen; when sample size is small i.e. � = 10 the estimates of Y-

intercept mtS are all negative and the estimates of slops mtU are all positive with more or less same 

standard errors except the Regression procedure. The predictor X is significant only in OLS with 

p-value=0.043. The regression coefficient mtU is the only unbiased estimate of population regression 

coefficient mU with minimum RMSE in OLS as compared to other regression procedures. It can 

also be seen that QR with low RMSE and bias, perform better as compared to TS and TSS. When 

sample size � = 30, 50, ��� 100 all the estimates of Y-intercept mtS and slops mtU are all positive 
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with decreasing standard errors. The regression coefficient mtU is again the only unbiased estimate 

of population regression coefficient mU with minimum RMSE in OLS as compared to other regres-

sion procedures. It is to be noted that the biasness of QR, TS, and TSS are not quite stable with 

sample size, but still approaches to zero with an increase in �.  

Provided in Table 3 were the estimates of Relative Root Mean Square Error to measure the rel-

ative performance of OLS, QR, TS, and TSS. It can be seen; when sample size is small i.e. � = 10 

there is a proportional increase in RMSE of QR, TS, and TSS as compared to OLS. When sample 

size � = 30 ��� 50 OLS is still batter followed by TS and TSS. When sample size � = 100 OLS 

is still batter followed by QR and TS. 

The four regression lines can also be seen at each plot in Figure 1. It can be seen, when sample 

size is small i.e. � = 10 more or less all four regression lines fit well. When sample size � =
 30, 50, 100 all four regression line have same performance. 

Regression Model with slop and intercept under the Normality Assumption with no Outliers: 

If the errors (�E) were independent and normally distributed with zero mean and 2 standard de-

viation then a random sample of size � for a predictor variable X was generated from a uniform 

distribution with min=0 and max=1, and an outcome variable Y was defined as � = 2 + 3 ∗ � + �. 

The results from simulation study were indicated in Table 4 to Table 6 with � = 10, 30, 50, 100 

and 1000 simulations. Provided in Table 4 were the descriptive statistics for both X and Y varia-

bles and it can be seen as sample size increase all descriptive statistics become stable. 

As indicated in the Table 5, with � = 10, 30, 50, ��� 100 all the estimates of Y-intercept mtS 

and slops mtU were all positive with decreasing standard errors. The regression coefficient mtU is 

again the only unbiased estimate of population regression coefficient mU with minimum RMSE in 

OLS as compared to other regression procedures. When � is start getting large, the predictor X is 
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also start getting significant with " < 0.001. Again the biasness of QR, TS, and TSS were not 

quite stable with sample size, but still approaches to zero with an increase in �. In Table6, the rela-

tive performance of OLS is still better, followed by QR, TS, and TSS.  

The four regression lines can also be seen at each plot in Figure 2. When the sample size is 

small i.e. � = 10 more or less all four regression lines fit well. When sample size � = 30, 50, 100, 

all four regression fit the same. 

Regression Model with slop, intercept and dichotomous predictor variable with no Outliers: 

If the errors (�E) were independent and normally distributed with zero mean and 2 standard de-

viation then a random sample of size � for a predictor variable X was generated from a binomial 

distribution with a single trial and " = 0.5, and an outcome variable Y was defined as � = 2 + 3 ∗
� + �. The results from simulation study were indicated from Table 7 to Table 10 with � =
10, 30, 50, 100 and 1000 simulations. Provided in Table 7 and Table 8 were the descriptive statis-

tics for both X and Y variables and it can be seen as sample size increase all descriptive statistics 

become stable. 

As indicated in the Table 9, with � = 10, 30, 50, ��� 100 all the estimates of Y-intercept mtS 

and slops mtU were all positive with decreasing standard errors. The regression coefficient mtU is 

again the only unbiased estimate of population regression coefficient mU with minimum RMSE in 

OLS as compared to other regression procedures. Again, when � is start getting large, the predictor 

X is also start getting significant with " < 0.001. Again, it is to be noted that the biasness of QR, 

TS, and TSS were not quite stable with sample size, but still approaches to zero with an increase 

in �. In Table6, the relative performance of OLS is still better, followed by TS, TSS and QR.  
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The four regression lines can also be seen at each plot in Figure 3. It can be seen, when sample 

size is small i.e. � = 10 more or less all four regression lines fit well. When sample size � =
30, 50, 100 all four regression fit the same. 

Regression Model with Outliers in both X and Y direction: 

If the errors (�E) were independent and normally, then a random sample of size � was generat-

ed from a bivariate normal distribution with mean (0, 0) and variances equal to 1, and a correlation 

coefficient equal to 0.80. Outliers of 10%, 30% 50% and 100% of � were introduced in both X and 

Y variables from a bivariate normal distribution with means (2, 6) and variances 0.1*variance of 

the above bivariate normal distribution, i.e. the variances (0.1, 0.1).The results from simulation 

study were indicated from Table 11 to Table 22, with � = 10, 30, 50, 100 and 1000 simulations. 

Provide from Table 11, Table 14, and Table 17 were the descriptive statistics for both X and Y 

variables with 10%, 20%, 30% and 50% of �. In Table12, when � = 10 with 10% and 20% outli-

ers, all the estimates of Y-intercept mtS and slops mtU were all positive with increasing standard er-

rors. The regression coefficient mtU is now the median unbiased estimate of population regression 

coefficient mU with minimum MEDAE in QR, TS, and TSS as compared to OLS. The predictor X 

is statistically significant in all four procedures. The relative performance with median absolute 

deviation of TS is better, followed by QR and TSS. With 30% and 50% outliers, all the estimates 

of Y-intercept mtS were unstable with still positive slops mtU with increasing standard errors. The 

regression coefficient mtU is not a stable median unbiased estimate of population regression coeffi-

cient mU as well as MEDAE. The predictor X is still statistically significant in all four procedures. 

The relative performance with median absolute deviation in Table13 is not very consistent. 

The four regression lines with 10%, 20%, 30% and 50% of � = 10 can also be seen at each 

plot in Figure 4. It can be seen, when sample size is small i.e. � = 10 with 10% outlier the QR, 
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TS, and TSS were more robust regression lines as compared to OLS. Moreover, QR and TSS were 

slightly more robust than TS. As the percentage of outliers increases TSS still robust regression 

line as compared to QR and TSS. It can be seen TSS is about to tolerate 50% of the outliers with 

� = 10. 
In Table 14, Table 18, and, Table 21, when � = 30, 50, ��� 100 with 10%, 20%, 30%, and 

50% outliers in �, all the estimates of Y-intercept mtS and slops mtU were all mostly positive with 

increasing standard errors. The regression coefficient mtU is still the median unbiased estimate of 

population regression coefficient mU with minimum MEDAE in QR, TS, and TSS as compared to 

OLS. The predictor X is still statistically significant in all four procedures. The relative perfor-

mance with median absolute deviation in Table 15, Table 19, and Table 22 shows TSS is more or 

less better, followed by TS and QR. 

The four regression lines with 10%, 20%, 30% and 50% of � = 30, 50, ��� 100 can also be 

seen at each plot in Figure 4 to Figure 7. It can be seen, in all cases QR, TS, and TSS were still 

more robust regression lines as compared to OLS. Moreover, the TSS is clearly more robust re-

gression procedure than TS followed by QR. 

Regression Model with Outliers in Y direction only: 

If the errors (�E) were independent and normally, then a random sample of size � was generat-

ed from a bivariate normal distribution with mean (0, 0) and variances equal to 1, and a correlation 

coefficient equal to 0.80. Outliers of 10%, 30% 50% and 100% of � were introduced in Y variable 

only from a bivariate normal distribution with means (0, 6) and variances 0.1*variance of the 

above bivariate normal distribution, i.e. the variances (0.1, 0.1). The results from simulation study 

were indicated from Table 23 to Table 34, with � = 10, 30, 50, 100 and 1000 simulations. Provid-

ed from Table 23, Table 26, Table 29, and Table 32 were the descriptive statistics for both X and 
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Y variables with 10%, 20%, 30% and 50% of � in Y direction only. In Table 24, when � = 10 

with 10%, 20%, 30%, and 50% outliers, all the estimates of Y-intercept mtS were positive and slops 

mtU were all positive except the slope of OLS with 30% and 50% outliers, with increasing standard 

errors in OLS and QR and Median absolute deviation in TS and TSS. The regression coefficient mtU 

is still the median unbiased estimate of population regression coefficient mU with minimum 

MEDAE in QR, TS, and TSS as compared to OLS. The predictor X is statistically significant at 

10% outliers in all four procedures only. The relative performance with median absolute deviation 

of TS is better, followed by QR and TSS. With 30% and 50% outliers, all the estimates of slops mtU 

were unstable with increasing standard errors in OLS and QR and median absolute deviation in TS 

and TSS. The regression coefficient mtU is not a stable median unbiased estimate of population re-

gression coefficient mU. The predictor X is not any more statistically significant in all four proce-

dures. The relative performance with median absolute deviation in Table 25 is not very consistent. 

The four regression lines with 10%, 20%, 30% and 50% of � = 10 can also be seen at each 

plot in Figure 5. It can be seen, when sample size is small i.e. � = 10 with 10% and 20 % outlier 

the QR, TS, and TSS were coincide and were more robust regression lines as compared to OLS. 

As the percentage of outliers increases QR still robust regression line as compared to TS and TSS. 

In Table 27, Table 30, and, Table 33, when � = 30, 50, ��� 100 with 10%, 20%, 30%, and 

50% outliers in �, all the estimates of Y-intercept mtS and slops mtU were all mostly positive with 

increasing standard errors in OLS and QR and an increasing median absolute deviation in TS and 

TSS. The regression coefficient mtU is still the median unbiased estimate of population regression 

coefficient mU with minimum MEDAE in QR, TS, and TSS as compared to OLS. The predictor X 

is still statistically significant in most of the all four procedures. The relative performance with 



140 

 

 

median absolute deviation were indicated in the Table 28, Table 31, and Table 34 shows that the 

QR is more or less better, followed by TS and TSS. 

The four regression lines with 10%, 20%, 30% and 50% of � = 30, 50, ��� 100 can also be 

seen at each plot in Figure 6 to Figure 8. It can be seen, in all cases QR, TS, and TSS were still 

more robust regression lines as compared to OLS. Moreover, the QR is slightly more robust re-

gression procedure than TS followed by TSS. 

Regression Model under the Non-Normality Assumption: 

An outcome variable Y was generated and uses the log link function so for a predictor variable 

X, was assumed Y~ Poisson (λ), and ��Æ ($)  = 1 + 0.2 ∗ �. It was assumed X is uniformly dis-

tributed with min=0 and max=1. A Monte Carlo Simulation was conducted with Nsim=1000 repe-

titions. Again, the results from simulation study were indicated from Table 35 to Table 37, with 

� = 10, 30, 50, 100 and 1000 simulations. Provided in Table 36 was the descriptive statistics for 

both X and Y variables. In Table 37, as the sample size increases the estimates of Y-intercept mtS 

approaches to 3.00 and slops mtU approaches to zero, with decreasing standard errors in OLS and 

QR and Median absolute deviation in TS and TSS. The regression coefficient mtU is still the median 

unbiased estimate of population regression coefficient mU with minimum MEDAE in QR, TS, and 

TSS as compared to OLS. The variable X is not a consistent statistically significant predictor. The 

relative performances with median absolute deviation of all four procedures were more or less 

same. The relative performance with median absolute deviation in Table38 looks consistent.  

The four regression lines with � = 10, 30, 50, ��� 100 can also be seen at each plot in Figure 

6. It can be seen that the QR, TS, and TSS were coincide and were more robust regression lines as 

compared to OLS.  
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Regression Model under the Micceri distributions: 

Eight Micceri distributions were used to generate a random sample for an outcome variable Y, 

with a uniform distribution of predictor variable X with min=0 and max=1. 

1. Smooth Symmetric distribution: 

An outcome variable Y was generated from a Smooth Symmetric distribution and a predictor 

variable X was generated from uniform distributed with min=1 and max=10. A Monte Carlo Simu-

lation was conducted with Nsim=1000 repetitions. Again, a Monte Carlo Simulation was conduct-

ed with Nsim=1000 repetitions. As usual the results from simulation study were indicated from 

Table 38 to Table 40, with � = 10, 30, 50, 100 and 1000 simulations. Provided in Table 38 was 

the descriptive statistics for both X and Y variables. In Table 39, all the estimates of Y-intercept mtS 

were positive and slop mtU changes from negative to zero, with decreasing standard errors in OLS 

and QR and Median absolute deviation in TS and TSS. The regression coefficient mtU is still the 

median unbiased estimate of population regression coefficient mU with minimum MEDAE in QR, 

TS, and TSS as compared to OLS. The variable X is not a consistent statistically significant pre-

dictor. The relative performances with median absolute deviation of QR is batter with n=10 and 30 

as compared to others, similarly relative performances with median absolute deviation of TSS is 

batter with n=50 and 100 as compared to other procedures. The relative performance with median 

absolute deviation in Table40 looks consistent.  

The four regression lines with � = 10, 30, 50, ��� 100 can also be seen at each plot in Figure 

7. It can be seen that the QR, TS, and TSS were almost coincide and were more robust regression 

lines as compared to OLS. The QR is slightly more robust line with small n and TSS is more ro-

bust regression lines with large n. 
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2. Extreme Asymmetric distribution: 

An outcome variable Y was generated from an Extreme Asymmetric distribution and a predic-

tor variable X was generated from uniform distributed with min=1 and max=10. A Monte Carlo 

Simulation was conducted with Nsim=1000 repetitions. Again, a Monte Carlo Simulation was 

conducted with Nsim=1000 repetitions. As usual the results from simulation study were indicated 

from Table 41 to Table 43, with � = 10, 30, 50, 100 and 1000 simulations. Again provided in Ta-

ble 41 was the descriptive statistics for both X and Y variables. As indicated in the Table 42, all 

the estimates of Y-intercept mtS were positive and slop mtU changes from negative to zero as sample 

size become large, with decreasing standard errors in OLS and QR and Median absolute deviation 

in TS and TSS. The regression coefficient mtU is still the median unbiased estimate of population 

regression coefficient mU. It can be seen that the MEDAE is not very consistent measure in all four 

procedures. Again, the variable X is not a consistent statistically significant predictor. The relative 

performances with median absolute deviation of QR is batter with n=10 as compared to others, 

similarly relative performances with median absolute deviation of TS is batter with n=30 and 50 as 

compared to other procedures. The relative performance with median absolute deviation of QR is 

slightly batter with n=100 as compared to others. The relative performance with median absolute 

deviation in Table 43 looks consistent.  

The four regression lines with � = 10, 30, 50, ��� 100 can also be seen at each plot in Figure 

8. It can be seen that the QR, TS, and TSS were almost coincide and were more robust regression 

lines as compared to OLS with n=10 and n=30. The TSS is slightly more robust line as compared 

to others. 
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3. Extreme Bimodal distribution: 

An outcome variable Y was generated from an Extreme Bimodal distribution and a predictor 

variable X was generated from uniform distributed with min=1 and max=10. A Monte Carlo Simu-

lation was conducted with Nsim=1000 repetitions. The results from simulation study were indicat-

ed from Table 44 to Table 46, with � = 10, 30, 50, 100 and 1000 simulations. Provided in Table 

44 was the descriptive statistics for both X and Y variables. As indicated in the Table 45, almost 

all the estimates of Y-intercept mtS were positive and slop mtU changes to zero as sample size be-

come large, with decreasing standard errors in OLS and QR and Median absolute deviation in TS 

and TSS. The regression coefficient mtU is still the median unbiased estimate of population regres-

sion coefficient mU. It can be seen as the sample size increases MEDAE in all four procedures ap-

proaches to 1.00. Again, the variable X is not a consistent statistically significant predictor. The 

relative performances with median absolute deviation of TS is batter with n=10 as compared to 

others, similarly relative performances with median absolute deviation of QR is batter with n=30 

as compared to other procedures. The relative performance with median absolute deviation of all 

procedures were same with n=50 and n=100. The relative performance with median absolute devi-

ation in Table 46 looks consistent.  

The four regression lines with � = 10, 30, 50, ��� 100 can also be seen at each plot in Figure 9. It 

can be seen that the, TS, and TSS were almost coincide and were more robust regression lines as 

compared to QR and OLS.  

4. Mass at Zero distribution: 

An outcome variable Y was generated from Mass at Zero distribution and a predictor variable 

X was generated from uniform distributed with min=1 and max=10. A Monte Carlo Simulation 

was conducted with Nsim=1000 repetitions. The results from simulation study were indicated from 
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Table 47 to Table 49, with � = 10, 30, 50, 100 and 1000 simulations. Provided in the Table47 was 

the descriptive statistics for both X and Y variables. As indicated in the Table48, all the estimates 

of Y-intercept mtS were positive and slop mtU changes to zero as sample size become large, with de-

creasing standard errors in OLS and QR and Median absolute deviation in TS and TSS. The re-

gression coefficient mtU is still the median unbiased estimate of population regression coefficient mU 

in TS and TSS. The variable X is not a consistent statistically significant predictor with large n. 

The relative performances with median absolute deviation of QR is batter with n=10 and n=30 as 

compared to others, similarly relative performances with median absolute deviation of OLS is bat-

ter with n= 50 and n=100 as compared to other procedures. The relative performance with median 

absolute deviation in Table 49 looks consistent.  

The four regression lines with � = 10, 30, 50, ��� 100 can also be seen at each plot in Figure 

10. It can be seen that the QR, TS, and TSS were almost coincide and were more robust regression 

lines as compared to OLS.  

5. Mass at Zero with Gap distribution: 

An outcome variable Y was generated from Mass at Zero with Gap distribution and a predictor 

variable X was generated from uniform distributed with min=1 and max=10. A Monte Carlo Simu-

lation was conducted with Nsim=1000 repetitions. The results from simulation study were indicat-

ed from Table 50 to Table 52, with � = 10, 30, 50, 100 and 1000 simulations. Again, provided in 

the Table50 was the descriptive statistics for both X and Y variables. As indicated in the Table51, 

all the estimates of Y-intercept mtS  and slop mtUwere zero except for OLS, with not available stand-

ard errors in QR, TS, and TSS. The Median absolute deviation in QR, TS and TSS were also zero. 

The regression coefficient mtU is still the median unbiased estimate of population regression coeffi-

cient mU for QR, TS, and TSS. The variable X is not statistically significant predictor. The relative 
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performances with median absolute deviation of QR, TS and TSS were all zero. The relative per-

formance with median absolute deviation in Table 52 is not available while comparing QR, TS, 

and TSS.  

The four regression lines with � = 10, 30, 50, ��� 100 can also be seen at each plot in Figure 

11. It can be seen that the QR, TS, and TSS were all coincide and were more robust regression 

lines as compared to OLS.  

6. Multimodal Lumpy distribution: 

An outcome variable Y was generated from Multimodal Lumpy distribution and a predictor 

variable X was generated from uniform distributed with min=1 and max=10. A Monte Carlo Simu-

lation was conducted with Nsim=1000 repetitions. The results from simulation study were indicat-

ed in Table 53 to Table 55, with � = 10, 30, 50, 100 and 1000 simulations. Provided in the Table 

53 was the descriptive statistics for both X and Y variables. As indicated in the Table54, all the 

estimates of Y-intercept mtS were positive and slop mtUchanges from positive to negative for n=30, 

50, and 100 with an inconsistent performance of standard errors. The Median absolute deviation 

error is not consistent also. The regression coefficient mtU is still the median unbiased estimate of 

population regression coefficient mU for QR and TSS. The variable X is not statistically significant 

predictor. The relative performance with median absolute deviation in Table 55 is not consistent 

again comparing QR, TS, and TSS.  

The four regression lines with � = 10, 30, 50, ��� 100 can also be seen at each plot in Figure 

12. It is difficult to decide which one is more robust. 

7. Extreme Asymmetry – Decay distribution: 

An outcome variable Y was generated from Extreme Asymmetry – Decay distribution and a 

predictor variable X was generated from uniform distributed with min=1 and max=10. A Monte 
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Carlo Simulation was conducted with Nsim=1000 repetitions. The results from simulation study 

were indicated in Table 56 to Table 58, with � = 10, 30, 50, 100 and 1000 simulations. Table 56 

again provided the descriptive statistics for both X and Y variables. As indicated in the Table 57, 

all the estimates of Y-intercept mtS were positive and slop mtUwere all zero except for OLS with a 

decreasing value of standard errors and Median absolute deviation. The regression coefficient mtU is 

a median unbiased estimate of population regression coefficient mU for QR and TS. The variable X 

is not consistent statistically significant predictor in most of the cases. The relative performance 

with median absolute deviation in Table 58 is not consistent.  

The four regression lines with � = 10, 30, 50, ��� 100 can also be seen at each plot in Figure 

13. It can be seen QR, TS, and TSS coincides with n=10 and 30. Also QR and TSS were still ro-

bust followed by TS and OLS. 

8.  Digit Preference distribution: 

An outcome variable Y was generated from Digit Preference distribution and a predictor varia-

ble X was generated from uniform distributed with min=1 and max=10. A Monte Carlo Simulation 

was conducted with Nsim=1000 repetitions. The results from simulation study were indicated in 

Table 59 to Table 61, with � = 10, 30, 50, 100 and 1000 simulations. Provided in the Table 59 

was the descriptive statistics for both X and Y variables. As indicated in the Table 57, all the esti-

mates of Y-intercept mtS were positive and slop mtUchanges from negative to positive for n=50 and 

100 with an inconsistent performance of standard errors. The Median absolute deviation error is 

not very consistent also. The regression coefficient mtU is a median unbiased estimate of population 

regression coefficient mU for QR and TS. The variable X is not consistent statistically significant 

predictor. The relative performance with median absolute deviation in Table61 looks consistent 

again comparing QR, TS, and TSS.  
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The four regression lines with � = 10, 30, 50, ��� 100 can also be seen at each plot in Figure 14. 

It is difficult to decide which one is more robust.  

Conclusion 

When the regression model passing through origin under the normality assumption with no 

outliers, it can be seen OLS was more robust regression models with small standard errors and 

small RMSE as compared to QR, TS, and TSS. Among the QR, TS, and TSS models, when n=10 

QR, was perform batter followed by TS and TSS. When n=30 and 50, TS model perform well as 

compared to QR and TSS. Similarly, when n=100 TSS model looks slightly more robust with little 

small RMSE. 

When the regression model is being used with slop and intercept under the normality as-

sumption with no outliers, it can be seen again OLS was more robust regression models with small 

standard errors and small RMSE as compared to QR, TS, and TSS. Among the QR, TS, and TSS 

models, when n=10 QR, was perform batter followed by TS and TSS. When n=30 and 50, TS 

model perform well as compared to QR and TSS. Similarly, when n=100 QR model looks slightly 

more robust with small RMSE. 

When the regression model is being used with slop, intercept and a dichotomous predictor 

variable with no outliers, it can be seen again OLS was still more robust regression models with 

small standard errors and small RMSE as compared to QR, TS, and TSS. 

When the regression model is being used with outliers in both X and Y directions, it can be 

seen QR has small standard as compared to OLS and TSS has small median absolute deviation 

than TS. All figures illustrated in regression model with outliers in both X and Y directions that 

TSS was more robust regression model followed by TS, QR, and OLS. 
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When the regression model is being used with outliers in Y directions only, it can be seen 

QR again has small standard errors as compared to OLS and TSS has small median absolute devia-

tion than TS in some cases. All figures illustrated in regression model with outliers in Y direction 

only, QR was more robust regression model followed by TS, TSS, and OLS. 

When the regression model is being used under the non-normality assumption, it can be 

seen OLS has small standard errors as compared to QR and TS has more or less same median ab-

solute deviation than TSS. All figures illustrated in regression model under the non-normality as-

sumption all three regression procedures QR, TS, and TSS were more robust compared to OLS. 

Moreover there was no much difference among the three procedures. 

When the regression model is being used with Smooth Symmetric distribution under the 

Micceri family, it can be seen OLS has small standard errors as compared to QR and TSS has less 

median absolute deviation than TS. All figures illustrated in regression model with smooth sym-

metric distribution under the Micceri family distribution, TSS was slightly more robust. 

When the regression model is being used with Extreme Asymmetric distribution under the 

Micceri family, it can be seen OLS again has small standard errors as compared to QR and TSS 

has less median absolute deviation than TS with large n. All figures again illustrated in regression 

model with Extreme Asymmetric distribution under the Micceri family distribution, TSS was 

slightly more robust. 

When the regression model is being used with Extreme Bimodal distribution under the 

Micceri family, it can be seen OLS again has small standard errors as compared to QR and TSS 

has less median absolute deviation than TS with large n. All figures again illustrated in regression 

model with Extreme Bimodal distribution under the Micceri family distribution, TSS was slightly 

more robust. 
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When the regression model is being used with Mass at Zero distribution under the Micceri 

family, it can be seen OLS has small standard errors as compared to QR when n=30, 50, and 100 

and TSS has less median absolute deviation than TS with similar n=30, 50, and 100. All figures 

illustrated in regression model with Mass at Zero distribution under the Micceri family distribu-

tion, QR, TS, and TSS was slightly more robust than OLS, but they have similar performance 

among each other.  

When the regression model is being used with Mass at Zero with Gap distribution under the 

Micceri family, it can be seen OLS again has small standard errors as compared to QR and TSS 

has less median absolute deviation than TS. All figures illustrated in regression model with Mass 

at Zero with Gap distribution under the Micceri family distribution, QR, TS, and TSS was slightly 

robust than OLS, but they have similar performance among each other.  

When the regression model is being used with Multimodal Lumpy distribution under the 

Micceri family, it can be seen OLS has small standard errors as compared to QR and TSS has less 

median absolute deviation than TS. All figures illustrated in regression model with Multimodal 

Lumpy distribution under the Micceri family distribution, QR, TS, TSS, and OLS have similar per-

formance.  

When the regression model is being used with Extreme Asymmetry distribution under the 

Micceri family, it can be seen OLS has small standard errors as compared to QR and TSS has less 

median absolute deviation than TS. All figures illustrated in regression model with Extreme 

Asymmetry distribution under the Micceri family distribution, QR, TSS, were more robust as 

compared to TS and OLS.  

When the regression model is being used with Digital Preference distribution under the 

Micceri family, it can be seen OLS again has small standard errors as compared to QR and TSS 
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has less median absolute deviation than TS. All figures illustrated in regression model with Digital 

Preference distribution under the Micceri family distribution QR, TS, TSS, and OLS have similar 

performance.  

Therefore, it is recommended that, under the normality assumption with no outliers OLS 

should be the most suitable regression procedure followed by QR, TS and TSS. When there are 

outliers in both X and Y direction TSS should be the most suitable followed by QR and TS. Under 

the non-normality assumption QR, TS and TSS have more or less same performance. For, Micceri 

family distribution overall TSS might be a suitable regression procedure. 

Since, the eight empirical distributions identified by Micceri (1989),  were categorized into 

general achievement/ability tests, criterion/mastery tests, psychometric measures, pre-test 

measures, and post-test measures, therefore it is recommended to use TTS procedure while using 

these distribution in a large data set, with an exception is the smooth symmetric data set, which 

appeared in less than 3% of Micceri’s data sets. 

It is to be noted that the results presented in this dissertation are the solutions to outliers 

when doing regression analysis. The results equally apply to ANOVA models as well. 

Although, multiple linear regression was discussed in literature review, but our main focus 

was to study simple linear regression. For future study, all four regression techniques can be com-

pared with the presence of outliers and non-normality of population distribution assumption using 

multiple regression technique. 
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Researchers in social and behavioral sciences usually interested in study the relationship be-

tween a response variable �E and one or more independent predictors  �E either for the purpose of 

explanation or prediction. Ordinary Least Square Regression is a parametric approach used to study 

this kind of relationship. One of the disadvantages of Ordinary Least Square is it does not fit well 

in the presence of outliers in the response variable �E or both in the response variable �E and the 

predictor variable �E, also if the data were sampled from a non-normal distribution. Quantile Re-

gression, Theil-Sen regression, and the modified Theil-Sen Siegel regression are non-parametric 

approaches that can also be used to study the relationship and are more robust methods to outliers 

and non-normality of the distribution.  

Several comparisons are made between Ordinary Least Square Regression, Quantile Re-

gression, Theil Sen Regression, and Theil Sen Siegel Regression, but no direct comparison is yet 

made between Quantile Regression, Theil Sen Regression and Theil Sen Siegel Regression in the 

presence of outliers. In order to investigate this claim, Monte Carlo simulation study were em-

ployed and observations were generated from three theoretical and eight Micceri family distribu-

tions. Similarly, observations for the Monte Carlo simulations will be randomly generated with dif-
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ferent sample sizes in the presence of 10% and 20%, 30% and 50% outliers. A comparison based 

on Mean Bias, Median Bias, Standard Deviation (S.D), Standard Errors (S.E),  Root Mean Square 

Error (RMSE), Relative Root Mean Square Error (RRMSE), Median Absolute Error (MEDAE), 

and Relative Median Absolute Error (RMEDAE) of the four regression procedures are used to 

evaluate the model fitting.  

The results of the study showed, under the normality assumption with no outliers Ordinary 

Least Square Regression should be the most suitable regression procedure followed by Quantile 

Regression, Theil Sen Regression, and Theil Sen Siegel Regression. When there are outliers in both 

X and Y direction Theil Sen Siegel Regression should be the most suitable followed by Quantile 

Regression and Theil Sen Regression. Under the non-normality assumption Quantile Regression, 

Theil Sen Regression and Theil Sen Siegel Regression have more or less same performance. For, 

Micceri family distribution overall Theil Sen Siegel Regression might be a suitable regression pro-

cedure. 
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