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Abstract 

The sustainable exploration of mineral resources plays a significant role in the economic 

development of any nation. The lithological maps and surface mineral distribution can be 

vital baseline data to narrow down the geochemical and geophysical analysis potential 

areas. This study developed innovative spectral and Machine Learning (ML) methods for 

mineral and lithological classification. Multi-sensor datasets such as Airborne 

Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG), Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land 

Observing (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR), 

Sentinel-1, and Digital Elevation Model (DEM) were utilized. The study mapped the 

hydrothermal alteration minerals derived from Spectral Mapping Methods (SMMs), 

including Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and 

SIDSAMtan using high-resolution AVIRIS-NG hyperspectral data in the Hutti-Maski area 

(India). The SIDSAMtan outperforms SID and SAM in mineral mapping. A spectral 

similarity matrix of target and non-target classes based optimum threshold selection was 

developed to implement the SMMs successfully. Three new effective SMMs such as Dice 

Spectral Similarity Coefficient (DSSC), Kumar-Johnson Spectral Similarity Coefficient 

(KJSSC), and their hybrid, i.e., KJDSSCtan has been proposed, which outperforms the 

existing SMMs (i.e., SAM, SID, and SIDSAMtan) in spectral discrimination of spectrally 

similar minerals. The developed optimum threshold selection and proposed SMMs are 

recommended for accurate mineral mapping using hyperspectral data. An integrated 

spectral enhancement and ML methods have been developed to perform automated 

lithological classification using AVIRIS-NG hyperspectral data. The Support Vector 

Machine (SVM) outperforms the Random Forest (RF) and Linear Discriminant Analysis 

(LDA) in lithological classification. The performance of SVM also shows the least 

sensitivity to the number and uncertainty of training datasets. This study proposed a multi-

sensor datasets-based optimal integration of spectral, morphological, and textural 

characteristics of rocks for accurate lithological classification using ML models. Different 

input features, such as (a) spectral, (b) spectral and transformed spectral, (c) spectral and 

morphological, (d) spectral and textural, and (e) optimum hybrid, were evaluated for 

lithological classification. The developed approach has been assessed in the Chattarpur 

area (India) consists of similar spectral characteristics and poorly exposed rocks, 

weathered, and partially vegetated terrain. The optimal hybrid input features outperform 

other input features to accurately classify different rock types using the SVM and RF 

models, which is ~15% higher than as obtained using spectral input features alone. The 

developed integrated approach of spectral enhancement and ML algorithms, and a multi-

sensor datasets-based optimal integration of spectral, morphological, and textural 

characteristics of rocks, are recommended for accurate lithological classification. The 

developed methods can be effectively utilized in other remote sensing applications, such 

as vegetation/forest mapping and soil classification. 



1 

1 Introduction 

1.1 Background  

Remote sensing has coined as the most promising tool for mineral prospecting and 

geological exploration with their wide range of sensors functional within different parts of 

the electromagnetic spectrum (Bishop et al., 2011; Pour & Hashim, 2011; Farifteh et al., 

2013; Farooq & Govil, 2014; Carrino et al., 2018). Geological targets like minerals and 

rocks have wavelength-specific diagnostic spectral signatures produced due to electronic 

and vibrational processes (Clark et al., 1993; Clark, 1999; Clark et al., 2003). The spectral 

signatures of rocks and minerals have been extensively used for their identification, 

discrimination, and classification (Hunt, 1977; Kruse, 1988; Kruse et al., 1993; Kruse, 

1996; Crosta et al., 1998; Kruse, 1998; Kruse et al., 2003; Van der Meer, 2004; Kruse et 

al., 2006; Van der Meer, 2006; Bishop et al., 2011; Van der Meer & De Jong, 2011; Kruse, 

2012; Van der Meer et al., 2012). The accurate identification, discrimination, and 

classification of hydrothermal alteration minerals along with accurate lithological maps are 

essential in successful ore prospecting and mineral exploration (Crosta et al., 1998; Sabins, 

1999; Rowan & Mars, 2003; Rowan et al., 2005; Van der Meer et al., 2012; Carranza & 

Laborte, 2015; Carrino et al., 2018; Bhattacharya et al., 2019b; Guha et al., 2020). A wide 

range of remote sensors operates in various parts of the electromagnetic spectrum, 

including optical and microwave regions that can be effectively used to discriminate 

different rock types accurately to produce accurate lithological maps (Lillesand et al., 

2015). Optical remote sensing, including both multispectral and hyperspectral sensors, 

have been widely exploited in minerals and rock types mapping (Kruse, 1998; Kruse et al., 

2003; Ninomiya, 2004; Gomez et al., 2005; Ninomiya et al., 2005; Kruse et al., 2006; 

Bedini, 2009; Goetz, 2009; Bedini, 2011; Kruse, 2012; Zhang et al., 2013; Kumar et al., 

2014; Zhang & Li, 2014; Kumar et al., 2015; Kumar et al., 2020a; Kumar et al., 2020b). 

The hyperspectral sensors measure the reflected or emitted energy of the surface in many 

narrow and contiguous spectral bands. In contrast, multispectral sensors are usually limited 

to a fewer number of spectral bands. Hyperspectral sensors efficiently capture the subtle 

variation in the geological targets caused due to the crystal structure, grain size, moisture 

content, and chemical composition, which is limited to multispectral sensors (Clark, 1999; 

Van der Meer, 2004; Van der Meer & De Jong, 2011; Van der Meer et al., 2012). Although 

hyperspectral sensors are fascinating in capturing geological targets' spectral signatures, 

their availability is usually limited. Hyperspectral datasets generated from the laboratory, 

field and airborne/spaceborne platforms have been extensively used in the identification of 

various groups of minerals such as clays, carbonates, and silicates (Goetz et al., 1985; 

Kruse, 1988; Clark et al., 1993; Clark, 1999; Bierwirth et al., 2002; Clark et al., 2003; 

Goetz, 2009; Kruse, 2012; Zhang et al., 2013; Zadeh et al., 2014). Furthermore, the 

airborne hyperspectral sensors provide a better scope to capture a more significant number 

of spectrally pure targets than spaceborne sensors due to their higher spectral and spatial 

resolution and higher signal-to-noise ratio (Kruse et al., 2003; Van der Meer, 2004). Unlike 

the optical remote sensors, the microwave remote sensors operate at different frequencies, 

and polarization can penetrate through clouds and vegetation to derive rocks' surface 
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characteristics (Schmullius & Evans, 1997). The imaging microwave remote sensor or 

Synthetic Aperture Radar (SAR) measures the surface backscattered energy, which is 

mainly controlled by surface roughness and dielectric constant (Hajnsek et al., 2003). The 

utilization of multi-sensor datasets of different wavelength regions provides an exciting 

opportunity to derive rocks' surface characteristics for accurate lithological discrimination 

and classification. 

1.2 Statement of the problem 

The sustainable exploration of mineral resources plays a significant role in the economic 

development of any nation. The accurate spatial distribution of minerals and high-

resolution lithological maps are essential in successful mineral and geological exploration. 

The high spectral and spatial resolution and high signal-to-noise ratio of airborne 

hyperspectral sensors provide an ideal scope to analyze the minute variation in geological 

targets' characteristics. Although, the application of remotely sensed datasets in the 

minerals and lithological mapping is not new. The optimization of exiting and development 

of new methods can facilitate their successful exploitation. The classical approach of 

mineral classification is Spectral Mapping/Matching Methods (SMMs) such as Spectral 

Angle Mapper (SAM) (Kruse et al., 1993) and Spectral Information Divergence (SID) 

(Chang, 1999, 2000). The main limitation of most SMMs is that they require a threshold 

value to obtain the final classification result, which is challenging and usually a trial and 

error approach. This approach becomes more uncertain when there is a lack of 

comprehensive field/lab data, and visual interpretation of target classes is difficult 

(Shanmugam & SrinivasaPerumal, 2014; Kumar et al., 2020a). The implementation of 

hybrid SMM (i.e., SIDSAMtan) and their comparison with other SMMs have not been 

evaluated extensively for mineral mapping using high-resolution hyperspectral data. 

Furthermore, most SMMs do not perform satisfactory discrimination of spectrally similar 

minerals due to their less effective in dealing with subtle variations and outliers present in 

hyperspectral datasets. 

Lithological classification is challenging, particularly in a complex geological setting; 

rocks exhibit similar mineral composition and vegetated and poor rock exposure (Jones et 

al., 2004). The homogeneity in major mineral composition of different rock types and 

weathered surface cover make their spectral signatures less distinctive and illustrative to 

be used as primary information for accurate discrimination and lithological classification. 

A few recent studies demonstrated that integrating information derived from multi-sensor 

datasets could improve the intra-rock separability and classification accuracy (Othman & 

Gloaguen, 2014; Wei et al., 2016; Masoumi et al., 2017; Othman & Gloaguen, 2017). The 

utilization of multi-sensor datasets has been appreciated in several remote sensing 

applications, including land-use/landcover classification (Jin et al., 2008; Dong et al., 

2012), vegetation studies (Franklin et al., 2000; Seifi Majdar & Ghassemian, 2017), urban 

mapping (Dian et al., 2015), and lithological classification (Othman & Gloaguen, 2014; 

Masoumi et al., 2017; Othman & Gloaguen, 2017). 
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The distribution of surface minerals coupled with accurate litho-contacts can be a vital 

baseline data to narrow down the area of geochemical and geophysical anomalies. The 

spectral enhancement techniques such as Principal Component Analysis (PCA) (Amer et 

al., 2010), Independent Component Analysis (ICA) (Kumar et al., 2015; Pour et al., 2019), 

and band ratios (Gad & Kusky, 2007) have been widely used to enhance the spectral 

contrast of different rock types. The common limitation of these techniques is that they do 

not produce a labeled classification output and require manual demarcation. The PCA and 

ICA outputs usually need comprehensive field data in interpretation and become fuzzier in 

the weathered and vegetated surface (Kumar et al., 2020b). 

In recent decades, Machine Learning Algorithms (MLAs) have shown great success over 

the conventional classification methods for successful classification of geological targets 

(Thompson et al., 2001; Waske et al., 2009; Baykan & Yılmaz, 2010; Waske et al., 2010; 

Abedi et al., 2012; Wu et al., 2013; Cracknell & Reading, 2014; Othman & Gloaguen, 

2014; Carranza & Laborte, 2015; Lary et al., 2015; Rodriguez-Galiano et al., 2015; Othman 

& Gloaguen, 2017). MLAs utilize artificial intelligence derived from input datasets by 

analyzing their structure, characteristics, and pattern with minimal human involvement 

(Michie et al., 1994; Zuo, 2017; Mohri et al., 2018). MLAs' successful utilization depends 

on several factors, such as the quality and quantity of training dataset, selection of optimum 

variables, and training parameters (Michie et al., 1994; Cortes et al., 1995; Batista et al., 

2004; Zuo, 2017; Mohri et al., 2018). The feature/variable selection and extraction become 

more critical when one deals with hyperspectral data or data consist of a higher number of 

variables (Hall & Smith, 1999; Yu & Liu, 2003; Archibald & Fann, 2007; Waske et al., 

2010; Bennasar et al., 2015). The feature selection method reduces the dimensionality of 

data by selecting uncorrelated variables to increase the class separability; whereas, the 

feature extraction method transforms the existing features into a new low-dimensional 

feature space (Guyon et al., 2004; Hoque et al., 2014; Ren et al., 2014). The feature 

selection method's advantage over feature extraction is that the feature subset does not lose 

its physical importance and interpretation. However, there is a wide range of feature 

selection methods available in the literature, but the suitability and performance of different 

feature selection methods in lithological classification are rarely explored (Wu et al., 2013). 

The selection of the training parameter of Machine Learning (ML) models is another 

crucial aspect of optimum classification results (Bergstra et al., 2011). The trial and error 

approach-based selection of training parameters are prone to over-or under-fitting the ML 

models and can produce uncertain classification results (Bergstra et al., 2011). Although 

the utilization of MLAs in the lithological classification is not new, to the best of my 

knowledge, there is no single study considered to address all three factors of ML such as 

quality and quantity of training datasets and optimization parameters together to develop 

ML models for accurate lithological mapping using hyperspectral data. This study also 

integrates the spectral enhancement techniques and ML model for lithological 

classification. Furthermore, the novelty of SAR is well recognized in the geological 

structural mapping (Pour & Hashim, 2014b, 2015; Guha et al., 2020) but remains less 

explored in rock types classification (Tan et al., 2009). Rare studies have illustrated the 

utility of SAR datasets for lithological classification (Tan et al., 2009; Wang et al., 2018). 

To the best of my knowledge, the potential of multi-sensor datasets of different wavelength 
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regions such as optical and SAR has not been explored in the lithological mapping using 

ML models.  

1.3 Significance and innovation 

The selection of the optimum threshold needed in most SMMs is crucial in successful 

hyperspectral data analysis. The biased and randomly selected threshold value can 

significantly influence hyperspectral data's ability to map the geological targets accurately. 

The spectral similarity matrix of target and non-target classes based optimum threshold 

selection method has been developed for accurate classification of minerals using the 

hyperspectral dataset to address this limitation. The information of non-target classes has 

been successfully used in sub-pixel SMMs to reduce the influence of interference. The 

proposed threshold selection method would reduce the uncertainty in selecting the 

threshold required to obtain the final classification using SMMs. The developed threshold 

method has been compared and evaluated using the two statistical techniques suggested by 

Schwarz and Staenz (2001) and Hecker et al. (2008). The proposed method's novelty is 

that it does not require extensive field/lab data to select the optimum threshold and can be 

effectively applied for any SMMs. The existing SMMs (such as SAM and SID) do not 

perform good discrimination of spectrally similar minerals. Three new effective SMMs, 

such as Dice Spectral Similarity Coefficient (DSSC), Kumar-Johnson Spectral Similarity 

Coefficient (KJSSC), and their hybrid, i.e., KJDSSCtan, have been proposed for successful 

hyperspectral data analysis. The novelty of the proposed SMMs has been compared and 

evaluated with existing SMMs using a wide range of hyperspectral datasets acquired under 

laboratory and real atmospheric conditions. The spectral discrimination ability of different 

SMMs have been further assessed using synthesized mixed spectra, and spectra with added 

random noise component. The developed SMMs are not only applicable to spectral 

discrimination. Still, they can also be effectively utilized in suitable band selection, 

endmember extraction, class separability, clustering, and image classification for 

successful hyperspectral data analysis. 

The accurate lithological maps are essential in understanding the association of minerals 

and hydrothermal alteration for ore prospecting. MLAs' success in the lithological 

classification depends on several factors, including the quality and quantity of training 

datasets, suitable variables, and training parameters. This research has developed a method 

of obtaining relevant training datasets and variable selection with optimum training 

parameters in poorly exposed and weathered geological sites for lithological classification 

using ML models. The utility of PCA and ICA transformation for preparing the suitable 

reference lithology map has been illustrated to obtain an appropriate training dataset. An 

optimum feature selection method has been implemented to remove the correlated and less 

important variables to improve the model generalization and complexity. The performance 

of three MLAs, such as Support Vector Machine (SVM), Random Forest (RF), and Linear 

Discriminant Analysis (LDA), have been evaluated using different input datasets derived 

from the hyperspectral dataset. 
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Furthermore, the impact of the number and quality of training datasets on MLAs' 

performance has been analyzed. The classical lithological classification is performed using 

spectral data. However, spectral data may not be the ideal primary data for rock types 

classification of similar mineral composition. A multi-sensor data-based integration of 

spectral, textural, and morphological characteristics of rocks has been developed for 

lithological classification using ML models. Different input features such as spectral, 

transformed spectral (PCA and ICA), textural, morphological, and their optimal hybrid 

have been evaluated for their novelty in lithological classification using ML models. The 

applicability of developed lithological classification approaches using hyperspectral and 

multi-sensor datasets is not limited to a specific geological setting. Still, it can be efficiently 

applied in other regions for successful lithological mapping.    

1.4 Research scope and objectives 

This research aims to develop innovative methods for discrimination and classification of 

minerals and rock types/lithological units. Two sites, i.e., Hutti-Maski and Chattarpur area 

situated in India, have been explored for hydrothermal alteration minerals and lithological 

mapping using various remotely sensed datasets such as high-resolution Airborne 

Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG), Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land 

Observing (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR), 

Sentinel-1, and Digital Elevation Model (DEM). Several SMMs and MLAs have been 

evaluated for their novelty in minerals and lithological classification. The developed 

methods are not only applicable in geological remote sensing applications. They can be 

effectively utilized in other applications of remote sensing such as vegetation/forest 

mapping and soil classification. The objectives of this research are the following:  

i. To evaluate the utility of AVIRIS-NG hyperspectral data for hydrothermal mineral 

mapping and to develop an optimum threshold selection for SMMs. 

ii. To develop effective SMMs for accurate discrimination of minerals using 

hyperspectral data.  

iii. To develop an integrated approach of spectral enhancement techniques and ML 

models for lithological classification using AVIRIS-NG hyperspectral data.   

iv. To develop multi-sensor datasets based optimal integration of spectral, 

morphological, and textural characteristics of rocks for lithological classification 

using ML models.  

1.5 Structure of the dissertation 

The content of this dissertation is structured into five chapters. Chapter 1 provides a state 

of the art of remote sensing in minerals and lithological classification. This chapter consists 

of background, statement of the problem, significance and innovation, and research scope 

and objectives. Chapter 2 addresses the first objective of the dissertation. It evaluates the 

utility of high-resolution AVIRIS-NG hyperspectral data for hydrothermal alteration 
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mineral mapping in the greenstone belt of the Hutti-Maski area using different SMMs. This 

chapter also develops the spectral similarity matrix of target and non-target classes based 

optimum threshold selection for SMMs.  Chapter 3 addresses the second objective of the 

dissertation. It develops three new effective SMMs (such as DSSC, KJSSC, and 

KJDSSCtan) to accurately discriminate spectrally similar materials using hyperspectral 

data. This chapter also evaluates the performance of existing and newly proposed SMMs 

using a wide range of hyperspectral datasets of minerals and vegetation species acquired 

under laboratory and real atmospheric conditions. Chapter 4 addresses the third objective 

of the dissertation. It develops an integrated spectral enhancement and ML method for 

accurate lithological classification. This chapter also presents a comparative analysis of 

different input features derived by applying feature selection and extraction techniques on 

hyperspectral data using MLAs. This chapter also highlights the impact of the number of 

samples and mislabelling or uncertainty on different MLAs' performance. Chapter 5 

addresses the fifth objective of the dissertation. It develops multi-sensor datasets based 

optimal integration of spectral, morphological, and textural characteristics of rocks for 

lithological classification using ML models. This chapter illustrates the novelty of 

integrating multi-sensor datasets of optical and microwave regions for accurate lithological 

classification using SVM and RF models. 
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2 Mapping hydrothermal alteration minerals using high-
resolution AVIRIS-NG hyperspectral data in the Hutti-
Maski gold deposit area, India 

(This material has been published in the “International Journal of Remote Sensing, 

Taylor and Francis.” Please refer to page XIII for the original paper link). 

Abstract: The present study exploits high-resolution hyperspectral imagery acquired by 

the Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) 

sensor from the Hutti-Maski gold deposit area, India, to map hydrothermal alteration 

minerals. The study area is a volcanic dominated late Archean greenstone belt that hosts 

major gold mineralization in the Eastern Dharwar Craton of southern India. The study 

encompasses pre-processing, spectral, and spatial image reduction using Minimum Noise 

Fraction (MNF) and Fast Pixel Purity Index (FPPI), followed by endmember extraction 

using n-dimensional visualizer and the United States Geological Survey (USGS) mineral 

spectral library. Image derived endmembers such as goethite, chlorite, chlorite at the mine 

site (chlorite mixed with mined materials), kaolinite, and muscovite were subsequently 

used in spectral mapping methods such as Spectral Angle Mapper (SAM), Spectral 

Information Divergence (SID) and its hybrid, i.e., SIDSAMtan. The spectral similarity 

matrix of the target and non-target-based method has been proposed to find the possible 

optimum threshold needed to obtain a mineral map using spectral mapping methods. 

Relative Spectral Discrimination Power (RSDPW) and Confusion Matrix (CM) have been 

used to evaluate the performance of SAM, SID, and SIDSAMtan. The RSDPW and CM 

illustrate that the SIDSAMtan benefits from the unique characteristics of SAM and SID to 

achieve better discrimination capability. The Overall Accuracy (OA) and kappa coefficient 

(𝜅) of SAM, SID, and SIDSAMtan were computed using 900 random validation points and 

obtained 90% (OA) and 0.88 (𝜅), 91.4% and 0.90, and 94.4% and 0.93, respectively. The 

obtained mineral map demonstrates that the northern portion of the area mainly consists of 

muscovite, whereas the southern part is marked by chlorite, goethite, muscovite, and 

kaolinite, indicating the propylitic alteration. Most of these minerals are associated with 

altered metavolcanic rocks and migmatite. 

2.1 Introduction 

The development of hyperspectral sensors has been an exciting innovation in the field of 

remote sensing. Hyperspectral sensors measure the reflected energy of terrestrial and extra-

terrestrial surfaces in many narrow and contiguous spectral bands.  The continuous spectral 

curve of each pixel of a hyperspectral image can be derived for material identification, 

discrimination, and quantification (Kruse, 1988, 1998; Van der Meer & De Jong, 2011; 

Zadeh et al., 2014). Hyperspectral datasets generated from the laboratory, field, and 

airborne/spaceborne platforms have been extensively used in the identification of groups 

of minerals such as clays, carbonates, and silicates (Goetz et al., 1985; Clark, 1999; 

Bierwirth et al., 2002; Kruse et al., 2006; Plaza et al., 2009; Kruse, 2012; Zadeh et al., 
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2014). The broad wavelength coverage and high spectral resolution enable the 

hyperspectral mode of investigation to detect and discriminate even subtle variations in the 

minerals caused by the crystal structure, grain size, moisture content, and chemical 

composition (Clark, 1999). The interpretation of hyperspectral data usually involves the 

inspection of the spectral signatures with spectral libraries' help. Spectral parameters such 

as absorption position, area, depth, width, and symmetry are essential to identify and 

characterize the minerals detected from hyperspectral data (Magendran & Sanjeevi, 2014; 

Awad et al., 2018; van der Meer et al., 2018). 

Hyperspectral based identification and mapping of hydrothermal alteration zones have 

been extensively used as a proxy among the geological community to investigate several 

metals and economic deposits such as iron, copper, lead, zinc, and gold (Kruse, 1988; 

Bishop et al., 2011; Pour & Hashim, 2011; Farifteh et al., 2013; Farooq & Govil, 2014; 

Carrino et al., 2018). A typical hyperspectral data processing incorporates image 

calibration/atmospheric correction, spectral and spatial data reduction, endmember 

extraction, and classification, followed by accuracy assessment (Boardman, 1998). The 

final product of hyperspectral image analysis results in distribution and abundance/fraction 

maps by deploying pixel and sub-pixel spectral classification, respectively. Some of the 

most common mapping methods in the literature are Jeffries-Matusita (JM) distance 

(Richards & Richards, 1999), Spectral Angle Mapper (SAM) (Kruse et al., 1993), Spectral 

Information Divergences (SID) (Chang, 1999), and Spectral Correlation Mapper (SCM) 

(De Carvalho & Meneses, 2000) that have been deployed on many hyperspectral datasets 

to map a variety of target materials successfully. Studies have also been focused on the 

development of hybrid algorithms by incorporating different similarity measures into a 

single measure such as SIDSAMtan (Du et al., 2004), SIDSCMtan (Naresh Kumar et al., 

2011), and JMSAM (Padma & Sanjeevi, 2014a, 2014b). 

Previous studies such as Du et al. (2004); Naresh Kumar et al. (2011); Padma and Sanjeevi 

(2014a, 2014b); and Adep et al. (2016) demonstrated that the hybrid methods perform 

superior to their standard version. Most of these spectral mapping methods require a 

threshold to obtain the distribution map, which is subjective and challenging to determine 

(Asadzadeh & de Souza Filho, 2016). The different threshold produces different 

distribution maps with varying accuracy. The most common thresholding procedure for 

these classifiers is the trial and error approach, resulting in over-or under-prediction 

(mapping) of target classes. 

An important aspect of hyperspectral image analysis is evaluating the performance of 

mapping methods and accuracy assessment of distribution/classified maps. The most 

commonly used method is the computation of Overall Accuracy (OA) and the kappa 

coefficient (k) from the confusion matrix (Congalton, 1991). Chang (1999) has introduced 

a performance measure statistics for spectral mapping methods called a Relative Spectral 

Discriminatory Power (RSDPW) and intriguingly adopted in recent literature (Du et al., 

2004; Naresh Kumar et al., 2011; Adep et al., 2016). The accuracy assessment of mineral 

maps has been carried out by the various approaches and can be categorized as 

field/laboratory analysis and Virtual Verification (VV) (King & Clark, 2000). The 
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field/laboratory-based evaluation is usually carried by a geological field investigation and 

the in-situ/lab spectral measurements of rock samples/exposure followed by petrographic 

and geochemical analysis. The VV method uses high-resolution image information to 

evaluate the classification results and can be an effective alternative where field data is 

limited (King & Clark, 2000). This method has been successfully adopted in recent studies 

to evaluate the hyperspectral classification results (Kumar et al., 2014; Molan et al., 2014; 

Adep et al., 2016). 

Despite the high gold potential, the Hutti-Maski area in Karnataka, India, has not been 

investigated using hyperspectral remotely sensed data to improve the spatial information 

of alteration minerals and its relation to orogenic gold potential zones. In this study, high 

resolution airborne hyperspectral data acquired by recently developed Airborne 

Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) sensor has been 

used to map the hydrothermal alteration minerals using the most widely explored spectral 

mapping methods such as SAM, SID, and its hybrid, i.e., SIDSAMtan. These methods' 

performance has been evaluated based on RSDPW, OA, and k with the application of an 

optimum method of thresholding based on the spectral similarity of the target and non-

target classes. 

2.2 Geological setting of the area 

The present study has been conducted on the part of Hutti-Maski Schist Belt, situated 

between 16°1'12'' to 16°24'0'' N and 76°36'0'' to 76°51'0'' E, with a spatial extent of about 

232 km2. Figure 2.1 illustrates the geographical location and main lithological units of the 

area. The lithological map has been prepared from the district resource map of the 

Geological Survey of India (GSI) (scale: 1:2,50,000). The region of Hutti-Maski is a 

volcanic-dominated late Archean greenstone belt located in the eastern Dharwar Craton, 

Southern India. The belt hosts several gold deposits such as Hutti, Utti, and Hira-Buddini 

gold mines (Mishra et al., 2005). The Hutti Mine is the largest operational gold mine in 

India and has a proven reserve of >120 t Au, with an average grade of 4.42 g t–1 Au 

(Hazarika et al., 2015). The structural setting, mineralization, and fluid composition of gold 

deposits demonstrate various similarities to typical greenstone-hosted mesothermal lode 

type or orogenic gold deposits (Mishra et al., 2005). It consists of a series of parallel N-S 

trending, around 1 km long and 2 to 10 m thick shear zones, which are best developed in 

coarse-grained amphibolite adjacent to biotite and sulfide-rich alteration zones (Mishra & 

Pal, 2008; Hazarika et al., 2015). The belt mainly consists of highly deformed basic meta-

volcanic rocks (>90%) with minor intercalated felsic units and subordinate clastic 

metasedimentary rocks (Rogers et al., 2007). The dominating pillow bearing basaltic rocks 

are followed in abundance by acidic to intermediate volcanic rocks and quartz/rhyolite 

porphyry. The primary alteration process in the area is retrograde, saussuritization, and 

propylitization. Chloritization and silicification are common in the outer and central parts, 

respectively. The retrograde alteration has been observed by the alteration of biotite to 

chlorite and further chlorite to sericite. Propylitic alteration is evidenced by the assemblage 

of carbonate, epidote and chlorite (Pour & Hashim, 2011). Saussuritization is indicated by 
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the alteration of plagioclase to chlorite and epidote. The silicification alteration is 

evidenced by fine-grained aggregates of quartz. Many of the gold-bearing host rocks are 

rich in Fe content. Sulfidation of wall rocks causes the destabilization of the bi-sulphide 

complex causing the precipitation of gold (Pirajno, 2009). Most of the previous studies in 

this area are mainly focused on the geochemical analysis of sub-surface altered rock 

samples of known gold mineralized zone in the vicinity of Hutti, Uti, and Hira-Buddini 

mines and lack comprehensive information of surface alteration minerals in a spatial 

domain. 

 

Figure 2.1. Location and lithological map of the studied area showing major rock types, 

major locations, and location of gold occurrences reported by Geological Survey of India. 
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2.3 Materials and methods 

2.3.1 Airborne and field hyperspectral datasets  

The AVIRIS-NG sensor has acquired the airborne hyperspectral data by recording the 

reflected energy in 425 spectral channels in the wavelength range of 380 to 2510 nm at 5 

nm and 7.5 m spectral and spatial resolution, respectively. The AVIRIS-NG sensor has 

various improvements in resolution, uncertainty, and signal-to-noise ratio over the previous 

AVIRIS-Classic (Table 2.1). The enhanced specifications of AVIRIS-NG provide a better 

opportunity to accurately identify, discriminate, and quantify geological and other target 

materials. The hyperspectral data has been acquired under the collaborative campaign of 

the Indian Space Research Organization (ISRO) and National Aeronautics and Space 

Administration (NASA) in the years of 2015/16 and processed as level 1 (L1: at sensor 

radiance), and level 2 (L2: surface reflectance) products with geometric correction applied 

on both the levels.  The spectral curve of rock samples (referred hereafter as lab spectra) 

collected from the area has been derived using Analytical Spectral Device (ASD) 

FieldSpec4© spectroradiometer in the wavelength range of 350–2500 nm at the sampling 

interval of 1.4 nm for 350–1000 nm and 2 nm for 1000–2500 nm. A detailed description 

of the ASD spectroradiometer can be accessed at this website (http://www.asdi.com). The 

software packages such as Environment for Visualizing Images (ENVI)® 5.4 and 

Aeronautical Reconnaissance Coverage Geographical Information System (ArcGIS)® 10.5 

have been used for image processing and the preparation of spatial maps, respectively. 

 

Table 2.1. Key characteristics of AVIRIS-NG and AVIRIS-Classic sensor (Thorpe et al., 

2016). VNIR: Visible Near-Infrared; SWIR: Shortwave Infrared. 

Characteristic AVIRIS-NG AVIRIS-Classic 

Spectral range 380 to 2510 nm 380 to 2500 nm 

Spectral channels 425 224 

Spectral resolution 5 nm 10 nm 

Calibration ± 0.3 nm ± 0.3 nm 

Signal to Noise Ratio 

(SNR) 

>2000 for VNIR,             

>800 for SWIR 

>1000 for VNIR,           

>400 for SWIR 

Accuracy 95% (<5 % uncertainty) 90% (<10 % uncertainty) 

Sample distance 0.3 to 20 m 4 to 20 m 

Radiometric 

resolution 

14 bits 10 and 12 bits 
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2.3.2 AVIRIS-NG hyperspectral image processing and classification 

The level 2 (L2) processed (atmospheric and geometrically corrected) AVIRIS-NG data 

consists of 425 spectral bands that were subjected to the removal of uncalibrated/noisy 

bands. Two hundred ninety-five spectral bands have been found suitable, whereas 

remaining bands such as 1–15, 146–158, 188–227, 275–328, and 421–425 were discarded 

due to the significant noise. These 295 bands were utilized in a typical hyperspectral data 

processing scheme such as spectral and spatial image reduction, endmember extraction, 

image classification followed by accuracy assessment (Kruse, 1998) to obtain the 

distribution of hydrothermal alteration minerals. A work flowchart of the methodology 

adopted in the study is illustrated in Figure 2.2.  

 

 
Figure 2.2. A work flowchart showing methodology adopted in the processing and 

classification of the hyperspectral data. 

Minimum Noise Fraction (MNF) has been used to segregate the noise and reduce the 

dimensionality of the data  (Green et al., 1988). The MNF plot shows the variance of 

spectral data captured by each transformed MNF bands and has been used to select the 

number of optimum MNF bands for the extraction of spectrally pure pixels. The first 34 

MNFs marked by higher variance, less noise, and redundancy have been used to compute 

the spectrally pure pixels using the Fast Pixel Purity Index (FPPI) (Plaza & Chang, 2005) 

with iterations of 30,000. Different iterations such as 15,000, 20,000, 30,000 and 35,000 

have been tested.  The final selection of the number of iterations has been made based on 

the plot of FPPI. The plot begins to level off as it approaches an iteration of 30,000, which 

indicates that each subsequent iteration fails to find new pure pixels.  These pure pixels 

have been used as the primary input to the n-dimensional (n-D) visualizer tool of ENVI for 

the endmember extraction. The n-D tool has been used interactively to rotate the data cloud 

(pure pixels) in image dimension space and extract the corner pixels representing better 

characteristics to be an endmember candidate. To preserve the subtle spectral features of 

an endmember, no more than 2 to 4 pixels have been clubbed together. 

Further, these endmembers have been subjected to spectral interpretation and identification 

using the United States Geological Survey (USGS) mineral spectral library in conjunction 

with the Spectral Analyst tool of ENVI. Continuum removed spectra were also used to 

interpret the absorption features related to different minerals. Continuum removal 

normalizes the reflectance spectra to highlight the individual absorption features for better 



13 

spectral comparison (Clark & Roush, 1984). The USGS library spectra were resampled at 

the spectral resolution of the hyperspectral image before making any comparison. The 

endmembers that showed the highest match with the minerals of USGS spectra were 

considered as a final endmember for that particular class. 

Further, image spectra were also compared with lab spectra (resampled at image spectral 

resolution) derived from the rock samples of major lithological units of the area. Spectral 

parameters such as absorption position and depth of each mineral's diagnostic absorption 

feature for image, lab, and USGS library spectra have also been computed for 

comprehensive spectral comparison and inspection using ‘hsdar’ (Lehnert et al., 2016) 

package available in ‘R’ software. The main purpose of such a comparison was to 

understand the characteristics of spectral signatures quantitatively.  

SAM, SID, and its hybrid version, i.e., SIDSAMtan, have been employed to map the 

alteration minerals. The SAM is a deterministic approach that measures the angle between 

the image spectra and endmember spectra and treats them as a vector in a space with 

dimensionality equal to the number of spectral bands (Kruse et al., 1993). The SID is 

derived from the concept of divergence in information theory, which measures the 

divergence of probabilistic behaviors between the image spectra and reference spectra 

(Chang, 1999). SAM suppresses the effects of shadows (Kruse et al., 1993), while SID 

solves the uncertainty introduced by unknown interference common in the hyperspectral 

dataset (Chang, 1999). The SIDSAMtan is a product of SID and SAM with tangent (tan) 

trigonometric function (i.e., SID × tan(SAM)) (Du et al., 2004). The hybrid approach of 

SAM and SID incorporates the unique characteristics of both measures to improve the 

discrimination capability. 

To measure the capability of the spectral matching methods in terms of the power of 

discriminating one spectrum from another relative to a reference spectrum, RSDPW 

statistics were used. Higher the RSDPW, the better the discrimination ability of a method. 

Unlike the similarity value produced by spectral matching methods (such as SAM and 

SID), the value of RSDPW is comparable for different methods. The computation of 

RSDPW is performed with respect to a reference spectrum, which is usually a linearly 

mixed spectrum of each class or a spectrum, which has some similarity with the target 

spectra (Chang, 1999; Naresh Kumar et al., 2011). In this study, the RSDPW was computed 

using a linear mixture of the target and non-target classes as a reference spectrum. Non-

targets have been included in the linear mixing as some non-target spectra show 

considerable similarity with target spectra. 

These classification algorithms' performance also depends on intra-class variability, the 

complexity of the area, and the threshold factor used to generate the distribution map. 

These classifiers' performance can be improved by incorporating information of non-

target/undesired classes for a better separation of the target with spectrally similar non-

target classes. The information of non-target has been successfully used in sub-pixel 

classification methods such as Orthogonal Subspace Projection (OSP) (Harsanyi & Chang, 

1994), Constrained Energy Minimization (CEM) (Chang, 2000), and Target Constrained 
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Interference Minimized Filter (TCIMF) (Ren & Chang, 2000) in order to reduce the false 

positives. 

In this study, the non-target information was extracted from the spectra of poorly exposed 

rock surfaces, soil, and mixed pixel of vegetation and rocks. The spectral similarity of 

target minerals and non-targets has been computed for SAM, SID, and SIDSAMtan results 

using “proxy” (Meyer & Buchta, 2009; Meyer, 2018)and “resemble” (Ramirez-Lopez & 

Stevens, 2016) packages in R software. The similarity matrix was further used to obtain 

possible optimal threshold value needed to produce a mineralogical map from these 

classifiers. The detailed procedure adopted to choose the optimum threshold has been 

discussed in section 2.4.2. Statistical methods of threshold selection for SAM suggested by 

Schwarz and Staenz (2001) (SM1), and Hecker et al. (2008) (SM2) have been used to 

compare the reliability of the proposed method for optimum threshold selection. Schwarz 

and Staenz (2001) use the mean and standard deviation of the rule image of the SAM. An 

arbitrary parameter (i.e., muser (ranges from 1 to 3)) given in the Equation (2.1) for obtaining 

the threshold value (T). In this study, muser equals to 1 as a value greater than 1 yields a 

negative threshold, which may not be applicable. Hecker et al. (2008) suggested to use the 

25th percentile value of the rule images of each class as  a threshold value for the SAM. 

𝑇 = 𝑚𝑒𝑎𝑛 − 𝑚𝑢𝑠𝑒𝑟 × 𝑠𝑡𝑎𝑛𝑑𝑟𝑎𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛      (2.1)  

VV (King & Clark, 2000), RSDPW (Chang, 1999), confusion matrix, and calculation of k 

and OA (Congalton, 1991) have been used to access the classification accuracy of images. 

2.4 Results and discussion  

2.4.1 Alteration minerals 

Goethite, chlorite, chlorite from the mine site (a mixture of chlorite and mined materials), 

kaolinite, and muscovite (Figure 2.3) have been extracted from the pure pixels of the 

AVIRIS-NG hyperspectral image as endmembers. The spectral parameters such as 

absorption position and depth of the diagnostic absorption feature of detected minerals 

from the image, lab, and USGS library spectra (Table 2.2) have been used in the spectral 

interpretation. The wavelength position of absorption (Figure 2.3 and Table 2.2) shows a 

slight difference in these three sources due to variation in the crystal structure, grain size, 

and presence of secondary minerals or impurities (Clark, 1999). It is also worth considering 

that the image spectrum is a representative of its pixel size (i.e., 7.5 m in this case) usually, 

a mixed spectrum, whereas USGS library spectra typically collected from the majorly pure 

mineral samples.  The detected minerals represent the alteration process in the area. The 

spectral curves of goethite (Figure 2.3 (a)) show the diagnostic absorption feature at 600 

and 900 nm due to ferric iron (Fe3+) (Pontual et al., 2008). The goethite has also been 

detected in the spectral curve of kaolinite (Figure 2.3 (d)) and muscovite (Figure 2.3 (e)).  

Chlorite shows its diagnostic absorption feature at 2250 and 2330 nm due to Fe-OH and 

Mg-OH molecules, respectively (Figure 2.3 (b) and (c)) (Clark, 1999). 
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Figure 2.3. Reflectance spectra of altered minerals such as (a) goethite, (b) chlorite, (c) 

chlorite at of mine site, (d) kaolinite, and (e) muscovite, showing their diagnostic 

absorption features. (f) Non-target spectra. NT1: soil, NT2: poorly exposed rock surface, 

NT3: mixed pixel of vegetation and rocks, and NT4: dry vegetation. Image, laboratory, and 

USGS mineral library spectra are denoted as blue, black, and red color, respectively. 

The spectral curve of pure chlorite (Figure 2.3 (b)) and chlorite at the mine site (Figure 2.3 

(c)) also show small absorption features at 600 and 900 nm due to ferrous iron (Pontual et 

al., 2008). The spectra of chlorite at the mine site (Figure 3 (c)) preserve the diagnostic 

absorption feature the same as pure chlorite but are less intense. Although the spectra were 

derived from the mixture of mined materials, the spectral resolution of the image is suitable 

to detect the presence of chlorite. The spectral plots of kaolinite show their diagnostic 

absorption feature referred to as doublet centered at 2165 and 2200 nm caused due to Al-
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OH vibrational process (Figure 2.3 (d)) (Clark, 1999; Pontual et al., 2008). A subtle 

absorption feature can be noticed at 660 and 900 nm due to ferric iron (Pontual et al., 2008). 

The spectral plots of muscovite show its diagnostic absorption feature at 2200 nm due to 

Al-OH vibrational process (Figure 2.3 (e)). Muscovite has two other absorption features at 

2240 and 2340 nm derived from Al-OH molecules (Pontual et al., 2008). The main 

difference between kaolinite and muscovite spectra is doublet in kaolinite (at 2165 and 

2200 nm) and a single absorption feature of 2200 nm in the muscovite. 

Table 2.2. Spectral parameters such position (in nm) and depth of prominent diagnostic 

absorption feature of detected minerals (depth is in arbitrary map units).  

 Goethite Chlorite Chlorite (mine site) 

 Image Lab Library Image Lab Library Image Lab Library 

Position 917 972 947 2340 2445 2335 2335 2325 2320 

Depth 0.09 0.1 0.41 0.25 0.23 0.32 0.16 0.15 0.34 

 Kaolinite Muscovite    

 Image Lab Library Image Lab Library    
Position 2204 2204 2204 2199 2199 2199    
Depth 0.18 0.14 0.18 0.18 0.30 0.34    

2.4.2 Spectral similarity measures and derivation of optimum threshold 

Spectral similarity among target minerals and non-target classes has been computed using 

SAM, SID, and SIDSAMtan results (Table 2.3) to understand the intra-class variability and 

further derive the optimum threshold value for each method. The similarity matrix 

illustrates that some target spectra have higher similarity with non-target spectra of soil 

(NT1), poorly exposed rock surface (NT2), the mixed pixel of vegetation and rocks (NT3), 

and dry vegetation (NT4). For example: if we observe the row of goethite mineral (Table 

2.3), the chlorite has a higher similarity (i.e., 0.117) in the target group, but NT3 of the non-

target group is even much similar (i.e., 0.071) than chlorite. This means that there are high 

chances of inclusion of NT3 and chlorite as false positives while classifying goethite. A 

similar situation can be seen in the case of chlorite where kaolinite has higher similarity 

(i.e., 0.080) in the target group, but NT2 shows more similarity (0.078) than kaolinite that 

means while classifying chlorite, there are higher chances of the inclusion of NT2 and 

kaolinite as false positives. Other target classes such as chlorite (at mine site), kaolinite, 

and muscovite have fewer chances of getting affected by non-targets due to higher spectral 

dissimilarities. Still, at the same time, spectrally similar target classes may cause 

misclassification. Similar inferences can be made from the similarity matrix computed 

using SID and SIDSAMtan (Table 2.3). 

The spectral similarity matrix of the target and non-target classes have been further used 

to find the possible optimum threshold for each classification method. Obtaining an 

optimum threshold is crucial and a challenging task to utilize these classification methods 

effectively. The spectral similarity matrix incorporates intra-class variability and non-
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target spectral similarity information to find an optimum threshold for producing 

classification output. To obtain the possible optimum threshold for each class, the 

minimum similarity value (Table 2.3) of that class has been used as an initial value and 

subsequently, different ranges have been tested to obtain an optimum threshold for that 

class (Figure 2.4). 

To explain the procedure adopted to find the optimum threshold, let’s consider the example 

of the goethite class. The minimum similarity value in the row of goethite is 0.070 of NT3 

(non-target class) (Table 2.3). Any values greater than or equal to 0.070 would increase the 

chances of inclusion of NT3 as goethite in the classification output. The possible optimum 

threshold value would be less than 0.070 for the goethite class. It is evident that a smaller 

threshold (i.e., spectral angle or divergence) would yield higher accuracy to detect/map 

that class, but at the same time, it would also cause to leave out many pixels of that class. 

An optimum threshold would be the one that includes the maximum number of pixels of 

that class and, at the same time, have less false positives. Based on this condition, different 

value ranges less than 0.070, such as 0.070–0.060, 0.060–0.050, 0.050–0.045, and 0.045–

0.040, have been evaluated. 

To evaluate each range, 150 random pixels were selected to extract the spectra from the 

calibrated hyperspectral image. These extracted spectra were then inspected visually 

against the given endmember used in the classification. We count the correctly matched 

spectra out of 150 spectra to compute its accuracy. The threshold range that produces an 

accuracy of ≥85 % was considered as a possible optimum threshold in this study. It is also 

possible that a much smaller threshold may produce better accuracy, but it would also cause 

to leave out more pixels, which may result in under predictive classification (Schwarz & 

Staenz, 2001). Similarly, different ranges of the threshold for other target classes such as 

chlorite, chlorite at the mine site, muscovite, and kaolinite have been evaluated to find the 

possible optimum threshold for each class. The same approach has been used for SID and 

SIDSAMtan to obtain the optimum threshold for each class. 

The statistical methods (i.e., SM1 and SM2) failed to provide an optimum threshold value 

needed to produce a distribution map of the target classes. For example, SM1 and SM2 

produce 0.038 and 0.083, respectively, as a threshold for the goethite to be used for 

classification using SAM (Table 2.4). Figure 2.4 (a) of the goethite class clearly illustrates 

that values greater than 0.05 could result in a poor classification. However, the threshold 

value 0.038 is close to the threshold value obtained by the proposed method, which would 

yield high accuracy but may also leave out many truly classified pixels due to a smaller 

angle. Furthermore, the spectral similarity value of SAM (Table 2.3) clearly illustrates that 

the possible threshold to classify goethite using SAM should be less than 0.07 as greater 

values would increase the chances of the inclusion of non-targets in the classification. Thus, 

the threshold value of 0.083 obtained by SM2 cannot be an excellent choice to use as a 

threshold for the goethite class. SM1 also does not shows success in getting less biased 

threshold values. The threshold value of goethite and kaolinite resulting under predictive, 

whereas other classes are over predictive classification. Figure 2.4 (a) clearly illustrates 

that threshold values obtained by the statistical methods would result in poor accuracy 
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classification maps of hydrothermal alteration minerals. The optimum threshold for each 

classification method for all the minerals classes is presented in Table 2.4 and Figure 2.4, 

which was used to obtain the mineral map. 

The spectral similarity matrix of target and non-target classes can be a practical approach 

to optimum threshold selection to obtain accurate classification results using SMMs. The 

consideration of non-target information appeared to be an effective approach to reduce the 

uncertainty of threshold selection. This approach further provides information about the 

classes that are more prone to misclassification. Another advantage of the proposed 

threshold selection is that it does not require extensive lab/field data to ensure the selected 

threshold's reliability. However, the prerequisite for the successful utilization of proposed 

threshold selection is that the user needs to be familiar with the non-target classes that are 

spectrally similar and mixed with target classes. 

Table 2.3. Spectral similarity matrix of target and non-targets using SAM (in radians), SID 

(SD), and SIDSAMtan (SS) (in radians). Go: goethite, Cl: chlorite, Cm: chlorite at the mine 

site, Ka: kaolinite, Mu: muscovite, NT(1 to 4): non-target spectra. Values marked in bold 

indicate the minimum spectral angle. 

SM Go Cl Cm Ka Mu NT1 NT2 NT3 NT4 

Go -- 0.117 0.137 0.124 0.194 0.083 0.089 0.071 0.084 

Cl 0.117 -- 0.134 0.080 0.113 0.128 0.078 0.131 0.106 

Cm 0.137 0.135 -- 0.143 0.162 0.191 0.137 0.177 0.179 

Ka 0.124 0.080 0.143 -- 0.101 0.149 0.189 0.151 0.125 

Mu 0.194 0.113 0.162 0.101 -- 0.218 0.144 0.223 0.195 

SD Go Cl Cm Ka Mu NT1 NT2 NT3 NT4 

Go -- 0.016 0.021 0.019 0.039 0.008 0.009 0.005 0.009 

Cl 0.016 -- 0.021 0.009 0.039 0.017 0.008 0.019 0.011 

Cm 0.021 0.026 -- 0.033 0.035 0.042 0.021 0.035 0.039 

Ka 0.019 0.009 0.033 -- 0.010 0.026 0.013 0.028 0.018 

Mu 0.039 0.013 0.035 0.010 -- 0.048 0.022 0.051 0.038 

SS Go Cl Cm Ka Mu NT1 NT2 NT3 NT4 

Go -- 0.0018 0.0029 0.0024 0.0077 0.0006 0.0008 0.0004 0.0007 

Cl 0.0018 -- 0.0029 0.0007 0.0044 0.0022 0.0006 0.0025 0.0012 

Cm 0.0029 0.0036 -- 0.0048 0.0056 0.0082 0.0030 0.0063 0.0070 

Ka 0.0024 0.0007 0.0048 -- 0.0010 0.0038 0.0026 0.0043 0.0023 

Mu 0.0077 0.0015 0.0056 0.0010 -- 0.0107 0.0032 0.0116 0.0074 
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Figure 2.4. Correctly classified pixels against the threshold value ranges used for each class 

to obtain the optimum threshold value for (a) SAM, (b) SID, and (c) SIDSAMtan 

classification method. 

Table 2.4. The optimum threshold value was obtained using the statistical and proposed 

threshold selection method to get the mineral classification map using SAM (in radians), 

SID, and SIDSAMtan (in radians). SAMSM1 and SAMSM2 indicate the possible optimum 

threshold derived using Schwarz and Staenz (2001) (SM1) and Hecker et al. (2008) (SM2) 

statistical methods. 
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 Statistical methods Proposed method 

Minerals SAMSM1 SAMSM2 SAM SID SIDSAMtan 

Goethite 0.38 0.083 0.045 0.0020 0.00015 

Chlorite 0.18 0.070 0.050 0.0030 0.00020 

Chlorite (Mine site) 0.098 0.146 0.060 0.0055 0.00040 

Kaolinite 0.022 0.071 0.060 0.0030 0.00015 

Muscovite 0.066 0.116 0.050 0.0035 0.00020 

2.4.3 Performance evaluation of SAM, SID, and SIDSAMtan using RSDPW 

The similarity values of SAM, SID, and SIDSAMtan are not comparable, as these measures 

use different theories and matching criteria. To evaluate the performance of SAM, SID, 

and SIDSAMtan, RSDPW was used (Table 2.5).  The computation of RSDPW is performed 

with respect to a reference spectrum, usually a linearly mixed spectrum of each class or a 

spectrum similar to the target spectra (Chang, 1999; Naresh Kumar et al., 2011). We 

computed the RSDPW by using a linear mixture of the target (15%) and non-target (6.25%) 

classes as a reference spectrum (Table 2.5). Non-targets have also been included in the 

linear mixing to obtain the reference spectrum, as some non-target spectra show 

considerable similarity with target spectra. A graphical representation of the different pairs 

of target classes has been presented in Figure 2.5 to illustrate and compare the performance 

of SAM, SID, and SIDSAMtan.  

Table 2.5 and Figure 2.5 illustrate that the SIDSAMtan outperforms the SID and SAM. The 

RSDPW value of SIDSAMtan is around two and three times higher than SID and SAM 

while discriminating most of the classes. It should also be noticed that the classes have 

more spectral dissimilarities, with other classes yield much higher RSDPW than the less 

dissimilar classes. The discrimination power of SID is better than SAM for most of the 

classes. The RSDPW also illustrates that SID and SAM complement each other to improve 

the hybrid measure's discrimination power. The discrimination power of SID is less than 

SAM while discriminating goethite-kaolinite and kaolinite-muscovite minerals but hybrid 

measures display a better discrimination power.  

 

Table 2.5. RSDPW of SAM, SID, and SIDSAMtan similarity measures for target and non-

target classes using linearly mixed spectrum as a reference. Goe: goethite, Chl: chlorite, 

Chlmine: chlorite at the mine site, Kao: kaolinite, and Mus: muscovite. NT(1–4): non-target 

spectra. 

SAM Chl Chlmine Kao Mus NT1 NT2 NT3 NT4 

Goe 1.820 1.416 1.513 1.350 1.249 1.857 1.259 1.010 

Chl -- 2.577 1.203 2.457 2.274 1.020 2.292 1.803 

Chlmine  -- 2.141 1.049 1.133 2.629 1.124 1.429 

Kao   -- 2.042 1.890 1.228 1.905 1.498 
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Mus    -- 1.081 2.507 1.072 1.363 

SID Chl Chlmine Kao Mus NT1 NT2 NT3 NT4 

Goe 2.704 4.352 1.184 1.370 1.203 1.172 1.374 1.246 

Chl -- 11.769 3.201 3.705 3.253 2.307 3.715 2.170 

Chlmine  -- 3.677 3.177 3.618 5.102 3.168 5.424 

Kao   -- 1.158 1.016 1.387 1.161 1.475 

Mus    -- 1.139 1.606 1.003 1.707 

SIDSAMtan Chl Chlmine Kao Mus NT1 NT2 NT3 NT4 

Goe 4.931 6.177 1.887 1.853 1.505 2.181 1.733 1.258 

Chl -- 30.458 3.853 9.138 7.420 2.261 8.544 3.919 

Chlmine  -- 7.905 3.333 4.105 13.471 3.565 7.772 

Kao   -- 2.372 1.926 1.704 2.217 1.017 

Mus    -- 1.232 4.042 1.070 2.332 

 
Figure 2.5. Graphical representation of RSDPW of target minerals showing discrimination 

power of SAM, SID, and SIDSAMtan. Goe: goethite, Chl: chlorite, Chlmine: chlorite at the 

mine site, Kao: kaolinite, and Mus: muscovite. 

2.4.4 Hydrothermal alteration mineral mapping 

Spectral mapping methods such as SAM, SID, and SIDSAMtan have been employed on the 

hyperspectral image using the optimum threshold values derived by this study's proposed 

method (Table 2.4) to obtain the spatial distribution of the hydrothermal alteration minerals 

(Figure 2.6). The false-color composite of the area with a few major locations is shown in 

Figure 2.6 (a). The alteration minerals found in the area are goethite, chlorite, chlorite at 

the mine site, kaolinite, and muscovite. Table 2.6 illustrates the spatial extent of detected 

minerals derived by spectral mapping methods. The mineral map derived using SAM 

(Figure 2.6 (b)) and SID (Figure 2.6 (c)) show less distribution of altered minerals as 

compared with SIDSAMtan (Figure 2.6 (d)). 
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The northern portion of the area mainly consists of muscovite associated with grey biotite 

granite and hornblende granite (non-porphyritic) rock types (Figure 2.6 (e)). The chlorite 

at the mine site shows the least spatial extent compared to other minerals, as it is mainly 

found at the mine site (Figure 2.6 (f)). Goethite and chlorite are comparatively less than 

kaolinite and muscovite. At a few locations, kaolinite, chlorite, muscovite, and goethite are 

associated with the lithological boundary of grey biotite granite and hornblende granite. 

The southern area's major lithological units marked by propylitic alteration affect 

metavolcanic rocks, hornblende granites (porphyritic), granodiorite/migmatite, display the 

association of kaolinite, chlorite, goethite, and muscovite. Goethite is found in the central 

and southern parts of the area (Figure 2.6 (g)) in the metavolcanic rocks and granodiorite. 

The southernmost part of the site mainly consists of kaolinite and chlorite (Figure 2.6 (h)). 

Altered metavolcanic rocks have been the most important rock to explore the formation of 

the gold, according to Mishra et al. (2005); Mishra and Pal (2008); Hazarika et al. (2015). 

Hazarika et al. (2015) performed the geochemical and petrographic analysis of tourmaline 

minerals from altered rocks of the subsurface from the mine sites as proximal to the gold-

bearing veins of these orogenic gold deposits. Tourmaline growth preceded the sulfide 

phases until the final sulfidation of wall rocks resulted in gold precipitation. The 

metavolcanic rocks host tourmaline in association with biotite-muscovite foliation, 

plagioclase, and chlorite minerals.  The distribution of chlorite and muscovite obtained in 

this study can be used as a proxy to tourmaline (here, not spectrally investigated) in the 

area as it shows some association with these minerals (Hazarika et al., 2015). 

Table 2.6. Spatial distribution of hydrothermal alteration minerals derived from the SAM, 

SID, and SIDSAMtan using a spectral similarity-based optimum threshold value. 

 Spatial extent of alteration minerals (km2) 

Minerals SAM SID SIDSAMtan 

Goethite 0.60 0.74 2.50 

Chlorite 2.50 3.88 11.04 

Chlorite (Mine site) 0.10 0.16 0.24 

Kaolinite 10.59 24.63 30.88 

Muscovite 9.55 11.26 11.83 

2.4.5 Accuracy assessment 

A virtual verification approach has been used to assess the accuracy of classified images 

obtained from SAM, SID, and SIDSAMtan due to a limited number of samples and a lack 

of geochemical analysis. One hundred fifty spectral curves of each class (including target 

and non-target classes) were randomly extracted from the calibrated hyperspectral image, 

and then their diagnostics spectral characteristics have been inspected against their 

corresponding endmembers used in the classification.  
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Figure 2.6. (a) False Color Composite (FCC) of the AVIRIS-NG image with few major 

locations. The mineral map obtained using (b) SAM, (c) SID, (d) SIDSAMtan. The zoomed 

view of SIDSAMtan result at few locations showing the distribution of mapped minerals: 

(e) muscovite in the northern part of the area, (f) chlorite at mine site, (g) goethite and 

muscovite, and (h) kaolinite and chlorite in the southern part of the area. 
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Table 2.7. Confusion matrix of the classified image using SAM, SID, and SIDSAMtan. Goe: 

goethite, Chl: chlorite, Chlmine: chlorite at the mine site, Kao: kaolinite, and Mus: 

muscovite, OC: other classes/non-targets.UA: user accuracy (%), PA: producer accuracy 

(%), OA: overall accuracy (%), k: kappa coefficient. 

SAM Goe Chl Chlmine Kao Mus OC Row UA PA 

Goe 132 6 0 0 1 11 150 88.0 89.8 

Chl 3 135 0 2 1 9 150 90.0 84.4 

Chlmine 0 3 140 0 1 6 150 93.3 98.6 

Kao 0 7 0 139 0 4 150 92.7 92.7 

Mus 0 4 0 5 140 1 150 93.3 95.9 

OC 12 5 2 4 3 124 150 82.7 80.0 

Column 147 160 142 150 146 155 900   
OA = 90%, k = 0.88 

The spectral curve that matches the corresponding endmember was counted as correctly 

classified, and if the spectral curve does not correspond with the respective endmember, 

then it has been compared with other endmembers, including other classes. There have 

been several occasions when a pixel shows spectral similarity with multiple endmembers 

due to the spectral mixing; in such case, a pixel that exhibits higher similarity with 

endmember has been considered. The accuracy measures such as User Accuracy (UA), 

Producer Accuracy (PU), OA, and k have been computed for the assessment of 

classification maps (Table 2.7). The non-target classes such as NT1, NT2, NT3, and NT4 

SID Goe Chl Chlmine Kao Mus OC Row UA PA 

Goe 136 4 0 2 2 6 150 90.7 92.5 

Chl 3 139 0 3 1 4 150 92.7 86.9 

Chlmine 0 1 138 4 2 5 150 92.0 97.2 

Kao 1 6 0 140 2 1 150 93.3 90.3 

Mus 0 8 0 2 140 0 150 93.3 93.3 

OC 7 2 4 4 3 130 150 86.7 89.0 

Column 147 160 142 155 150 146 900   
OA = 91.40%, k = 0.90 

SIDSAMtan Goe Chl Chlmine Kao Mus OC Row UA PA 

Goe 139 3 0 2 1 6 150 92.7 97.2 

Chl 0 140 0 6 0 4 150 93.3 87.0 

Chlmine 0 2 145 1 2 0 150 96.7 98.6 

Kao 1 6 0 143 0 0 150 95.3 93.5 

Mus 0 7 0 0 143 0 150 95.3 97.3 

OC 3 3 2 1 1 140 150 93.3 93.3 

Column 143 161 147 153 147 150 900   

OA = 94.40%, k = 0.93 
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has been clubbed together and named as other class (OC) in the confusion matrix for 

simplicity. 

The accuracy measures illustrate that the SIDSAMtan performs superior (OA: 94.40% and 

k: 0.93) than the SID (OA: 91.40% and k: 0.90) and SAM (OA: 90% and k: 0.88). Minerals 

that have more spectral dissimilarities yield higher accuracy than spectrally similar classes. 

Goethite has spectral similarity with chlorite and NT3 (non-target/other class). The effects 

of the spectral similarity can be easily seen in the confusion matrix for all the methods. 

Chlorite and OC cause more false positives than other classes. A similar scenario can be 

observed while classifying the chlorite where goethite and other classes cause more false 

positives. However, SAM yields falser positive than SID and hybrid measures. Chlorite at 

mine site displays more dissimilarity with other class hence yields higher accuracy in all 

the classification methods. It has been noticed that all the methods produce high accuracy 

that can be due to the employed optimum threshold factor obtained from the similarity 

matrix. The threshold factor is suitable in considering the intra-class variability and spectral 

dissimilarities with non-targets to yield good accuracy.  

2.5 Conclusions 

• The present study exploited AVIRIS-NG hyperspectral data to map the 

hydrothermal alteration minerals such as goethite, chlorite, kaolinite, and 

muscovite using spectral mapping methods such as SAM, SID, and SIDSAMtan in 

the Hutti-Maski area of Karnataka. The spectral parameters such as absorption 

depth and wavelength position of the diagnostic absorption feature in conjunction 

with the USGS mineral spectral library has been used for the comprehensive 

spectral interpretation of image and rock samples of the studied area. 

• The spectral similarity matrix of the target and non-target-based thresholding 

appears as a promising method to find an optimum threshold for the SMMs, as 

demonstrated in this study. The proposed threshold selection approach illustrates 

that the non-target information in the SMMs can improve the accuracy of these 

classifiers. Another advantage of this method is that the user may not need 

extensive field data, which is the primary constraint to exploit hyperspectral data in 

inaccessible locations or where field data/instrument is limited. 

• RSDPW statistics and the confusion matrix have been used to evaluate the 

performance of SAM, SID, and SIDSAMtan. It was observed that on a few 

occasions, SAM outperforms SID and vice-versa, but the hybrid method always 

shows great success over both the approaches. Furthermore, the capability to map 

the number of pixels of each class by these methods illustrate that SIDSAMtan is 

superior to SAM and SID. The minerals have more intra-class variability, such as 

muscovite, chlorite of the mine site, and kaolinite, produce higher accuracy than 

the minerals that have less intra-class variability, such as goethite and chlorite. 

• Identified minerals primarily belong to propylitic hydrothermal alteration. The 

northern portion of the area mainly consists of muscovite, whereas the southern part 

shows propylitic alteration characterized by the association of kaolinite, chlorite, 
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goethite, and muscovite. Most of these minerals are associated with metavolcanics 

and migmatite. The hydrothermal alteration mineral map obtained in this study can 

improve the understanding of the association of these minerals with tourmaline and 

gold mineralization in the area.  
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3 New effective spectral matching measures for 
hyperspectral data analysis 

(This material has been accepted for publication in the “International Journal of Remote 

Sensing, Taylor and Francis.” Please refer to page XIII for the original paper link). 

Abstract: The successful implementation of Spectral Matching Measures (SMMs) often 

plays a crucial role in material discrimination and classification using hyperspectral 

dataset. The commonly exploited SMMs, such as Spectral Angle Mapper (SAM), Spectral 

Information Divergence (SID), and their hybrid, i.e., SIDSAMtan, show limited 

discrimination power while discriminating spectrally similar targets. This study presents 

three new effective SMMs named Dice Spectral Similarity Coefficient (DSSC), Kumar-

Johnson Spectral Similarity Coefficient (KJSSC), and a hybrid of DSSC and KJSSC, i.e., 

KJDSSCtan, for accurate discrimination of spectrally similar materials. A wide range of 

hyperspectral datasets of minerals and vegetation acquired under laboratory and real 

atmospheric conditions was used to compare and evaluate the performance of newly 

proposed and existing SMMs using Relative Spectral Discrimination Power (RSDPW) 

statistics. We also assessed the discrimination ability of the proposed and existing SMMs 

using spectra of selected minerals and vegetation with an added component of random 

noise and linearly synthesized mixed spectra. An in-depth comparison and evaluation of 

different SMMs demonstrated that the discrimination power of the proposed SMMs is 

significantly higher than existing SMMs. The proposed SMMs also outperform existing 

SMMs when discriminating spectra of minerals and vegetation with added noise and their 

linearly synthesized mixed counterpart. The KJSSC and DSSC show similar efficiency in 

discriminating spectra of minerals and vegetation; whereas, their hybrid measure, i.e., 

KJDSSCtan shows much higher spectral discrimination ability. Therefore, the newly 

proposed hybrid measure, i.e., KJDSSCtan is recommended over existing SMMs for 

successful material discrimination using hyperspectral data. 

3.1 Introduction 

The hyperspectral sensors measure the reflected or emitted electromagnetic radiation from 

the surface in many narrow and contiguous spectral channels to extract the materials' 

spectral signature (Goetz et al., 1985; Kruse, 1998). The material's spectral signature has 

been extensively utilized to study mineral composition, moisture content, and other 

physical properties (Cloutis, 1996; Clark, 1999). Hyperspectral remote sensing has 

emerged as the most promising tool for material detection, identification, discrimination, 

and quantification of earth and planetary surface (Colarusso et al., 1998; Clark et al., 2003; 

Goetz, 2009; Van der Meer et al., 2012; Bioucas-Dias et al., 2013). 

The classical approach of hyperspectral data-based material identification follows the 

principle of matching the image spectra with a spectral library of known materials (Van 

der Meer, 2006; Clark et al., 2007). Therefore, the successful utilization of any 

hyperspectral data highly depends on the discrimination power of Spectral Matching 



28 

Measures (SMMs) to discriminate the spectrally similar targets (Homayouni & Roux, 

2004; Keshava, 2004; Robila & Gershman, 2005). Several SMMs were used to analyze the 

spectral similarity between reference or library and target spectra of vegetation (Govender 

et al., 2007; Thenkabail & Lyon, 2016), soil (Ben-Dor et al., 2002; Govender et al., 2007), 

water (Govender et al., 2007), minerals, and rocks (Van der Meer, 2004; Van der Meer et 

al., 2012; Kumar et al., 2014; Kumar et al., 2020a).  

The SMMs can be grouped into deterministic and stochastic measures. The deterministic 

measures are based on geometrical and physical aspects; whereas, stochastic measures deal 

with the probability distribution of spectra or pixel vectors (Vishnu et al., 2013). Some of 

the most popular deterministic SMMs are Euclidean Distance (ED) (Gower, 1985), 

Spectral Feature Fitting (SFF) (Clark et al., 1993), Spectral Angle Mapper (SAM) (Kruse 

et al., 1993), and Spectral Correlation Mapper (SCM) (Robila & Gershman, 2005). The 

widely employed stochastic SMMs include Jeffries Matusita (J-M) distance (Richards & 

Richards, 1999), Spectral Information Divergence (SID) (Chang, 2000), and many others 

(Shanmugam & SrinivasaPerumal, 2014).  

Each method has some advantages and limitations over other methods. To minimize the 

limitation of individual measures, significant effort has been given in hybridizing multiple 

measures together to improve their discrimination ability (Du et al., 2004; Naresh Kumar 

et al., 2011; Nidamanuri & Zbell, 2011; Padma & Sanjeevi, 2014a, 2014b). Some of the 

well-exploited hybrid SMMs are SIDSAMtan (Du et al., 2004), SIDSCM (Naresh Kumar 

et al., 2011), Normalized Spectral Similarity Score (NS3) (Nidamanuri & Zbell, 2011), and 

JM-SAM (Padma & Sanjeevi, 2014a). The primary purpose of the hybridization of 

multiple measures is to take each method's unique advantage and overcome their 

limitations to improve spectral discrimination power.  The hybrid measures take the intra-

class and inter-class variability into account more efficiently than the individual method 

(Shanmugam & SrinivasaPerumal, 2014; Padma & Sanjeevi, 2014b; Ding et al., 2015) in 

spectral discrimination measures.  

The similarity or dissimilarity values obtained using various SMMs cannot be compared 

directly, as these methods use different theories and measurement units in computing 

similarities. Chang (2000) has proposed the Relative Spectral Discrimination Power 

(RSDPW) statistics to compare and evaluate the discrimination power of different SMMs. 

Unlike the similarity values obtained by different SMMs, the value of RSDPW can be used 

in the performance evaluation of SMMs (Chang, 1999, 2000, 2003; Du et al., 2004; Van 

der Meer, 2006; Naresh Kumar et al., 2011; Adep et al., 2016; Kumar et al., 2020a). 

Although various SMMs are found in the literature, there is a continual demand to develop 

optimal SMMs for accurate material discrimination and classification (Shanmugam & 

SrinivasaPerumal, 2014; Souza et al., 2017). The most commonly employed SMMs are 

SAM and SID due to their simple computation and good discrimination ability. The SAM 

may not perform satisfactory discrimination of two spectra if the spectral angle between 

them is very small (i.e., it may not be able to accurately discriminate two very similar 

spectra); whereas, the SID does not consider the geometrical features of the spectra (Naresh 
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Kumar et al., 2011; Padma & Sanjeevi, 2014b; Friedrich et al., 2016). There are few studies 

available in the literature to assess the discrimination ability of SMMs using spectrally 

similar targets and the development of new measures for accurate discrimination of 

spectrally similar materials (Van der Meer, 2006; Naresh Kumar et al., 2011). To address 

this research gap, we propose three new effective SMMs, such as Dice Spectral Similarity 

Coefficient (DSSC), Kumar-Johnson Spectral Similarity Coefficient (KJSSC), and a 

hybrid of DSSC and KJSSC, named as KJDSSCtan, for successful discrimination of 

spectrally similar materials.  The DSSC and KJSSC can be derived by deploying the Dice 

Similarity Coefficient and Kumar-Johnson Similarity Coefficient (KJSC), respectively. It 

is worth mentioning here that the KJSC and DSC were successfully employed in the field 

of biological, medical, and computer sciences (Hubálek et al., 1995; LaPara et al., 2002; 

Murguía & Villaseñor, 2003; Cha, 2007; Sampat et al., 2009; Baum et al., 2010; Ardjmand 

et al., 2014; Ayeldeen et al., 2015), but remains unexplored in the field of hyperspectral 

remote sensing for matching the similarity of spectra. A comparative analysis of the 

proposed and existing SMMs has been carried out to evaluate their discrimination ability 

based on RSDPW statistics using seven different hyperspectral datasets such as (a) USGS 

spectra of minerals, (b) USGS spectra of vegetation, (c) USGS spectra of minerals with 

added noise component, (d) USGS spectra of vegetation with the added noise component 

(e) linearly synthesized mixed minerals spectra of USGS, (f) linearly synthesized mixed 

vegetation spectra of USGS, and (g) spectra of hydrothermal alteration minerals derived 

from airborne hyperspectral data. 

3.2 Hyperspectral datasets and methods 

3.2.1 Hyperspectral datasets 

The hyperspectral data acquired under laboratory and real atmospheric conditions were 

used to compare and evaluate the performance of commonly adopted and newly proposed 

SMMs. The spectra of minerals (i.e., alunite, calcite, hematite, jarosite, kaolinite, and 

mixed spectrum (i.e., derived using linear spectral mixing of all minerals with equal 

proportion)) (Figure 3.1), and vegetation spectra (i.e., black brush, blue spruce, cheatgrass, 

juniper bush, rabbitbrush, salt brush, and mixed spectrum (i.e., derived using linear spectral 

mixing of all vegetation species with equal proportion) (Figure 3.2) are obtained from the 

United States Geological Survey (USGS) spectral library within the wavelength range of 

400 to 2560 nm. The USGS spectral library contains the spectra of several materials, 

including minerals, rocks, soils, vegetation, man-made materials, and others. These spectra 

have been commonly used as reference spectra for the spectroscopic interpretation and 

analysis of laboratory, field, and aerial or space-borne hyperspectral data. The advantage 

of using the USGS spectra of materials is that it contains comprehensive information of the 

sample, including companion description, photographs, spectral measurement setting, and 

quality or impurity information of the samples (Kokaly et al., 2017). 
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Figure 3.1. The spectral curve of minerals obtained from the USGS mineral spectral 

library. 

 

Figure 3.2. The spectral curve of vegetation obtained from the USGS vegetation spectral 

library. 
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The hyperspectral data acquired under real atmospheric conditions usually suffer from 

noise due to sensor calibration, atmospheric attenuations, illumination, and topographic 

effects (Gao et al., 2009; Goetz, 2009). The noise introduces uncertainty and degrades the 

spectral characteristics of materials, which significantly affects the performance of SMMs 

(Van der Meer, 2006). To assess the impact of noise on the discrimination ability of SMMs, 

random noise of 10% has been added to the minerals (Figure 3.3) and vegetation spectra 

of the USGS (Figure 3.4). 

 

 

Figure 3.3. The spectral curve of minerals of the USGS mineral spectral library was 

obtained by adding the 10% of random noise in the spectra. 

Spectral mixing is a common phenomenon in remote sensing and causes loss of diagnostics 

spectral features of material required for successful discrimination and classification using 

hyperspectral datasets. Spectral mixing causes the mixing of the spectral signature of 

multiple materials, which results in low intra-class variability of different materials (Clark, 

1999). Most of the SMMs and classification techniques suffer due to the intra-pixel mixing 

of spectral signatures of different targets. We assess the discrimination ability of proposed 

and existing SMMs with mixed spectra of minerals (Figure 3.5) and mixed vegetation 

spectra (Figure 3.6). Mixed spectra of minerals obtained by linear mixing of actual mineral 

class with 50% proportion and other minerals with equal proportion (i.e., 50% of actual 

class and 8.33% of the remaining six other mineral classes) to avoid complete dilution of 

the spectral feature of the actual class. 
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Figure 3.4. The spectral curve of vegetation of USGS vegetation spectral library obtained 

by adding the 10% of random noise in the spectra. 

 
Figure 3.5. Mixed spectra of minerals obtained by linear mixing of actual mineral class and 

other minerals with equal proportion (i.e., 50% of actual mineral class + 8.33% of other six 

minerals (i.e., 50%)) using USGS mineral spectral library. 
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Figure 3.6. Mixed spectra of vegetation obtained by linear mixing of actual vegetation class 

and other vegetation with equal proportion (i.e., 50% of actual vegetation class + 8.33% of 

other six vegetation (i.e., 50%)) using USGS vegetation spectral library. 

It is necessary to clarify here that the primary purpose of spectral mixing in this study is to 

induce the spectral characteristics of other classes into the actual class, which decreases the 

intra-class variability of different spectra and makes spectral discrimination more 

challenging. The same procedure was used to derive the mixed vegetation spectra. 

Furthermore, we used airborne hyperspectral data acquired using a recently developed 

Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) sensor to 

evaluate the performance of the proposed SMMs. The AVIRIS-NG is an advanced version 

of the AVIRIS-classic sensor with improved resolution and a higher signal to noise ratio. 

The data were acquired under a collaborative science mission of the Indian Space Research 

Organization (ISRO) and National Aeronautics and Space Administration (NASA) in the 

year 2015/16 and available as level 1 (L1: at sensor radiance) and level 2 (i.e., L2: 

atmospherically corrected) with geometric correction applied on both the levels. The 

obtained AVIRIS-NG data of L2 consists of 425 spectral channels in the wavelength range 

of 380 to 2510 nm at ~5nm and ~7.5m spectral and spatial resolution, respectively. The 

data were further subjected to removal of uncalibrated bands, where 295 bands were found 

suitable, and the remaining 130 bands (i.e., 1–15, 146–158, 188–227, 275–328, and 421–

425) were excluded due to significant noise. The 295 spectral bands were further subjected 

to a classical hyperspectral processing system to derive the endmembers. A detailed 

description of the methodology adopted to derive the hydrothermal alteration minerals (i.e., 

endmembers) can be referred from our previous work in Kumar et al. (2020a).  
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The study area is in the part of Hutti-Maski Archean greenstone belt in the eastern Dharwar 

Craton, south-eastern part of India, which is situated between 16°1'12''–16°24'0'' N latitude 

and 76°36'0''–76°51'0'' E longitude (Figure 3.7). The major rock types found in the area are 

acidic intrusive, amphibolite, granites, metabasalt, and migmatite (Figure 7). The area hosts 

major gold mineralization and hydrothermal alteration minerals (Hazarika et al., 2015; 

Kumar et al., 2020a). We used spectra of hydrothermal alteration minerals (i.e., goethite, 

chlorite, chlorite at the mine site (chlorite mixed with mined materials), kaolinite, 

muscovite, and mixture (the mixture is derived using linear spectral mixing of all minerals 

with equal proportion) obtained from our previous work in Kumar et al. (2020a) (Figure 

3.8). 

 

Figure 3.7. Geographical location and geological setting of the area showing major 

lithological units and gold occurrences reported by the Geological Survey of India. 
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Figure 3.8. The spectra of hydrothermal alteration minerals obtained using AVIRIS-NG 

airborne hyperspectral data.  

3.2.2 Spectral matching measures 

A brief mathematical framework of commonly adopted SMMs (such as SAM, SID, and 

SIDSAMtan), referred hereafter as existing SMMs, and the proposed SMMs (i.e., DSSC, 

KJSSC, and the hybrid of DSSC and KJSSC, i.e., KJDSSCtan, are discussed in this section.  

3.2.2.1 Existing spectral matching measures 

a. Spectral Angle Mapper (SAM): The SAM is a deterministic spectral similarity 

measure, which computes the spectral angle between known and unknown spectra by 

treating them as pixel vectors in a space with dimensionality equal to the number of 

spectral bands (Kruse et al., 1993). The main advantages of SAM are that it suppresses 

the effects of shadow and illumination effects. The SAM of two spectra 𝑃 =
(𝑝1, 𝑝2, … , 𝑝𝐿)𝑇 and 𝑄 = (𝑞1, 𝑞2, … , 𝑞𝐿)𝑇 can be computed using Equation (3.1).  

 

𝑆𝐴𝑀(𝑃, 𝑄) =  cos−1 (
∑ 𝑝𝑙

𝐿
𝑙=1 𝑞𝑙

[∑ 𝑝𝑙
2]𝐿

𝑙=1

1
2[∑ 𝑞𝑙

2]𝐿
𝑙=1

1
2

)      (3.1) 

where 𝑃 is reference spectra, 𝑄 is unknown spectra,  𝑝𝑙and 𝑞𝑙are reflectance value of 

spectral band l of spectra  𝑃 and 𝑄, respectively, L is the number of spectral bands.  
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b. Spectral Information Divergence (SID): The SID calculates the divergence between 

two spectra (Chang, 1999). The SID is more effective in capturing the subtle spectral 

variability than SAM (Chang, 2000). The SID of two spectra 𝑃 = (𝑝1, 𝑝2, … , 𝑝𝐿)𝑇 and 

𝑄 = (𝑞1, 𝑞2, … , 𝑞𝐿)𝑇 can be computed using Equation (3.2).  

 

𝑆𝐼𝐷(𝑃, 𝑄) = ∑ 𝑞𝑙 𝐷(𝑝𝑙 ‖ 𝑞𝑙)
𝐿
𝑙=1 +  ∑ 𝑝𝑙 𝐷(𝑞𝑙 ‖ 𝑝𝑙 )

𝐿
𝑙=1        (3.2) 

where, ∑ 𝑞𝑙 𝐷(𝑝𝑙 ‖ 𝑞𝑙)𝐿
𝑙=1 =  ∑ 𝑞𝑙 (𝐼𝑙 (𝑞𝑙 ) −  𝐼𝑙 (𝑝𝑙 ))𝐿

𝑙=1      (3.3) 

and, ∑ 𝑝𝑙 𝐷(𝑞𝑙 ‖ 𝑝𝑙 )
𝐿
𝑙=1 =  ∑ 𝑝𝑙 (𝐼𝑙 (𝑝𝑙 ) −  𝐼𝑙 (𝑞𝑙 ))𝐿

𝑙=1       (3.4) 

𝐼𝑙(𝑞𝑙) = − log 𝑞𝑙 and similarly, 𝐼𝑙(𝑝𝑙) = − log 𝑝𝑙. Measures 𝐼𝑙(𝑞𝑙) and 𝐼𝑙(𝑝𝑙) are 

referred to as the self-information of 𝑝𝑙 and 𝑞𝑙 for the band l. Equation (3.3) and (3.4) 

represent the relative entropy of 𝑝𝑙 with respect to 𝑞𝑙 (indicated with ‖ symbol). In 

recent years, the SID has gained more appreciation than SAM for spectral 

discrimination of different materials (van der Meer, 2006; Naresh Kumar et al. 2011; 

Padma and Sanjeevi, 2014; Kumar et al. 2020a). 

c. Hybrid of SID and SAM (i.e., SIDSAMtan): The cross product of SID and SAM with 

tangent (tan) trigonometric function provides their hybrid measures (Du et al., 2004). 

The hybrid approach incorporates the unique characteristics of SAM and SID to 

improve the discrimination capability. SID can reduce the effects of uncertainty 

introduced by unknown interferences common in hyperspectral datasets (Du et al., 

2004). It can be computed using Equation (3.5). 

 

𝑆𝐼𝐷𝑆𝐴𝑀𝑡𝑎𝑛 =  𝑆𝐼𝐷 × tan(𝑆𝐴𝑀)       (3.5) 

3.2.2.2 Proposed spectral similarity measures 

We present three effective SMMs, i.e., DSSC, KJSSC, and a hybrid of DSSC and KJSSC, 

named KJDSSCtan, with an enhanced spectral discrimination capability for accurate 

material discrimination and classification using hyperspectral dataset. 

a. The DSSC of two spectra can be computed by employing DSC (Dice, 1945). The DSC 

has been effectively utilized in the field of biological and medical sciences and ecology 

for image segmentation and measuring the similarity of two molecules and species 

(Hubálek et al., 1995; McCune et al., 2002; Sampat et al., 2009; Kumar & Zhang, 

2018). To the best of our knowledge, DSC's utilization has not been demonstrated for 

hyperspectral datasets of earth and planetary surface. The DSC computes the inner 

product between two vectors to measure their similarity (Shanon, 1948; Cha, 2007). It 

is less sensitive to noise as it gives less weight to outliers and retains the sensitivity in 

more heterogeneous datasets (McCune et al., 2002). The DSC's similarity value ranges 

from 0 to 1, where the smaller value indicates a higher match and vice-versa. The DSSC 

of two spectra 𝑃 = (𝑝1, 𝑝2, … , 𝑝𝐿)𝑇 and 𝑄 = (𝑞1, 𝑞2, … , 𝑞𝐿)𝑇 can be computed using 

Equation (3.6).  
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𝐷𝑆𝑆𝐶(𝑃, 𝑄) =
2 ∑ 𝑝𝑙𝑞𝑙

𝐿
𝑙=1

∑ 𝑝𝑙
2+∑ 𝑞𝑙

2𝐿
𝑙=1

𝐿
𝑙=1

         (3.6) 

b. Kumar-Johnson Spectral Similarity Coefficient (KJSSC): The KJSSC of two spectra 

can be computed by employing KJSC. The KJSC is a non-parametric symmetric 

divergence measure of Csiszar’s f-divergences and information inequalities (Kumar & 

Johnson, 2005; Cha, 2007). The KJSC has been successfully used in signal processing 

for measuring the similarity of the probability distribution (Souza et al., 2017). To the 

best of our knowledge, the KJSC, as similar to DSC, has not been employed in 

hyperspectral remote sensing for measuring the similarity between different materials. 

The KJSC uses arithmetic and geometric mean divergence to calculate the similarity 

between the given two probability distribution (Kumar & Johnson, 2005). The 

geometric mean indicates the central tendency computed using their values' products, 

whereas the arithmetic mean uses their summation. The geometric mean becomes more 

reliable than the arithmetic mean when the dataset display correlation between 

variables and contains outliers. In contrast, arithmetic mean provides more accurate 

results when the datasets are not skewed and show less correlation between variables 

(Cartwright & Field, 1978). Measuring divergence of two given spectra by 

incorporating both geometric and arithmetic mean divergence can be an optimal 

solution to reduce the impact of interference in hyperspectral data resulted due to 

atmospheric attenuations, sensor calibration and platform disturbances etc. 

Furthermore, KJSC also incorporates mutual information to reduce the uncertainty of 

a random variable caused due to the knowledge about other variables (Kumar & 

Johnson, 2005). The value of KJSSC can range from 0 to infinity, where a value 

approaches 0 indicates a similar target and greater than 0 indicates a different target. 

The KJSSC of two spectra 𝑃 = (𝑝1, 𝑝2, … , 𝑝𝐿)𝑇 and 𝑄 = (𝑞1, 𝑞2, … , 𝑞𝐿)𝑇 can be 

computed using Equation (3.7).  

𝐾𝐽𝑆𝑆𝐶(𝑃, 𝑄) = ∑ (
(𝑝𝑙

2−𝑞𝑙
2)2

2(𝑝𝑙𝑞𝑙
3/2)

)𝐿
𝑙=1         (3.7) 

c. Hybrid of KJSSC and DSSC (i.e., KJDSSCtan): An approach of fusing different 

similarity measures (such as SAM with SID, J-M distance, and others) to develop a 

hybrid measure for better discrimination and classification of materials have been 

successfully utilized in the literature (Du et al., 2004; Naresh Kumar et al., 2011; Padma 

& Sanjeevi, 2014b; Kumar et al., 2020a). We fuse the DSSC and KJSSC to develop a 

novel hybrid spectral similarity method. The hybrid method uses each measure to 

improve the discrimination power and reduces the false positive in the identification 

and classification of spectrally similar materials (Van der Meer, 2006; Naresh Kumar 

et al., 2011; Kumar et al., 2014; Padma & Sanjeevi, 2014b). We used tangent (tan) 

instead of cosine (cos) trigonometric function to combine KJSSC and DSSC. It is 

important to mention here that cos may not be an effective trigonometric function to 

combine two similarity measures because it computes the projection of one-pixel vector 

along with the other one, which will reduce or yield less discriminability as compare 
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with tan as illustrated in previous studies (Du et al., 2004; Naresh Kumar et al., 2011). 

The KJDSSCtan can be obtained using Equation (3.8).  

𝐾𝐽𝐷𝑆𝑆𝐶𝑡𝑎𝑛 = 𝐾𝐽𝑆𝑆𝐶 × 𝑡𝑎𝑛(𝐷𝑆𝑆𝐶)       (3.8) 

3.3 Computation of SMMs and RSDPW statistics 

We computed the spectral similarity matrix for the spectra of minerals, vegetation, mineral 

spectra with added random noise and vegetation spectra with added random noise, linearly 

mixed spectra of minerals and linearly mixed spectra of vegetation, and hydrothermal 

alteration minerals using above discussed SMMs such as SAM (3.1), SID (3.2), SIDSAMtan 

(3.5), DSSC (3.6), KJSSC (3.7) and KJDSSCtan (3.8). The computation of these measures 

was implemented using ‘philentropy’ package available in the R statistical programming 

language (Drost, 2018). 

The spectral similarity values obtained using different SMMs cannot be compared directly, 

as each method uses a different mathematical framework and measurement units. Chang 

(2003) introduced a Relative Spectral Discrimination Power (RSDPW), which has been 

successfully used to compare and evaluate the performance of different SMMs (Du et al., 

2004; Van der Meer, 2006; Naresh Kumar et al., 2011; Kumar et al., 2020a). The RSDPW 

quantifies the ability of SMMs to discriminate and classify a target spectrum (i.e., target 

pixel vector) from a spectral library or between two spectra with respect to a reference 

spectrum. Assume 𝑚(. , . ) is an SMM, 𝑅 = (𝑟1, 𝑟2, … , 𝑟𝐿)𝑇is the reference spectrum, 𝑃 =
(𝑝1, 𝑝2, … , 𝑝𝐿)𝑇 and 𝑄 = (𝑞1, 𝑞2, … , 𝑞𝐿)𝑇 are the two spectra, the RSDPW of 𝑚(. , . ), 

represented by 𝛺𝑚(𝑃, 𝑄; 𝑅), can be computed using Equation (3.9). 

𝛺𝑚(𝑃, 𝑄; 𝑅) = 𝑚𝑎𝑥 {
𝑚(𝑃,𝑅)

𝑚(𝑄,𝑅)
,

𝑚(𝑄,𝑅)

𝑚(𝑃,𝑅)
}        (3.9) 

The reference spectrum is usually chosen by considering the spectral similarity of that 

spectrum with other spectra of different classes. The mixed spectrum can also be obtained 

by performing a linear spectral mixing using all spectra of different classes (Chang, 2003; 

Du et al., 2004; Naresh Kumar et al., 2011). We performed a linear spectral mixing using 

all spectra of different classes with equal proportion to prepare a reference spectrum to be 

used in the computation of RSDPW statistics to assess the discrimination ability of 

different SMMs. SMM yielding a higher value of RSDPW statistics indicates a higher 

capability to accurately discriminate spectra, and vice-versa. The implemented codes and 

sample data can be available to the scientific community through the GitHub repository 

(https://github.com/c-kumar/Sectral-Similarity-Measures). 

https://github.com/c-kumar/Sectral-Similarity-Measures
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3.4 Results and discussion  

3.4.1 Spectral similarity analysis 

We computed the spectral similarity matrix of various hyperspectral datasets using the six 

different SMMs. The value of DSSC has been used to illustrate the spectral similarity and 

intra-class variability of different materials. The spectral similarity matrices of different 

hyperspectral datasets derived using other SMMs are presented in appendix A. The higher 

the values of any SMMs, the more the spectra are dissimilar and vice-versa. 

The spectra of minerals contain certain similarities with prominent variation, as evident 

from the absorption position and overall shape of the mineral spectra within the wavelength 

range of VNIR-SWIR (Figure 3.1). Table 3.1 represents the spectral similarity matrix of 

minerals using DSSC. The spectral similarity matrix of minerals illustrates that chlorite, 

hematite, calcite, and jarosite are spectrally dissimilar as they yield a higher value of DSSC 

than other minerals (i.e., alunite, kaolinite, and muscovite). Similar inferences can be made 

from the spectral similarity matrix of minerals using other SMMs presented in appendix 

A. The spectra of vegetation (Figure 3.2) exhibit that most vegetation classes except 

cheatgrass show absorption position at the same wavelength and similar overall shape. 

Table 3.2 illustrates that cheatgrass and saltbrush are more dissimilar than other vegetation 

species or classes. 

The noise in the spectral data are common and induce serious challenges for discrimination 

and classification as they degrade the spectral information embedded in each spectral band. 

The noise in the spectra can also increase the uncertainty in identifying the absorption 

position and shape, increasing the chances of false-positive in the identification and 

classification. The spectra of minerals and vegetation with added random noise are shown 

in Figures 3.3 and 3.4, respectively. The spectral similarity matrix derived from DSSC for 

minerals with added noise (Table 3.3) illustrates a slight increment in the similarity of 

different minerals. The decrement in the similarity value (i.e., DSSC value) indicates the 

increment in the spectral similarity, which results in low intra-class variability. The spectral 

similarity value between alunite and chlorite is reduced from 0.3175 to 0.2840 after adding 

the random noise in the spectra.  The spectral similarity value between chlorite and jarosite 

is reduced from 0.1697 to 0.1490 after adding the noise in the spectra. The spectral 

similarity between hematite and jarosite is reduced from 0.0514 to 0.0478. Similarly, other 

minerals have shown a slight reduction in spectral similarity values, which means that the 

addition of noise in the spectra reduces the intra-class variability. The spectral similarity 

matrix of vegetation with added random noise (Table 3.4) illustrates that there is a slight 

increment in the spectral similarity between vegetation classes as displayed by the spectra 

of minerals. The spectral similarity value between blue spruce and cheatgrass is reduced 

from 0.1948 to 0.1785 after adding the noise in the spectra. The spectral similarity value 

between blue spruce and saltbrush is decreased from 0.1967 to 0.1827. The spectral 

similarity value between the rabbitbrush and saltbrush is decreased from 0.0257 to 0.0248 

after adding the noise in the spectral data. Similar effects can be observed with other classes 

of vegetation (Table 3.4). The addition of random noise causes a decrement in the spectral 
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similarity value of minerals and vegetation, i.e., the spectra become more similar after 

inducing the random noise (Tables 3.3 and 3.4).  

Material discrimination and classification become more challenging in spectrally mixed 

materials. We computed the spectral similarity matrix of mixed spectra of minerals (Table 

3.5) and mixed spectra of vegetation (Table 3.6). The mixed spectra of minerals and mixed 

spectra of vegetation are presented in Figures 3.5 and 3.6. Table 3.5 illustrates a significant 

increment in the spectral similarity of minerals as expected due to linear spectral mixing. 

For example, the spectral similarity value between alunite and chlorite is significantly 

reduced from 0.3175 to 0.0477. The spectral similarity value between alunite and kaolinite 

is decreased from 0.0107 to 0.0021. A similar impact can be observed with other minerals. 

The spectral similarity matrix of mixed spectra of vegetation (Table 3.6) also exhibits a 

similar impact in increasing the spectral similarity between different vegetation classes due 

to linear spectral mixing as observed with mixed spectra of minerals spectra. The spectral 

similarity value between blue spruce and cheatgrass is significantly decreased from 0.1948 

to 0.0275. The spectral similarity value between blue spruce and saltbrush is decreased 

from 0.1967 to 0.0369. A similar impact can be noticed with other vegetation classes. It is 

important to notice here that the addition of noise and spectral mixing increases the spectral 

similarity between different classes and significantly reduces the intra-class variability, and 

therefore spectral discrimination becomes more challenging.  

Furthermore, the spectra of hydrothermal alteration minerals obtained from airborne 

hyperspectral data (Figure 3.8) show a diverse range of minerals with absorption positions 

around 950 nm, 2200 nm, and 2350 nm indicating the presence of Fe3+, Al-OH, and Fe/Mg-

OH molecules, respectively (Kumar et al., 2020a). These spectra were used to compute the 

spectral similarity matrix using different SMMs. The spectral similarity matrix (Table 3.7) 

obtained using DSSC illustrates that chlorite at the mine site (chlorite mixed with mined 

materials) and muscovite are more dissimilar than other minerals such as goethite, chlorite, 

and kaolinite. 

Table 3.1. Spectral similarity matrix of USGS spectra of minerals using Spectral Angle 

Mapper (SAM) (in radians). Mixture: linearly mixed spectrum of mineral with equal 

proportion. 

 Calcite Chlorite Hematite Jarosite Kaolinite Mixture 

Alunite 0.1874 0.5367 0.3946 0.2922 0.1461 0.1878 

Calcite -- 0.4280 0.3617 0.2812 0.1224 0.1330 

Chlorite  -- 0.2652 0.3489 0.5010 0.3564 

Hematite   -- 0.2384 0.4180 0.2475 

Jarosite    -- 0.3088 0.1706 

Kaolinite     -- 0.1796 
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Table 3.2. Spectral similarity matrix of USGS spectra of vegetation using SAM (in 

radians). Bb: blackbrush, Bs: blue spruce, Cg: cheatgrass, Jb: juniper bush, Rb: rabbit 

brush, Sb: saltbrush, Ms: linearly mixed spectrum of vegetation with equal proportion. 

 Bs Cg Jb Rb Sb Ms 

Bb 0.1742 0.4933 0.1158 0.2008 0.2809 0.1752 

Bs -- 0.5585 0.1385 0.2232 0.2090 0.1939 

Cg  -- 0.4474 0.3496 0.4469 0.3720 

Jb   -- 0.1285 0.1841 0.0911 

Rb    -- 0.1601 0.0480 

Sb     -- 0.1482 

 

Table 3.3. Spectral similarity matrix of USGS mineral spectra after adding 10% of random 

noise using SAM (in radians). 

 Calcite Chlorite Hematite Jarosite Kaolinite Mixture 

Alunite 0.1794 0.4988 0.3798 0.2799 0.1416 0.1830 

Calcite -- 0.3936 0.3452 0.2670 0.1196 0.1296 

Chlorite  -- 0.2481 0.3255 0.4641 0.3273 

Hematite   -- 0.2309 0.4006 0.2373 

Jarosite    -- 0.2942 0.1649 

Kaolinite     -- 0.1759 

Table 3.4. Spectral similarity matrix of USGS vegetation spectra after adding 10% of 

random noise using SAM. 

 Bs Cg Jb Rb Sb Ms 

Bb 0.1788 0.4765 0.1123 0.1928 0.2697 0.1700 

Bs -- 0.5321 0.1376 0.2114 0.1930 0.1847 

Cg  -- 0.4354 0.3386 0.4331 0.3601 

Jb   -- 0.1277 0.1804 0.0958 

Rb    -- 0.1583 0.0539 

Sb     -- 0.1467 

 

Table 3.5. Spectral similarity matrix of mixed spectra of minerals (USGS spectral library) 

prepared by linear mixing of other classes with equal proportion (50% of actual class + 

8.33% of other classes (i.e., 50%)) using SAM (units are in radians). 

 Calcite Chlorite Hematite Jarosite Kaolinite Mixture 

Alunite 0.0855 0.1777 0.1740 0.1215 0.0641 0.0821 

Calcite -- 0.1397 0.1674 0.1232 0.0545 0.0668 

Chlorite  -- 0.0862 0.1024 0.1642 0.0982 

Hematite   -- 0.1035 0.1842 0.1096 



42 

Jarosite    -- 0.1280 0.0664 

Kaolinite     -- 0.0786 

 

Table 3.6. Spectral similarity matrix of mixed spectra of vegetation (USGS spectral library) 

prepared by linear mixing of other classes with equal proportion (50% of actual class + 

8.33% of different classes (i.e., 50%)) using SAM (in radians). 

 Bs Cg Jb Rb Sb Ms 

Bb 0.0635 0.1987 0.0451 0.0821 0.1234 0.0705 

Bs -- 0.2104 0.0423 0.0769 0.0817 0.0635 

Cg  -- 0.1833 0.1397 0.1877 0.1495 

Jb   -- 0.0572 0.0869 0.0406 

Rb    -- 0.0766 0.0212 

Sb     -- 0.0715 

 

Table 3.7. Spectral similarity matrix of hydrothermal alteration minerals using SAM (in 

radians).  

 Chlorite Chlorite(mine site) Kaolinite Muscovite Mixture 

Goethite 0.1154 0.1360 0.1228 0.1933 0.1174 

Chlorite -- 0.1334 0.0791 0.1116 0.0544 

Chlorite(mine site)  -- 0.1418 0.1603 0.1134 

Kaolinite   -- 0.1004 0.0463 

Muscovite    -- 0.0797 

 

3.4.2 Performance evaluation of SMMs using RSDPW statistics 

The RSDPW statistics (Eqn. 9) of existing and proposed SMMs were computed to compare 

and evaluate their discrimination ability using seven different hyperspectral datasets. The 

SMM yields a higher RSDPW value has more discrimination ability and can produce a 

more accurate classification of materials. Furthermore, the effects of noise and linear 

spectral mixing on the performance of SMMs have also been analyzed to evaluate the 

novelty of proposed SMMs. 

3.4.2.1 USGS spectra of minerals 

The RSDPW statistics of different SMMs of USGS spectra of minerals have been presented 

in Table 3.8 and Figure 3.9. The RSDPW of SAM and SID for alunite and calcite are 1.41 

and 2.50, respectively, which is lesser than the proposed DSSC and KJSSC. To describe 

the computation of RSDPW statistics, let us consider the example of two spectra, i.e., 

alunite (P), calcite (Q), to be discriminated using DSSC with respect to a reference 

spectrum, i.e., mixture (R). The DSSC value of alunite and mixture and calcite and mixture 



43 

are 0.0210 and 0.0645, respectively (Table 3.1). The RSDPW can be calculated as, 

𝑚𝑎𝑥 (
𝐷𝑆𝑆𝐶(𝑃 𝑎𝑛𝑑 𝑅)

𝐷𝑆𝑆𝐶(𝑄 𝑎𝑛𝑑 𝑅)
,

𝐷𝑆𝑆𝐶(𝑄 𝑎𝑛𝑑 𝑅)

𝐷𝑆𝑆𝐶(𝑃 𝑎𝑛𝑑𝑅)
) = 𝑚𝑎𝑥 (

0.0210

0.0645
,

0.0645)

0.0210)
) = 3.07. The RSDPW of DSSC 

and KJSSC for alunite and calcite are 3.07 and 3.59, which is around 1.5 to 2 times higher 

than SAM and SID. The hybrid of SIDSAMtan shows similar discrimination power (i.e., 

3.56) as DSSC and KJSSC but significantly less than the developed hybrid method, i.e., 

KJDSSCtan. The RSDPW of KJDSSCtan for discriminating alunite and calcite is 11.02, 

which is around 3–4 times higher than SIDSAMtan. Similarly, the RSDPW of SAM and 

SID for discriminating alunite and chlorite are 1.90 and 2.86, respectively. The RSDPW of 

DSSC and KJSSC for alunite and chlorite are 10.39 and 11.09, which is around 5 times 

higher than SAM and SID. The developed hybrid measure, i.e., KJDSSCtan shows 

significantly higher discrimination power (i.e., 117.10) than SIDSAMtan (i.e., 5.60) for 

discriminating alunite and chlorite. The KJDSSCtan shows around 20 times higher 

discrimination power to discriminate alunite and chlorite. It can also be noticed that, in 

some instances, the proposed SMMs, i.e., DSSC and KJSSC, outperform the existing 

hybrid method SIDSAMtan. Figure 3.9 and Table 3.8 illustrate that the developed SMMs 

outperform existing SMMs in most of the cases. In a worst-case scenario, the proposed 

SMMs show similar to slightly less ability to discriminate the spectra of minerals as 

compared with existing SMMs. The RSDPW of SAM and SID for discrimination between 

calcite and hematite is 1.86 and 4.30, which is slightly higher than DSSC (i.e., 1.79) and 

KJSSC (i.e., 1.75). It has also been observed that the discrimination ability of all SMMs 

appeared similar when making discrimination between alunite and kaolinite. 

In the developed SMMs, it has been observed that on a few occasions, KJSSC outperforms 

DSSC and vice-versa. For example, the RSDPW of KJSSC is slightly higher than DSSC 

for discriminating alunite and chlorite, whereas the DSSC yields higher RSDPW for 

discriminating jarosite and chlorite as compared with KJSCC. However, the hybrid of 

DSSC and KJSSC, i.e., KJDSSCtan, shows significantly higher discrimination ability than 

the individual measures for discriminating most of the minerals. It has also been observed 

that the discrimination power of KJDSSCtan is significantly higher than the KJSSC and 

DSSC, as observed while discriminating between jarosite and chlorite and chlorite and 

kaolinite.  This justifies the requirement of the development of novel hybrid SMM like 

KJDSSCtan for accurate spectral discrimination using the hyperspectral dataset. 
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Figure 3.9. Graphical representation of RSDPW statistics of different spectral similarity 

measures derived using the USGS spectra of minerals. 

 

Table 3.8. RSDPW statistics of SAM, SID, SIDSAMtan, DSSC, KJSSC, and KJDSSCtan 

for USGS spectra of minerals.  

SAM Calcite Chlorite Hematite Jarosite Kaolinite 

Alunite 1.41 1.90 1.32 1.10 1.05 

Calcite -- 2.68 1.86 1.28 1.35 

Chlorite  -- 1.44 2.09 1.98 

Hematite   -- 1.45 1.38 

Jarosite    -- 1.05 

SID Calcite Chlorite Hematite Jarosite Kaolinite 

Alunite 2.50 2.86 1.72 1.15 1.18 

Calcite -- 7.16 4.30 2.18 2.13 

Chlorite  -- 1.66 3.28 3.36 

Hematite   -- 1.97 2.02 

Jarosite    -- 1.02 

SIDSAMtan Calcite Chlorite Hematite Jarosite Kaolinite 

Alunite 3.56 5.60 2.29 1.27 1.23 

Calcite -- 19.92 8.13 2.81 2.89 

Chlorite  -- 2.45 7.10 6.90 

Hematite   -- 2.89 2.81 

Jarosite    -- 1.03 

DSSC Calcite Chlorite Hematite Jarosite Kaolinite 

Alunite 3.07 10.39 1.71 1.01 1.07 
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Calcite -- 3.39 1.79 3.10 3.29 

Chlorite  -- 6.07 10.50 11.15 

Hematite   -- 1.73 1.84 

Jarosite    -- 1.06 

KJSSC Calcite Chlorite Hematite Jarosite Kaolinite 

Alunite 3.59 11.09 2.05 1.55 1.01 

Calcite -- 3.09 1.75 2.32 3.57 

Chlorite  -- 5.40 7.15 11.02 

Hematite   -- 1.33 2.04 

Jarosite    -- 1.54 

KJDSSCtan Calcite Chlorite Hematite Jarosite Kaolinite 

Alunite 11.02 117.10 3.52 1.53 1.07 

Calcite -- 10.62 3.14 7.19 11.76 

Chlorite  -- 33.30 76.35 124.86 

Hematite   -- 2.29 3.75 

Jarosite    -- 1.64 

3.4.2.2 USGS spectra of vegetation 

The RSDPW of all SMMs for the USGS spectra of vegetation is presented in Figure 3.10 

and Table 3.9. The RSDPW statistics of SAM and SID for discriminating blackbrush and 

blue spruce are 1.11 and 2.50, whereas the RSDPW of DSSC and KJSSC are 5.09 and 2.52, 

respectively. The KJDSSCtan yields around 5 times higher RSDPW than SIDSAMtan for 

discriminating blackbrush and blue spruce. Similarly, the RSDPW of DSSC, KJSSC, and 

KJDSSCtan are significantly higher than the RSDPW of SAM, SID, and SIDSAMtan for 

making discrimination between blue spruce and juniper bush. The KJDSSCtan yields 

around 56 times higher RSDPW than SIDSAMtan for making discrimination between blue 

spruce and juniper bush. Figure 3.10 and Table 3.9 illustrate that the proposed SMMs 

outperform previous SMMs to discriminate between most vegetation classes. However, 

there were a few occasions when existing SMMs show slightly better or similar 

discrimination ability as compared to proposed SMMs. 

It has been observed that the existing SMMs perform reasonable discrimination where the 

intra-class variability is higher but shows less discrimination ability when dealing with 

spectrally similar targets. It has also been noticed that all SMMs show a similar ability to 

discriminate when the intra-class variability is significantly high. For example, the SAM, 

SID, and SIDSAMtan offer similar discrimination ability than developed SMMs when 

discriminating spectrally dissimilar classes, such as cheatgrass and blue spruce. However, 

the discrimination ability of developed SMMs is significantly higher than existing SMMs 

for discriminating most of the vegetation classes.  
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Figure 3.10. Graphical representation of RSDPW statistics of different spectral similarity 

measures derived using the spectra of vegetation derived from the USGS spectral library. 

Bb: blackbrush, Bs: blue spruce, Cg: cheatgrass, Jb: juniper bush, Rs: rabbitbrush, and Sb: 

saltbush.  

Table 3.9. RSDPW of SAM, SID, SIDSAMtan, DSSC, KJSSC, and KJDSSCtan for USGS 

spectra of vegetation. Bb: blackbrush, Bs: blue spruce, Cg: cheatgrass, Jb: juniper bush, 

Rb: rabbitbrush, Sb: saltbush.  

SAM Bs Cg Jb Rb Sb 

Bb 1.11 2.12 1.92 3.65 1.18 

Bs -- 1.92 2.13 4.04 1.31 

Cg  -- 4.08 7.74 2.51 

Jb   -- 1.90 1.63 

Rb    -- 3.09 

SID Bs Cg Jb Rb Sb 

Bb 2.50 2.86 1.72 1.15 1.18 

Bs -- 7.16 4.30 2.18 2.13 

Cg  -- 1.66 3.28 3.36 

Jb   -- 1.97 2.02 

Rb    -- 1.02 

SIDSAMtan Bs Cg Jb Rb Sb 

Bb 2.26 6.30 1.13 4.23 1.39 

Bs -- 14.23 2.00 1.87 1.62 

Cg  -- 7.10 26.64 8.79 

Jb   -- 3.75 1.24 
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3.4.2.3 USGS spectra of minerals and vegetation with added noise 

The RSDPW of all SMMs for the spectra of minerals and vegetation classes with added 

noise are presented in Figure 3.11 and Table 3.10, and Figure 3.12 and Table 3.11, 

respectively. The addition of random noise increases the uncertainty and causes a 

decrement in intra-class variability, making spectral discrimination more challenging. The 

addition of noise components in the spectra of minerals and vegetation classes causes a 

slight decrement in the RSDPW statistics for all SMMs. The addition of noise results in 

increasing the spectral similarity, i.e., two similar spectra become more similar. The 

RSDPW statistics of proposed SMMs are significantly higher than the existing SMMs for 

both minerals and vegetation spectral data with an added noise component. For example, 

the discrimination ability of proposed individual SMMs, i.e., DSSC and KJSSC, is around 

4 times higher than SAM and SID for discriminating alunite and chlorite after adding the 

noise (Table 3.10). The proposed hybrid method's discrimination ability, i.e., KJDSSCtan, 

is around 21 times higher than SIDSAMtan for discriminating alunite and chlorite (Table 

3.10).  

A similar performance has been noted for the spectra of vegetation with added random 

noise. The RSDPW statistics of DSSC and KJSSC are around 3 times higher than SAM 

and SID for discriminating juniper bush and blue spruce (Table 3.11). The discrimination 

ability of KJDSSCtan is around 8 times higher than SIDSAMtan for discriminating juniper 

Rb    -- 3.03 

DSSC Bs Cg Jb Rb Sb 

Bb 5.09 4.12 1.52 2.62 2.66 

Bs -- 1.23 7.72 13.32 1.92 

Cg  -- 6.26 10.80 1.55 

Jb   -- 1.73 4.03 

Rb    -- 6.95 

KJSSC Bs Cg Jb Rb Sb 

Bb 2.52 1.68 5.83 7.41 1.32 

Bs -- 1.50 14.66 18.63 1.90 

Cg  -- 9.78 12.43 1.27 

Jb   -- 1.27 7.70 

Rb    -- 9.79 

KJDSSCtan Bs Cg Jb Rb Sb 

Bb 12.83 6.93 8.84 19.39 3.51 

Bs -- 1.85 113.48 248.85 3.65 

Cg  -- 61.31 134.44 1.97 

Jb   -- 2.19 31.05 

Rb    -- 68.09 
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bush and blue spruce (Table 3.11). It has also been observed that there was hardly an 

instance when the proposed SMMs fail to distinguish minerals and vegetation spectra due 

to the addition of noise in the hyperspectral data.  

 

 

Figure 3.11. Graphical representation of RSDPW statistics of different spectral similarity 

measures derived using 10% of random noise added in the spectra of minerals derived from 

the USGS spectral library.  

 

Table 3.10. RSDPW statistics of SAM, SID, SIDSAMtan, DSSC, KJSSC, and KJDSSCtan 

for USGS minerals spectra after adding 10% of random noise. 

SAM Calcite Chlorite Hematite Jarosite Kaolinite 

Alunite 1.41 1.79 1.30 1.11 1.04 

Calcite -- 2.53 1.83 1.27 1.36 

Chlorite  -- 1.38 1.98 1.86 

Hematite   -- 1.44 1.35 

Jarosite    -- 1.07 

SID Calcite Chlorite Hematite Jarosite Kaolinite 

Alunite 2.47 2.58 1.63 1.21 1.16 

Calcite -- 6.37 4.04 2.05 2.13 

Chlorite  -- 1.58 3.11 2.99 

Hematite   -- 1.97 1.90 

Jarosite    -- 1.04 

SIDSAMtan Calcite Chlorite Hematite Jarosite Kaolinite 

Alunite 3.51 4.73 2.14 1.34 1.21 
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Calcite -- 16.61 7.50 2.62 2.90 

Chlorite  -- 2.22 6.34 5.72 

Hematite   -- 2.86 2.58 

Jarosite    -- 1.11 

DSSC Calcite Chlorite Hematite Jarosite Kaolinite 

Alunite 3.04 9.80 1.67 1.01 1.07 

Calcite -- 3.23 1.82 3.07 3.24 

Chlorite  -- 5.87 9.92 10.46 

Hematite   -- 1.69 1.78 

Jarosite    -- 1.05 

KJSSC Calcite Chlorite Hematite Jarosite Kaolinite 

Alunite 3.50 9.96 1.91 1.40 1.01 

Calcite -- 2.84 1.83 2.50 3.48 

Chlorite  -- 5.21 7.12 9.89 

Hematite   -- 1.37 1.90 

Jarosite    -- 1.39 

KJDSSCtan Calcite Chlorite Hematite Jarosite Kaolinite 

Alunite 10.64 98.74 3.18 1.38 1.06 

Calcite -- 9.28 3.34 7.70 11.28 

Chlorite  -- 31.00 71.50 104.68 

Hematite   -- 2.31 3.38 

Jarosite    -- 1.46 

Furthermore, Figures 3.11 and 3.12 present the discrimination power of different SMMs 

and illustrate that the proposed SMMs outperform the existing SMMs for discriminating 

most of the minerals and vegetation classes, as displayed for spectra of minerals and 

vegetation without adding the noise component.   

3.4.2.4 USGS spectra of mixed minerals and mixed vegetation 

The spectral discrimination of spectrally similar targets commonly occurred due to spectral 

mixing. We computed the RSDPW of all SMMs using the mixed spectra of mineral (Figure 

3.13 and Table 3.12) and mixed spectra of vegetation (Figure 3.14 and Table 3.13) to 

evaluate the novelty of the proposed SMMs. The proposed SMMs outperform existing 

SMMs (Figure 3.13 and 3.14).  
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Figure 3.12. Graphical representation of RSDPW statistics of different spectral similarity 

measures derived using 10% of random noise added in the spectra of vegetation derived 

from the USGS spectral library. Bb: blackbrush, Bs: blue spruce, Cg: cheatgrass, Jb: 

juniper bush, Rs: rabbitbrush, and Sb: saltbush. 

Table 3.11. RSDPW statistics of SAM, SID, SIDSAMtan, DSSC, KJSSC, and KJDSSCtan 

for USGS vegetation spectra after adding 10% of random noise.  

SAM Bs Cg Jb Rb Sb 

Bb 1.09 2.12 1.78 3.15 1.16 

Bs -- 1.95 1.93 3.43 1.26 

Cg  -- 3.76 6.68 2.46 

Jb   -- 1.78 1.53 

Rb    -- 2.72 

SID Bs Cg Jb Rb Sb 

Bb 1.30 2.21 4.25 15.88 1.67 

Bs -- 1.70 5.54 20.69 2.17 

Cg  -- 9.39 35.09 3.69 

Jb   -- 3.74 2.55 

Rb    -- 9.51 

SIDSAMtan Bs Cg Jb Rb Sb 

Bb 1.42 4.84 7.60 50.54 1.94 

Bs -- 3.42 10.77 71.62 2.75 

Cg  -- 36.82 244.85 9.40 

Jb   -- 6.65 3.92 

Rb    -- 26.04 
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DSSC Bs Cg Jb Rb Sb 

Bb 4.88 4.05 1.47 2.51 2.66 

Bs -- 1.21 7.16 12.24 1.83 

Cg  -- 5.95 10.15 1.52 

Jb   -- 1.71 3.91 

Rb    -- 6.67 

KJSSC Bs Cg Jb Rb Sb 

Bb 2.39 1.80 4.75 6.11 1.46 

Bs -- 1.33 11.36 14.63 1.64 

Cg  -- 8.52 10.98 1.23 

Jb   -- 1.29 6.93 

Rb    -- 8.92 

KJDSSCtan Bs Cg Jb Rb Sb 

Bb 11.69 7.28 6.98 15.34 3.88 

Bs -- 1.61 81.54 179.34 3.01 

Cg  -- 50.75 111.63 1.87 

Jb   -- 2.20 27.10 

Rb    -- 59.60 

 

 
Figure 3.13. Graphical representation of RSDPW statistics of different spectral similarity 

measures derived using the mixed spectra of minerals prepared by linear mixing of other 

classes with equal proportion (50% of actual mineral class + 8.33% of six other mineral 

classes (i.e., 50%)) using USGS mineral spectral library. 
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Table 3.12. RSDPW of SAM, SID, SIDSAMtan, DSSC, KJSSC, and KJDSSCtan for mixed 

spectra of minerals prepared by linear mixing of other classes with equal proportion (50% 

of actual class + 8.33% of other classes (i.e. 50%)) using linear spectral mixing.  

SAM Calcite Chlorite Hematite Jarosite Kaolinite 

Alunite 1.23 1.20 1.33 1.24 1.05 

Calcite -- 1.47 1.64 1.01 1.18 

Chlorite  -- 1.12 1.48 1.25 

Hematite   -- 1.65 1.40 

Jarosite    -- 1.18 

SID Calcite Chlorite Hematite Jarosite Kaolinite 

Alunite 2.50 2.86 1.72 1.15 1.18 

Calcite -- 7.16 4.30 2.18 2.13 

Chlorite  -- 1.66 3.28 3.36 

Hematite   -- 1.97 2.02 

Jarosite    -- 1.02 

SIDSAMtan Calcite Chlorite Hematite Jarosite Kaolinite 

Alunite 1.99 1.59 2.33 1.89 1.16 

Calcite -- 3.15 4.64 1.05 1.71 

Chlorite  -- 1.47 3.00 1.85 

Hematite   -- 4.41 2.72 

Jarosite    -- 1.62 

DSSC Calcite Chlorite Hematite Jarosite Kaolinite 

Alunite 3.66 7.75 1.74 1.13 1.07 

Calcite -- 2.11 2.10 4.15 3.93 

Chlorite  -- 4.45 8.78 8.31 

Hematite   -- 1.97 1.87 

Jarosite    -- 1.06 

KJSSC Calcite Chlorite Hematite Jarosite Kaolinite 

Alunite 4.19 7.06 1.94 1.08 1.07 

Calcite -- 1.69 2.16 3.89 3.93 

Chlorite  -- 3.63 6.56 6.63 

Hematite   -- 1.81 1.82 

Jarosite    -- 1.01 

KJDSSCtan Calcite Chlorite Hematite Jarosite Kaolinite 

Alunite 15.35 54.71 3.38 1.05 1.01 

Calcite -- 3.57 4.53 16.16 15.46 

Chlorite  -- 16.16 57.63 55.11 

Hematite   -- 3.57 3.41 

Jarosite    -- 1.05 
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There were many instances when the existing SMMs fails to make reliable discriminations 

between different minerals but proposed SMMs show a better ability to discriminate them 

with higher confidence (Figure 3.13). The RSDPW of SAM and SID are 1.23 and 2.50, 

respectively, for distinguishing alunite and calcite, whereas the RSDPW of DSSC and 

KJSSC are 3.66 and 4.19, respectively, which is around 2–3 times higher than existing 

SMMs (Table 3.12).  

 
Figure 3.14. Graphical representation of RSDPW statistics of different spectral similarity 

measures derived using the mixed spectra of vegetation prepared by linear mixing of other 

classes with equal proportion (50% of actual vegetation class + 8.33% of six other 

vegetation classes (i.e., 50%)) using USGS vegetation spectral library. Bb: blackbrush, Bs: 

blue spruce, Cg: cheatgrass, Jb: juniper bush, Rs: rabbitbrush, and Sb: saltbush.  

Similarly, the RSDPW statistics of DSSC and KJSSC are around 3–4 times higher than 

SAM and SID for discriminating alunite and chlorite. The SAM and SID show low ability 

to distinguish calcite and jarosite, whereas the DSSC and KJSSC show better 

discrimination ability. The RSDPW of DSSC and KJSSC is around 4 times higher than 

SAM and SID for discriminating calcite and jarosite. The KJDSSCtan offers a significantly 

higher ability to discriminate alunite and chlorite, and many other minerals. The RSDPW 

of SIDSAMtan is 1.85, whereas the KJDSSCtan yields RSDPW statistics of 55.11, which is 

around 30 times higher. Similarly, the KJDSSCtan shows significantly higher 

discrimination ability than SIDSAMtan while discriminating against other minerals such as 

calcite and chlorite, calcite and alunite, chlorite and jarosite, and others. 

The proposed SMMs exhibit a similar ability of spectral discrimination of mixed vegetation 

spectra, as illustrated for mixed mineral spectra. The discrimination of mixed vegetation 

becomes more challenging due to their similar overall shape and overlapped absorption 

position. The previous SMMs fail to make satisfactory discrimination of mixed vegetation 

classes, whereas the proposed SMMs successfully discriminate them with significantly 

higher RSDPW for most vegetation classes. The RSDPW statistics of SAM and SID for 

blackbrush and blue spruce are 1.11 and 1.02, which is practically not feasible to 
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discriminate, whereas the RSDPW statistics of DSSC and KJSSC are 4.40 and 2.14, which 

is around 2–4 times higher. The SIDSAMtan also shows poor spectral discrimination ability 

for blackbrush and blue spruce as it yields a low RSDPW, i.e., 1.09, which is significantly 

less as compared with KJDSSCtan (i.e., 9.42). Similarly, the spectral discrimination ability 

of KJDSSCtan is higher than SIDSAMtan for discriminating blackbrush and cheatgrass, 

blackbrush and saltbrush, and blue spruce and rabbitbrush, and others. It has also been 

observed that on a few occasions, existing SMMs show similar or slightly better spectral 

discrimination ability as compared with newly proposed SMMs, as seen when 

discriminating cheatgrass and rabbitbrush. It is also noticed that there has rarely been any 

instance where the proposed SMMs show lesser discrimination capability than the existing 

SMMs (as seen while discriminating blue spruce and cheatgrass). The proposed SMMs 

outperform the existing SMMs for most of the vegetation classes.  

Table 3.13. RSDPW statistics of SAM, SID, SIDSAMtan, DSSC, KJSSC, and KJDSSCtan 

for mixed spectra of vegetation (prepared by linear mixing of other classes with equal 

proportion (50% of actual class + 8.33% of other classes (i.e., 50%)) using the linearly 

mixed spectrum of vegetation as a reference.   

SAM Bs Cg Jb Rb Sb 

Bb 1.11 2.12 1.74 3.32 1.01 

Bs -- 2.36 1.56 2.99 1.13 

Cg  -- 3.68 7.04 2.09 

Jb   -- 1.91 1.76 

Rb    -- 3.37 

SID Bs Cg Jb Rb Sb 

Bb 1.02 3.26 3.80 17.46 1.09 

Bs -- 3.21 3.87 17.74 1.08 

Cg  -- 12.42 57.00 2.99 

Jb   -- 4.59 4.16 

Rb    -- 19.09 

SIDSAMtan Bs Cg Jb Rb Sb 

Bb 1.09 6.92 6.60 57.98 1.11 

Bs -- 7.57 6.03 53.02 1.21 

Cg  -- 45.66 401.24 6.24 

Jb   -- 8.79 7.31 

Rb    -- 64.27 

DSSC Bs Cg Jb Rb Sb 

Bb 4.40 4.18 1.37 2.39 3.27 

Bs -- 1.05 6.02 10.49 1.35 

Cg  -- 5.72 9.97 1.28 

Jb   -- 1.74 4.47 
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Rb    -- 7.79 

KJSSC Bs Cg Jb Rb Sb 

Bb 2.14 2.31 4.10 5.07 2.01 

Bs -- 1.08 8.78 10.86 1.07 

Cg  -- 9.47 11.72 1.15 

Jb   -- 1.24 8.23 

Rb    -- 10.18 

KJDSSCtan Bs Cg Jb Rb Sb 

Bb 9.42 9.65 5.61 12.10 6.55 

Bs -- 1.02 52.84 113.96 1.44 

Cg  -- 54.15 116.79 1.47 

Jb   -- 2.16 36.76 

Rb    -- 79.29 

3.4.2.5 Hydrothermal alteration minerals 

We computed and evaluated the performance of SMMs using hydrothermal alteration 

minerals (i.e., goethite, chlorite, chlorite at the mine site (chlorite mixed with mined 

materials), kaolinite and muscovite) derived from AVIRIS-NG hyperspectral data (Figure 

3.15 and Table 3.14). The proposed SMMs show a better ability to discriminate 

hydrothermal alteration minerals as compared to existing SMMs. The RSDPW of proposed 

SMMs is significantly higher than existing SMMs for most hydrothermal alteration 

minerals (Figure 3.14). The RSDPW statistics of SAM and SID are 2.16 and 3.38, whereas 

DSSC and KJSSC yield RSDPW of 6 and 5.17, respectively, and these values are 2–3 times 

higher for discriminating goethite and chlorite (Table 3.14). The RSDPW of SIDSAMtan 

is 7.31, whereas the RSDPW of KJDSSCtan is 31.08, 4–5 times higher, for discriminating 

goethite and chlorite. The RSDPW of SAM and SID is 1.46 and 1.44, whereas the DSSC 

and KJSSC yield the RSDPW of 10.51 and 13.86, which exhibit around 10 times higher 

ability to discriminate the chlorite and muscovite. The SIDSAMtan also shows the poor 

ability to discriminate chlorite and muscovite as it yields RSDPW of 2.10, whereas the 

KJDSSCtan demonstrates significantly higher RSDPW (i.e., 146.18) which exhibits around 

70 times higher discrimination power (Table 3.14). Similarly, the discrimination ability of 

DSSC and KJSSC are significantly better than SAM and SID for several hydrothermal 

minerals, as illustrated in Figure 3.15 and Table 3.14. It has also been noticed that in several 

instances (such as when making discrimination between goethite and chlorite (mine site), 

chlorite and kaolinite, chlorite, and muscovite), the proposed individual SMMs outperform 

the previous hybrid SIDSAMtan. There were only two instances (i.e., while discriminating 

goethite and kaolinite, and chlorite (at mine site) and muscovite) when previous SMMs 

show slightly better discrimination ability than proposed SMMs. Furthermore, the 

proposed SMMs show a better ability of discrimination for spectrally similar targets, which 

were not observed with previous SMMs.  
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Figure 3.15. Graphical representation of RSDPW statistics of different spectral similarity 

measures derived using the spectra of hydrothermal alteration minerals of AVIRIS-NG 

hyperspectral data. Go: goethite, Ch: chlorite, Cm: chlorite at the mine site (a mixture of 

chlorite and mined materials), Ka: kaolinite, and Mu: muscovite.  

Table 3.14. RSDPW statistics of SAM, SID, SIDSAMtan, DSSC, KJSSC, and KJDSSCtan 

for hydrothermal alteration minerals using the linearly mixed spectrum of all minerals with 

equal proportion as a reference.  

SAM Chlorite Chlorite(mine site) Kaolinite Muscovite 

Goethite 2.16 1.03 2.54 1.47 

Chlorite -- 2.08 1.18 1.46 

Chlorite(mine site)  -- 2.45 1.42 

Kaolinite   -- 1.72 

SID Chlorite Chlorite(mine site) Kaolinite Muscovite 

Goethite 3.38 2.83 1.79 2.35 

Chlorite -- 9.54 1.88 1.44 

Chlorite(mine site)  -- 5.07 6.64 

Kaolinite   -- 1.31 

SIDSAMtan Chlorite Chlorite(mine site) Kaolinite Muscovite 

Goethite 7.31 2.73 4.57 3.47 

Chlorite -- 19.96 1.60 2.10 

Chlorite(mine site)  -- 12.47 9.48 

Kaolinite   -- 1.31 

DSSC Chlorite Chlorite(mine site) Kaolinite Muscovite 
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Goethite 6.00 3.21 1.72 1.75 

Chlorite -- 19.26 3.48 10.51 

Chlorite(mine site)  -- 5.53 1.83 

Kaolinite   -- 3.02 

KJSSC Chlorite Chlorite(mine site) Kaolinite Muscovite 

Goethite 5.17 3.31 1.34 2.68 

Chlorite -- 17.13 3.87 13.86 

Chlorite(mine site)  -- 4.42 1.24 

Kaolinite   -- 3.58 

KJDSSCtan Chlorite Chlorite(mine site) Kaolinite Muscovite 

Goethite 31.08 10.75 2.31 4.70 

Chlorite -- 334.08 13.48 146.18 

Chlorite(mine site)  -- 24.78 2.29 

Kaolinite   -- 10.84 

 

3.4.3 Effectiveness of proposed SMMs 

The effectiveness of SMMs plays a crucial role in the successful exploitation of 

hyperspectral dataset for various applications such as minerals and rock type mapping 

(Bishop et al., 2011; Van der Meer et al., 2012; Zhang & Li, 2014), soil quality mapping 

and prediction (Govender et al., 2007; Farifteh et al., 2013), vegetation-species 

discrimination (Govender et al., 2007; Naresh Kumar et al., 2011; Thenkabail & Lyon, 

2016), water quality monitoring (Wang et al., 2005; Govender et al., 2007), planetary 

surface mapping (Chauhan et al., 2015; Kamps et al., 2020) and others (Feng & Sun, 2012; 

Lu & Fei, 2014). The newly proposed SMMs have illustrated their efficiency in 

discriminating spectrally similar materials (including a wide range of minerals and 

vegetation species). It has been evident from the previous discussion that the proposed 

SMMs also outperform as compared with the existing SMMs when discriminating spectra 

with random noise and with mixed spectra. The main limitation of the existing SMMs (i.e., 

SAM and SID) is that they do not consider the intra-class and inter-class variability more 

efficiently for spectral discrimination of spectrally similar materials (Naresh Kumar et al., 

2011; Shanmugam & SrinivasaPerumal, 2014). The robustness of proposed SMMs over 

the existing SMMs considers the subtle variation of the spectral features and less sensitivity 

to noise in spectral data (Cartwright & Field, 1978; McCune et al., 2002; Kumar & 

Johnson, 2005). It is worth highlighting that at numerous occasions (while discriminating 

minerals (i.e., alunite and chlorite, calcite and kaolinite, chlorite and hematite, chlorite and 

jarosite, chlorite, and kaolinite (Table 3.8)) and vegetation spectra (i.e., blackbrush and 

blue spruce, blackbrush and juniper bush, blackbrush and saltbrush, blue spruce and juniper 

bush, blue spruce and juniper bush, blue spruce and rabbitbrush, blue spruce and saltbrush, 

cheatgrass and juniper bush, and juniper bush and saltbrush, and rabbitbrush and saltbrush 

(Table 3.9)), both the DSSC and KJSSC have shown higher spectral discrimination ability 
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than the existing hybrid measure i.e., SIDSAMtan. The higher spectral discrimination ability 

of DSSC and KJSSC make their hybrid measure i.e., KJDSSCtan more robust for accurate 

discrimination. Furthermore, the proposed SMMs have shown the least impact of noise and 

spectral mixing on their spectral discrimination ability due to the fact that DSSC and 

KJSSC have the ability to efficiently deal with the noise and outliers, and intra-class 

variability. 

It has also been observed that on a few occasions, all SMMs show limited discrimination 

ability. For example, while discriminating minerals (i.e., alunite and jarosite, alunite and 

kaolinite, and jarosite and kaolinite (Table 3.8)) and vegetation spectra (i.e., blue spruce 

and saltbush, and juniper bush and rabbitbrush (Table 3.9)), the values of RSDPW are not 

high. The spectral wavelength range is a crucial element for accurate discrimination of any 

materials. Most SMMs use the spectral information available in each spectral band of the 

hyperspectral data (Shanmugam & SrinivasaPerumal, 2014). It is possible that the 

consideration of full wavelength range (400–2500 nm) of spectral data may not be an ideal 

approach for making accurate discrimination of some materials. In such cases, the 

wavelength range of diagnostic spectral signatures can be considered over the full 

wavelength range for optimal spectral discrimination, as illustrated in previous studies 

(Van der Meer, 2006; Naresh Kumar et al., 2011). The prior knowledge of spectral 

signatures of materials is vital in performing accurate spectral discrimination and 

identification. However, the automatic selection of suitable spectral bands with a limited 

number of training samples is an existing hiatus in the field of hyperspectral remote 

sensing. 

3.5 Conclusions 

• This study proposed three new effective SMMs, such as DSSC, KJSSC, and 

KJDSSCtan, with higher spectral discrimination ability than existing SMMs (i.e., 

SAM, SID, and SIDSAMtan) of spectrally similar materials.  

• A wide range of hyperspectral datasets acquired under laboratory and real 

atmospheric conditions were utilized to compare and evaluate the spectral 

discrimination ability of proposed and existing SMMs using RSDPW statistics.  

• The effectiveness of SMMs was also evaluated using the spectra with added noise 

component and mixed spectra to assess the impact of noise and spectral mixing on 

the spectral discrimination ability.  

• The RSDPW statistics of proposed SMMs are significantly higher than exiting 

SMMs for most minerals and vegetation spectra. The proposed SMMs have shown 

tremendous success over the existing SMMs for accurate discrimination of 

materials, mainly due to their ability to consider the minute variation of spectral 

features and less sensitive to noise and outliers.  

• The DSSC and KJSSC indicate similar spectral discrimination ability, whereas 

their hybrid, i.e., KJDSSCtan, shows significantly higher discrimination ability of 

spectrally identical materials. The KJDSSCtan takes unique advantage of both 

measures for enhanced spectral discrimination.  
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• The proposed SMMs can be effectively exploited for other essential hyperspectral 

processing steps, including suitable band selection, intra-class variability analysis, 

selection of spectrally pure pixels, clustering, and pixel-based image classification 

for successful hyperspectral data analysis.   
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4 Automated lithological mapping by integrating 
spectral enhancement techniques and machine 
learning algorithms using AVIRIS-NG hyperspectral 
data in Gold-bearing granite-greenstone rocks in Hutti, 
India 

(This material has been published in the “Applied Earth Observation and 

Geoinformation, Elsevier.” Please refer to page XIII for the original paper link). 

Abstract: In this study, we proposed an automated lithological mapping approach using 

spectral enhancement techniques and Machine Learning Algorithms (MLAs) using 

Airborne Visible Infrared Imaging Spectroradiometer-Next Generation (AVIRIS-NG) 

hyperspectral data in the greenstone belt of the Hutti area, India. We integrated spectral 

enhancement techniques such as Principal Component Analysis (PCA) and Independent 

Component Analysis (ICA) transformation and different MLAs to accurately map rock 

types. A conjugate utilization of conventional geological map and spectral enhancement 

products derived from Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) data were used to prepare a high-resolution reference lithology map. 

Feature selection and extraction methods were applied on the AVIRIS-NG data to derive 

different input dataset such as (a) all spectral bands, (b) shortwave infrared bands, (c) Joint 

Mutual Information Maximization (JMIM) based optimum bands, and (d) optimum bands 

using PCA, to choose optimum input dataset for automated lithological mapping. The 

comparative analysis of different MLAs shows that the Support Vector Machine (SVM) 

outperforms other Machine Learning (ML) models. The SVM  achieved an Overall 

Accuracy (OA) and Kappa Coefficient (k) of 85.48% and 0.83, respectively, using JMIM 

based optimum bands. The JMIM  based optimum bands were more suitable than other 

input datasets to classify most of the lithological units within the study area (i.e., 

metabasalt, amphibolite, granite, acidic intrusive, and migmatite). The sensitivity analysis 

performed in this study illustrates that the SVM is less sensitive to the number of samples 

and mislabeling in the model training than other MLAs. The obtained high-resolution 

classified map with accurate litho-contacts of amphibolite, metabasalt, and granite coupled 

can be integrated with an alteration map of the area for targeting the potential zone of gold 

mineralization. 

4.1 Introduction 

Geological targets like rocks and minerals have different spectral characteristics caused 

due to electronic and vibrational processes within the spectral domain of 400 to 2500 nm, 

which leads to wavelength-specific spectral signatures (Clark & Roush, 1984; Cloutis, 

1996; Clark, 1999). The spectral signature of rocks and minerals have been extensively 

used for their identification, discrimination, and mapping (Hunt, 1977; Kruse, 1996; Crosta 

et al., 1998; Van der Meer, 2004; Vaughan et al., 2005; Bishop et al., 2011; Kumar et al., 

2014; Kumar et al., 2015; Guha et al., 2019; Kumar et al., 2020a). The hyperspectral sensor 
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measures the reflected energy of the surface in many narrow and contiguous spectral bands 

and provides an opportunity for target detection and discrimination even if targets have 

their absorption feature closely spaced in the wavelength domain (i.e., few nanometers 

apart) (Van der Meer et al., 2012). Airborne hyperspectral sensors provide scope to capture 

a greater number of spectrally pure targets than spaceborne sensors due to higher spatial 

and spectral resolution and high signal-to-noise ratio (Kruse et al., 2003). Furthermore, the 

higher resolution of airborne hyperspectral data also provides a better scope to characterize 

the boundaries of lithological units or rock types. 

Both multispectral and hyperspectral datasets have been extensively used in lithological 

and minerals mapping (Kruse, 1998; Kruse et al., 2003; Ninomiya, 2004; Gomez et al., 

2005; Ninomiya et al., 2005; Kruse et al., 2006; Bedini, 2009; Goetz, 2009; Bedini, 2011; 

Van der Meer et al., 2012; Zhang & Li, 2014; Kumar et al., 2020a). Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) and Landsat datasets have been 

well exploited for geological applications (Sabins, 1999; Rowan & Mars, 2003; Ninomiya 

et al., 2005; Bedini, 2009; Pour & Hashim, 2014a; Pour et al., 2018; Pour et al., 2019). 

Different spectral enhancement techniques such as Principal Component Analysis (PCA) 

(Crosta et al., 2003; Amer et al., 2010), Independent Component Analysis (ICA) (Kumar 

et al., 2015), and band ratios (Rowan et al., 2005; Gad & Kusky, 2007) were extensively 

used to demarcate different rock types. However, PCA and ICA-based mapping of rocks 

is usually a manual approach and becomes challenging when defining litho-units' contacts. 

Researchers also utilized other semi-automated techniques for mapping rock types using 

different pixel and sub-pixel based spectral mapping techniques using the reference spectra 

of rocks and minerals (Chen et al., 2010; Murphy et al., 2012; Van der Meer et al., 2012; 

Asadzadeh & de Souza Filho, 2016; Rao & Guha, 2018; Guha et al., 2019). However, most 

spectral mapping techniques require a threshold value to obtain the final classification 

result of target materials, which is subjective and challenging (Shanmugam & 

SrinivasaPerumal, 2014; Kumar et al., 2020a).  

In recent years, Machine Learning Algorithms (MLAs) have shown great success over the 

conventional classification algorithms for accurate detection and mapping of geological 

targets (Cracknell & Reading, 2014; Othman & Gloaguen, 2014; Lary et al., 2015; Wei et 

al., 2016; Othman & Gloaguen, 2017). MLAs use artificial intelligence derived from input 

data by analyzing its characteristics and pattern with minimal human intervention (Michie 

et al., 1994). Implementation of MLAs leads to the derivation of semi-automatic tools for 

mapping the targets in the field of the earth sciences (Mjolsness & DeCoste, 2001; Yu et 

al., 2012; Cracknell & Reading, 2014; Othman & Gloaguen, 2014; Lary et al., 2015; 

Othman & Gloaguen, 2017; Bachri et al., 2019). MLAs are widely applied in different 

geoscientific applications with thrust on mineral mapping and mineral prospectivity 

mapping (Thompson et al., 2001; Waske et al., 2009; Baykan & Yılmaz, 2010; Abedi et 

al., 2012; Carranza & Laborte, 2015; Lary et al., 2015; Rodriguez-Galiano et al., 2015; 

Chen & Wu, 2017). MLAs' main strength lies in their ability to solve complex non-linear 

mapping, utilize a high volume of information without the assumption of data distribution, 

and integrate other datasets for better class separability and classification (Zuo, 2017). 
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MLAs' successful utilization for lithological mapping depends on many factors such as the 

quality of training dataset, selection of optimum or uncorrelated features or variables, and 

training parameters (Michie et al., 1994). The quality of training data has a significant 

impact on the performance of machine learning (ML) models (Cortes et al., 1995; Batista 

et al., 2004). The typical approach of collecting training datasets for lithological mapping 

is based on the low-resolution conventional geology map. The poor training data collection 

strategy from the low-resolution map, especially near the contact boundaries of different 

litho-units, can significantly degrade the final classification maps (DeFries & Chan, 2000). 

The feature selection and extraction become more critical when one deals with 

hyperspectral data due to higher spectral dimensions and inherent spectral redundancy 

(Archibald & Fann, 2007; Waske et al., 2010). Feature selection method reduces the 

dimensionality of data by selecting a subset of spectral bands with an intent to maximize 

the class separability; whereas, the feature extraction method transforms the existing 

features into a new low-dimensional feature space (Guyon et al., 2004; Hoque et al., 2014; 

Ren et al., 2014). The training parameters selection for ML models is another critical aspect 

of successful classification results (Bergstra et al., 2011). The trial and error approach to 

select the training parameters can over- or under-fit the ML models, which eventually can 

produce poor classification results (Bergstra et al., 2011). Although some studies have been 

conducted to address these factors independently, to the best of our knowledge, there is no 

single study undertaken to address all three factors together to develop an automated 

lithological mapping model using MLAs. 

This study proposes an integrated approach of spectral enhancement techniques and MLAs 

for automated mapping of rock types using AVIRIS-NG hyperspectral data. The proposed 

approach will overcome the limitation of the discussed factors for MLAs based lithological 

mapping. The proposed approach has been implemented in a geological setting consist of 

spectrally similar rock types such as granite, migmatite, amphibolite, and metabasalt of 

poorly exposed and weathered surface in subtropical climatic conditions. We performed a 

comparative analysis of three commonly used MLAs, such as Linear Discriminant 

Analysis (LDA), Random Forest (RF), and Support Vector Machine (SVM), using 

different input datasets derived by feature selection and extraction method using AVIRIS-

NG data. Furthermore, we performed a sensitivity analysis to illustrate the impact of 

reduction and mislabeling or uncertainty in the training dataset on the performance of 

different MLAs for automated lithological mapping. 

4.2 Location and geological setting of the study area 

The Hutti greenstone belt is located between 16°1'12'' to 16°24'0'' N and 76°36'0'' to 

76°51'0'' E in the part of Raichur district, the southern part of India. The geographical 

location and geological setting of the area are presented in Figure 4.1. The major rock types 

found in the area include metabasalt, granite, migmatite, amphibolite, and acidic intrusive. 

The majority of the area is covered by metabasalt, black soil followed by granite, 

migmatite, and amphibolite. The Hutti greenstone belt hosts three major gold mines, such 

as Hutti, Utti, and Hirra-Buddini (Mishra et al., 2005). The Hutti Mine is the largest 
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operation Gold mine in India, has a reserve of >120 t Au, with an average grade of 4.42 g 

t-1 Au (Hazarika et al., 2015). The Utti mine is an open cast mine and situated in the 

northeastern part of the area. The area hosts hydrothermal alteration minerals such as 

chlorite, muscovite, kaolinite, and goethite, indicating the propylitic alteration (Kumar et 

al., 2020a). Altered metabasalt and amphibolite were keenly studied for understanding the 

gold formation and associated minerals in the area (Pal & Mishra, 2002; Mishra et al., 

2005; Sarma et al., 2008). The area has also been explored for tourmaline minerals using 

geochemical and petrographic analysis of altered rock samples of sub-surface from the 

different mine sites as a proxy to gold mineralization (Hazarika et al., 2015). The 

metabasalt hosts the tourmaline in association with biotite-muscovite foliation, plagioclase, 

and chlorite minerals (Hazarika et al., 2015). 

 

Figure 4.1. Geographical location and geology map of the area showing major lithological 

units with a few locations and gold occurrences. 
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4.3 Datasets and methods 

The VNIR-SWIR spectral bands of ASTER data were used to derive the spectral 

enhancement products using PCA and ICA transformation to highlight the lithological 

units and to refine the conventional lithology map. The AVIRIS-NG data were used to 

prepare different input datasets to be used in MLAs for automated lithological mapping. 

The sensor specification and characteristics of ASTER and AVIRIS-NG data have been 

discussed in the following sections. 

4.3.1 Datasets 

The ASTER sensor measures the reflected and emitted energy in the wavelength range of 

VNIR, SWIR, and Thermal Infrared (TIR) at a spatial resolution of 15m, 30m, and 90m, 

respectively.  The detailed sensor specification of ASTER can be found in Rowan and Mars 

(2003).  A cloud-free L1B (level 1: radiometric and geometric corrected) radiance at sensor 

data (acquired on 12/02/2003) have been obtained through NASA Earth Data Portal 

(https://search.earthdata.nasa.gov/search). The AVIRIS-NG sensor recorded the 

reflectance energy in 425 spectral channels in the wavelength range of 380 to 2510 nm at 

5 nm and 7.5 m spectral and spatial resolution. The data have been acquired and processed 

(i.e., atmospheric and geometric correction) under a collaborative science mission of the 

National Aeronautics and Space Administration (NASA) and the Indian Space Research 

Organization (ISRO) to enhance the geology and mineral information in a different part of 

India including the study area (Bhattacharya et al., 2019a; Bhattacharya et al., 2019b). The 

data were acquired on 28/01/2016 and accessed through the NASA-AVIRIS-NG data 

portal (https://avirisng.jpl.nasa.gov/alt_locator/). The detailed specification of the 

AVIRIS-NG senor is presented in Table 4.1.  

The software packages and programming languages such as ENVI 5.5 

(https://www.harrisgeospatial.com/Software-Technology/ENVI), R 3.5 (https://www.r-

project.org/), and ArcMap 10.6 (http://desktop.arcgis.com/en/arcmap/) were used for 

image processing, automated machine learning implementation, and preparation of spatial 

layers.  

Table 4.1. Specifications of AVIRIS- NG sensor (Thorpe et al., 2016). VNIR: Visible 

Near Infrared, and SWIR: Shortwave Infrared. 

Characteristics AVIRIS-NG 

Spectral range 380 to 2510 nm 

Spectral channel 425 

Position 5 nm 

Calibration ± 0.3 nm 

Signal to Noise Ratio (SNR) >2000 for VNIR and >800 for SWIR 

Accuracy 95 % (<5 % uncertainty) 

Sample distance 0.3 to 20 m 

https://search.earthdata.nasa.gov/search
https://avirisng.jpl.nasa.gov/alt_locator/
https://www.harrisgeospatial.com/Software-Technology/ENVI
https://www.r-project.org/
https://www.r-project.org/
http://desktop.arcgis.com/en/arcmap/
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Radiometric resolution 14 bits 

4.3.2 Methods 

The study utilized ASTER and AVIRIS-NG dataset for automated lithological mapping 

using MLAs. The ASTER data, along with a geological map and field data, were used to 

prepare a high-resolution reference map for better training data sampling for ML modeling. 

A schematic diagram showing the methodology adopted in this study has been presented 

in Figure 2 and discussed in the following sub-sections. 

 

 

Figure 4.2. The methodology's workflow chart adopted for automated lithological mapping 

using the integrated spectral enhancement and ML methods.   

4.3.2.1 Preparation of high-resolution reference lithology map 

A suitable reference map is critical in obtaining good training datasets for the successful 

mapping of rock types using any MLAs. The most common practice of collecting training 

data is to use the conventional geological map as a reference map (Cracknell & Reading, 

2014; Othman & Gloaguen, 2014, 2017; Bachri et al., 2019). However, it is worth 

mentioning that the conventional geology map is usually prepared based on the cognitive 
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utilization of surface and sub-surface information of rock types, including mineralogical 

composition, texture, formation age, and stratigraphy. In contrast, remote sensing-based 

rock type mapping is mainly based on the surface spectral characteristics of rocks. 

Furthermore, the conventional geological map is usually prepared at a large scale (as in 

this study 1:2,50,000) and may not be a suitable reference map for obtaining a training 

dataset for classifying high spatial resolution data such as AVIRIS-NG hyperspectral data 

(in this study). 

We adopted an integrated approach of spectral enhancement techniques derived from PCA 

and ICA transformation using VNIR-SWIR spectral bands of ASTER data along with a 

geological map and field data at selected traverses to demarcate the lithological boundary 

and prepare a suitable reference lithology map at the scale of 1:25,000. The band 

combinations of higher spectral contrast of PCA and ICA transformation have been used 

in this study. We also used a False Color Composite (FCC) (R:850 nm, G: 650 nm, B: 550 

nm) of high-resolution AVIRIS-NG data to update the lithological boundary and to reduce 

the uncertainty due to discrepancy in spatial resolution of ASTER and AVIRIS-NG 

datasets. The preference of spectral enhancement products of ASTER data instead of 

AVIRIS-NG to for refining the reference lithology map was mainly made due to ASTER’s 

large areal coverage and adequate spectral contrast of rock types (Guha et al., 2012; Kumar 

et al., 2015), which makes an easy and rapid comparison with the conventional geology 

map for the interpretation of different rock types. 

The ASTER data were corrected for the cross-track illumination effect using a cross-track 

illumination correction tool of ENVI to reduce the impact of energy overspill from band 4 

to bands 5 and 9 (Hewson et al., 2005). This was followed by layer stacking of VNIR and 

SWIR spectral bands with resampling to 30 meters, atmospheric correction using the Fast 

Line of Sight Atmospheric Analysis of Hypercubes (FLAASH) module 

(https://harrisgeospatial.com/docs/FLAASH.html), and projected to UTM zone 44 True 

North (referred hereafter processed ASTER data). 

4.3.2.2 Preparation of different input datasets using AVIRIS-NG hyperspectral 
data 

The surface reflectance level 2 (L2) AVIRIS-NG data consist of 425 spectral channels were 

subjected to the removal of noisy bands. A total of 295 spectral bands (referred hereafter 

as processed hyperspectral data) have been found suitable, whereas remaining bands such 

as 1–15, 146–158, 188–227, 275–328, and 421–425 were excluded due to significant noise. 

The higher dimensionality of hyperspectral data introduces challenges as spectral 

redundancy and complex model formulation. Obtaining an optimum number of spectral 

bands can improve the classification accuracy, reduce the model complexity and 

computational cost by removing the less significant and correlated spectral bands 

(Archibald & Fann, 2007; Pal & Foody, 2010). The processed hyperspectral data were 

subjected to feature selection and extraction methods to derive different input datasets from 

optimizing the input configuration for lithological mapping using MLAs. 

https://harrisgeospatial.com/docs/FLAASH.html
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In this study, the filter and spectroscopic significance of rocks-based feature selection 

methods were performed. The filter-based methods evaluate the relevance of variables or 

spectral bands outside the model and select the variable that passes through certain criteria. 

A variety of filter-based feature selection methods such as correlation, entropy, mutual 

information, and chi-squared are available in the literature (Hall & Smith, 1999; Yu & Liu, 

2003; Wu et al., 2013). Mutual information-based filters have drawn great attention in 

recent years. In this study, Joint Mutual Information Maximization (JMIM) (Bennasar et 

al., 2015) method has been implemented in R using the “praznik” package 

(https://github.com/mbq/praznik), which uses the ‘mutual information’ and the ‘maximum 

of the minimum’ criterion to select the optimum spectral bands to consist of less band to 

band correlation. Mutual information is a measure of the mutual dependence between the 

two spectral bands, whereas the maximum of the minimum approach allows choosing the 

band, which shows a weaker correlation between bands (Bennasar et al., 2015). 

The JMIM was used to calculate the band significance for processed hyperspectral data to 

select the optimum number of bands for automated lithological mapping. The JMIM 

produces a score of each band where higher the score, less the band to band correlation and 

vise-versa.   To identify the number of optimum bands, we implemented the first 50 spectral 

bands of higher JMIM scores in MLAs and marked the accuracy statistics.  Subsequently, 

the next 25 bands of higher JMIM score and so on (such as best 75, 100, 125, 150, 150, 

175, 200, 225, 250, 275, and 295) were used in MLAs for lithological mapping. The band 

numbers yield the maximum OA and k, and the subsequent addition of more bands shows 

no significant improvement in the accuracy statistics were considered an optimum number 

of spectral bands (named hereafter JMIM optimum bands).  Furthermore, feature selection 

based on the spectroscopic significance of rocks, as most of the rock-forming minerals 

show their diagnostic absorption feature in the wavelength range of SWIR, were evaluated 

and compared with other input datasets for lithological mapping using MLAs. 

Moreover, the feature extraction technique, such as PCA, was implemented on the 

processed hyperspectral data to transform the high dimensional space into a lower 

dimension. The first 20 principal components of higher eigenvalues (named hereafter PC 

based optimum bands) were used as input data in MLAs to evaluate its utility for automated 

lithological classification.  

The feature selection and extraction methods applied on processed hyperspectral data 

produce four different input data configuration such as (a) all spectral bands, (b) SWIR 

bands (c) JMIM based optimum bands, and (d) PC based optimum bands, have been 

evaluated and compared for automated lithological classification using MLAs. The regions 

of other classes, such as vegetation, waterbody, cloud, and shadow regions, were masked 

using Spectral Angle Mapper (SAM) to avoid misclassification in all input datasets. The 

SAM is a spectral similarity-based classification method that measures the spectral angle 

between the image spectra and reference spectra by treating them as a vector in a space 

with dimensionality equal to the spectral channels (Kruse et al., 1993).  
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4.3.2.3 Training data collection and spectral separability computation 

The reference lithology map was used to collect the training points for automated 

lithological classification. A collection of good training data samples is crucial in obtaining 

optimum classification results from any MLAs. We adopted a stratified random sampling 

to collect the training samples and excluded the data points at the boundary of lithological 

units to avoid the false labeling of the samples. A proportional number of samples as per 

the spatial extent of different classes have been collected to avoid the impact of class 

imbalance on the MLAs (Batista et al., 2004; Oommen et al., 2011). The geo-locations of 

these samples have been used to extract the reflectance values from all four input datasets 

and processed further to implement MLAs. The total training samples (i.e., 2170) have 

been divided into 80% and 20% for training and testing, respectively, for the MLAs. 

To understand the intra-class variability of lithological units, a spectral dissimilarity matrix 

of all four input datasets were computed using Jeffries Matusita (J-M) distance. The J-M 

distance measures the band wise information to assess the spectral similarity between given 

spectra (Richards & Richards, 1999) and widely used in remote sensing applications for 

feature selection, class separability analysis, and spectral matching (Padma & Sanjeevi, 

2014b). 

4.3.2.4 Implementation of MLAs for automated lithological classification 

The training samples derived using different input datasets were used to train the various 

MLAs, followed by parameter optimization, validation, and accuracy assessment. The 

implementation of MLAs was done using the “CARET” package available in the “R” 

programming language (Kuhn et al., 2017). A brief conceptual framework of implemented 

MLAs has been discussed below. 

a. Linear Discriminant Analysis (LDA): LDA is a simple and mathematically robust 

statistical technique for dimension reduction, pattern recognition, and classification. It 

projects the original high-dimensional data to a lower-dimensional space in a linear 

combination of variables, which maximizes class separability (Tharwat et al., 2017). 

LDA assumes that the given data is a Gaussian distribution, and each variable has the 

same variance. LDA applies three main steps to the given data to perform classification: 

(i) calculate the separability between different classes (i.e., the distance between the 

means of different classes); (ii) calculate the distance between mean and samples of 

each class (i.e., with-in class variability); and (iii) project the original dimensional 

space to lower dimensions, which maximizes the class separability and minimizes 

within-class variability (Tharwat et al., 2017). The major limitation of LDA is that it 

fails to find lower-dimensional space if the dimensions are much higher than the 

number of samples, which means that the number of samples is crucial while using 

LDA for image classification. LDA also suffers from the assumption of linearity and 

Gaussianity; if the classes are non-linearly separable, then it fails to discriminate these 

classes (Tharwat et al., 2017). The advantage of using LDA is that it does not need any 

parameter optimization, making it simpler to implement. 
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b. Random Forest (RF): The RF method consists of a large number of Decisions Tree 

(DT), where each DT is generated using a random vector sampled independently from 

the input vector, and each DT results in a classification (Pal, 2005; Ge et al., 2018). 

The majority vote of all DTs is used to assign a final class for each unknown of the 

input vector (Maxwell et al., 2018). The key to the success of RF is the way it creates 

the DTs; the tree is planted on the new training set by using random features selection. 

The new training set is drawn from the bagging method. The bagging method generates 

a training dataset by randomly drawing with the replacement of the original training set 

used for each feature/feature combination selected (Pal, 2005). The data not used in 

training are known as out-of-bag (OOB) data and can be used to provide an independent 

estimate of OA of RF classification (Maxwell et al., 2018). The implemented RF has 

one optimization parameter, i.e., the number of trees to grow needs to be optimized for 

the best results. Some of the most common advantages of RF methods are, it is robust 

to large and correlated variables and inbuilt feature selection. However, it also suffers 

from some drawbacks, such as difficult to interpret and computationally costly when it 

deals with many trees (Kuhn et al., 2017). 

c. Support Vector Machine (SVM): The SVM is based on statistical learning theory and 

focuses on the training samples closest in the feature space to produce the optimal 

separation of classes (Schölkopf et al., 2002; Pal, 2005). The SVM classifier is 

inherently binary, where classes are linearly separable and identify a single hyperplane 

(also called a decision boundary) that gives the maximum margin between two classes. 

The margin is defined as the sum of distances to the hyperplane from two classes' 

closest points. The binary SVM can be extended as a multi-class classifier by 

repeatedly applying the classifier to each possible combination of classes (Pal, 2005; 

Maxwell et al., 2018). The SVM uses kernel functions such as linear, polynomial, 

sigmoid, and radial basis functions to project the feature spaces to the higher 

dimensions by assuming that a linear boundary can be obtained in a higher dimensional 

feature space. The classes are inherently not separable; the hyperplane can be regarded 

as having a soft-margin, allowing class samples on the wrong side of the boundary (Pal, 

2005). The choice between margin and misclassification errors is controlled by a 

positive user-defined parameter known as cost (C), which needs to be chosen optimally 

for a better result. Higher C's value produces a more complex hyperplane and less 

generalized model (Maxwell et al., 2018). 

The optimization of training parameters is crucial to obtain accurate classification results 

from MLAs. Various optimization techniques, such as grid search, simulated annealing, 

genetic algorithms, have been discussed in the literature (Bergstra & Bengio, 2012; Luo, 

2016). However, the grid search algorithm is one of the most commonly adopted methods 

and has been used in this study. The grid search algorithm was implemented with m-fold 

cross-validation (m-FCV) for robust parameter estimation. The m-FCV is a statistical 

resampling technique used to evaluate and select optimum parameters for the model by 

splitting the training data into an m-distinct subset. Then the model runs m-times, each 

time withholding one of the subsets, which is used for validation (Kohavi, 1995). The 

results of each run are validated using withheld data, and the results are averaged across all 

m runs to produce accuracy statistics such as OA and k (Maxwell et al., 2018). The SVM 
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model with radial basis function has two parameters: sigma and cost; whereas, the RF 

contains one parameter, i.e., the number of trees. The LDA does not contain any 

parameters. The training parameters of SVM and RF were optimized to obtain accurate 

classification results. 

4.4 Results and discussion 

4.4.1 Spectral characteristics of rocks  

The spectral curves of different lithological units of AVIRIS-NG data were extracted to 

study their spectral characteristics (Figure 4.3). The spectral curve of rocks exhibits 

absorption features controlled by their mineral composition, moisture content, surface 

texture, and illumination effects  (Clark, 1999). Most of the rock’ spectra show absorption 

features around 650 and 950 nm caused due to Fe3+ and absorption feature around 2200 

and around 2300 nm due to Al-OH and Fe/Mg-OH molecules, respectively (Clark, 1999). 

The spectral curve of acidic intrusive (Figure 4.3 (a)) shows a similar absorption feature 

around 650 nm and 950 nm due to Fe3+ followed by another absorption feature around 2300 

nm due to Fe/Mg-OH molecules. The spectral curve of amphibolite (Figure 4.3 (b)), granite 

(Figure 4.3 (c)), metabasalt (Figure 4.3 (d)), migmatite (Figure 4.3 (e)), and mine site 

(Figure 4.3 (f)) show similar absorption feature around 650 nm and 950 nm due to Fe3+ and 

absorption feature around 2200 nm and around 2300 nm due to Al-OH and Fe/Mg-OH 

molecules respectively. The spectral curve of metabasalt (Figure 4.3 (d)) also shows an 

additional absorption feature around 2260 nm due Fe-OH molecule. Kumar et al. (2020a) 

identified and mapped hydrothermal alteration minerals such as goethite, muscovite, 

kaolinite, and chlorite in the study area using AVIRIS-NG data, which show similar 

absorption features as found in different rock types in this study.  

The average spectral curve of different lithological units derived using the training dataset 

of all spectral bands of the AVRIS-NG reflectance image is shown in Figure 4.3 ((a). Figure 

4.3 (b) presents the boxplot of the average overall reflectance of different lithological units. 

It can be noticed that the average spectra of different lithological units except the mine site 

and soil cover show higher spectral similarity, which can also be referred from the spectral 

dissimilarity matrix of lithological units using all the spectral bands (Table 4.3). The 

average overall reflectance of metabasalt and migmatite are higher than other rock types, 

whereas mine site shows the least average overall reflectance. The average overall 

reflectance of amphibolite and granite are very similar. The average overall reflectance 

acidic intrusive is less than migmatite and metabasalt but more than other classes. The 

average overall reflectance of black soil is higher than mine site but less than other classes. 
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Figure 4.3. Spectral curve of different rock types (a) acidic intrusive, (b) amphibolite, (c) 

granite, (d) metabasalt, (e) migmatite, (f) mine site, and (g) black soil derived from 

AVIRIS-NG reflectance image. [Arrow indicates the absorption band position]. 
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Figure 4.4. The spectral characteristics of different lithological units, including mine site 

and black soil. (a) the spectral curve of rock types derived from average training pixels of 

AVIRIS-NG hyperspectral data used in lithological classification, and (b) a box plot of 

overall average reflectance of different lithological units. [Ac: acidic intrusive, Am: 

amphibolite, Gr: granite, Me: metabasalt, Mg: migmatite, Ms: Mine site, and Bs: black 

soil]. 

4.4.2 High-resolution reference lithology map 

The spectral enhancement products derived from PCA and ICA transformation using 

processed ASTER data were used to prepare the reference lithology map at a scale of 

1:25,000. The FCC (R:850 nm, G:650 nm, B: 550 nm) of high resolution processed 

hyperspectral data (Figure 4.5 (a)), band combination of PCA (R: PC3, G: PC2, B: PC1) 

(Figure 4.5 (b)) and band combination of ICA (R: IC2, G: IC1, B: IC3) (Figure 4.5 (c)) 
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showed higher spectral contrast and were effectively used in discriminating various 

lithological units of the area. The interpretation and demarcation of different litho-units 

were made with the help of a conventional geological map (Figure 4.5 (e)) and prior 

fieldwork in the study area. The reference lithology map is presented in Figure 4.5 (f). We 

demarcated a new lithological unit, i.e., amphibolite, in the northern part of the area, as 

highlighted in the band combinations of PCA and ICA transformation. We have also 

demarcated a few more units of migmatite, which were not mapped in the conventional 

geological map due to low-resolution. Furthermore, the demarcation of soil cover from the 

lithological units can increase the intra-class variability and, therefore, improve 

classification accuracy. The field validation of the reference lithology map has been 

discussed in section 4.4.6. 

The band combination prepared using PCA and ICA transformation complement each 

other to discriminate various rock types and soil cover successfully.  The band combination 

prepared using ICA transformation provides better spectral contrast between soil cover and 

metabasalt, while the band combination of PCA transformation shows better 

discrimination between amphibolite and soil cover. However, the ICA offers better 

distinction at litho-contacts' boundaries than PCA for most rock types. The sub-tropical 

climatic condition, caused by intense weathering and poor rock exposure, makes 

lithological discrimination challenging. 

It is worth mentioning that spectral enhancement products allow preparing a high-

resolution reference lithology map at a scale of 1:25,000 by considering the spectral 

characteristics of rock types. Furthermore, it will enable separating other classes such as 

soil cover formed by weathered metabasalt and different rock types in the area. The 

reference lithology map (Figure 4.5 (f)) consist of more units of rocks as compared with a 

conventional geology map of low resolution (Figure 4.5 (e)). Furthermore, the soil 

discrimination from the rock types with an accurate lithological boundary allows collecting 

better training data compared with the conventional geology map (Figure 4.5 (d)). Table 

4.2 presents the areal extent of different lithological units, including soil cover and the total 

number of training and testing samples used in MLAs for lithological classification.  The 

metabasalt covers the largest spatial extent (i.e., 48.90 km2) of the area, followed by 

amphibolite (11.56 km2), granite (11.03 km2), migmatite (8.95 km2), acidic intrusive (1.55 

km2), and mine site (0.32 km2). Black soil (25.48 km2) also covers a majority of the area 

and is mainly formed as a weathered product of metabasalt and other parent rocks in the 

area.  

4.4.3 Feature selection and extraction-based hyperspectral input datasets 

The four input datasets such as all spectral bands, SWIR bands, JMIM, and PCA based 

optimum bands obtained by implementing feature selection and extraction method using 

processed AVIRIS-NG hyperspectral data. The utility of these input datasets was evaluated 

and compared for automated lithological classification using different MLAs. The 

selection of JMIM based optimum bands was made based on OA and k values.  
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Figure 4.5. The image enhanced products such as (a) FCC (R: 850 nm, G: 650 nm, B: 550 

nm) of AVIRIS NG, (b) band combination of PCA (R: PC3, G: PC2, B: PC1) and (c) band 

combination of ICA (R: IC2, G: IC1, B: IC3) derived from calibrated ASTER data 

discriminating the litho-units of the area, (d) training data samples overlaid on the FCC of 

AVIRIS-NG data, (e) conventional geology map prepared from district resource map 

mapped at the scale of 1:2,50,000 by the geological survey of India, and (f) high-resolution 

reference lithology map derived from the band combination of PCA and ICA 

transformation using ASTER data. 
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Table 4.2. Description of the lithological units, area, number of training and testing samples 

(Pixels of AVIRIS-NG data) used in the lithological classification using MLAs.  

Lithological units Area (km2) Training samples Testing Samples 

Acidic Intrusive 1.55 104 (0.76 km2) 26 (0.19 km2) 

Amphibolite 11.56 280 (2 km2) 70 (0.51 km2) 

Granite 11.03 280 (2 km2) 70 (0.51 km2) 

Metabasalt 48.90 400 (2.9 km2) 100 (0.73 km2) 

Migmatite 8.95 280 (2 km2) 70 (0.51 km2) 

Mine Site 0.32 72 (0.52 km2) 18 (0.13 km2) 

Black Soil 25.48 320 (2.3 km2) 80 (0.58 km2) 

Figure 4.6 ((a) and (b)) illustrates the accuracy statistics of different spectral bands obtained 

using JMIM for lithological classification using MLAs. The first 100 JMIM bands achieved 

maximum or equal accuracy statistics such as OA (Figure 4.6 (a) and k (Figure 4.6 (b)) as 

compared with total number spectral bands (i.e., 295) to classify the lithological units of 

the area using MLAs. Figure 4.6 also illustrates that there was a slight decrease in the 

accuracy statistics when the lithological classification was carried using the first 125 to 225 

JMIM bands. Further, MLAs models improve their accuracy statistics when classified with 

the first 250, first 275, and all spectral bands. 

The selection of optimum bands based on the spectroscopic significance of rocks in the 

wavelength range of SWIR bands was also evaluated based on the achieved accuracy 

statistics using MLAs (Figure 4.7 and Table 4.4). The selection of an optimum number of 

PC bands based on higher variance and visual spectral contrast yields higher accuracy 

statistics than SWIR bands. It is essential to mention here that the feature selection and 

extraction method need not improve lithological classification accuracy statistics. Still, it 

reduces the model complexity and computation time by reducing the less important and 

correlated spectral bands, as illustrated in Figure 4.6.  

4.4.4 Spectral separability analysis of hyperspectral input datasets 

The spectral dissimilarity matrix of different lithological units, including soil cover and 

mine site for all input datasets was computed using J-M distance (Table 4.3). The 

dissimilarity values help in understanding the intra-class variability. A smaller value of J-

M distance indicates less intra-class variability and can cause more miss-classification than 

classes that have larger J-M distance value. The dissimilarity matrix also provides an 

overview of the suitability of input datasets for lithological classification. Table 4.3 

illustrates that the JMIM and PCA based optimum bands yield higher spectral dissimilarity 

(J-M distance) and intra-class variability. Hence, they would be more suitable datasets than 

SWIR and all spectral bands for lithological mapping. Most of the spectral bands of JMIM 

based optimum bands belong to the SWIR and NIR region, as commonly found minerals 

in the area include chlorite, muscovite, kaolinite, and goethite, have their diagnostic 

spectral signature in SWIR and NIR (Kumar et al., 2020a). However, the JMIM and PC 
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based optimum bands yield higher spectral dissimilarity due to the reduction of correlated 

spectral bands of the hyperspectral data.  

 
Figure 4.6. The accuracy statistics (a) overall accuracy and (b) kappa coefficient of JMIM 

bands using different MLAs. 

It is interesting to note here that a class that is well separable from other classes in one 

input dataset becomes less separable in other input datasets (Table 4.3). For example, the 

amphibolite and acidic intrusive show less spectral dissimilarity in SWIR bands (0.008), 

JMIM bands (0.009), and all spectral bands (0.0158) as compared to PC bands (0.2795). 

The input dataset yields higher dissimilarity between classes would produce better 

classification results. Similarly, PC bands yield more spectral contrast among acidic 

intrusive, migmatite, and black soil. Amphibolite and granite appear spectrally similar in 

all input datasets and may yield less individual accuracy in lithological classification. Mine 

site and black soil appear more spectrally dissimilar as compared with other classes in all 

input datasets. Amphibolite and granite show less spectral dissimilarity values as compared 

with other lithological classes and may yield more false positives than other classes. It can 

be observed that JMIM and PC based optimum bands yield higher dissimilarity values for 

most of the litho-units and would produce better accuracy statistics as compared with 

SWIR and all spectral bands in lithological classification. Furthermore, it can also be 
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noticed that none of the input datasets produce higher spectral dissimilarity among all 

lithological classes. 

Table 4.3. Spectral dissimilarity matrix computed using J-M distance of input datasets such 

as all spectral bands, SWIR bands, JMIM, and PC based optimum bands. Ai: acidic 

intrusive, Am: Amphibolite, Gr: Granite, Me: Metabasalt, Mi: Migmatite, Ms: Mine site, 

Bs: Black soil. 

All Bands Am Gr Me Mg Ms Bs 

Ac 0.0158 0.0167 0.0797 0.0171 0.5917 0.0533 

Am -- 0.0002 0.1455 0.0557 0.4503 0.0115 

Gr  -- 0.1516 0.0593 0.4474 0.0104 

Me   -- 0.0239 0.8488 0.2278 

Mg    -- 0.6970 0.1146 

Ms     -- 0.3458 

SWIR Bands Am Gr Me Mg Ms Bs 

Ac 0.0080 0.0147 0.3279 0.0366 0.4960 0.0792 

Am -- 0.0014 0.3520 0.0507 0.3909 0.0434 

Gr  -- 0.3425 0.0515 0.3688 0.0414 

Me   -- 0.1581 1.0704 0.5724 

Mg    -- 0.6448 0.1814 

Ms     -- 0.1953 

JMIM Bands Am Gr Me Mg Ms Bs 

Ac 0.0090 0.0151 0.1491 0.0356 0.7721 0.0604 

Am -- 0.0008 0.2132 0.0710 0.6468 0.0231 

Gr  -- 0.2366 0.0857 0.6132 0.0153 

Me   -- 0.0410 1.1538 0.3512 

Mg    -- 0.9241 0.1655 

Ms     -- 0.4749 

PC Bands Am Gr Me Mg Ms Bs 

Ac 0.2795 0.2817 0.1971 0.0379 0.1277 0.9575 

Am -- 0.0001 0.6708 0.4394 0.5298 0.4898 

Gr  -- 0.6741 0.4423 0.5341 0.4879 

Me   -- 0.0723 0.0567 1.2359 

Mg    -- 0.0496 1.0818 

Ms     -- 1.1372 
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4.4.5 Comparative analysis of MLAs using different input datasets 

The four input datasets obtained using processed AVIRIS-NG data f were evaluated for 

automated lithological classification using MLAs. The suitability of the input dataset was 

evaluated based on the OA and k of testing samples (Table 4.4 and Figure 4.7). The OA is 

the ratio between total correctly classified pixels and the total number of pixels. The 

confusion matrices of lithological classification obtained from all input data configuration 

using MLAs were presented in Table 4.5 to Table 4.8.  User accuracy (UA) and Producer 

Accuracy (PA) were computed to understand individual class accuracy. The UA and PA 

describe commission and omission errors of individual classes (Congalton, 1991). The 

k considers the entire confusion matrix of diagonal and represents the measurement of 

agreement between the classified output and reference data (Brennan & Prediger, 1981). 

The lithological classification obtained using JMIM based optimum bands yields better 

accuracy statistics as compared with other datasets (Figure 4.7).  The lithological 

classification obtained from SVM using JMIM based optimum bands achieved the highest 

accuracy statistics, i.e., OA and k as 85.48% and 0.83, respectively (Figure 4.8 (b)). The 

LDA also shows an excellent performance in mapping the lithological units and achieved 

an OA and k of 79.95% and 0.76 using JMIM bands. The RF shows poor performance in 

mapping the lithological units using all the datasets (Table 4.4) except PC based optimum 

bands. It is interesting to note that RF's performance significantly improves with an OA 

and k of 78.80% and 0.74, respectively, using optimum PC bands. The RF and LDA show 

poor accuracy in classifying acidic intrusive compared with other classes using SWIR 

bands (Table 4.4), mainly due to higher spectral similarity with amphibolite and other 

classes (Table 4.3). However, SVM performs better in classifying acidic intrusive 

irrespective of higher spectral similarity with other classes. A similar observation can be 

made from Table 4.5, particularly in the case of RF.  

Table 4.6 and Table 4.7 illustrate that most of the litho-units are being classified with 

adequate accuracy. Intra-class variability is crucial in achieving good classification 

accuracy. A class that shows higher spectral dissimilarity yields maximum accuracy and 

vice-versa. Acidic intrusive, amphibolite, and metabasalt show comparatively less 

accuracy than other classes such as granite, migmatite, black soil, and mine site. The mine 

site yields maximum accuracy in classification using all input datasets due to higher 

spectral dissimilarities with other classes. 

The obtained high-resolution lithological map using optimum input data and robust MLA 

(i.e., SVM) with adequate accuracy is important for mineral exploration and other 

geological applications. The lithological map that maps the litho-contact of metabasalt with 

granite and amphibolite is of great interest in targeting the gold mineralization in the area 

(Mishra et al., 2005; Sarma et al., 2008; Guha et al., 2012; Kumar et al., 2020a). 

Furthermore, the lithological map obtained in this study can be overlaid with the spatial 

distribution of hydrothermal alteration minerals obtained in Kumar et al. (2020a) to better 

understand the alteration process and further for gold prospecting in the area. 
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Figure 4.7. Accuracy statistics (a) overall accuracy and (b) kappa coefficient of MLAs 

using different input datasets such as all spectral bands, SWIR spectral bands, first 20 PC 

transformed bands of higher variance, and JMIM based optimum bands. 

4.4.6 Validation of generated lithological map using field observation 

The obtained lithological map from AVIRIS-NG data was validated in the field (Figure 4.8 

(b)). Different accessible locations were selected to validate the few of the newly 

demarcated lithological units in the study area, as shown in Figure 4.8 (a)). Figure 4.9 (a) 

to (f) display various filed photographs of rock exposure such as (a) showing the granite 

found in the Yetgal area, (b) granite and amphibolite contact in Wandli area, (c) highly 

weathered metabasalt covered by black soil occurring in the pedi-plan, which is flanked by 

amphibolite in North-West of Hosur area, (d) metabasalt dumped in Utti mine area in the 

North-East part of the study area, (e) metabasalt, and (f) altered rock in Yetgal area.  
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Figure 4.8. (a) Reference lithology map derived from spectral enhancement products using 

ASTER data; and (b) lithological classification map obtained from SVM using JMIM 

based optimum bands of AVIRIS-NG hyperspectral data. 

The litho-units of the six field locations are nicely agreed with the predicted litho-units in 

the SVM model's lithological map. It has also been observed that the reference lithology 

map prepared by conjugative utilization of spectral enhancement products matches with 

ground existence at six locations. However, it has been noted that the conventional geology 

map of a large scale shows a considerable discrepancy with ground existence, mainly in 

the central and northern parts of the study area. The field validation provides excellent 

confidence to rely on a high-resolution reference map to collect the training data compared 

with the conventional geology maps for lithological mapping using MLAs. 

 

Table 4.4. Confusion matrix and accuracy statistics of testing datasets of lithological 

classification obtained by MLAs using SWIR spectral bands. LDA: linear discriminant 

analysis, RF: random forest, SVM: support vector machine. Ai: acidic intrusive, Am: 

Amphibolite, Gr: Granite, Me: Metabasalt, Mi: Migmatite, Ms: Mine site, BS: Black soil. 

Row: row total, Col: column total, UA: user accuracy, PA: producer accuracy.  
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LDA Ac Am Gr Me Mi Ms Bs Row UA (%) PA (%) 

Ac 15 6 0 11 0 5 4 41 36.59 57.69 

Am 0 47 1 12 1 1 1 63 74.60 67.14 

Gr 1 0 53 5 0 0 10 69 76.81 75.71 

Me 3 6 6 60 6 0 5 86 69.77 60.00 

Mi 5 1 2 8 63 0 1 80 78.75 90.00 

Ms 0 0 0 0 0 12 0 12 100.00 66.67 

BS 2 10 8 4 0 0 59 83 71.08 73.75 

Col 26 70 70 100 70 18 80 434   
OA = 71.20%, k = 0.65 

RF Ac Am Gr Me Mi Ms Bs Row UA (%) PA (%) 

Ac 9 3 0 7 0 1 3 23 39.13 34.62 

Am 6 42 3 11 4 0 5 71 59.15 60.00 

Gr 1 2 48 3 0 0 10 64 75.00 68.57 

Me 8 10 6 64 13 3 7 111 57.66 64.00 

Mi 1 8 4 6 52 2 0 73 71.23 74.29 

Ms 1 0 0 0 1 12 0 14 85.71 66.67 

BS 0 5 9 9 0 0 55 78 70.51 68.75 

Col 26 70 70 100 70 18 80 434   
OA = 64.98%, k = 0.58 

SVM Ac Am Gr Me Mi Ms Bs Row UA (%) PA (%) 

Ac 18 1 1 6 0 0 2 28 64.29 69.23 

Am 1 52 1 11 0 1 4 70 74.29 74.29 

Gr 1 0 54 6 0 0 8 69 78.26 77.14 

Me 3 8 5 67 9 3 6 101 66.34 67.00 

Mi 1 0 2 4 61 0 0 68 89.71 87.14 

Ms 0 0 0 0 0 14 0 14 100.00 77.78 

Bs 2 9 7 6 0 0 60 84 71.43 75.00 

Col 26 70 70 100 70 18 80 434   
OA = 75.12%, k = 0.70 

Table 4.5. Confusion matrix and accuracy statistics of testing datasets of lithological 

classification obtained by MLAs using all spectral bands of VNIR and SWIR. 

LDA Ac Am Gr Me Mi Ms Bs Row UA (%) PA (%) 

Ac 20 3 0 4 1 0 1 29 68.97 76.92 

Am 0 55 1 17 0 2 2 77 71.43 78.57 

Gr 2 0 62 5 1 0 4 74 83.78 88.57 

Me 2 7 2 59 3 0 3 76 77.63 59.00 

Mi 0 0 3 10 65 0 0 78 83.33 92.86 

Ms 0 0 0 1 0 16 0 17 94.12 88.89 

Bs 2 5 2 4 0 0 70 83 84.34 87.50 

Col 26 70 70 100 70 18 80 434   
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OA = 79.95%, k = 0.76 

RF Ac Am Gr Me Mi Ms Bs Row UA (%) PA (%) 

Ac 11 1 1 4 0 0 3 20 55.00 42.31 

Am 1 42 2 10 5 1 5 66 63.64 60.00 

Gr 0 0 40 0 0 0 6 46 86.96 57.14 

Me 7 14 9 68 6 2 3 109 62.39 68.00 

Mi 5 7 1 14 58 0 7 92 63.04 82.86 

Ms 0 0 0 1 0 13 0 14 92.86 72.22 

Bs 2 6 17 3 1 2 56 87 64.37 70.00 

Col 26 70 70 100 70 18 80 434   
OA = 66.36%, k = 0.59 

SVM Ac Am Gr Me Mi Ms Bs Row UA (%) PA (%) 

Ac 17 1 0 1 1 0 0 20 85.00 65.38 

Am 0 57 2 10 1 1 5 76 75.00 81.43 

Gr 0 1 59 2 0 0 2 64 92.19 84.29 

Me 7 6 5 79 1 0 2 100 79.00 79.00 

Mi 1 0 0 6 67 0 0 74 90.54 95.71 

Ms 0 2 0 1 0 17 0 20 85.00 94.44 

Bs 1 3 4 1 0 0 71 80 88.75 88.75 

Col 26 70 70 100 70 18 80 434   
OA = 84.56%, k = 0.81 

Table 4.6. Confusion Matrix and accuracy statistics of testing datasets of lithological 

classification obtained by MLAs using first 20 PC bands. 

LDA Ac Am Gr Me Mi Ms BS Row UA (%) PA (%) 

Ac 16 6 0 9 0 0 1 32 50.00 61.54 

Am 1 48 2 15 3 1 0 70 68.57 68.57 

Gr 1 0 58 1 1 0 7 68 85.29 82.86 

Me 7 10 4 57 5 0 2 85 67.06 57.00 

Mi 0 0 1 13 61 0 2 77 79.22 87.14 

Ms 0 0 0 1 0 16 0 17 94.12 88.89 

Bs 1 6 5 4 0 1 68 85 80.00 85.00 

Col 26 70 70 100 70 18 80 434   
OA = 74.65%, k = 0.70 

RF Ac Am Gr Me Mi Ms BS Row UA (%) PA (%) 

Ac 20 2 0 0 0 0 0 22 90.91 76.92 

Am 0 50 1 10 0 2 5 68 73.53 71.43 

Gr 1 0 51 3 0 0 7 62 82.26 72.86 

Me 3 11 10 78 8 1 1 112 69.64 78.00 

Mi 0 0 2 4 61 0 0 67 91.04 87.14 

Ms 0 0 0 0 0 15 0 15 100.00 83.33 

Bs 2 7 6 5 1 0 67 88 76.14 83.75 
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Table 4.7. Confusion Matrix and accuracy statistics of testing datasets of lithological 

classification obtained by MLAs using JMIM based optimum bands. 

Col 26 70 70 100 70 18 80 434   
OA = 78.80%, k = 0.74 

SVM Ac Am Gr Me Mi Ms Bs Row UA (%) PA (%) 

Ac 21 5 0 2 1 0 0 29 72.41 80.77 

Am 1 51 1 9 0 1 5 68 75.00 72.86 

Gr 1 0 61 2 0 0 2 66 92.42 87.14 

Me 2 9 2 77 7 0 1 98 78.57 77.00 

Mi 0 0 2 5 62 0 0 69 89.86 88.57 

Ms 0 0 0 0 0 17 0 17 100.00 94.44 

Bs 1 5 4 5 0 0 72 87 82.76 90.00 

Col 26 70 70 100 70 18 80 434   
OA = 83.18%, k = 0.80 

LDA Ac Am Gr Me Mi Ms BS Row UA (%) PA (%) 

Ac 16 4 0 3 0 0 2 25 64.00 61.54 

Am 2 54 1 15 0 1 1 74 72.97 77.14 

Gr 0 1 61 5 1 0 6 74 82.43 87.14 

Me 5 3 2 61 2 0 0 73 83.56 61.00 

Mi 2 0 1 7 67 0 0 77 87.01 95.71 

Ms 0 0 0 1 0 17 0 18 94.44 94.44 

Bs 1 8 5 8 0 0 71 93 76.34 88.75 

Col 26 70 70 100 70 18 80 434   

OA = 79.95%, k = 0.76 

RF Ac Am Gr Me Mi Ms BS Row UA (%) PA (%) 

Ac 14 2 0 1 0 0 1 18 77.78 53.85 

Am 1 39 1 14 3 0 4 62 62.90 55.71 

Gr 1 4 40 4 0 0 10 59 67.80 57.14 

Me 2 14 9 71 10 0 5 111 63.96 71.00 

Mi 5 8 1 5 55 1 0 75 73.33 78.57 

Ms 0 0 0 0 0 17 1 18 94.44 94.44 

Bs 3 3 19 5 2 0 59 91 64.84 73.75 

Col 26 70 70 100 70 18 80 434   

OA = 67.97%, k = 0.61 

SVM Ac Am Gr Me Mi Ms Bs Row UA (%) PA (%) 

Ac 19 2 0 1 0 0 0 22 86.36 73.08 

Am 2 57 2 9 1 1 4 76 75.00 81.43 

Gr 0 1 66 4 3 0 6 80 82.50 94.29 

Me 2 4 1 77 0 0 1 85 90.59 77.00 
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4.4.7 Impact of number and quality of training samples on MLAs 

The number of training samples is crucial for obtaining an optimum classification result. 

A suitable number of training samples are always required by most of the MLAs (Maxwell 

et al., 2018). It is worth considering how different MLA performs while reducing the 

training datasets. To assess the impact of the number of samples on MLAs' performance, a 

reduction of 15%, 30%, and 45% of total training samples (training and testing datasets) 

have been used (Table 4.8). All the models were optimized after reduction for both training 

and testing datasets. The OA (Figure 4.10 (a)) and k statistic (Figure 4.10 (b)) of each MLA 

have been computed for training and testing datasets. Figure 4.10 and Table 4.8 highlight 

a slight reduction in all the models' accuracy statistics when training datasets are reduced 

by 15 to 45% of total datasets of each class (2170 for all the classes). The LDA, RF, and 

SVM have decreased the OA by ~5%, ~2%, and ~1 %. The model's sensitivity to the 

number of samples is crucial in selecting the MLA for geological application. It has been 

found that SVM is less sensitive to the size of training datasets as compared to RF and 

LDA. 

To test the effects of mislabeling on different MLAs, an intentional mislabeling of 15%, 

30%, and 45% of total datasets of each class has been prepared to test the model's 

sensitivity due to mislabeling (Figure 4.11 and Table 4.9). All the models were optimized 

after each mislabeling for both training and testing datasets. The OA (Figure 4.11 (a)) and 

kappa coefficient (Figure 4.11 (b)) of each MLA have been computed for training and 

testing datasets. A drastic reduction in the performance of all MLA has been observed 

when training datasets are mislabeled by 15 to 45%. The OA and k of training datasets of 

LDA, RF, and SVM decrease from 69.60 to 30% (OA) and 0.61 to 0.16 (k), 55.44 to 

22.52%, and 0. 46 to 0.07, 74.09 to 44.06% and 0.69 to 0.32 respectively (Table 4.9).  

The testing datasets also show a similar drastic reduction in the performance of all the 

MLAs. The OA and k of testing datasets of LDA, RF, and SVM decrease from 69.75 to 

35.25% (OA) and 0.64 to 0.22 (k), 55.43 to 22.58%, and 0. 46 to 0.07, 74.36 to 46.31% 

and 0.69 to 0.35 respectively (Table 4.9). The RF and LDA completely fail in 

discriminating the lithological classes and have the highest impact of mislabeling and yield 

very poor coefficient statistic; whereas, the SVM shows the least impact of mislabeling.  

Mi 2 0 1 3 66 0 0 72 91.67 94.29 

Ms 0 0 0 1 0 17 0 18 94.44 94.44 

Bs 1 6 0 5 0 0 66 78 84.62 85.71 

Col 26 70 70 100 70 18 77 434   

OA = 85.48%, k = 0.83 
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Figure 4.9. Field photographs of different rock types were acquired during fieldwork in the 

study area at the validation points shown in Figure 4 (a). (a) exposure of granite in North-

East of the Tupdoor area, (b) granite and amphibolite contact was taken from Wandli area, 

and (c) highly weathered metabasalt covered by black soil occurring in pedi-plain, which 

is flanked by amphibolite in North-West of Hosur area, (d) metabasalt dumped in Utti 

mine, (e) metabasalt, and (f) altered rock in Yetgal area. 

(c) Amphibolite and black soil   

(a) Granite    (b) Granite-Amphibolite contact  

Amphibolite exposed on 

denudational hill 

(d) Dumped metabasalt   

(e) Metabasalt  (f) Altered rock   



86 

 

Figure 4.10. Reduction in sample datasets by 15%, 30%, and 45% and their corresponding 

accuracy statistics of training and testing samples (a) OA (%) and (b) k of different MLAs. 

Table 4.8. Reduction in training datasets by 15%, 30%, and 45%, and their impact on the 

performance of different MLA. OA: overall accuracy and k: kappa coefficient.  

 15% 30% 
 Training Testing Training Testing 
 OA (%) k OA (%) k OA (%) k OA (%) k 

LDA 79.73 0.76 79.83 0.76 76.82 0.72 76.57 0.72 

RF 67.86 0.61 69.89 0.63 66.70 0.60 67.33 0.60 

SVM 84.89 0.81 84.74 0.81 84.70 0.81 84.82 0.81 

 45%     

 Training Testing     
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 OA (%) k OA (%) k     

LDA 75.61 0.71 74.81 0.70     

RF 64.62 0.57 65.25 0.58     

SVM 83.47 0.80 83.16 0.80     

 
Figure 4.11. Mislabeling in sample datasets by 15%, 30%, and 45% and their 

corresponding accuracy statistics of training and testing samples. (a) Overall accuracy (%) 

and (b) kappa coefficient of different MLAs. 

Table 4.9. Mislabeling in training datasets by 15%, 30%, and 45% and their impact on the 

performance of different MLA. OA: overall accuracy (%) and k: kappa coefficient. 
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4.5 Conclusions 

• The study developed a novel approach of integrating spectral enhancement 

techniques and MLAs for an automated lithological mapping using AVIRIS-NG 

hyperspectral data. The high spectral and spatial resolution of AVIRIS-NG data 

successfully captured the minute variation of spectrally similar rock types and 

successfully classified in the study area. 

• The conjugate utilization of conventional geology maps coupled with spectral 

enhancement products derived from PCA and ICA transformation using ASTER 

data provided a suitable reference lithology map for obtaining better training 

sample collection for lithological mapping using MLAs. 

• The JMIM  based optimum bands are more suitable than other input datasets (i.e. 

SWIR bands and all spectral bands) for obtaining an accurate lithological map with 

higher classification accuracy. 

• The SVM outperforms other methods irrespective of the input dataset used in the 

classification. SVM appeared to be less sensitive to the number of samples and 

mislabeling or uncertainty in training datasets as compared to other ML models. 

• The lithological map obtained using JMIM based optimum bands using SVM 

accurately classify most of the rock types, including other classes such as soil cover 

and mine site in the area. The high-resolution lithological map with accurate and 

distinct litho-contacts of amphibolite, metabasalt, and granite can be integrated with 

an alteration map of the area for targeting the potential zone of gold mineralization. 

 

 

 

 

 

 15% 30% 
 Training Testing Training Testing 
 OA (%) k OA (%) k OA (%) k OA (%) k 

LDA 69.60 0.61 69.75 0.64 47.98 0.38 47.93 0.38 

RF 55.44 0.46 55.43 0.46 36.52 0.23 35.02 0.21 

SVM 74.09 0.69 74.36 0.69 56.34 0.48 55.3 0.46 

 45%     

 Training Testing     

 OA (%) k OA (%) k     

LDA 30.00 0.16 35.25 0.22     

RF 22.52 0.07 22.58 0.07     

SVM 44.06 0.32 46.31 0.35     
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5 Multi-sensor datasets-based optimal integration of 
spectral, textural, and morphological  characteristics 
of rocks for lithological classification using machine 
learning models  

(This material has been submitted for possible publication in the “Geocarto 

International, Taylor and Francis.” Please refer to page XIV for the original paper link). 

Abstract: This study presents a multi-sensor datasets integration of spectral, textural, and 

morphological characteristics of rock types for accurate lithological classification using 

Machine Learning (ML) models. We utilized multi-sensor datasets such as Advanced 

Spaceborne Thermal and Reflection Radiometer (ASTER), Advanced Land Observing 

(ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR), Sentinel-1 

(SAR), and Digital Elevation Model (DEM) of optical and microwave regions to derive 

different characteristics of rock surface. The derived characteristics have been used to 

prepare various input features such as spectral, spectral, and transformed spectral (principal 

and independent component transformed bands), morphological (SAR indices), textural, 

and optimum hybrid features to evaluate their ability to classify different rock types 

accurately (i.e., limestone, sandstone, shale, chert breccia, metabasalt, granite-gneiss, 

ultramafic rocks, and dike) found in the area. A normalized joint mutual information 

maximization filter-based feature selection method was used to select important variables 

for each input feature to improve the intra-rock variability and optimal classification 

results. We compared and evaluated the novelty of different input features for lithological 

classification using optimized Random Forest (RF) and Support Vector Machine (SVM) 

models. The classified lithological maps were assessed for their accuracy using the 

confusion matrix and field data. The comparative analysis illustrated that the optimal 

hybrid input features consist of important variables derived from different surface 

characteristics of rock types have shown great success over other input features to 

accurately classify different rock types found in the study area. The maximum accuracy 

statistics achieved in lithological classification by SVM (Overall Accuracy (OA): 77.78%; 

Kappa Coefficient (k): 0.74)  and RF (OA: 76.77%; k: 0.73) using optimal hybrid input 

features, which is around 15% higher than as obtained using spectral input features. The 

SVM slightly outperforms across different input features to accurately classify different 

rock types. The higher accuracy of optimal hybrid input features illustrated the novelty of 

multi-sensor datasets-based integration over the commonly used spectral data alone 

approach for successful lithological classification using ML models. 

5.1 Introduction 

The spectral characteristics of rocks have been extensively utilized in lithological 

discrimination and mapping. Various multispectral and hyperspectral sensors have shown 

their ability to map the geological targets like rocks and minerals in different geological 

settings and climatic conditions (Cloutis, 1996; Kruse, 1998; Kruse et al., 2006; Gad & 
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Kusky, 2007; Tan et al., 2009; Amer et al., 2010; Bishop et al., 2011; Van der Meer et al., 

2012; Pour & Hashim, 2014a; Zhang & Li, 2014; Kumar et al., 2015; Adep et al., 2016; 

Carrino et al., 2018; Feng et al., 2018; Ge et al., 2018; Bhattacharya et al., 2019b; Guha et 

al., 2020; Kumar et al., 2020a; Kumar et al., 2020b). However, lithological or rock-type 

classification becomes more challenging where the geological site consists of several rock 

types of similar mineral composition and weathered surfaces, which diminishes the intra-

rock variability (Jones et al., 2004). A few recent studies demonstrated the advantages of 

integrating physical properties such as morphological and textural information with 

spectral properties of surface for improving the intra-rock variability and classification 

accuracy (Othman & Gloaguen, 2014; Wei et al., 2016; Masoumi et al., 2017; Othman & 

Gloaguen, 2017). The integration of multiple datasets has been successfully employed in a 

wide range of remote sensing applications, including land-use/landcover classification (De 

Martinao et al., 2003; Jin et al., 2008), forest/vegetation mapping (Franklin et al., 2000; 

Dian et al., 2015; Seifi Majdar & Ghassemian, 2017), urban mapping (De Martinao et al., 

2003)(Dian et al. 2015), and lithological mapping (Wei et al., 2016; Masoumi et al., 2017; 

Othman & Gloaguen, 2017). 

Different sensors operate in various parts of the electromagnetic spectrum, including 

optical and microwave regions can be effectively used to derive various physical properties 

of the surface for better material discrimination, identification, and classification (Lillesand 

et al., 2015). Microwave remote sensors operate at different frequencies, and polarization 

were successfully employed to derive the physical and dielectric properties of surface 

materials (Schmullius & Evans, 1997). Synthetic Aperture Radar (SAR) measures the 

backscattered energy, representing surface roughness and dielectric constant of surface 

(Hajnsek et al., 2003). The amount of surface roughness is mainly controlled by grain size 

and general topography. In contrast, the dielectric constant is highly influenced by 

volumetric moisture content and the degree of heterogeneity of sediments (Hajnsek et al., 

2003). Imaging SAR has tremendous potential in surface discrimination (such as soil) 

based on surface roughness, grain size, volumetric moisture content, and heterogeneity 

(van Zyl et al., 1990). 

The application of imaging SAR datasets is well established in the geological structural 

mapping (Pal et al., 2007; Pour & Hashim, 2014b, 2015; Guha et al., 2020) but rarely 

highlighted in lithological classification (Tan et al., 2009; Wang et al., 2018). Dual and full 

polarization SAR can extract surface physical properties such as surface roughness, grain 

size, and morphology (Wang et al., 2018; LIU et al., 2019). Furthermore, the topography 

of the surface can be a vital characteristic to be used in lithological mapping as different 

rock types may show different impacts of weathering and erosional processes, results in 

variability in morphology and textural characteristics (Othman & Gloaguen, 2014; 

Masoumi et al., 2017; Othman & Gloaguen, 2017). Morphological and textural 

characteristics can be used to infer the landforms and other physical properties of the 

surface due to physical weathering and erosional processes (Othman & Gloaguen, 2017).  

The commonly exploited methods in lithological mapping include image enhancement 

techniques, pixel, and sub-pixel spectral mapping methods. The Principal Component 
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Analysis (PCA) (Gomez et al., 2005; Amer et al., 2010), Independent Component Analysis 

(ICA) (Kumar et al., 2015; Pour et al., 2019; Kumar et al., 2020b) and band ratios (Gad & 

Kusky, 2007) are most common spectral enhancement techniques, which have been 

extensively used to enhance the spectral contrast of different rock types. Several pixels and 

sub-pixel spectral mapping methods such as spectral angle mapper (Kruse et al., 1993), 

spectral information divergence (Chang, 1999), mixture tuned matched filtering 

(Boardman, 1998), and others have been employed on multispectral and hyperspectral 

datasets to classify different rock types (Harris et al., 2005; Goodarzi Mehr et al., 2013; 

Hadigheh & Ranjbar, 2013; Zhang & Li, 2014). The common limitation of spectral 

enhancement techniques is that they do not produce a labeled classification output and 

require a human intervention to demarcate the lithological boundary manually. This 

become more challenging particularly in a vegetated and weathered surface areas (Kumar 

et al., 2020b). Nevertheless, the main limitation of the spectral mapping methods is that 

they require a threshold value to obtain a final classification output, which is usually a trial 

and error approach, and become a more challenging task where there is a lack of 

comprehensive field data and visual interpretation of land classes are difficult  (Kumar et 

al., 2020a; Kumar et al., 2020b). 

In recent decades, Machine Learning (ML) algorithms have demonstrated remarkable 

success over the traditional classification methods in classification and prediction of 

geological targets and others (Thompson et al., 2001; Waske et al., 2009; Baykan & 

Yılmaz, 2010; Waske et al., 2010; Abedi et al., 2012; Wu et al., 2013; Cracknell & Reading, 

2014; Othman & Gloaguen, 2014; Carranza & Laborte, 2015; Lary et al., 2015; Rodriguez-

Galiano et al., 2015; Othman & Gloaguen, 2017). The ML algorithms utilize artificial 

intelligence derived from input features by analyzing their characteristics and pattern with 

minimal human intervention for decision-making (Michie et al., 1994; Mjolsness & 

DeCoste, 2001; Mohri et al., 2018). ML models' main advantages are that it can learn 

complex non-linear relationships and structure from the data itself and efficient in dealing 

with a higher number of variables without the assumption of data distribution (Zuo, 2017; 

Mohri et al., 2018). Furthermore, it can integrate many features derived from multi-sensor 

datasets, which can increase class separability and improve classification accuracy (Zuo, 

2017). Understanding the variable significance and its contribution to increasing the intra-

class variability is an important step toward optimal classification (Dash & Liu, 1997; 

Guyon et al., 2004). ML models' successful utilization highly depends on various factors, 

including quality and sufficient quantity of training datasets, selection of optimum and less 

correlated features, and optimal training parameters (Batista et al., 2004; Oommen et al., 

2011; Kumar et al., 2020b). The feature selection is a crucial task mainly when one deals 

with many spectral bands or variables to assess their significance in improving the intra-

class variability and classification accuracy (Yu & Liu, 2003; Guyon et al., 2004; Waske 

et al., 2010). 

The lithological classification becomes a more challenging task in a complex geological 

setting and poor rock exposure (Jones et al., 2004). Furthermore, homogeneity in major 

mineral composition of different rock types and weathered surface cover makes their 

spectral characteristics less distinctive and illustrative to be used as a primary input features 
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in the lithological classification. To overcome this limitation, we propose an optimal 

integration of spectral, morphological, and textural characteristics of rock type surface 

derived from different sensors such as ASTER, PALSAR, Sentinel-1, and DEM for 

accurate lithological classification using SVM and RF models. We compare and evaluate 

the novelty of different input features derived from various datasets. It is worth to mention 

here that to the best of our knowledge, the integration of different SAR (i.e., L- band 

PALSAR and C-band Sentinel-1) with spectral and DEM datasets has not been explored 

in lithological classification using ML models. Furthermore, the unique contribution of the 

proposed research is that we are developing a multi-sensor data integration with optimum 

feature selection within the ML framework for lithological classification. 

5.2 Location and geological setting 

The study area is situated in the south-west part of the Chattarpur district in Madhya 

Pradesh, India (Figure 5.1 (a)). It is located between 24°38' 0" to 24°40' 0"N latitude and 

79°42' 0" to 80°0' 0"E longitude. The False Color Composite (FCC) (Figure 5.1 (b)) and 

elevation map (Figure 5.1 (c)) prepared using ASTER spectral and DEM data exhibit 

overall landcover and topographical variation of the area. The major rock types found in 

the area are limestone, sandstone, Fe-bearing sandstone, shale, chert breccia, metabasalt, 

and granite-gneiss, as displayed in the geology map of the study area (Figure 5.1 (d)). The 

other major landcover found in the study area includes water bodies and sparse to moderate 

vegetation cover.  The elevation of the study site ranges from 193m to 473m from the mean 

sea level. 

5.3 Datasets 

Four primary datasets such as (a) ASTER multispectral, (b) PALSAR, (c) Sentinel-1, and 

(d) Digital Elevation Model (DEM) of ALOS PALSAR were used to derive spectral, 

morphological, and textural features of rocks. A brief sensor specification of ASTER, 

PALSAR, Sentinel-1, and DEM is presented in Table 5.1. 

The ASTER sensor records the reflected and emitted energy in the electromagnetic 

spectrum of VNIR, SWIR, and Thermal Infrared (TIR) at a ground resolution of 15m, 30m, 

and 90m, respectively. A cloud-free L1B (radiometric and geometric corrected) radiance 

at the sensor image of the VNIR and SWIR region (acquired on 15/03/2005) was accessed 

through NASA Earth Data Portal (https://search.earthdata.nasa.gov/search) and used to 

derive the spectral characteristics of rocks. The dual-polarization (horizontal transmitting 

and horizontal receiving (HH) and horizontal transmitting and vertical receiving (HV)) 

PALSAR level 1.5 (radiometrically terrain corrected) and DEM were obtained at the spatial 

resolution of 12.5m from the Alaska Satellite Facility (https://asf.alaska.edu/). 

 

 

https://search.earthdata.nasa.gov/search
https://asf.alaska.edu/
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Table 5.1. A brief sensor specification of different datasets used in this study. 

Sensor ASTER 

multispectral 

ALOS PALSAR 

(level 1.5) 

Sentinel-1 GRD 

(level 1) 

PALSAR 

DEM 

features Spectral Morphological Morphological Textural 

Wavelength 

/frequency 

VNIR and 

SWIR 

L band  

(1.2 GHz) 

C band  

(5.405 GHz) 

-- 

Spectral 

bands 

3 (VNIR) and 6 

(SWIR) 

Dual polarization: 

HV and HH 

Dual polarization: 

VV and VH 

-- 

Resolution VNIR: 15m and 

SWIR: 30m 

12.5 m 10 m 12.5 m 

 

 

Figure 5.1. (a) Location of the study area, (b) a false-color composite map prepared from 

ASTER data showing overall landcovers, (c) DEM showing the overall topography, and 

(d) geology map exhibits major rock types found in the study area. 
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The dual-polarization (i.e., vertical transmitting and vertical receiving (VV) and vertical 

transmitting and horizontal receiving (VH)) Sentinel-1 level 1 Ground Range Detected 

(GRD) of full resolution (i.e., 10m) data were accessed from Sentinel Online Portal of the 

European Space Agency (https://scihub.copernicus.eu/dhus/#/home). The L1 GRD 

Sentinel products consist of focused SAR data that has been detected, multi-looked, and 

projected to ground range using an Earth ellipsoid model where the phase information is 

lost. The obtained product has approximately a square spatial resolution and square pixel 

spacing with reduced speckle (https://sentinel.esa.int/web/sentinel/missions/sentinel-

1/data-products). 

It is important to mention here that The PALSAR measures the backscattered energy at 

lower frequency (i.e., 1.2 GHz) as compared with Sentinel-1 (i.e., 5.4 GHz). Both the 

sensors measure the backscattered energy in different polarization. The multi-polarization 

and multi-frequency SAR sensors have better potential to extract the surface properties 

(Gstaiger et al., 2012; LIU et al., 2019) and, therefore, can provide useful information to 

increase the intra-class variability of different rock types. To the best of our knowledge 

there is no study making a concrete discussion on the utility of these two sensors for their 

suitability in the lithological classification. Furthermore, the conjugate utilization of 

different SAR datasets to discriminate different rock types remains unexplored in literature. 

The PALSAR, Sentinel-1, and DEM datasets were used to derive various morphological 

and textural characteristics from improving the intra-class variability of different rock types 

for accurate lithological mapping using ML models. All downloaded datasets are cloud-

free and retained the same projection system. 

The software packages and programming languages such as ENVI 5.5 

(https://www.harrisgeospatial.com/Software-Technology/ENVI), SNAP 7 

(https://step.esa.int/main/toolboxes/snap/),  R 3.5 (https://www.r-project.org/), and 

ArcMap 10.7 (http://desktop.arcgis.com/en/arcmap/) were used for image processing and 

analysis of multispectral, DEM, SAR datasets, ML models’ development and 

implementation, and preparation of GIS spatial layers. 

The software packages and programming languages such as ENVI 5.5 

(https://www.harrisgeospatial.com/Software-Technology/ENVI), SNAP 7 

(https://step.esa.int/main/toolboxes/snap/),  R 3.5 (https://www.r-project.org/), and 

ArcMap 10.7 (http://desktop.arcgis.com/en/arcmap/) were used for image processing and 

analysis of multispectral, DEM, SAR datasets (i.e., PALSAR and Sentinel-1), ML models’ 

development and implementation, and preparation of spatial layers. 

5.4 Methods 

The methodology adopted to integrate the spectral, textural, and morphological 

characteristics of rocks derived from multi-sensor datasets for improved lithological 

mapping using SVM and RF models is presented in Figure 5.2 and discussed in the 

following sections. 

https://scihub.copernicus.eu/dhus/#/home
https://sentinel.esa.int/web/sentinel/missions/sentinel-1/data-products
https://sentinel.esa.int/web/sentinel/missions/sentinel-1/data-products
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Figure 5.2. The workflow chart of the overall methodology adopted for improved 

lithological mapping. 

5.4.1 Data pre-processing 

The four datasets, such as ASTER, PALSAR, Sentinel-1, and DEM, were pre-processed to 

remove the preliminary noise for optimal results. The ASTER data were corrected for the 

cross-track illumination effect using the cross-track illumination correction tool of ENVI 

to reduce the impact of energy overspill from spectral bands 4 to 5 and 9 (Hewson et al., 

2005). This was followed by layer stacking of VNIR and SWIR spectral bands and 

resampled their spatial resolution to 30 m ground resolution, radiometric correction, and 

conversion to reflectance using ENVI's radiometric calibration tool 
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(https://www.harrisgeospatial.com/docs/RadiometricCalibration.html). Subsequently, the 

log residuals correction method 

(https://www.harrisgeospatial.com/docs/TDPerformAtmosphericCorrection.html) was 

applied to enhance the spectral absorption features of rock-forming minerals (named 

hereafter processed ASTER data). 

The PALSAR data were pre-processed for border noise and inherent speckles associated 

with SAR datasets using border noise correction and speckle filtering followed by 

conversion to the unit less backscattered value of the surface of the SNAP tool (Zuhlke et 

al., 2015). The Sentinel-1 GRD data were pre-processed by employing the following 

operations such as thermal and border noise correction, calibration, speckle filtering, range-

Doppler terrain correction followed by conversion to the unit less backscattered value of 

surface using SNAP tool (Zuhlke et al., 2015). The DEM data were corrected for the sink 

using the Fill tool of spatial analyst of ArcMap to remove the minor imperfection in the 

elevation data (https://desktop.arcgis.com/en/arcmap/10.7/tools/spatial-analyst-

toolbox/fill.htm). All the datasets were resampled at the spatial resolution of processed 

ASTER data (i.e., 30m) using the nearest neighborhood resampling method for integration 

and information extraction. 

5.4.2 Preparation of reference lithology map 

A suitable reference map is essential in selecting good training datasets for accurate 

lithological classification using any classification methods. The utilization of commonly 

used geology map as a reference map may not be an ideal source due to their large scale 

(i.e., 1:2,50,000 in this study) where the boundary of lithological units is usually an 

approximation (Grebby et al., 2011; Cracknell & Reading, 2014; Othman & Gloaguen, 

2014; Bachri et al., 2019; Kumar et al., 2020b). Furthermore, the geological maps prepare 

based on the mineralogical composition of rock types and consider the stratigraphic 

succession and formation age. In contrast, remote sensing-based rock-type classification is 

usually based on rocks' surface properties (Kumar et al., 2020b). This warrants the 

modification in lithological units' boundary for good training data collection for remotely 

sensed data-based lithological classification. Kumar et al. (2020b) demonstrated the utility 

of PCA and ICA transformation for enhancing different rock types for preparing a suitable 

reference map and their subsequent utilization in training datasets collection. We 

effectively used the standard False Color Composite (FCC), and band combinations of 

PCA and ICA transformation derived using the processed ASTER data to accurately 

demarcate different litho-contacts to prepare a suitable reference map at a lower scale (i.e., 

1:25,000). It is important to mention here that the interpretation of different band 

combinations of  PCA and ICA transformation was carried out using the study site's 

geological map and prior field knowledge. Random stratified sampling was adopted to 

collect the geo-location of training datasets. A proportional and well-distributed samples 

as per the spatial extent of each lithological unit was collected to reduce the influence of 

class-imbalance on the performance of ML models (Oommen et al., 2011).  The geo-

location of samples was further used to derive the training datasets using different data 

sources. 

https://www.harrisgeospatial.com/docs/TDPerformAtmosphericCorrection.html
https://desktop.arcgis.com/en/arcmap/10.7/tools/spatial-analyst-toolbox/fill.htm
https://desktop.arcgis.com/en/arcmap/10.7/tools/spatial-analyst-toolbox/fill.htm
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5.4.3 Derivation of different input features 

The derivation of suitable input features for lithological classification is crucial in obtaining 

optimal classification results. We have extracted various spectral, morphological, and 

textural features of rocks from processed ASTER, PALSAR, Sentinel-1, and DEM datasets 

to evaluate their ability to accurately classify lithological units found in the study site using 

RF and SVM models. 

5.4.3.1 Spectral and transformed spectral input features 

The spectral signatures of rock-forming minerals obtained in the wavelength range of 

VNIR-SWIR of the electromagnetic spectrum have been used as a primary input dataset in 

lithological mapping. The original spectral bands may not achieve great success in 

discriminating rock types of similar mineral composition and weathered surface, causing a 

reduction in rock types' spectroscopic characteristics. The utility of spectral enhancements 

such as PCA and ICA transformation was successfully applied on remotely sensed datasets 

for enhancing the spectral contrast of different rock types in various geological settings 

(Kumar et al., 2015; Pour et al., 2019; Kumar et al., 2020b). The advantage of spectral 

enhancement techniques is that it can increase the intra-class variability of lithological 

classes by removing the correlated spectral band and reducing the noise from the remotely 

sensed data. We applied PCA and ICA transformation on the processed ASTER data to 

derive transformed features (i.e., PCA and ICA transformed variables). 

5.4.3.2 Morphological features 

Spectral characteristics of rock types alone may not be an optimal dataset to discriminate 

the lithological units of similar mineral composition and in a weathered surface. However, 

different rock types show a different response to weathering, erosional process, and 

tectonics, which leads to diversified morphology, landforms, and surface textures (Othman 

& Gloaguen, 2014; Masoumi et al., 2017; Othman & Gloaguen, 2017). We derived several 

SAR indices using dual-polarization bands, i.e., HH and HV of PALSAR and VV and VH 

of Sentinel-1 data, to derive the morphological characteristics of the surface from being 

used in the lithological mapping. We derived several SAR indices to extract the 

morphological characteristics of the surface. However, we are not aiming to quantify and 

classify different morphology features rather interested in capturing the surface 

morphology of different rock types in SAR images of different polarization and frequency 

for improving lithological discrimination.  The SAR indices have been successfully used 

to enhance the discrimination of different earth surface features, including vegetation, 

forest type, and landcover, which play an essential role in improving the classification 

accuracy (Schmullius & Evans, 1997; Walker et al., 2010; Dong et al., 2012; Qin et al., 

2015; De Alban et al., 2018). The summary of SAR indices derived in this study using 

PALSAR and Sentinel-1 datasets is presented in Table 5.2. 
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5.4.3.3 Textural features 

The utilization of textures as additional variables to improve rock types' intra-class 

variability has been recommended in recent studies (Masoumi et al., 2017). The texture of 

the rock surface can be useful in deriving the rocks' surface's physical properties, which 

are characterized by weathering and erosional processes. The texture represents the tonal 

variance in the spatial domain of an image (Chica-Olmo & Abarca-Hernandez, 2000). 

Haralick et al. (1973) proposed a grey-level co-occurrence matrix method to derive the 

texture and is commonly used in literature to derive the surface from various remotely 

sensed datasets. We computed six commonly used textural variables: mean, variance, 

homogeneity, entropy, second moment, and correlation (Haralick et al., 1973; Li et al., 

2011). The commonly used dataset to derive the textural features is the spectral bands of 

the remotely sensed data of higher standard deviation (Masoumi et al., 2017). In this study, 

we derive the texture using ASTER spectral bands of higher standard deviation, i.e., band 

6 and DEM, to evaluate their suitability for lithological mapping. To the best of our 

knowledge, the DEM has not been tested to extract the textural features and their 

subsequent utilization in lithological classification. We computed and compared the 

variables importance of textures derived from both the datasets using the Normalized Joint 

Mutual Information Maximization (NJMIM) feature selection method. A detailed 

description of NJMIM can be referred to in section 5.4.3.5. The selection of window size 

is crucial in obtaining the information from texture images (Masoumi et al., 2017). A 

variety of window sizes ranging from 3 by 3 to 65 by 65 was computed to find the optimal 

window size of different textural indices to characterize the surface of rock types for better 

discrimination and classification. We calculated the NJMIM score of textural images of the 

mentioned window sizes and selected the optimum based on the higher NJMIM score. The 

texture image yields a higher NJMIM score indicates their higher contribution in increasing 

the intra-class variability of different rock types for accurate lithological classification.   

Table 5.2. Description of indices prepared using PALSAR (P: P1–12) and Sentinel-1 (S: S1–

12) data to derive the surface's morphological features. HH: horizontal transmitting and 

horizontal receiving, HV: horizontal transmitting and vertical receiving, VV: vertical 

transmitting and vertical receiving, and VH: vertical transmitting and horizontal receiving.  

SAR datasets 

PALSAR (P) Sentinel-1 (S) 

𝐻𝐻 (P1) 𝑉𝐻 (S1) 

𝐻𝑉 (P2) 𝑉𝑉 (S2) 

𝐻𝐻/𝐻𝑉 (P3) 𝑉𝑉/𝑉𝐻 (S3) 

𝐻𝑉/𝐻𝐻 (P4) 𝑉𝐻/𝑉𝑉 (S4) 

(𝐻𝐻 + 𝐻𝑉)/2 (P5) (𝑉𝑉 + 𝑉𝐻)/2 (S5) 

𝐻𝐻 − 𝐻𝑉 (P6) 𝑉𝑉 − 𝑉𝐻 (S6) 

(𝐻𝐻 − 𝐻𝑉)/(𝐻𝐻 + 𝐻𝑉) (P7) (𝑉𝑉 − 𝑉𝐻)/(𝑉𝑉 + 𝑉𝐻) (S7) 

(𝐻𝐻 × 𝐻𝑉)/(𝐻𝐻 + 𝐻𝑉) (P8) (𝑉𝑉 × 𝑉𝐻)/(𝑉𝑉 + 𝑉𝐻) (S8) 

(𝐻𝐻 × 𝐻𝑉)/(𝐻𝐻 − 𝐻𝑉) (P9) (𝑉𝑉 × 𝑉𝐻)/(𝑉𝐻 − 𝑉𝐻) (S19) 
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𝐻𝑉 − 𝐻𝐻 (P10) 𝑉𝐻 − 𝑉𝑉 (S10) 

(𝐻𝐻 + 𝐻𝑉)/(𝐻𝐻 × 𝐻𝑉) (P11) (𝑉𝑉 + 𝑉𝐻)/(𝑉𝑉 × 𝑉𝐻) (S11) 

(𝐻𝐻 − 𝐻𝑉)/(𝐻𝐻 × 𝐻𝑉) (P12) (𝑉𝑉 − 𝑉𝐻)/(𝑉𝑉 × 𝑉𝐻) (S12) 

5.4.3.4 Training data collection and class separability computation 

The quality and number of training datasets are crucial in achieving optimal results from 

any classification algorithm (Batista et al., 2004). The stratified random sampling was used 

to collect the geo-location of labeled samples using the prepared reference lithology map. 

A proportional number of training datasets by considering the spatial extent of different 

lithological units have been collected to reduce the influence of class imbalance on the 

performance of ML models (Batista et al., 2004; Oommen et al., 2011). A total of 2890 

labeled training datasets were selected and subsequently divided into the proportion of 

training (75%, i.e., 2168) and testing samples (25%, i.e., 722) used in the development of 

SVM and RF models for lithological classification (Table 5.3). The geo-locations of 

labeled training samples were used to extract the pixel values of the aforementioned 

variables derived in this study.  

The intra-class variability of different classes is crucial to understand the complexity of a 

classification problem and to find an optimal solution. To understand the intra-rock 

variability of spectral data, a dissimilarity matrix of spectral training datasets was prepared 

using Jeffries Matusita (J-M) distance statistics.  The J-M distance values range from 0 to 

2, where higher values indicate the optimal separability and vise-versa. The J-M distance 

method has been widely used in variable selection, class separability, and spectral 

discrimination and classification (Padma & Sanjeevi, 2014b). 

Table 5.3. A summary of lithological units, areal extent, number of training, and testing 

datasets used in lithological classification using ML models.   

Lithological units Area (km2) Training samples Testing samples 

Limestone 12.44 300 100 

Sandstone 22.22 375 125 

Fe-bearing sandstone 14.94 338 113 

Shale 5.91 191 64 

Chert breccia 0.77 150 50 

Metabasalt 2.52 169 56 

Granite-gneiss 42.06 420 140 

Ultramafic 0.022 113 38 

Dike 0.11 113 38 

5.4.3.5 Variable importance measure 

The feature selection is an essential task mainly when dealing with a large number of 

variables derived from various data sources to remove correlated and less suitable variables 
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to improve the performance of ML models (Archibald & Fann, 2007; Pal & Foody, 2010). 

The feature selection method also reduces the model complexity, computation cost and 

improves the model generalization. In this study, the Normalized Joint Mutual Information 

Maximization (NJMIM), a filter-based feature selection method, was used to measure 

variable importance. It uses ‘mutual information’ to derive the dependency of variables 

and the ‘maximum of the minimum’ criterion to select the optimum variables (Bennasar et 

al., 2015). The NJMIM technique was executed in “R” using the “praznik” package 

(https://github.com/mbq/praznik) to measure the variable importance of different input 

features derived from multi-sensor datasets. The NJMIM method provides the importance 

value (i.e., score) of each variable where a higher value indicates a more significant 

variable and vice-versa. The filter-based feature selection method's advantage is that it 

measures the variable importance outside the model or classification method and 

computational efficient.  

To assess the novelty of different input features obtained from multi-sensor datasets, we 

applied the NJMIM method to measure the importance of different variables. 

Subsequently, to find the optimum number of variables for each input feature, we 

implemented SVM and RF with tuned parameters and marked their accuracy statistics. A 

set of variables (i.e., 5, 10, 15, and so on) provide the highest accuracy statistics and show 

no significant improvement in accuracy statistics of classification results. It has been 

considered an optimum number of variables for that particular input features. It is worth 

emphasizing that it is crucial to select the important and uncorrelated variables and remove 

the correlated variables from the input features to achieve optimal results and assess their 

novelty for lithological classification. The feature selection-based variables selection of 

different input features is important because few variables could decrease the intra-class 

variability of rocks and reduce the accuracy statistics and mislead in assessing their novelty 

for lithological classification. 

It is worth mentioning here that although the feature selection method does a great job in 

selecting the important variable and reducing the correlated and less significant variables, 

but lacks in providing a descriptive view on the contribution of a variable to improve the 

specific class-separability. To overcome this limitation, we computed the boxplot of 

different variables that yield a higher NJMIM score for each input feature. This helps in 

understanding how other variables of each input feature contribute to improving the intra-

class variability. A boxplot is a practical approach of graphically exhibits the structure of 

numerical data through their quartiles. The other advantage of using the boxplot is that it 

displays the variation in training datasets without making any assumptions of the inherent 

statistical distribution (Williamson et al., 1989). 

5.4.3.6 Machine learning algorithms 

The ML models were implemented using the “CARET” package available in the “R” 

programming language (Kuhn et al., 2017). The training datasets derived from different 

features were utilized to train, optimize, and validate the RF and SVM models. A brief 

framework of RF and SVM algorithms has been discussed below. 

https://github.com/mbq/praznik
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a. RF: The RF algorithm is an ensemble method introduced by Breiman (2001) that 

employs a large number of decision trees to classify an image (Masoumi et al., 2017). 

It can solve both regression and classification problems with adequate accuracy 

(Grinand et al., 2013). The success of RF highly depends on the way it creates its 

decision trees. The tree is planted on the new training dataset by using random training 

data selection. The new training dataset is obtained using the bagging method, which 

generates the training dataset by randomly obtaining with the substitution of the 

original training dataset used for each feature/variable or feature set selected (Pal, 

2005). The training dataset not utilized in training the RF model is known as out-of-

bag data and used to compute an independent assessment of the overall accuracy of the 

RF model (Maxwell et al., 2018). 

b. SVM: The SVM algorithm was proposed by Vapnik (1999) developed based on 

statistical learning concepts. The SVM focuses on the training dataset nearest in the 

feature space to provide an optimum decision boundary (also known as hyperplane) to 

separate different classes (Schölkopf et al., 2002; Pal, 2008). The binary SVM develops 

a single separable hyperplane that maximizes the boundary between two classes. The 

multi-class SVM is an extension of binary SVM, which is prepared by repeatedly 

applying different binary SVM to each possible combination of classes (Pal, 2008; Seifi 

Majdar & Ghassemian, 2017; Maxwell et al., 2018). The SVM algorithm provides the 

flexibility of employing different kernel functions such as linear, polynomial, sigmoid, 

and radial basis for projecting the feature spaces to the higher dimensions by assuming 

that a linear boundary can be achieved in higher dimensional feature space (Pal, 2008). 

The choice between hyperplane and misclassification errors is contained by cost, which 

is a positive user-defined parameter and needs to be selected carefully for an optimum 

classification. A higher value of cost produces a more complex hyperplane and less 

generalized model and vice-versa (Maxwell et al., 2018). 

Both RF and SVM have been successfully used in the lithological mapping (Yu et al., 2012; 

Cracknell & Reading, 2014; Lary et al., 2015; Othman & Gloaguen, 2017; Maxwell et al., 

2018; Bachri et al., 2019; Kumar et al., 2020b). The selection of optimum training 

parameters is crucial to achieving optimal classification results from any ML models. 

Several optimization methods, such as grid search, simulated annealing, and genetic 

algorithms, are found in the literature (Bergstra et al., 2011; Bergstra & Bengio, 2012; Luo, 

2016). A grid search optimization method is commonly employed and implemented with 

n-fold cross-validation (n-FCV) (Kohavi, 1995) for optimal parameter selection in this 

study. The SVM-radial basis function consists of two optimization parameters, such as cost 

and sigma. In contrast, the RF algorithm consists of one optimization parameter, i.e., the 

number of trees to grow (Kuhn et al., 2017). The SVM-radial basis function and RF were 

optimized using the 10-fold cross-validation for optimal results. 
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5.5 Results and discussion  

5.5.1 Reference lithology map 

The geology map (Figure 5.1 (d)) prepared at a coarser scale (i.e., 1:2,50,000 scale) 

displays a generalized boundary of litho-contact and may not be an ideal source to derive 

the geo-location of the training datasets. The PCA and ICA transformation applied to 

processed ASTER data to derive the enhanced spectral products. The FCC (R:850nm, 

G:650nm, and B: 550nm) of ASTER data (Figure 5.2 (b)), the band combinations of PCA 

(R: PC4, G: PC3, B: PC2) (Figure 5.3 (a)), and ICA (R: IC4, G: IC3, B: IC1) (Figure 5.3 

(b)) transformation in conjunction with geology map and prior field knowledge 

successfully used to enhance various lithological units and interpretation, which was 

further used to prepare a suitable reference lithology map (Figure 5.3 (c)). Both PCA and 

ICA transformation complement each other in the accurate demarcation of different rock 

types found in the area.   

 
Figure 5.3. The enhanced spectral products are discriminating different rock types found 

in the study area. (a) band combination of PCA transformation (R: PC4, G: PC2, B: PC1), 

(b) band combination of ICA (R: IC4, G: IC3, B: IC1) derived from processed ASTER 

data, (c) reference lithology map, and (d) the geo-location of training samples overlaid on 

the false-color composite of ASTER data. 
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However, PCA provides better spectral contrast between granite-gneiss and sandstone, 

whereas ICA shows a better spectral contrast between chert breccia and granite-gneiss. The 

derived reference lithology map prepared at the scale of 1:25,000 was further used in 

collecting the geo-location of training samples (Figure 5.3 (d)). We successfully 

demarcated a few rock types, such as dike and ultramafic, which were confirmed in the 

field but not located in the area's geology map. A zoomed view of the band combination of 

PCA and ICA transformation highlighting the spectral contrast of different rock types 

presented in Figure 5.4. Figure 5.5 displays the field photographs of a few rock types such 

as (a) sandstone of the Kaimpur group in the Vikrampur area, (b) granite of  Bundelkhand 

granitoid complex captured in Amroniya area, and (c) shale of Semri group. 

 

Figure 5.4. The zoomed view of PCA and ICA transformation enhanced spectral products 

discriminating different rock types found in the study area. 1: limestone, 2: sandstone, 3: 

Fe-bearing sandstone, 4: shale, 5: chert breccia, 6: metabasalt, 7: granite-gneiss, 8: 

ultramafic, 9: dike, and 10: water body. 

±
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5.5.2 Spectral characteristics of rocks 

The spectral signatures of different rock types are important in assessing the major rock-

forming minerals. The diagnostic spectral signatures caused due to electronic and 

vibrational processes in the VNIR-SWIR were captured with some limitation in ASTER 

spectral data due to their coarser spectral and spatial resolution. Figures 5.6 and 5.7 present 

the reflectance spectra and boxplots of different rock types derived using average training 

datasets of processed ASTER data. The majority of rock types found in the area show 

absorption feature around 0.95 µm, 2.2µm, and 2.30-2.35µm caused due to Fe3+ metals, 

AL-OH, and Fe/Mg-OH molecules (Clark, 1999) respectively. The spectral curve of 

ultramafic, granite-gneiss, and dike exhibits a distinguishable absorption feature around 

2.2µm and 2.3µm due to Al-OH and Fe/Mg-OH molecule; whereas, limestone, sandstone, 

Fe-bearing sandstone, shale, chert breccia, and metabasalt don’t exhibit any dominant 

absorption feature around 2.2 µm. Three rock types, i.e., ultramafic, granite-gneiss, and 

dike, do not show a distinct absorption feature around 2.3 to 2.35µm. 

 

Figure 5.5. Field photographs of a few rock types at the selected traverse captured during 

the field visit in the study area. (a) the sandstone of the Kaimpur group in the Vikrampur 

area, (b) granite of Bundelkhand granitoid complex captured in the Amroniya area, (c) 

shale of Semri group. 

(a) 

(b) (c) 
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The average reflectance of different rock types showing considerable variability, which 

enables their discrimination and classification. Figure 5.7 presents the boxplot of different 

rock types found in the study are. The boxplot of different rock types illustrates that there 

is considerable overlap in most of the rock types' quartiles, which indicates their 

similarities. The metabasalt and limestone show the least average reflectance, whereas 

ultramafic and granite-gneiss show maximum overall average reflectance.  

  

 
Figure 5.6. The overall average spectra of different rock types derived from processed 

ASTER data. [Dashed line indicates the diagnostic absorption position]. Lm: limestone, 

Sd: sandstone, Fe-Sd: Fe-bearing sandstone, Sh: shale, Cb: chert breccia, Mb: metabasalt, 

Gg: granite-gneiss, um: ultramafic rock, Dk: dike. 

The overall average reflectance of chert breccia, Fe-bearing sandstone, and shale is higher 

than metabasalt and limestone but less than other rock types, including dike, granite-gneiss, 

sandstone, and ultramafic rocks. The overall average reflectance of granite-gneiss is less 

than ultramafic but higher than other rocks found in the study area. It is important to note 

here that chert breccia, Fe-bearing sandstone, and shale show a similar median and shows 

higher overlaps of quartiles of overall average reflectance and exhibit less intra-class 

variability. Similarly, the dike and sandstone yield a similar median and shows higher 

similarity among them. The median and quartiles of ultramafic and granite-gneiss exhibit 

higher dissimilarities in median and quartiles. The boxplot of rock indicates the least 

similarity, and overlap in the median and quartiles, respectively, of other rocks, indicates 

higher dissimilarities and can cause less-false positive and vice-versa. 
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Figure 5.7. A boxplot of overall average spectra of different rock types derived from the 

training dataset of processed ASTER data. 

5.5.3 Spectral-intra-class variability 

The intra-class variability of different rock types derived from the spectral input features 

derived from the training datasets of processed ASTER data using spectral dissimilarity 

matrix computed using the J-M distance method (Table 5.4).   

Table 5.4. Spectral dissimilarity matrix of overall average reflectance of training datasets 

derived from processed ASTER data using the J-M distance measure. Lm: limestone, Fe-

Sd: Fe-bearing sandstone, Sh: shale, Mb: metabasalt, Gg: granite-gneiss, Um: ultramafic 

rock, and Dk: dike.  

 Sd Fe-Sd Sh Cb Mb Gg Um Dk 

Lm 0.4409 0.2343 0.2862 0.2198 0.0263 0.9081 1.1769 0.5162 

Sd -- 0.0554 0.1295 0.1077 0.6225 0.1521 0.4232 0.0120 

Fe-Sd  -- 0.032 0.0122 0.3960 0.3699 0.6895 0.1100 

Sh   -- 0.0078 0.4718 0.4946 0.8315 0.2083 

Cb    -- 0.3855 0.4718 0.8031 0.1800 

Mb     -- 1.0905 1.3227 0.6920 

Gg      -- 0.1008 0.0850 

Um       -- 0.3083 

The accuracy of a classification result highly depends on the intra-class variability of 

different classes. The spectral dissimilarity matrix can be easily interpreted by considering 

each row of Table 5.4. For example, while considering the row of limestone, the least 

dissimilarity value yields by metabasalt (i.e., 0.0263)), which illustrates that there is a 
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higher probability while classifying limestone that metabasalt can yield false-positive as 

compared with other classes. Similarly, while considering the row of sandstone, the least 

dissimilarity value yield by the dike (i.e., 0.0120), Fe-bearing sandstone (0.0554) and chert 

breccia (0.1022), which means that while classifying sandstone there is a higher probability 

of mixed-up with dike, Fe-bearing sandstone, and chert breccia, and can cause falser 

positive. Similarly, the Fe-bearing sandstone yields less dissimilarity value with chert-

breccia and shale as compared with other classes. Shale shows higher similarity with chert 

breccia (i.e., 0.0078). It can be noticed that ultramafic and granite-gneiss show higher intra-

class variability among the rock types found in the study area and have less probability of 

miss-classification than other classes.  

5.5.4 Variable importance and selection 

The selection of optimal variables is crucial in improving the intra-class variability of rocks 

for accurate lithological classification using ML models. The variables importance of 

spectral input feature derived from processed ASTER data is shown in Figure 5.8. The 

spectral band 7 yields the highest NJMIM score, which indicates its maximum contribution 

in discriminating various rock types. The other eight spectral bands of ASTER data 

produce similar NJMIM scores and show approximately equal contribution in 

discriminating different rock types found in the area. 

 
Figure 5.8. Variable importance of spectral input features derived from processed ASTER 

data. B: spectral bands of VNIR and SWIR. 

The variable importance of transformed spectral features derived from PCA and ICA 

transformation using processed ASTER data is shown in Figure 5.9. The first five 

important variables of transformed spectral features include PC1, PC6, IC2, PC5, and PC2. 

The first few PCA and ICA transformation components consist of more information 

content than the last components. It is interesting to note here that the few lower-order 
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components of PCA and ICA transformation yield higher NJMIM scores than higher-order 

components. For example, PC6 and PC5 yield a higher NJMIM score than PC2 and PC4. 

In other words, the contribution of PC6 and PC5 are more in increasing the intra-class 

variability than PC2 and PC4. Similar observations can be noticed with the component of 

ICA transformation. The IC2 yields higher NJMIM score than IC5, IC1 and other IC 

components. 

 
Figure 5.9. Variable importance of transformed spectral input features derived from 

processed ASTER spectral data using PCA and ICA transformation. 

The variable importance of morphological features extracted from various indices (Table 

5.2) derived from dual-polarization PALSAR and Sentinel-1 SAR datasets are displayed 

in Figure 5.10. Most of the index derived from PALSAR data yields a higher NJMIM score 

than indices derived from Sentinel-1 data. Four out of the first five important variables are 

derived from PALSAR data. Nevertheless, the VH band of sentinel-1 data marked as the 

second most important variable. The lower score of indices derived from the Sentinel-1 

data indicates their less contribution in discriminating different rock types found in the 

area. One possible reason for the less effectiveness of Sentinel-1 data in discriminating 

different rock types is their lower wavelength compared with PALSAR data (Table 5.1). 

The higher wavelength of PALSAR data with higher penetration ability effectively extracts 

the surface's diversified morphological characteristics. It hence contributes to increasing 

the intra-class variability of different rock types. The SAR indices P8 of PALSAR (Figure 

5.11 (a)) and S1 of Sentinel-1 ((Figure 5.11 (b)) data are the two best indices yields higher 
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NJMIM score among all the SAR indices indicates their suitability in lithological 

discrimination. The qualitative comparison of Figure 5.11 demonstrates that index P8 has 

a better ability to discriminate different rock types as compared with S1. The spectral band 

6 of processed ASTER data and DEM were used to extract the textural features in this 

study. The DEM outperforms the spectral band 6 of ASTER data in extracting the textural 

features to increase the intra-class variability of different rock types.  

 
Figure 5.10. Variable importance of different morphological input features derived from 

PALSAR (P) and Sentinel-1 (S) data. 

 
Figure 5.11. SAR indices (a) P8 and (b) S1 derived from PALSAR and Sentinel-1 data 

respectively displaying the backscattered energy of different rock types found in the area. 

The variable importance of textural features such as correlation, mean, entropy, variance, 

second moment, and homogeneity derived from DEM with optimum window size is 

displayed in Figure 5.12. Table 5.5 presents different textural features and their 

corresponding derived optimum window size. The DEM has been considered as a textural 

variable and included in the computation of the NJMIM score. It is essential to highlight 

here that most of the textural features, including DEM, yield a higher NJMIM score than 
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other input features (such as transformed spectral and morphological input features). The 

DEM and correlation yield a higher NJMIM score than other textural features indicating 

their higher contribution in increasing the intra-class variability of different rock types 

found in the area. Figure 5.13 presents the three important textural variables, such as DEM 

(Figure 5.13 (a), correlation (Figure 5.13 (b)), and entropy (Figure 5.13 (c)), illustrating 

their ability to discriminate different rock types found in the area. Other rock types show 

considerable variability with the elevation. The mean elevation of chert breccia and 

sandstone is higher, whereas shale shows the least mean elevation than other rock types 

found in the study area. The Fe-bearing sandstone, granite-gneiss, and ultramafic rocks 

show similar mean elevation slightly higher than the dike, limestone and metabasalt. 

Table 5.5. Textural features derived from optimum window size using DEM. 

Textural variables Optimum window Textural variables Optimum window 

Correlation 17×17 Variance 17×17 

Mean 11×11 Second moment 21×21 

Entropy 13×13 Homogeneity 29×29 

 

 
Figure 5.12. Variable importance of textural input features derived from DEM with an 

optimum window. 

The optimum hybrid input features (i.e., 30) consist of various important variables of high 

NJMIM score derived from all input features to increase the intra-class variability of 

different rock types for accurate lithological classification using ML models. It is most 

likely that optimal input features may yield better accuracy statistics in classifying most of 

the rock types found in the area. Furthermore, it is worth considering that the number of 

variables is about 50% less than the actual number of variables (i.e., 58), which gives the 

possible best accurate lithological classification results and makes the model less complex 
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and computationally efficient. The optimum number of variables of different input features 

extracted from multi-sensor datasets is presented in Table 5.6. 

 

Figure 5.13. Textural variables such as (a) elevation, (b) correlation, and (c) entropy 

derived from the optimum window size using DEM illustrating their ability to discriminate 

different rock types found in the area. 

Table 5.6. Summary of different input features extracted from multi-sensor datasets and 

the optimum number of variables used in lithological classification. 

Input features Number of 

variables 

Optimum number 

of variables 

Sensor/dataset 

Spectral 9 9 ASTER 

Spectral and 

transformed spectral 

27 5 ASTER 

Spectral and 

morphological 

33 5 PALSAR and Sentinel-1 

Spectral and textural 14 7 PALSAR DEM 

Optimal hybrid 58 30 Multi-sensor datasets 

5.5.5 Comparison of ML models using different input datasets 

Different input features such as original spectral, spectral and transformed, spectral and 

morphological, spectral and textural, and optimal hybrid input features derived from multi-

sensor datasets were evaluated for lithological mapping using SVM and RF models. To 

achieve optimal result from each input dataset and make a fair comparison, the score of 

NJMIM was used to find the important and suitable variable. To find an optimal number 

of variables in each input feature (except original spectral input features), a different 

number of variables were employed to derive the accuracy statistics for lithological 
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mapping using RF and SVM models. A number gives higher accuracy statistics and shows 

no significant improvement by adding a further variable in that input features were 

considered as an optimal number of variables for that input features. The exploited input 

features show the potential to classify different rock types found in the study area. Several 

accuracy statistics such as Overall Accuracy (OA %), Kappa Coefficient (k), User 

Accuracy (UA %), Producer Accuracy (PA %) were computed for each input feature using 

SVM and RF models. The accuracy statistics of different input features to accurately 

classify different rock types found in the study area using RF and SVM models have been 

presented in Figure 5.14. 

 
Figure 5.14. The accuracy statistics of lithological classification obtained from different 

input features using SVM and RF models. A: spectral input features, B: spectral and 

transformed input features, C: spectral and morphological input features, D: spectral and 

textural input features, and E: optimal hybrid input features. 

The spectral input features yield the least accuracy statistics than other exploited input 

features (Table 5.7). The SVM and RF produce 63.06% and 61.39% of OA and 0.57 and 

0.56 of k (Figure 5.14). The spectral input data show a poor ability to map the Fe-bearing 

sandstone and metabasalt. SVM's UA and PA for classifying the Fe-bearing sandstone and 

metabasalt is 36.11% and 34.82%, 59.52%, and 44.64%, respectively. The RF also shows 

similar performance as the UA and PA of RF for Fe-bearing sandstone (37% and 33%) and 
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metabasalt (52.94% and 32.14%). It is worth mentioning here that the Fe-bearing sandstone 

and metabasalt have shown considerable spectral similarity with other rock types, as 

illustrated in the spectral dissimilarity matrix (Table 5.4). Other rock types have shown 

slightly better accuracy statistics in lithological classification using RF and SVM. It has 

also been noticed that both RF and SVM show somewhat different abilities to classify 

different rock types correctly. The rock types such as limestone, sandstone, shale, and chert 

breccia were better classified by SVM, whereas RF better classified granite-gneiss, 

ultramafic, and dike. Few rock types, including Fe-bearing sandstone and metabasalt, were 

classified by RF and SVM with similar accuracy statistics. Furthermore, the ultramafic was 

classified with higher accuracy statistics (i.e., SVM: 82.93% (UA) and 91.89% (PA), and 

RF: 85.37% (UA) and 94.59% (PA)) as compared with other rock types mainly due to their 

higher spectral dissimilarity as illustrated in Table 5.2. 

The integrated spectral and transformed spectral input features slightly improve the 

lithological mapping by increasing the accuracy statistics around 2% in OA and k (Table 

5.7). The SVM yields 64.31% (OA) and 0.59 (k) whereas RF yields 63.75% (OA) and 0.59 

(k) (Figure 5.14). The improvement in classification accuracy statistics of spectral and 

transformed input features over spectral data alone can be counted towards the addition of 

important variables derived from PCA and ICA transformation. The addition of important 

PCA and ICA transformed bands may improve the intra-class variability of most of the 

rock types. It has been observed that there is a slight decrement (i.e., 1-2%) in the individual 

accuracy statistics (i.e., UA and PA) of a few rock types such as limestone, sandstone, and 

shale, whereas other rock types, including Fe-bearing sandstone, chert breccia, metabasalt, 

granite-gneiss, ultramafic and dike show a significant increment (i.e., 4-14%) in individual 

accuracy statistics. The Fe-bearing sandstone and metabasalt were classified with higher 

accuracy statistics as classified using spectral input data alone. The UA of SVM and RF 

have increased by around 10%. The PA of SVM has not shown any improvement, whereas 

the PA of RF is slightly improved, i.e., ~4%. Like spectral input data, the SVM and RF 

show a slightly different ability to correctly classify different rock types. Sandstone, shale, 

and granite-gneiss better classified by SVM, whereas RF does a better job in classifying 

chert breccia, ultramafic, and dike (Table 5.7). 

The integrated spectral and morphological input features show better performance than 

spectral input data and integrated spectral and transformed datasets for mapping various 

rock types using SVM and RF (Table 5.8). The SVM yields 68.19% (OA) and 0.63 (k) 

whereas RF yields 64.86% (OA) and 0.59 (k) (Figure 5.14). The improvement in 

classification accuracy statistics can be accounted for by integrating important variables 

derived from SAR datasets, which leads to an increase in the intra-class variability of 

different rock types. The accuracy statistics of SVM and RF have increased by ~5% and 

3%, respectively, as obtained by spectral input data alone. Furthermore, it shows better 

performance than integrated spectral and transformed input features, particularly by SVM 

(i.e., ~4%), whereas the RF model does not show much improvement (i.e., ~1%). It is 

observed that most of the rock types except limestone and sandstone have been efficiently 

mapped with higher individual accuracy as compared with spectral data and integrated 

spectral and transformed input datasets. As observed with the previous two input datasets, 
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the SVM and RF show a slightly diverse capability to accurately classify different rock 

types. The SVM shows a better ability to classify shale, chert breccia, metabasalt, and 

granite-gneiss, whereas the RF does a better classification of ultramafic and dike. However, 

few rock types such as limestone, sandstone, and Fe-bearing sandstone were classified with 

similar accuracy statistics. 

Table 5.7. The accuracy statistics of lithological classification are derived from spectral 

input data and integrated spectral and transformed spectral input datasets using SVM and 

RF models. Lm: limestone, Fe-Sd: Fe-bearing sandstone, Sh: shale, Mb: metabasalt, Gg: 

granite-gneiss, Um: ultramafic rock, and Dk: dike. OA: overall accuracy (%), k: kappa 

coefficient, UA: user accuracy (%), PA: producer accuracy (%). 

 Spectral input features  

Spectral and transformed 

spectral input features 

 OA (%) k OA (%) k 

SVM 63.06 0.57 64.31 0.59 

RF 61.39 0.56 63.75 0.59 

 SVM RF SVM RF 

Rocks UA PA UA PA UA PA UA PA 

Lm 61.94 83.00 57.35 78.00 58.27 81.00 58.27 81.00 

Sd 68.66 73.60 63.38 72.00 67.72 68.80 65.85 64.80 

Fe-Sd 36.11 34.82 37.00 33.04 45.88 34.82 45.65 37.50 

Sh 70.18 63.49 61.40 55.56 67.31 55.56 62.96 53.97 

Cb 70.45 62.00 71.79 56.00 67.80 80.00 69.23 72.00 

Mb 59.52 44.64 52.94 32.14 61.70 51.79 56.25 32.14 

Gg 69.92 66.43 68.49 71.43 69.54 75.00 66.05 76.43 

Um 82.93 91.89 85.37 94.59 88.57 83.78 94.59 94.59 

Dk 62.96 45.95 84.00 56.76 68.00 45.95 86.21 67.57 

The integrated spectral and textural input features show a great success over spectral data, 

integrated spectral and transformed data, and integrated spectral and morphological 

datasets for lithological mapping using SVM and RF (Table 5.8).  The SVM yields 74.58% 

(OA) and 0.71 (k) whereas RF yield 72.08% (OA) and 0.68 (k) (Figure 5.14). The accuracy 

statistics of both SVM and RF models increased by 10–11% compared with previously 

employed input datasets. The integration of textural variables with the spectral input data 

helps increase the intra-class variability of different rocks found in the area. It is interesting 

to note here that most of the rock types have significantly improved their accuracy 

statistics. Both SVM and RF does a satisfactory classification for most of the rock types 

(Table 5.8). 

Table 5.8. The accuracy statistics of lithological classification derived from integrated 

spectral and morphological input dataset, and integrated spectral and textural input dataset 

using SVM and RF models. 
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Spectral and morphological input 

feature 

Spectral and textural input 

features 

 OA (%) k OA (%) k 

SVM 68.19 0.63 74.58 0.71 

RF 64.86 0.59 72.08 0.68 

 SVM RF SVM RF 

Rocks UA PA UA PA UA PA UA PA 

Lm 60.77 79.00 60.61 80.00 62.40 78.00 61.03 83.00 

Sd 68.84 76.00 71.43 68.00 78.63 82.40 85.44 70.40 

Fe-Sd 47.31 39.29 43.90 48.21 57.00 50.89 52.58 45.54 

Sh 75.44 68.25 64.58 49.21 88.89 76.19 83.05 77.78 

Cb 81.40 70.00 70.45 62.00 77.19 88.00 74.07 80.00 

Mb 60.00 53.57 52.38 39.29 75.61 55.36 59.09 46.43 

Gg 75.71 75.71 70.47 75.00 81.62 79.29 76.10 86.43 

Um 92.11 94.59 94.59 94.59 92.50 100.00 94.59 94.59 

Dk 77.42 64.86 92.31 64.86 77.78 75.68 83.87 70.27 

The optimum hybrid input features consist of different suitable variables derived from 

spectral, morphological, and textural characteristics of rocks to increase the intra-class 

variability for accurate lithological classification. The optimal input features have shown 

great success over other input features for lithological mapping using SVM and RF models 

(Table 5.9). The SVM yields 77.78% (OA) and 0.74 (k), whereas RF yields 76.67% (OA) 

and 0.73 (k), which is highest among all input features exploited in lithological mapping 

using SVM and RF models (Figure 5.14). It shows around 10–15% of improvement over 

spectral input features.  

Table 5.9. The accuracy statistics of lithological classification are derived from the optimal 

hybrid input dataset using SVM and RF models. 

 Optimal hybrid input features 

 OA (%) k 

SVM 77.78 0.74 

RF 76.67 0.73 

 SVM RF 

Rocks UA PA UA PA 

Lm 71.43 85.00 65.91 87.00 

Sd 81.97 80.00 84.62 79.20 

Fe-Sd 60.00 53.57 56.44 50.89 

Sh 87.10 85.71 82.81 84.13 

Cb 90.91 80.00 88.00 88.00 

Mb 64.29 64.29 57.14 50.00 

Gg 82.19 85.71 85.11 85.71 

Um 97.37 100.00 100.00 97.30 
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Dk 84.85 75.68 93.33 75.68 

Furthermore, most of the rock types' accuracy statistics have significantly improved 

compared with other input datasets. As noticed with other input datasets, the SVM slightly 

outperforms RF to classify different rock types found in the study area accurately. The 

individual accuracy statistics of Fe-bearing sandstone obtained using spectral data is 

36.11% (UA) and 34.82% (PA), which improved to 60% (UA) and 53.57% (PA) using 

optimal hybrid data. The individual accuracy of limestone achieved using spectral data is 

61.94% (UA) and 83% (PA), which increased to 71.43% (UA) and 85% (PA) using optimal 

hybrid data. Similar improvements have been achieved for other rock types found in the 

area. 

 

 
Figure 5.15. The lithological classification was obtained from the optimal hybrid input data 

using RF and SVM. (a) Reference lithology map, (b) lithological classification map using 

RF, and (c) lithological classification map using SVM. 

The lithological map obtained from the optimal input features derived using RF (Figure 

5.15 (b)) and SVM  model (Figure 5.15 (c)) shows high similarity among them as observed 

statistically using their accuracy statistics (Figure 5.14 and Table 5.9). We performed a 

qualitative validation of the derived lithological classification map using a conjugative 

reference lithology map (Figure 5.15 (a)) and with the field data. The classified maps well 

agreed with the field data and high-resolution reference lithology map, which provides 

great confidence to rely on the proposed multi-sensor approach of integrating spectral, 

morphological, and textural characteristics of rocks for accurate lithological classification 

using SVM and RF models. 

(a) 

(b) 

(c) 
Location

Limestone (1)

Sandstone (2)

Fe bearing sandstone (3)

Shale (4)

Chert brecia (5)

Metabasalt (6)

Granite-gneiss (7)

Ultramafic (8)

Dike (9)

Water body (10)

#
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5.6 Conclusions 

• We utilized multi-sensor datasets such as ASTER, PALSAR, Sentinel-1, and DEM 

to derive surface characteristics of rocks from preparing various input features such 

as (a) spectral, (b) spectral and transformed spectral, (c) spectral and 

morphological, (d) spectral and textural, and (e) optimal hybrid input features, to 

evaluate their ability in lithological classification using ML models.  

• The NJMIM feature section method was used to select the important and 

uncorrelated variables of each input feature to achieve optimal results and assess 

their novelty for accurate lithological classification using ML models. 

• The comparative evaluation illustrated that the optimal hybrid input features 

outperform other input features to classify different rock types found in the study 

area accurately. The poor performance of SVM and RF obtained using the spectral 

data alone indicate that spectral data may not be an ideal input data for accurate 

lithological mapping in a geological setting where different rocks exhibit spectral 

similarity and weathered surface.  

• The textural variables (i.e., elevation, correlation, entropy, mean, variance, 

homogeneity, and second moment) show a better ability to discriminate different 

rock types than other derived variables such as transformed spectral and 

morphological (SAR indices). However, the index derived from PALSAR data 

shows a higher ability to discriminate different rock types than the Sentinel-1 data. 

• The optimal hybrid input features consist of several vital variables derived from 

multi-sensor datasets that yield a higher NJMIM score than other input features. 

The optimal hybrid input features produce maximum individual accuracy statistics 

for all the lithological units found in the area. The maximum accuracy statistics 

obtained in lithological classification by SVM and RF models using optimal hybrid 

input features are 77.78% and 76.77% of OA and 0.74 and 0.73 of k, respectively, 

which is ~15% higher as obtained using spectral data. 

• The obtained lithological maps well agreed with the field data and reference 

lithology map, which provides great confidence to rely on the proposed multi-

sensor datasets-based integration of spectral, morphological, and textural 

characteristics of rocks for accurate lithological classification using ML models. 
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6 Conclusions and future work 

This research aims to develop innovative methods for discrimination and classification of 

geological targets, including minerals and rock types/lithological units. The developed 

methods have been evaluated at two study sites, the Hutti-Maski greenstone belt and the 

Chattarpur area located in India. The Hutti-Maski site is explored for different minerals 

and rock types classification using hyperspectral data, whereas the Chattarpur site is 

studied for lithological classification using multi-sensor datasets. Chapter 2 evaluates the 

utility of high-resolution hyperspectral data and develops an optimum threshold selection 

method using spectral similarity matrix of the target and non-target classes, which 

addressed the first objective (i.e., to evaluate the utility of AVIRIS-NG data for 

hydrothermal alteration mineral mapping and to develop an optimum threshold selection 

method for SMMs). The spatial distribution of hydrothermal alteration minerals such as 

chlorite, goethite, muscovite, and kaolinite have been mapped, which primarily belongs to 

the propylitic type of hydrothermal alteration in the Hutti-Maski area. The hybrid SMM, 

i.e., SIDSAMtan (OA: 94.40; k: 0.93), outperforms the SAM and SID in mineral 

classification. The advantage of the proposed threshold selection method is that it does not 

require extensive field data to validate the selected threshold and classification results' 

reliability. Chapter 3 addressed the third objective of the study (i.e., to develop effective 

SMMs for accurate discrimination of spectrally similar minerals) by proposing three new 

effective SMMs such as DSSC, KJSSC, and KJDSSCtan for accurate discrimination of 

spectrally similar minerals. The proposed SMMs outperform exiting SMMs (i.e., SAM, 

SID, and SIDSAMtan) across different hyperspectral datasets of synthesized mixed and 

noisy spectra acquired under laboratory and real atmospheric conditions. The developed 

KJDSSCtan shows a significantly higher ability to discriminate spectrally similar materials 

as compared with other SMMs. The developed SMMs can also be used in optimum band 

selection, class separability analysis, endmember selection, clustering, and image 

classification for successful hyperspectral data analysis. Chapter 4 presents a novel 

approach of automated lithological classification using ML models, which addressed the 

fourth objective (i.e., to evaluate the utility of AVIRIS-NG hyperspectral data for 

automated lithological classification using ML models) of the study. The developed 

approach integrates the spectral enhancement techniques and MLAs for an automated 

lithological classification using high-resolution AVIRIS-NG hyperspectral data. The study 

highlighted the effectiveness of conjugate utilization of geology maps coupled with 

spectral enhancement products derived from PCA and ICA transformation using ASTER 

multispectral data to prepare a reference lithology map for obtaining suitable training 

datasets collection. The JMIM  feature selection based optimum bands is suitable than 

other input datasets (i.e., SWIR bands and all spectral bands) to obtain accurate lithological 

maps using ML models. The SVM (OA: 85.48%; k: 0.83) outperforms RF and LDA across 

different input datasets used in the classification. SVM's performance shows the least 

sensitivity to the quantity and quality of training datasets compared with RF and LDA. 

Chapter 5 addressed the fifth objective (i.e., to develop a multi-sensor datasets-based 

optimal integration of spectral, morphological, and textural characteristics of rocks for 

lithological classification using ML models) of this study.  A multi-sensor datasets of 
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different wavelength regions, including optical and microwave, have accurately classified 

different rock types using SVM and RF models. Several input features such as (a) spectral, 

(b) spectral and transformed spectral, (c) spectral and morphological, (d) spectral and 

textural, and (e) optimal hybrid input features were evaluated for their ability in accurate 

lithological classification. The optimal hybrid input features outperform other input 

features to classify various rock types found in the Chattarpur area accurately. The spectral 

data alone with their poor performance of SVM and RF models, indicate that they may not 

be an ideal input features for accurate rock types classification in a geological setting of 

weathered and similar spectral characteristics. The textural variables, including elevation, 

correlation, entropy, mean, variance, homogeneity, and second moment show a better 

ability to discriminate various rock types than other derived variables such as transformed 

spectral and morphological (SAR indices). The PALSAR data show a higher ability than 

the Sentinel-1 dataset to discriminate different rock types found in the area. The optimal 

hybrid input features yield maximum accuracy statistics in lithological classification using 

SVM and RF models, which is around 15% higher as obtained using spectral data alone. 

The SVM slightly outperforms the RF model. The developed methods in this study are not 

only applicable to discrimination and classification of geological targets. They can be 

effectively utilized in other applications of remote sensing such as vegetation/forest 

mapping, water quality monitoring, and soil classification. 

The research presented in this dissertation provides the foundation for the following future 

work to develop robust geological remote sensing classification methods:  

• Future work should focus on developing automated optimum threshold selection 

for accurate classification and hyperspectral data analysis. The addition of spectral 

feature parameters can be used as a constrained parameter in solving the threshold 

selection problem. 

• Future work should consider developing an integrated spectral-machine learning 

method for accurate classification. The successful development of this tool would 

be an innovative breakthrough in the field of hyperspectral remote sensing.  

• The study should also explore the advantage of fusing spectral data and fully 

polarimetric SAR of different frequencies to evaluate their ability 

for accurate lithological classification. The products of polarimetric decomposition 

and different SAR indices (developed in this study) can be assessed in lithological 

classification.  

• Future work should also focus on developing the ensemble and hybrid feature 

selection method for suitable band selection for accurate lithological classification 

using ML models.   
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Appendix A 

Table A1. Spectral similarity matrix of USGS spectra of minerals using Spectral Angle 

Mapper (SAM), Spectral Information Divergence (SID), SIDSAMtan, Kumar-Johnson 

Spectral Similarity Coefficient (KJSSC), and KJDSSCtan. 

SAM Calcite Chlorite Hematite Jarosite Kaolinite Mixture 

Alunite 0.1874 0.5367 0.3946 0.2922 0.1461 0.1878 

Calcite -- 0.4280 0.3617 0.2812 0.1224 0.1330 

Chlorite  -- 0.2652 0.3489 0.5010 0.3564 

Hematite   -- 0.2384 0.4180 0.2475 

Jarosite    -- 0.3088 0.1706 

Kaolinite     -- 0.1796 

SID Calcite Chlorite Hematite Jarosite Kaolinite Mixture 

Alunite 0.0204 0.1574 0.0975 0.0547 0.0121 0.0223 

Calcite -- 0.0960 0.0785 0.0489 0.0100 0.0089 

Chlorite  -- 0.0367 0.0617 0.1348 0.0638 

Hematite   -- 0.0323 0.1061 0.0384 

Jarosite    -- 0.0596 0.0194 

Kaolinite     -- 0.0190 

SIDSAMtan Calcite Chlorite Hematite Jarosite Kaolinite Mixture 

Alunite 0.0039 0.0937 0.0406 0.0165 0.0018 0.0042 

Calcite -- 0.0438 0.0297 0.0141 0.0012 0.0012 

Chlorite  -- 0.0100 0.0225 0.0738 0.0238 

Hematite   -- 0.0079 0.0471 0.0097 

Jarosite    -- 0.0190 0.0033 

Kaolinite     -- 0.0034 

KJSSC Calcite Chlorite Hematite Jarosite Kaolinite Mixture 

Alunite 95.36 540.95 152.30 104.41 15.02 28.55 

Calcite -- 1080.64 277.23 372.42 70.93 102.52 

Chlorite  -- 340.59 199.96 546.60 316.64 

Hematite   -- 66.13 187.24 58.64 

Jarosite    -- 152.84 44.25 

Kaolinite     -- 28.73 

KJDSSCtan Calcite Chlorite Hematite Jarosite Kaolinite Mixture 

Alunite 4.74 177.77 11.77 6.35 0.16 0.60 

Calcite -- 449.83 25.08 49.23 2.82 6.62 

Chlorite  -- 84.93 34.26 171.32 70.33 

Hematite   -- 3.40 16.20 2.11 

Jarosite    -- 10.05 0.92 

Kaolinite     -- 0.56 
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Table A2. Spectral similarity matrix of USGS spectra of vegetation using SAM, SID, 

SIDSAMtan, KJSSC, and KJDSSCtan. Bb: blackbrush, Bs: blue spruce, Cg: cheat grass, Jb: 

juniper bush, Rb: rabbit brush, Sb: saltbrush, Ms: linearly mixed spectrum of vegetation 

with equal proportion. 

SAM Bs Cg Jb Rb Sb Ms 

Bb 0.1742 0.4933 0.1158 0.2008 0.2809 0.1752 

Bs -- 0.5585 0.1385 0.2232 0.2090 0.1939 

Cg  -- 0.4474 0.3496 0.4469 0.3720 

Jb   -- 0.1285 0.1841 0.0911 

Rb    -- 0.1601 0.0480 

Sb     -- 0.1482 

SID Bs Cg Jb Rb Sb Ms 

Bb 0.0204 0.1574 0.0975 0.0547 0.0121 0.0223 

Bs -- 0.0960 0.0785 0.0489 0.0100 0.0089 

Cg  -- 0.0367 0.0617 0.1348 0.0638 

Jb   -- 0.0323 0.1061 0.0384 

Rb    -- 0.0596 0.0194 

Sb     -- 0.0190 

SIDSAMtan Bs Cg Jb Rb Sb Ms 

Bb 0.0036 0.0846 0.0113 0.0111 0.0035 0.0039 

Bs -- 0.0600 0.0109 0.0111 0.0021 0.0017 

Cg  -- 0.0176 0.0225 0.0646 0.0249 

Jb   -- 0.0042 0.0198 0.0035 

Rb    -- 0.0096 0.0009 

Sb     -- 0.0028 

KJSSC Bs Cg Jb Rb Sb Ms 

Bb 27.46 115.34 21.32 43.91 144.72 24.77 

Bs -- 302.74 64.84 99.52 164.40 62.30 

Cg  -- 70.73 43.13 113.25 41.56 

Jb   -- 6.18 33.29 4.25 

Rb    -- 20.52 3.34 

Sb     -- 32.73 

KJDSSCtan Bs Cg Jb Rg Sb Ms 

Bb 1.78 13.82 0.47 1.44 12.70 0.42 

Bs -- 59.72 7.96 12.96 32.76 5.39 

Cg  -- 7.98 3.13 16.37 2.91 

Jb   -- 0.05 0.91 0.05 

Rb    -- 0.53 0.02 

Sb     -- 1.47 
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Table A3. Spectral similarity matrix of USGS mineral spectra after adding 10% of 

random noise using SAM, SID, SIDSAMtan, KJSSC, and KJDSSCtan. 

SAM Calcite Chlorite Hematite Jarosite Kaolinite Mixture 

Alunite 0.1794 0.4988 0.3798 0.2799 0.1416 0.1830 

Calcite -- 0.3936 0.3452 0.2670 0.1196 0.1296 

Chlorite  -- 0.2481 0.3255 0.4641 0.3273 

Hematite   -- 0.2309 0.4006 0.2373 

Jarosite    -- 0.2942 0.1649 

Kaolinite     -- 0.1759 

SID Calcite Chlorite Hematite Jarosite Kaolinite Mixture 

Alunite 0.0184 0.1348 0.0878 0.0488 0.0112 0.0208 

Calcite -- 0.0806 0.0694 0.0425 0.0092 0.0084 

Chlorite  -- 0.0324 0.0534 0.1145 0.0535 

Hematite   -- 0.0294 0.0948 0.0339 

Jarosite    -- 0.0523 0.0172 

Kaolinite     -- 0.0179 

SIDSAMtan Calcite Chlorite Hematite Jarosite Kaolinite Mixture 

Alunite 0.0033 0.0734 0.0350 0.0140 0.0016 0.0038 

Calcite -- 0.0335 0.0250 0.0116 0.0011 0.0011 

Chlorite  -- 0.0082 0.0180 0.0573 0.0182 

Hematite   -- 0.0069 0.0401 0.0082 

Jarosite    -- 0.0158 0.0029 

Kaolinite     -- 0.0032 

KJSSC Calcite Chlorite Hematite Jarosite Kaolinite Mixture 

Alunite 90.59 474.16 141.25 94.47 14.68 28.09 

Calcite -- 930.05 243.63 316.70 68.78 98.36 

Chlorite  -- 307.70 178.43 472.45 279.66 

Hematite   -- 63.25 169.97 53.64 

Jarosite    -- 130.11 39.27 

Kaolinite     -- 28.29 

KJDSSCtan Calcite Chlorite Hematite Jarosite Kaolinite Mixture 

Alunite 4.19 138.38 10.12 5.28 0.15 0.55 

Calcite -- 351.03 20.30 38.76 2.58 5.91 

Chlorite  -- 68.69 26.78 131.23 54.80 

Hematite   -- 3.03 13.52 1.77 

Jarosite    -- 7.80 0.77 

Kaolinite     -- 0.52 
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Table A4. Spectral similarity matrix of USGS vegetation spectra after adding 10% of 

random noise using SAM, SID, SIDSAMtan, KJSSC, and KJDSSCtan. 

SAM Bs Cg Jb Rb Sb Ms 

Bb 0.1788 0.4765 0.1123 0.1928 0.2697 0.1700 

Bs -- 0.5321 0.1376 0.2114 0.1930 0.1847 

Cg  -- 0.4354 0.3386 0.4331 0.3601 

Jb   -- 0.1277 0.1804 0.0958 

Rb    -- 0.1583 0.0539 

Sb     -- 0.1467 

SID Bs Cg Jb Rb Sb Ms 

Bb 0.0832 0.1625 0.0206 0.0457 0.0906 0.0397 

Bs -- 0.2543 0.0411 0.0512 0.0485 0.05169 

Cg  -- 0.1302 0.0847 0.1539 0.08768 

Jb   -- 0.0125 0.0360 0.00934 

Rb    -- 0.0255 0.0025 

Sb     -- 0.02377 

SIDSAMtan Bs Cg Jb Rb Sb Ms 

Bb 0.0150 0.0839 0.0023 0.0089 0.0250 0.0068 

Bs -- 0.1497 0.0057 0.0110 0.0095 0.0097 

Cg  -- 0.0606 0.0298 0.0712 0.0330 

Jb   -- 0.0016 0.0066 0.0009 

Rb    -- 0.0041 0.0001 

Sb     -- 0.0035 

KJSSC Bs Cg Jb Rb Sb Ms 

Bb 25.73 96.42 19.40 38.04 123.46 21.60 

Bs -- 211.33 57.21 82.44 142.96 51.6755 

Cg  -- 65.38 39.86 103.63 38.7844 

Jb   -- 6.06 31.42 4.54984 

Rb    -- 19.94 3.5329 

Sb     -- 31.526 

KJDSSCtan Bs Cg Jb Rb Sb Ms 

Bb 1.5443 10.7867 0.4092 1.1775 10.2834 0.3493 

Bs -- 38.1270 6.4886 9.8655 26.4088 4.0839 

Cg  -- 6.9394 2.7033 14.0514 2.5418 

Jb   -- 0.0499 0.8327 0.0501 

Rb    -- 0.4950 0.0228 

Sb     -- 1.3571 
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Table A5. Spectral similarity matrix of mixed spectra of minerals prepared by linear 

mixing of other classes with equal proportion (50% of actual class + 8.33% of other 

classes (i.e., 50%)) using SAM, SID, SIDSAMtan, KJSSC, and KJDSSCtan. 

SAM Calcite Chlorite Hematite Jarosite Kaolinite Mixture 

Alunite 0.0855 0.1777 0.1740 0.1215 0.0641 0.0821 

Calcite -- 0.1397 0.1674 0.1232 0.0545 0.0668 

Chlorite  -- 0.0862 0.1024 0.1642 0.0982 

Hematite   -- 0.1035 0.1842 0.1096 

Jarosite    -- 0.1280 0.0664 

Kaolinite     -- 0.0786 

SID Calcite Chlorite Hematite Jarosite Kaolinite Mixture 

Alunite 0.0038 0.0169 0.0168 0.0082 0.0021 0.0038 

Calcite -- 0.0105 0.0152 0.0084 0.0017 0.0023 

Chlorite  -- 0.0039 0.0053 0.0144 0.0050 

Hematite   -- 0.0055 0.0185 0.0066 

Jarosite    -- 0.0091 0.0025 

Kaolinite     -- 0.0034 

SIDSAMtan Calcite Chlorite Hematite Jarosite Kaolinite Mixture 

Alunite 0.0003 0.0030 0.0029 0.0010 0.0001 0.0003 

Calcite -- 0.0015 0.0026 0.0010 0.0001 0.0002 

Chlorite  -- 0.0003 0.0005 0.0024 0.0005 

Hematite   -- 0.0006 0.0035 0.0007 

Jarosite    -- 0.0012 0.0002 

Kaolinite     -- 0.0003 

KJSSC Calcite Chlorite Hematite Jarosite Kaolinite Mixture 

Alunite 15.99 53.00 20.94 13.59 2.59 4.58 

Calcite -- 102.38 35.41 42.10 12.10 19.20 

Chlorite  -- 38.41 20.45 53.19 32.37 

Hematite   -- 10.39 25.02 8.91 

Jarosite    -- 16.73 4.93 

Kaolinite     -- 4.89 

KJDSSCtan Calcite Chlorite Hematite Jarosite Kaolinite Mixture 

Alunite 0.1799 2.5328 0.3167 0.1440 0.0053 0.0177 

Calcite -- 8.0007 0.7325 1.1788 0.1091 0.2718 

Chlorite  -- 1.4532 0.4247 2.4319 0.9691 

Hematite   -- 0.0951 0.4235 0.0600 

Jarosite    -- 0.1918 0.0168 
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Kaolinite     -- 0.0176 

Table A6. Spectral similarity matrix of mixed spectra of vegetation prepared by linear 

mixing of other classes with equal proportion (50% of actual class + 8.33% of other 

classes (i.e. 50%)) using SAM, SID, SIDSAMtan, KJSSC, and KJDSSCtan. 

SAM Bs Cg Jb Rb Sb Ms 

Bb 0.0635 0.1987 0.0451 0.0821 0.1234 0.0705 

Bs -- 0.2104 0.0423 0.0769 0.0817 0.0635 

Cg  -- 0.1833 0.1397 0.1877 0.1495 

Jb   -- 0.0572 0.0869 0.0406 

Rb    -- 0.0766 0.0212 

Sb     -- 0.0715 

SID Bs Cg Jb Rb Sb Ms 

Bb 0.0105 0.0320 0.0026 0.0075 0.0184 0.0059 

Bs -- 0.0440 0.0045 0.0058 0.0084 0.0060 

Cg  -- 0.0280 0.0190 0.0365 0.0192 

Jb   -- 0.0025 0.0093 0.0015 

Rb    -- 0.0069 0.0003 

Sb     -- 0.0064 

SIDSAMtan Bs Cg Jb Rb Sb Ms 

Bb 0.0007 0.0064 0.0001 0.0006 0.0023 0.0004 

Bs -- 0.0093 0.0002 0.0004 0.0007 0.0004 

Cg  -- 0.0051 0.0027 0.0069 0.0029 

Jb   -- 0.0001 0.0008 0.0001 

Rb    -- 0.0005 0.0000 

Sb     -- 0.0005 

KJSSC Bs Cg Jb Rb Sb Ms 

Bb 3.47 14.11 2.86 5.62 16.50 3.06 

Bs -- 20.95 7.95 10.63 20.73 6.55 

Cg  -- 11.03 7.20 17.67 7.07 

Jb   -- 1.07 5.92 0.75 

Rb    -- 4.05 0.60 

Sb     -- 6.14 

KJDSSCtan Bs Cg Jb Rb Sb Ms 

Bb 0.0313 0.2787 0.0115 0.0332 0.2946 0.0088 

Bs -- 0.5765 0.1581 0.2205 0.7646 0.0825 

Cg  -- 0.2291 0.0955 0.5231 0.0845 

Jb   -- 0.0018 0.0354 0.0016 

Rb    -- 0.0226 0.0007 
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Sb     -- 0.0574 

Table A7. Spectral similarity matrix of hydrothermal alteration minerals using SAM, 

SID, SIDSAMtan, KJSSC, and KJDSSCtan.  

SAM Chlorite Chlorite(mine site) Kaolinite Muscovite Mixture 

Goethite 0.1154 0.1360 0.1228 0.1933 0.1174 

Chlorite -- 0.1334 0.0791 0.1116 0.0544 

Chlorite(mine site)  -- 0.1418 0.1603 0.1134 

Kaolinite   -- 0.1004 0.0463 

Muscovite    -- 0.0797 

SID Chlorite Chlorite(mine site) Kaolinite Muscovite Mixture 

Goethite 0.0085 0.0160 0.0136 0.0181 0.0069 

Chlorite -- 0.0249 0.0060 0.0060 0.0021 

Chlorite(mine site)  -- 0.0383 0.0287 0.0196 

Kaolinite   -- 0.0059 0.0039 

Muscovite    -- 0.0029 

SIDSAMtan Chlorite Chlorite(mine site) Kaolinite Muscovite Mixture 

Goethite 0.0010 0.0022 0.0017 0.0035 0.0008 

Chlorite -- 0.0033 0.0005 0.0007 0.0001 

Chlorite(mine site)  -- 0.0055 0.0046 0.0022 

Kaolinite   -- 0.0006 0.0002 

Muscovite    -- 0.0002 

KJSSC Chlorite Chlorite(mine site) Kaolinite Muscovite Mixture 

Goethite 7.25 13.03 69.80 157.07 18.84 

Chlorite -- 36.02 32.29 84.97 3.64 

Chlorite(mine site)  -- 161.59 302.11 62.36 

Kaolinite   -- 12.49 14.10 

Muscovite    -- 50.45 

KJDSSCtan Chlorite Chlorite(mine site) Kaolinite Muscovite Mixture 

Goethite 0.20 0.82 11.61 44.16 1.15 

Chlorite -- 5.02 2.51 14.27 0.04 

Chlorite(mine site)  -- 55.20 139.56 12.39 

Kaolinite   -- 0.34 0.50 

Muscovite    -- 5.42 
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