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Abstract: Deep neural networks (DNNs) have emerged as a relevant tool for the classification of
remotely sensed hyperspectral images (HSIs), with convolutional neural networks (CNNs) being the
current state-of-the-art in many classification tasks. However, deep CNNs present several limitations
in the context of HSI supervised classification. Although deep models are able to extract better and
more abstract features, the number of parameters that must be fine-tuned requires a large amount of
training data (using small learning rates) in order to avoid the overfitting and vanishing gradient
problems. The acquisition of labeled data is expensive and time-consuming, and small learning rates
forces the gradient descent to use many small steps to converge, slowing down the runtime of the
model. To mitigate these issues, this paper introduces a new deep CNN framework for spectral-spatial
classification of HSIs. Our newly proposed framework introduces shortcut connections between
layers, in which the feature maps of inferior layers are used as inputs of the current layer, feeding its
own output to the rest of the the upper layers. This leads to the combination of various spectral-spatial
features across layers that allows us to enhance the generalization ability of the network with HSIs.
Our experimental results with four well-known HSI datasets reveal that the proposed deep&dense
CNN model is able to provide competitive advantages in terms of classification accuracy when
compared to other state-of-the-methods for HSI classification.

Keywords: hyperspectral images (HSIs); convolutional neural networks (CNNs); dense convolutions

1. Introduction

The goal of this section is to introduce a new deep neural model for remote sensing data
processing, aimed at conducting classification of hyperspectral images (HSIs). To present the rationale
and objectives of this work, this section will introduce the problematic around hyperspectral data
processing, focusing on the classification task, and indicating the most widely-used classification
methods and algorithms. In particular, this section will highlight the use of deep learning (DL)
strategies for data analysis, highlighting those methods based on convolutional neural networks
(CNNs) as the current-state-of-the-art of DL field. Also, this section will point out the limitations of
these methods when working with complex HSI datasets and very deep architectures, describing the
new improvements developed on very deep neural networks. Finally, the section enumerates the goals
and contributions of the current work.

1.1. Hyperspectral Imaging Concept and Missions

The combination of spectroscopy and photography technologies in current imaging spectrometers
allows for the acquisition of spatial-spectral features capturing the visible and solar-reflected infrared

Remote Sens. 2018, 10, 1454; doi:10.3390/rs10091454 www.mdpi.com/journal/remotesensing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dehesa. Repositorio Institucional de la Universidad de Extremadura

https://core.ac.uk/display/373013315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-1030-3729
https://orcid.org/0000-0001-6701-961X
https://orcid.org/0000-0002-2384-9141
https://orcid.org/0000-0003-1030-3729
http://dx.doi.org/10.3390/rs10091454
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2018, 10, 1454 2 of 28

(near-infrared and short-wavelength infrared) spectrum at different wavelength channels for different
locations in an image plane. Particularly, in the remote sensing field this image plane is usually obtained
over an observation area on the surface of the Earth by airborne and spaceborne spectrometers [1]
which produce large amounts of data per hour, usually close to the Gigabytes of information, with
improved spatial resolution also. In the category of aerial spectrometers we can highlight, for instance,
the Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) [2], which records information in the
range of 0.4–2.45 µm in 224 spectral bands, providing continuous spectral coverage at intervals
of 10 nm over the spectrum. Another well-known aerial spectrometer is the the Reflective Optics
System Imaging Spectrometer (ROSIS-3) [3], which covers the region from 0.43–0.86 µm with more than
100 spectral bands at intervals of 4nm. Other aerial spectrometers are the Hyperspectral Digital Imagery
Collection Experiment (HYDICE) [4], the HyMAP [5,6], the PROBE-1 [7] or the family of spectrometers
composed by the Compact Airborne Spectrographic Imager (CASI), which capture information in the
visible/near infrared regions, and its related SASI and TASI, which capture information in the short
wave infrared and also in the thermal infrared, respectively [8–10]. Focusing on spaceborne sensors,
we can highlight the Earth Observing-1 (EO-1) Hyperion [11,12], which also records information
in the range 0.4–2.5 µm with 10nm spectral resolution, obtaining data cubes with 220 spectral
bands. Other spectrometers allocated on satellite-platforms are the Moderate Resolution Imaging
Spectroradiometer (MODIS) [13], the Fourier Transform HyperSpectral Imager (FTHSI) [14], and the
CHRIS Proba [15]. New missions include the German Environmental Mapping and Analysis Program
(EnMAP) [16], the Italian Precursore IperSpettrale della Missione Applicativa (PRISMA) program [17],
the commercial Space-borne Hyperspectral Applicative Land and Ocean Mission (SHALOM) [18],
the NASA Hyperspectral Infrared Imager (HyspIRI) [19], or the Japanese Hyperspectral Imager
Suite (HISUI) [20]. These missions are expected to generate a continuous stream of HSI data [21,22].
For instance, AVIRIS can collect nearly 9 GB/h, while Hyperion can collect 71.9 GB/h in many
different locations over the world, which generates large HSI repositories [23] characterized by their
heterogeneity and complexity.

1.2. Hyperspectral Image Classification

The data acquired by imaging spectrometers is a collection of nbands images that measure the
spectrum in nbands narrow and continuous spectral bands [24]. Usually, in hyperspectral images
the parameter nbands is in the order of hundreds or thousands, covering a wide spectral range of
frequencies [25]. As a result, each pixel provides a spectral signature that contains a highly detailed
and unique representation of the reflectance for each captured land-cover material. This leads to
a better discrimination among the different materials contained in the image, allowing hyperspectral
imagery (HSI) to serve as a tool for the analysis of the surface of the Earth in many applications [26–29].
The analysis of HSIs involves a wide range of techniques, including classification [29,30], spectral
unmixing [31–34], target and anomaly detection [35–38]. In recent years, HSI classification has become
a popular research topic in the remote sensing field [39]. Given a HSI data cube X ∈ Rn1×n2×nbands ,
the goal of classification is to assign a unique class label (from a set of predefined classes) to each
pixel vector in the scene. Let us denote by xi ∈ Rnbands = [xi,1, xi,2, · · · , xi,nbands ], a pixel vector in the
scene, with i = 1, 2, · · · n1 × n2 [40]. Several efforts have been made in order to develop effective
and efficient methods for HSI classification. Traditionally, the spectral information contained in each
HSI pixel allows standard pixel-wise methods to achieve an improved characterization of land cover
targets, i.e., by processing each HSI pixel as an independent entity whose content is considered to
be a pure spectral signature, related to only one surface material. These kind of methods are known
as spectral-based approaches [41], where the HSI X is considered to be a collection of n1 × n2 pixel
vectors of nbands without a specific spatial arrangement, so that the classification process only takes
into account the information comprised by individual pixels xi.

In the literature, several unsupervised and supervised pixel-wise classifiers have demonstrated
good performance in terms of classification accuracy. On the one hand, unsupervised methods do not
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require labeled data, performing the classification based on the inherent similarities present in the
data structure, which is usually measured as the distance between the features of each sample xi and
separating the data into groups accordingly, assigning a label to each group (clustering). The most
representative unsupervised methods are the k-means [21], k-nearest neighborhood (KNN) [42],
and iterative self-organizing data analysis technique algorithm (ISODATA) [43–45]. In turn, supervised
methods generally obtain a better performance than their unsupervised counterparts by learning
a function that models the relationship between the data and the output categories Y = f(X), using
a training set made up of labeled samples Dtrain = {xi, yi}

nlabel
i=1 . Popular supervised methods are

decision trees (DTs) and random forests (RFs), which have been successfully used in the past, providing
good and accurate land cover maps [46–48]; the multinomial logistic regression (MLR) [49] and support
vector machines (SVMs) [50,51], which are able to perform accurately in the presence of limited training
sets, where the first one allows to easily model the posterior probability distributions of the data
while the second one produces highly accurate results, even with large numbers of classes in high
dimensional feature spaces; bayesian estimation models [52], which provide a flexible framework
to represent the probabilistic features of HSI data and efficiently exploit the prior knowledge of
it; kernel-based methods [53,54], which present a great simplicity in data modeling and effective
performance over traditional learning techniques (although one-single kernel approaches tend to
overfit when dealing with high dimensional data coupled sparsity of training samples [55]); extreme
learning machines (ELMs) [56], and artificial neural networks (ANNs) [26]. These methods face
challenges related by the high spectral dimensionality of HSI data and the limited availability of
training samples [54]. In fact, supervised classifiers tend to suffer the Hughes phenomenon [57–59]
when dealing with HSI data, where the obtained classification accuracy increases gradually at the
beginning as the number of spectral bands increases, but decreases dramatically when nbands exceeds
a limit, introducing the need for dimensionality reduction methods in order to reduce nbands. Some of
these methods include principal component analysis (PCA) [60,61], independent component analysis
(ICA) [62], or the maximum noise fraction (MNF) [63,64]. For instance, the SVM and MLR methods can
deal with small Dtrain sets in a robust way [65] and exhibit good performance with high-dimensional
data [66].

1.3. Deep Neural Networks for Hyperspectral Image Classification

Traditional classification methods present some limitations when compared to ANNs. In fact,
ANNs present more flexible architectures, which are able to scale much better with larger amounts
of data, exhibiting a great generalization power, without the need for prior knowledge about the
statistical distribution of the data. In this sense, deep ANN architectures [67,68] (also called deep neural
networks or DNNs) have attracted broad attention in HSI data classification due to their ability to
extract more abstract data representations from the original data in a hierarchical way. In other words,
DNNs are able to learn simple features in the first (low-level) layers and then build more complex
features at last (high-level) layers by merging the simpler ones [69]. Particularly, convolutional neural
network (CNNs) [70] have become a widely representative deep model due to their feature detection
power, which drastically improves the classification and detection of objects. As result, the CNN
is able to reach good generalization in HSI classification [71–73]. In particular, its kernels-based
architecture allows to naturally integrate the spectral and spatial information contained in the HSI
in a simple and natural way, taking into account not only the spectral signature of each pixel xi but
also the spectral information of a d× d neighborhood (also called patch) that surrounds it, denoted by
pi ∈ Rd×d×nbands . Spectral-spatial classification techniques are a tool of choice because it is well-known
that the simultaneous consideration of spectral and spatial-contextual information can signnificantly
improve the performance of HSI classifiers [40], reinforcing the learning process of the classifier by
adding more information provided by adjacent pixels (that commonly belong to the same class).
This additional information helps to reduce label uncertainty, reducing the intra-class variance present
into HSI pixels.
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1.4. Convolutional Neural Networks and Their Limitations in Hyperspectral Image Classification

The aforementioned characteristics have placed the CNN model as the current state-of-the-art
in Deep Learning (DL) frameworks for HSI classification, with an increasing interest in the task of
improvements to the network architecture in order to adapt the model to complex and large datasets
such as HSIs. This is because the pixels in a HSI often present intraclass variability and interclass
similarity, which introduces high correlation between adjacent bands and also high data redundancy
due to the high number of spectral bands nbands. The tendency of Deep Learning (DL) models is
to develop very deep network architectures, increasing the number of layers under the assumption
that deeper architectures are more expressive than shallow ones, allowing for the extraction of more
complex and high-level relationships between input data sets [74], which leads to improvements in
the model accuracy and performance [75,76].

However, deep stacks of CNN building blocks (i.e., convolutional, pooling or fully connected
layers, for instance) are hard to train [77], requiring a Dtrain with a large number of training samples
in order to correctly fine-tune all the network’s parameters with the aim of avoiding the overfitting
problem. DL-based approaches could induce to think that the deeper model is, the better performance
can be achieved. However, although deep architectures are able to produce more high-level features at
the end of the network thanks to their hierarchical structure [71,78,79], helping the classifier to perform
better decisions, the real fact is that the excessively increasing network depth will result in several
negative effects [80], producing an accuracy degrading of the network. In particular supervised DNN
models such as standard CNN are very susceptible to overfit because of two main reasons: (i) the lack
of available labeled samples to train the model and (ii) the large number of parameters that must be
fine-tunned [81,82]. As result, the model is able to perform properly on training data, learning the
details and features present in these samples, but its results over the testing or held out data are quite
poorly [83], where the previous learned features are not helping into the model performance and even
can produce a negative impact on the model’s ability to generalize when new data must be processed.
This fact can get worse due to the complexity of HSI data, composed by thousand of spectral channels,
which gives rise to the curse of dimensionality [57]. Usually, techniques such as data augmenting [84],
active learning [85], or regularization methods (such as dropout [86] or L1/L2 regularization) have
been employed in order to minimize this problem. However, deep CNN models still have to face the
vanishing gradient problem, which arises from the backpropagation mechanism used for training
an ANN or DNN. In this sense, it must be taken into account that training is composed by two main
steps:

1. The forward pass, where data is passed through the network until it reaches the final layer, whose
output is used to calculate an optimization or cost function (normally the difference between all
the desired outputs yi ∈ Y and the obtained ones y′i ∈ Y′, calculated as the cross-entropy of the
data φc = −∑i y′i log2 yi) —normally optimized by a stochastic gradient descent method.

2. The backward pass, where the obtained gradient signal must be backpropagated through the
network in order to ensure that the model’s parameters are properly updated. However, this
gradient fades slightly as it passes through each layer of the CNN, which in very deep networks
produces its practical disappearance or vanishing. As result, the accuracy of the deep CNNs is
saturated and degrades rapidly. To avoid this problem, models implement their optimizer with
a really small learning rate, making the training more reliable but forcing the gradient to perform
many small steps until convergence.

Several solutions have been proposed in the literature with the aim of avoiding the vanishing
gradient problem. These solutions can be categorized into four main tendencies: (i) developing
new and better initialization strategies [77,87–89], (ii) modifying the network’s non-linear activation
function [90,91], (iii) developing better optimizers [92–94], and (iv) changing the network topology.
In this last category, several efforts have been recently made in order to increase the depth of the CNN
architecture. For instance, Lin et al. [95] present a network in Network (NIN) architecture, where
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multilayer perceptrons (MLPs) are inserted between convolutional layers. In fact, the architecture
of NIN-based MLPs can be understood as a set of additional 1× 1 convolutional layers followed
by an activation function. This approach has inspired the work in Szegedy et al. [96], where the
inception architecture is presented as a stack of inception modules, being each one composed by
n-parallel streams (which in turn are composed by several layers) whose outputs are merged by
concatenation [97]. On the other hand, some works focuse on increasing the network’s depth by
creating short paths from low-level layers to high-level layers. In this sense, we can highlight the
residual neural networks (ResNets) [79,98] which are composed by residual units [99] as groups
of several CNN layers and whose inputs are connected to their outputs in order to reformulate
the layers as learning residual functions where identity mappings help to avoid the degradation
problem and promotes gradient propagation. The hourglass CNN architecture [100,101] follows
a similar approach, making extensive use of residual modules. In this case, each hourglass module
presents an encoder-decoder architecture, where the encoder’s blocks are connected to their decoder’s
counterparts via skip connections, maintaining the overall hourglass shape. Other deep models with
connections between their layers are the ResNet in ResNet [102], the FractalNet [103], and the highway
networks [74,104,105]. Also, for HSI classification, we highlight the deep feature fusion network (DFFN)
presented by Song et al. [80], which combines the fusion of multiple-layer features with the use of
residual blocks, combining additional levels of information which reduces the “distance” between each
layer and the final classifier while enhancing, at the same time, the final performance without sacrificing
layers of depth. Another interesting work is presented by Mou et al. [106], which propose a fully
Conv-Deconv network with residual blocks and shortcut connections between the convolutional and
deconvolutional network branches for unsupervised spectral-spatial feature learning of hyperspectral
data. Lee and Kwon [107] also suggest the fusion of features from different levels, developing the
deep contextual CNN (DC-CNN), a full CNN (FCN) with 9 convolutional layers that combines,
after applying an inception module, feature maps from different layers to form a joint feature map
used as input to the subsequent layers. This DC-CNN model was extended by Lee and Kwon [108],
increasing the richness and diversity of the extracted information using a multi-scale filter bank at
the initial stage of the network. Finally, Zhang et al. [109] propose the diverse region-based CNN
(DR-CNN) to encode semantic context-aware representation of hyperspectral scenes by implementing
an architecture of several CNN branches or “multi-scale summation” modules which combine local
fine details and high-level structure information by implementing two cross-layer aggregation through
shortcut connections between the top and deep layers.

1.5. Contributions of This Work

Inspired by [110], this paper proposes a new deep&dense CNN model architecture for
spectral-spatial classification of HSIs. Following the structure of a production line, each different
convolutional layer of the proposed model extracts an output volume composed by several
feature maps. These volumes represents the original input HSI data at different abstraction levels.
The proposed architecture presents some important advantages for HSI classification:

• It exploits the rich and diverse amount of information contained in HSI data, integrating the
spectral and the spatial-contextual information in the classification process by analyzing, for each
sample, its full spectrum and surrounding neighborhood.

• It improves the network generalization while avoiding the vanishing of the model gradient.
• It combines both low-level and high-level features in the classification process. This is done by

concatenating the output volume of each convolutional layer c(i) with the corresponding inputs
of the subsequent high-level layers i + 1, i + 2, · · · , i + L.

• It can perform properly in the presence of limited training samples, as will be shown in our
experimental assessment.
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The remainder of the paper is organized as follows. Section 2 describes the proposed method.
Section 3 validates the newly proposed deep&dense model by drawing comparisons with other
state-of-the-art HSI classification approaches over four well-known HSI datasets. Finally, Section 4
concludes the paper with some remarks and hints at plausible future research lines.

2. Methodology

2.1. Classification of Hyperspectral Images Using Traditional Neural Networks

HSI data cubes X ∈ Rn1×n2×nbands have been traditionally processed and analyzed as a collection
of n1 × n2 pixel vectors, being each one xi ∈ Rnbands an array of nbands spectral values measured at
different wavelengths. In this sense, standard ANNs (such as MLPs) process HSIs in pixel-by-pixel
fashion, so that each pixel xi is passed through their computational units (neurons or nodes), organized
as fully connected layers, from input to output, passing through the hidden ones [111]. Each neuron
obtains the corresponding representation of the original input HSI vector by applying a dot product
(·) between the connection weights of the previous and current layers (when the current layer is not
the input one) and its input data vector as follows:

o(l)k =
N(l−1)−1

∑
j=0

(
w(l)

j,k · x
(l)
i,j

)
+ b(l) (1)

where o(l)k is the output value of the k-th neuron in the l-th layer, N(l−1) is the number of neurons in

the previous l − 1 layer, w(l)
j,k is the weight of matrix W(l) that connects the k-th neuron in layer l with

the previous j-th neuron in layer l − 1, b(l) is the bias of layer l, and x(l)i,j is the incoming data provided

by neurons in l − 1 (i.e., x(l) = o(l−1)). This output is passed through a non-linear activation function
o(l)k = f(o(l)k ), implemented by the sigmoid, hyperbolic tangent or the rectified linear unit (ReLU) [112].
As we can observe from Equation (1), a standard ANN with L fully connected layers needs to learn
∑L−1

l=1 N(l) · N(l+1) different and independent weights, which in practice is extremely inefficient in deep
architectures for HSI classification, due the large number of parameters that must be fine-tuned.

2.2. Classification of Hyperspectral Images Using Convolutional Neural Networks

The CNN architecture resorts to local-connected blocks (also called D-dimensional blocks, with
D = {1, 2, 3}, or operations layers), applying kernels with parameter sharing over small regions of the
input data, which allows the network to look for specific features at any location in the HSI image while
drastically reducing the number of parameters to train. In this sense, CNN offers an efficient model,
which can be easily adapted to naturally integrate the spectral and spatial-contextual information in
HSI classification. This is done by considering a neighborhood region around each xi instead of only
the spectral information contained in xi. In this sense, a spatial window or patch pi ∈ Rd×d×nbands

needs to be extracted for each xi, usually setting d to an odd value in order to leave each xi as the
central pixel. Also, for those pixels that belong to the image borders, a mirroring technique is applied
in order to replicate the spatial information as described in Paoletti et al. [71]. This design decision
implies that the CNN takes each spatial patch pi as 3-dimensional input data, imposing a 3D structure
throughout the entire network (3D-CNN).

Conventional CNNs are composed by several blocks, stacked one after the other, where the output
volume of the (l − 1)-th layer O(l−1) (composed by several feature maps) is used as the input volume
of the next l-th layer (O(l−1) = X(l)). The final objective of this stack of layers is to perform the feature
extraction process. In this way, the l-th convolutional layer adapts Equation (1) in order to apply its
K(l) kernels over small windows of X(l), defined by its receptive field k(l) × k(l)×q(l) , as follows:

O(l) = W(l) ∗ X(l) + b(l), (2)
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being W(l) and b(l) the matrix of weights and biases vector of the l-th layer, and (∗) the convolutional
operator. As a result of Equation (2), an output volume O(l) is generated as a collection of K(l)

feature maps, where the element (i, j, t) of the z-th feature map can be calculated by an element-wise
multiplication of the (i, j, t) input feature and the corresponding weight as follows:

o(l)z
i,j,t = (X(l) ∗W(l) + b(l))i,j,t =

k(l)−1

∑̂
i=0

k(l)−1

∑̂
j=0

q(l)−1

∑̂
t=0

x(l)
(i·s+î),(j·s+ ĵ),(t·s+t̂)

· w(l)
î, ĵ,t̂

+ b(l) (3)

where w(l)
î, ĵ,t̂

is the (î, ĵ, t̂) weight, which makes the dot-product between the weight kernel W(l) and the

input feature element x(l)
(i·s+î)

that it overlaps, b(l) is the bias of the z-th kernel and s is the kernel stride,
which defines how the connected regions are overlapped. Then, as in standard ANNs, the ouput
volume O(l) is sent to a non-linear layer that computes the activation function H(·) of the CNN
model, usually the ReLU, so the output volume will be O(l) = H

(
O(l)

)
= max

(
0, O(l)

)
. Also,

a sample-based discretization step can be added, sending the obtained O(l) to a down-sampling or
pooling layer, which is usually employed to perform a spatial reduction, without affecting the volume’s
depth (K(l)) by applying an average, sum or max pooling operation. This allows for a simplification in
the parameters of the network, reducing the chances of overfitting while, at the same time, providing
translation invariance to the model. Finally, the resulting output volume is considered to be the new
input volume of the next convolutional layer O(l) = X(l+1). This stack of convolution-reduction
normally ends with an MLP made up of several fully connected layers, whose goal is to obtain the final
representation Y′ of the original input data X. The final output is used to calculate an empirical cost
function φc, which in fact obtains the error incurred by the network. Then, in the backward pass, this
error φc is propagated through all the layers of the CNN in order to compute how much a change in the
network’s parameters would affect the cost function. Particularly, the backward phase tries to compute
how each weight w(l)

i,j,t—derived from a weight kernel W(l) being l = 1, 2, · · · , L, the number of
layers)—affects φc:

∂φc

∂wi,j,t
=

n(l)
1 −k(l)

∑̂
i=0

n(l)
2 −k(l)

∑̂
j=0

K(l)−q(l)

∑̂
t=0

∂φc

∂o(l)
î, ĵ,t̂

·
∂o(l)

î, ĵ,t̂

∂w(l)
i,j,t

, (4)

where o(l)
î, ĵ,t̂

is obtained by Equation (3), being n(l)
1 × n(l)

2 × K(l) the spatial-spectral dimensions of the

l-th layer output volume, O(l) ∈ Rn(l)
1 ×n(l)

2 ×K(l)
. From Equation (4), it is clear that the weights of the

CNN are proportionally updated to ∂φc
∂wi,j,t

, i.e., the partial derivative of the cost function φc with respect
to the current weight wi,j,t, in each training iteration [113]. However, error signals fade away during
the backpropagation phase as they go deeper inside the CNN model. If the gradient is very close to
zero (and usually, traditional activation functions work in the range [0, 1]), this can prevent the weight
to change its value, stopping the learning process.

2.3. Proposed Deep&Dense Architecture for Hyperspectral Image Classification

To avoid the vanishing gradient problem described in the previous subsection, the proposed
deep&dense architecture employs several inter-layer connections to reinforce the learning process.
In this sense, the architecture of the proposed model can be regarded as a hierarchy of layers. From
the upper levels to the lower levels, the architecture is organized as a collection of M dense blocks,
where the m-th block, D(m), is composed by N densely connected inner blocks, i.e., the input of the
n-th inner block allocated into the m-th dense block, B(m)

n , is composed by the outputs of all the
preceding layers 1, 2, · · · , n− 1, while its output is sent as an input to the following inner blocks n + 1,
n + 2, · · · , N. The main idea behind this model is that, if each inner block B(m)

n is connected directly
(in feed-forward fashion) to every other inner block in a dense block D(m), the network model will be
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easier to train because each D(m) will take its decisions by making use of more advanced and elaborate
features, reaching a more accurate performance [114]. While standard CNN models have only L
connections (which corresponds to the number of layers), our model employs N·(N+1)

2 connections per
D(m). Such increasing number of connections does not imply a growth of model parameters that must
be fine-tuned. Quite opposite, these connections allow to reduce their number due to the amount of
redundant information, which encourages a reuse of the output volumes (i.e., using more than once
those feature maps obtained by each inner block), which reinforces the feature propagation along the
network. The reuse of redundant information at different blocks also allows to reduce the overfitting
problem, while the connections between the inner blocks have a regularizing effect on the network [110],
which tends to avoid also the vanishing gradient effect and the performance degradation.

This idea is inspired by the architecture of the ResNet. Following the previous notation and
looking at standard CNN, we can observe that the output volume of the l-th convolutional layer
(including the non-linear activation function) can be obtained as:

O(l) = H
(

W(l) ∗ X(l) + b(l)
)

(5)

As the output volume of the l-th layer in any CNN will feed the next layer, becoming the input
volume of the l + 1-th layer, we can change O(l) by X(l+1), so Equation (5) can be re-written and
simplified as:

X(l+1) = H
(

W(l) ∗ X(l) + b(l)
)

X(l+1) = H
(

X(l)
) (6)

From Equation (6) we can observe how the extracted features are hierarchically processed by the
successive layers that compose the classical CNN architecture. Instead of that, the ResNet combines
the output volumes of previous layers (which are in fact group of layers called residual units) with
those obtained by the top layers. In this case, Equations (5) and (6) can be expressed as:

O(l) = H
(

W(l) ∗ X(l) + b(l)
)
+ X(l)

changing O(l) by X(l+1) and simplifying: X(l+1) = H
(

X(l)
)
+ X(l)

which also can be expressed as: X(l+1) = O(l) + O(l−1)

(7)

where O(l) = H
(

X(l)
)

contains the convolutions and activations of those layers that compose the l-th

residual block, being indeed O(l) and X(l) the output and input volumes of the entire block. At the
end, Equation (7) implies the reuse of those features obtained by previous residual blocks, which also
allows to transmit the gradient of Equation (4) to previous and earlier blocks of layers in a simpler and
easier way. Our proposal follows the same simple idea. However, instead of combining the outputs of
previous inner blocks by additive identity transformations as the ResNet does, our model employs the
concatenation (_) of all the previous feature maps, so each dense block D(m) can be interpreted as
an iterative concatenation of those feature maps extracted by its inner blocks. In this sense, the input
of each B(m)

n is calculated as:

O(n) = H
(

W(n) ∗ X(n) + b(n)
)
_H

(
W(n−1) ∗ X(n−1) + b(n−1)

)
_ · · ·_H

(
W(1) ∗ X(1) + b(1)

)
changing O(n) by X(n+1) and simplifying: X(n+1) = H

(
X(n)

)
_H

(
X(n−1)

)
_ · · ·_H

(
X(1)

)
which also can be expressed as: X(n+1) = O(n)_O(n−1)_ · · ·_ O(1)

(8)
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being in this case X(n) and O(n) the input and output volumes of each inner block B(m)
n , while H(·)

contains all the convolutions and activation operations of every layer that compose the inner block, as
we can observe in Figure 1. From Equation (8) we can infer that the internal connections of each dense
block strongly encourage the reuse of all the features obtained by every inner block. As a result, all
layers in the architecture receive a direct supervision signal [114].

Figure 1. Internal structure of the inner blocks employed by the proposed deep&dense model.

Each block, denoted by B(m)
n , is composed by two packs of batch normalization, non-linearity,

convolution and dropout layers.

Each inner block B(m)
n extract its feature maps using several layers with traditional layer-to-layer

connections that perform different operations. Speficically, each B(m)
n is composed by two packs,

where each one implements its corresponding convolution preceded by one normalization and
one non-linearity layer, following the standard composition of those building blocks present in
He et al. [79], as we can observe in Figure 1. In the following, we will describe the main idea behind
these layers. Each pack begins with a normalization layer, which normalizes the input data by scaling and
adjusting previous activations into the non-linear activation function’s range, as shown by Equation (9):

X(n) =
X(n) −mean

[
X(n)

]
√

Var
[
X(n)

]
+ ε

· γ + β (9)

where γ and β are learnable parameter vectors of a linear transformation that scales and shifts the
input data, and ε is a parameter for numerical stability. The goal of Equation (9) is to avoid the
internal covariance shift [115], where the data distribution in each network layer changes training,
allowing a more independent learning process in each layer. Then, the normalized data are sent to
the non-linearity layer, which performs a ReLU function over the input data and feeds a subsequent
convolutional layer, which applies Equation (2) in order to obtain its output volume. In the first
bottleneck K(n)

1 , identity kernels of size 1× 1× q(n) are used [95]. Their goal is to combine the data
by aplying the same operation to the full input volume, changing the depth of the output volume
without affecting the spatial dimension [96]. In the second bottleneck K(n)

2 , kernels of size 3× 3× q(n)

have been implemented in order to extract spatial-spectral features from the data. Precisely, the
feature maps obtained by the second pack’s convolutional layer, are the final inner block’s output
volume, O(n), which is concatenated to the outputs of the previous layers to form the next input
volume, following Equation (8), i.e., X(n+1) = O(n)_O(n−1)_ · · ·_ O(1). To perform the actual data
concatenation, maintaining the spatial dimensions after the second convolutional layer becomes crucial,
so zero-padding has been added before the convolution. Another interesting aspect of the inner blocks
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is the number of filters K(n)
1 and K(n)

2 in their convolutional layers, which are controlled by a fixed

growth rate g. In fact, for any inner block B(m)
n , its filters are obtained as K(n)

1 = g · α and K(n)
2 = g,

being α a constant in order to obtain K(n)
1 > K(n)

2 . Finally, after each convolutional layer of B(m)
n ,

a dropout layer [86] has been added for regularization purposes. The layer deactivates a percentage of
the activations in order to improve the network generalization, preventing overfitting.

In the same way that we can stack inner blocks in a dense block, the dense blocks can also be
stacked in the global CNN architecture. To achieve this, intermediate or transition layers T(m) are added
between each pair of D(m−1) and D(m+1) to connect the feature maps obtained by D(m−1) with the
inner blocks of D(m+1). Also, transition layers are composed by several operations. In particular, they
perform a convolution implemented by K(m) filters of 1× 1× q(m) size (preceded by a normalization
and non-linearity layers and followed by a dropout layer) and a spatial downsampling, which
implements an average pooling. The goal of these layers is to reduce in half the spatial and depth

dimensions of the final output volume of D(m−1), O(N) ∈ Rn(N)
1 ×n(N)

2 ×K(N)∗
, being n(N)

1 and n(N)
2 the

resulting height and width of the output volume and K(N)∗ the depth, obtained as the sum of the
number of filters contained in the second convolutional layer of the N inner blocks that compose
the dense block, K(N)∗ = K(z) ∑N

n=1 K(n)
2 (with K(z) being the depth of the dense block’s input data).

The resulting volume is an n(N)
1
2 ×

n(N)
2
2 × K(m) array, with K(m) = K(N)∗

2 .
In summary, the proposed topology is composed by two main parts: (i) a feature extractor,

which implements a first convolutional layer that transforms and prepares the input HSI patches into
feature maps and is followed by two dense blocks, which are connected by a transitional layer, and
(ii) a classifier, composed by a first group of layers that normalize and reduce the obtained feature
maps, and a fully connected layer that performs a softmax operation. The proposed topology is
summarized in graphical form in Figure 2, while Table 1 provides a detail of the parameters of the
network. The cost function φ has been minimized by using the Adam optimizer [116], with 100 epochs
and using a batch size of 100 samples. The learning rate has been adapted to the different considered
HSI datasets, described in the following section.

Table 1. Parameters used in the different layers of the proposed network topology. Kernels are indicated
as K× k× k× q, while strides are represented by s. The growth rate has been fixed to g = 32, with α = 4.

Input Convolutional Layer

C(0) kernels = 16× 3× 3× nbands, s = 1

First dense block

D(1) kernels =
[
(g · α)× 1× 1× (16 + (n− 1) · g)

g× 3× 3× (g · α)

]
· 6 with n = 1, 2, · · · , 6, s = 1, ReLU, dropout = 10%

Transition layer

T(2) kernels = K(1)∗

2 × 1× 1× K(1)∗, with K(1)∗ = 16 + 6 · g, s = 1, ReLU, dropout = 10%
Average Pooling 2× 2, s = 2

Second dense block

D(3) kernels =

[
(g · α)× 1× 1× (K(1)∗

2 + (n− 1) · g)
g× 3× 3× (g · α)

]
· 16 with n = 1, 2, · · · 16, s = 1, ReLU, dropout = 10%

Classification layers

ReLU, Global Average Pooling with output 1× 1× K(3)∗, with K(3)∗ = K(1)∗

2 + 16 · g
Fully connected of nclasses layers, with softmax
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Figure 2. Architecture of the proposed deep&dense CNN architecture for spectral-spatial HSI data
classification. The input patch pi ∈ Rd×d×nbands is passed through a first convolutional layer C(0) that
transforms the data into an output volume of K(0) feature maps. This O(0) feeds the first dense block,
D(1), which is composed by 6 inner blocks (see Figure 1). The obtained output volume is reduced
spectrally and spatially by the transition layers T(2), and then it feeds the second dense block D(3),
composed by 16 inner blocks. The final output is normalized and reduced with global average pooling
(GAP) [95] after applying a ReLU that calculates an average value for each feature map, obtaining
a final 1D-tensor that feeds the final fully connected layer which performs the final classification.

3. Experimental Results and Discussion

3.1. Experimental Settings

The conducted experiments have been carried out in a hardware environment composed by a 6th
Generation Intel R© CoreTMi7-6700K processor, with 8 M of Cache and up to 4.20 GHz (4 cores/8 way
multi-task processing), 40 GB of DDR4 RAM with a serial speed of 2400 MHz, a graphical processing
unit (GPU) NVIDIA GeForce GTX 1080 with 8 GB GDDR5X of video memory and 10Gbps of memory
frequency, a Toshiba DT01ACA HDD with 7200RPM and 2 TB of storage, and an ASUS Z170
pro-gaming motherboard. The software environment is composed by Ubuntu 16.04.4 x64 as operating
system, CUDA 9 and cuDNN 5.1.5, Tensorflow [117] and Python 2.7 as programming language.

3.2. Hyperspectral Datasets

To demonstrate the performance of the proposed deep&dense model for HSI classification,
four well-known datasets have been used: AVIRIS Indian Pines (IP), ROSIS University of Pavia (UP),
AVIRIS Salinas Valley (SV) and AVIRIS Kennedy Space Center (KSC). Table 2 provides a summary
of these datasets, indicating the number of labeled samples per class and the available ground-
truth information.
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Table 2. Number of samples of the Indian Pines (IP), University of Pavia (UP), Salinas Valley (SV) and Kennedy Space Center (KSC) hyperspectral datasets.

INDIAN PINES (IP) UNIVERSITY OF PAVIA (UP) SALINAS VALLETY (SV) KENNEDY SPACE CENTER (KSC)

Color Land-cover type Samples Color Land-cover type Samples Color Land-cover type Samples Color Land-cover type Samples

Background 10,776 Background 164,624 Background 56,975 Background 309,157
Alfalfa 46 Asphalt 6631 Brocoli-green-weeds-1 2009 Scrub 761

Corn-notill 1428 Meadows 18,649 Brocoli-green-weeds-2 3726 Willow-swamp 243
Corn-min 830 Gravel 2099 Fallow 1976 CP-hammock 256

Corn 237 Trees 3064 Fallow-rough-plow 1394 Slash-pine 252
Grass/Pasture 483 Painted metal sheets 1345 Fallow-smooth 2678 Oak/Broadleaf 161

Grass/Trees 730 Bare Soil 5029 Stubble 3959 Hardwood 229
Grass/pasture-mowed 28 Bitumen 1330 Celery 3579 Swap 105

Hay-windrowed 478 Self-Blocking Bricks 3682 Grapes-untrained 11,271 Graminoid-marsh 431
Oats 20 Shadows 947 Soil-vinyard-develop 6203 Spartina-marsh 520

Soybeans-notill 972 Corn-senesced-green-weeds 3278 Cattail-marsh 404
Soybeans-min 2455 Lettuce-romaine-4wk 1068 Salt-marsh 419
Soybean-clean 593 Lettuce-romaine-5wk 1927 Mud-flats 503

Wheat 205 Lettuce-romaine-6wk 916 Water 927
Woods 1265 Lettuce-romaine-7wk 1070

Bldg-Grass-Tree-Drives 386 Vinyard-untrained 7268
Stone-steel towers 93 Vinyard-vertical-trellis 1807

Total samples 21,025 Total samples 207,400 Total samples 111,104 Total samples 314,368
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• Indian Pines (IP): It was gathered by the AVIRIS sensor [2] in Northwestern Indiana
(United States), capturing a set of agricultural fields. This HSI scene contains 145× 145 pixels
of 224 spectral bands in the wavelength range 0.4–2.45 µm, with spectral and spatial resolution
of 0.01 µm and 20 m per pixel (mpp). For experimental purposes, 200 spectral bands have been
selected, removing 4 and 20 spectral bands due to noise and water absorption, respectively.
About half of the data (10,249 pixels from a total of 21,025) are labeled into 16 different classes.

• University of Pavia (UP): It was captured by the ROSIS sensor [3] University of Pavia campus,
located in northern Italy. In this case, the HSI dataset comprises 610× 340 pixels with 103 spectral
bands, after discarding certain noisy bands. The remaining bands cover the range 0.43–0.86 µm,
with spatial resolution of 1.3 mpp. The available ground-truth information comprises about 20%
of the pixels (42,776 of 207,400), labeled into 9 different classes.

• Salinas Valley (SV): It was acquired by the AVIRIS sensor over an agricultural area in the
Salinas Valley, California (United States). The HSI dataset is composed by 512× 217 pixels with
204 spectral bands after discarding of 20 water absorption bands, i.e., [108–112], [154–167] and
224. The spatial resolution is 3.7 mpp, while the ground-truth is composed by 16 different classes
including vegetables, bare soils, and vineyard fields.

• Kennedy Space Center (KSC): It was also collected by the AVIRIS instrument over the Kennedy
Space Center in Florida (United States). It is composed by 512× 614 pixels with 176 spectral
bands after discarding noisy bands. The remaining bands cover the spectral range 0.4–2.5 µm,
with spatial resolution of 20 mpp. The dataset contains a total of 5122 ground-truth pixels labeled
in 13 different classes.

3.3. Results and Discussion

Several experiments have been carried out with the goal of evaluating the performance of the
proposed method. At this point, it is important to indicate the adopted learning rates, which have
been set to 0.001 for the IP and KSC data sets, and to 0.0008 for the UP and SV data sets, based on their
spectral characteristics.

3.3.1. Experiment 1: Comparison between the Proposed Model and Standard HSI Classifiers

Our first experiment conducts an experimental comparison between the proposed method
and a total of five different and well-known classification methods available in the HSI literature.
As Tables 3–5 indicate, we have compared the proposal with three different kinds of classifiers: (i) three
spectral-based classifiers, i.e., the SVM with radial basis function kernel (SVM-RBF) [118], the RF,
and the MLP; (ii) a spatial-based classifier, the 2D-CNN), for which each patch pi ∈ Rd×d is reduced to
a single component using PCA; and (iii) a spectral-spatial classifier, the 3D-CNN [71], which receives
the complete patch pi ∈ Rd×d×nbands , just like the proposed method.

Tables 3–5 report the obtained classification accuracies obtained for the IP, UP and SV datasets,
calculated as the average of 5 Monte Carlo runs (indicating also the standard deviation values)
and using 15% of the available labeled data (randomly selected per class) to carry out the training
phase of the different supervised classifiers. For spatial and spectral-spatial methods, patches of
11× 11 pixels have been extracted from the original data in order to feed the classifiers. Three widely
used quantitative metrics have been used: overall accuracy (OA), average accuracy (AA), and Kappa
coefficient. As we can observe, the proposed method obtains high accuracies in all the considered
HSI scenes. In general, spectral-based classifiers (SVM, RF and MLP) obtain the lowest results in
terms of OA, being the SVM the one with best values (86.24%, 95.20% and 94.15% with IP, UP and SV,
respectively). This is due to its ability to handle large data sets, while RF results in the lowest accuracies
(78.55%, 92.03% and 90.76%). Regarding the results obtained by the 2D-CNN and the 3D-CNN, it
can be observed on the one hand that the spatial classifier is not able to outperform the SVM and
MLP, which indicates that spatial information (i.e., larger d× d patches) are needed to improve the
classification accuracy. The combination of spatial information (given by the pixel’s neighborhood)
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and spectral signatures can improve the classification, as indicated by the results obtained by the
3D-CNN model. In this sense, the use of both sources of information (spatial and spectral) plays
a fundamental role, and the architecture of the proposed model helps to natyrally integrate these
sources of information.

Table 3. Classification results for the Indian Pines (IP) dataset using 15% of the labeled data for training
and 11× 11 input spatial patch size.

Class SVM RF MLP 2D-CNN 3D-CNN Proposed

1 68.04 ± 6.95 33.04 ± 7.45 62.39 ± 13.96 65.87 ± 10.34 89.13 ± 7.28 93.91 ± 4.64
2 83.55 ± 1.31 66.68 ± 1.67 83.84 ± 2.46 81.04 ± 3.28 98.33 ± 0.71 99.38 ± 0.44
3 73.82 ± 1.44 56.20 ± 2.41 76.37 ± 5.03 79.07 ± 6.75 98.05 ± 1.40 99.4 ± 0.31
4 71.98 ± 3.86 41.10 ± 2.50 68.35 ± 6.12 82.70 ± 8.34 98.23 ± 0.62 99.49 ± 0.62
5 94.29 ± 0.97 87.12 ± 1.73 90.87 ± 2.09 69.25 ± 10.58 97.56 ± 2.84 98.84 ± 0.59
6 97.32 ± 0.97 95.32 ± 1.79 96.95 ± 1.10 88.29 ± 5.51 98.93 ± 1.14 99.84 ± 0.16
7 88.21 ± 5.06 32.86 ± 12.66 78.21 ± 10.28 67.86 ± 25.65 83.57 ± 19.51 99.29 ± 1.43
8 98.16 ± 0.75 98.49 ± 0.81 98.08 ± 0.90 96.26 ± 1.60 99.41 ± 0.61 99.96 ± 0.08
9 52.00 ± 8.43 13.00 ± 3.32 72.00 ± 8.12 67.00 ± 27.68 65.00 ± 21.68 100.0 ± 0.0

10 79.49 ± 2.76 69.95 ± 4.31 82.17 ± 5.41 68.82 ± 9.80 97.22 ± 0.31 99.36 ± 0.35
11 86.83 ± 1.05 90.66 ± 1.18 83.66 ± 2.85 86.55 ± 3.14 98.12 ± 2.16 99.47 ± 0.29
12 83.41 ± 2.26 55.43 ± 4.80 75.89 ± 3.33 73.41 ± 6.07 93.09 ± 5.85 99.33 ± 0.44
13 97.41 ± 2.99 93.32 ± 2.04 98.68 ± 0.54 94.54 ± 4.80 99.80 ± 0.39 100.0 ± 0.0
14 96.14 ± 0.97 96.45 ± 0.76 96.17 ± 1.02 96.24 ± 2.33 99.43 ± 0.33 99.76 ± 0.34
15 67.31 ± 3.05 50.44 ± 2.44 67.80 ± 3.56 85.39 ± 7.71 96.58 ± 2.81 99.17 ± 0.72
16 92.47 ± 4.14 85.27 ± 3.37 88.71 ± 2.77 92.90 ± 3.97 93.12 ± 3.82 98.49 ± 1.1

OA (%) 86.24 ± 0.38 78.55 ± 0.68 85.27 ± 0.47 83.59 ± 0.88 97.81 ± 0.56 99.46 ± 0.07
AA (%) 83.15 ± 1.10 66.58 ± 0.93 82.51 ± 1.04 80.95 ± 1.55 94.10 ± 2.00 99.11 ± 0.26
Kappa 84.27 ± 0.45 75.20 ± 0.81 83.20 ± 0.53 81.23 ± 1.04 97.50 ± 0.64 99.38 ± 0.08

Time(s) 208.98 ± 1.70 1301.68 ± 45.94 7.31 ± 0.15 56.45 ± 0.19 39.62 ± 0.67 160.60 ± 1.68

If we focus on the results obtained for the IP dataset (Table 3), the proposed method is able
to outperform the spectral-based methods SVM, RF and MLP (in terms of OA) in 13.22, 20.91 and
14.19 percentual points, respectively. The proposed method also outperforms the spatial and the
spectral-spatial classifiers 2D-CNN and 3D-CNN (in terms of OA) in 15.87 and 1.65 percentual points,
respectively. An interesting issue is the classification of the class Oats, with only 20 labeled samples.
The limited number of samples and their complexity in this case negatively affects the considered
classifiers, being the MLP the only one able to achieve 70% accuracy. In this sense, the internal
connections of the proposed network become crucial to the generalization power of the network,
contributing to the final accuracy by adding more features to each block of the network. This greatly
helps to characterize the data. Also, these additional connections allow to reduce the standard deviation
values, as it can observed in the first class (Alfalfa), which is very hard to classify due to its spectral
variability. This demonstrates that the proposed architecture is quite robust and stable, suggesting the
potential of our method to deal with the inherent complexity of HSI datasets. Figure 3 shows some of
the obtained classification maps for the IP scene. Spectral-based methods present the characteristic
“salt and pepper” noise in the obtained classifications, which is reduced by the 2D-CNN (that still
exhibits misclassifications within large regions). The classification maps obtained by the 3D-CNN and
the proposed method significantly reduce misclassifications, with the proposed method providing
a slightly more similar map with regards to the available ground-truth.
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(a) RGB (b) GT (c) SVM (86.24%) (d) RF (78.55%)

(e) MLP (85.27%) (f) 2D-CNN (83.59%) (g) 3D-CNN (97.81%) (h) Proposed (99.46%)

Figure 3. Classification maps for the Indian Pines (IP) dataset. The first image (a) represents a simulated
RGB composition of the scene. The second one (b) contains the ground-truth classification map. Finally,
images from (c–h) provide some of the classification maps corresponding to Table 3.

Table 4 reports the results obtained for the UP data set. In this case, the proposed method is able
to outperform spectral-based methods SVM, RF and MLP (in 4.76, 7.93 and 5.14 percentual points,
respectively). The proposed method also reaches an OA that is 5.19 percentual points higher than the
2D-CNN, and 0.68 percentual points higher than the 3D-CNN. We can also observe that certain classes
such as the third and seventh (Gravel and Bitumen, respectively) are hard to classify. In the case of the
third class, the 2D-CNN and 3D-CNN try to overcome the problem using spatial information, reaching
better results than spectral-based methods. The proposed method is able to reach the best accuracies
due to its communication channels between the layers, which results in a variety of information that
helps obtaining a higher precision. Figure 4 shows some of the obtained classification maps, where
the SVM, RF and MLP exhibit salt and pepper noise in the classification results and the 2D-CNN also
present noise, that is reduced by the 3D-CNN. The clearest map is the one provided by the proposed
method, which also exhibits better delineation of urban classes such as Bitumen.

Table 4. Classification results for the University of Pavia (UP) dataset using 15% of the labeled data for
training and 11× 11 input spatial size.

Class SVM RF MLP 2D-CNN 3D-CNN Proposed

1 95.36 ± 0.30 93.52 ± 0.45 94.17 ± 1.73 93.43 ± 2.70 99.16 ± 0.25 99.95 ± 0.06
2 98.25 ± 0.16 98.29 ± 0.18 98.06 ± 0.50 97.59 ± 0.88 99.77 ± 0.17 99.99 ± 0.02
3 82.93 ± 0.91 75.56 ± 1.86 79.27 ± 7.04 89.96 ± 3.30 96.95 ± 1.78 99.74 ± 0.35
4 95.93 ± 0.70 91.68 ± 0.63 94.61 ± 2.58 94.16 ± 3.24 98.80 ± 0.69 99.83 ± 0.12
5 99.46 ± 0.36 98.88 ± 0.49 99.63 ± 0.27 97.97 ± 2.69 99.90 ± 0.17 99.97 ± 0.06
6 91.76 ± 0.60 74.54 ± 0.97 93.60 ± 1.70 89.62 ± 4.10 99.88 ± 0.12 100.0 ± 0.0
7 88.59 ± 0.65 81.01 ± 1.74 88.53 ± 3.47 80.20 ± 4.82 96.54 ± 1.41 99.95 ± 0.06
8 90.14 ± 0.54 90.70 ± 0.75 89.59 ± 4.56 96.05 ± 1.88 98.56 ± 0.78 99.99 ± 0.01
9 99.97 ± 0.05 99.75 ± 0.26 99.63 ± 0.28 99.48 ± 0.27 99.79 ± 0.19 99.89 ± 0.16

OA (%) 95.20 ± 0.13 92.03 ± 0.21 94.82 ± 0.26 94.77 ± 0.72 99.28 ± 0.25 99.96 ± 0.03
AA (%) 93.60 ± 0.14 89.33 ± 0.33 93.01 ± 0.60 93.16 ± 1.23 98.81 ± 0.33 99.93 ± 0.07
Kappa 93.63 ± 0.17 89.30 ± 0.28 93.13 ± 0.34 93.05 ± 0.97 99.04 ± 0.32 99.94 ± 0.04

Time(s) 6084.92 ± 55.64 6188.75 ± 35.16 29.10 ± 0.92 172.29 ± 0.71 140.09 ± 1.63 544.59 ± 4.57
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(a) RGB (b) GT (c) SVM (95.20%) (d) RF (92.03%)

(e) MLP (94.82%) (f) 2D-CNN (94.77%) (g) 3D-CNN (98.54%) (h) Proposed (99.96%)

Figure 4. Classification maps for the University of Pavia (UP) dataset. The first image (a) represents a
simulated RGB composition of the scene. The second one (b) contains the ground-truth classification
map. Finally, images from (c–h) provide the classification maps corresponding to Table 4.

Table 5 shows the results obtained for the SV dataset, where the proposed method reaches an OA
that is 5.81, 9.2 and 5.99 percentual points better than SVM, RF and MLP, respectively. This superiority
is also observed in the comparison with the CNN classifiers, being the 2D-CNN 7.65 percentual points
worse than the proposed method and the 3D-CNN 2.52 percentual points worse than our method.
Again, in those classes that are hard to classify, such as the eighth or the fifteenth (Grapes-untrained and
Vinyard-untrained, respectively), the spectral classifiers exhibit sharp drops in classification accuracy.
For instance, the Vinyard-untrained class is difficult to classify using only spectral information, while
spectral-spatial classifiers such as the proposed one increase significantly the classification accuracy.
Figure 5 shows some of the obtained classification maps. The one obtained by the proposed method
exhibit almost perfect classification of the Vinyard-untrained and Grapes-untrained regions, as opposed
to the other methods that exhibit misclassified pixels (SVM, RF and MLP) and patches (2D-CNN and
3D-CNN) in the same regions.
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(a) RGB (b) GT (c) SVM (94.15%) (d) RF (90.76%)

(e) MLP (93.87%) (f) 2D-CNN (92.31%) (g) 3D-CNN (97.44%) (h) Proposed (99.96%)

Figure 5. Classification maps for The Salinas Valley (SV) dataset. The first image (a) represents
a simulated RGB composition of the scene. The second one (b) contains the ground-truth classification
map. Finally, images from (c–h) provide some of the classification maps corresponding to Table 5.
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Table 5. Classification results for the Salinas Valley (SV) dataset using 15% of the labeled data for
training and 11× 11 input spatial patch size.

Class SVM RF MLP 2D-CNN 3D-CNN Proposed

1 99.68 ± 0.21 99.61 ± 0.12 99.72 ± 0.42 87.99 ± 17.62 100.00 ± 0.00 100.00 ± 0.0
2 99.87 ± 0.12 99.86 ± 0.07 99.88 ± 0.15 99.75 ± 0.23 99.99 ± 0.01 100.00 ± 0.0
3 99.74 ± 0.11 99.22 ± 0.51 99.43 ± 0.44 81.40 ± 10.85 99.94 ± 0.07 100.00 ± 0.0
4 99.48 ± 0.18 99.28 ± 0.44 99.61 ± 0.27 95.11 ± 5.51 99.83 ± 0.23 99.97 ± 0.06
5 99.24 ± 0.31 98.46 ± 0.21 99.25 ± 0.48 64.31 ± 12.09 99.90 ± 0.09 99.97 ± 0.06
6 99.92 ± 0.06 99.80 ± 0.09 99.92 ± 0.07 99.60 ± 0.11 100.00 ± 0.00 100.00 ± 0.0
7 99.70 ± 0.15 99.58 ± 0.09 99.82 ± 0.12 98.01 ± 4.54 99.90 ± 0.15 100.00 ± 0.0
8 90.87 ± 0.39 84.41 ± 1.34 85.41 ± 8.00 91.89 ± 2.44 90.67 ± 6.83 99.92 ± 0.1
9 99.94 ± 0.02 99.07 ± 0.17 99.86 ± 0.07 98.02 ± 1.56 99.99 ± 0.01 100.00 ± 0.0
10 98.26 ± 0.27 93.40 ± 0.58 97.15 ± 0.77 97.05 ± 0.67 99.27 ± 0.43 99.99 ± 0.01
11 99.61 ± 0.34 94.79 ± 0.59 97.42 ± 2.29 94.58 ± 3.59 99.48 ± 0.73 99.91 ± 0.19
12 99.93 ± 0.05 99.08 ± 0.29 99.80 ± 0.14 92.67 ± 5.75 99.76 ± 0.38 100.00 ± 0.0
13 99.07 ± 0.72 98.23 ± 0.69 99.40 ± 0.28 98.10 ± 0.76 99.63 ± 0.58 100.00 ± 0.0
14 98.08 ± 1.00 92.81 ± 1.04 97.58 ± 0.94 95.25 ± 5.74 99.94 ± 0.11 100.00 ± 0.0
15 72.83 ± 0.78 63.32 ± 1.82 80.27 ± 8.41 87.36 ± 3.87 96.18 ± 1.52 99.94 ± 0.05
16 99.45 ± 0.25 98.17 ± 0.36 98.97 ± 0.38 93.72 ± 1.66 99.39 ± 0.42 99.75 ± 0.4

OA (%) 94.15 ± 0.10 90.76 ± 0.24 93.87 ± 0.70 92.31 ± 1.62 97.44 ± 1.28 99.96 ± 0.03
AA (%) 97.23 ± 0.11 94.94 ± 0.12 97.09 ± 0.33 92.18 ± 2.72 98.99 ± 0.40 99.97 ± 0.05
Kappa 93.48 ± 0.11 89.70 ± 0.26 93.18 ± 0.77 91.43 ± 1.81 97.15 ± 1.42 99.96 ± 0.03

Time(s) 3110.30 ± 29.20 4694.29 ± 158.39 36.42 ± 0.11 296.62 ± 3.52 260.41 ± 6.09 742.09 ± 8.22

3.3.2. Experiment 2: Sensitivity of the Proposed Model to the Number of Available Labeled Samples

In this experiment, we use different percentages of training data with the aim of providing
a relevant comparison in the performance of the proposed method and other HSI data classifiers
when few training samples are available. In this sense, we compare the classification accuracy of the
proposed approach with that obtained by spectral methods (in particular: SVM, RF, MLR, MLP and
1D-CNN), by considering different training percentages over the IP and UP datasets, following the
same configuration proposed in Experiment 1. Specifically, we use 1%, 5%, 10%, 15%, 20% randomly
selected labeled samples per class to perform the training step. Also, we compare these results
with those obtained by spatial and spectral-spatial classifiers (in particular 2D-CNN and 3D-CNN)
when 1%, 3%, 5%, 10%, 15%, 20% of training samples are used, employing spatial patches of 11× 11
for the 2D-CNN model, and spectral-spatial blocks of 11 × 11 × nbands for the 3D-CNN and the
proposed model.

The results obtained for the IP and UP datasets can be observed in Figure 6. Focusing on the IP
dataset, we can observe how the spectral classifiers are strongly affected by the number of available
labeled samples and the characteristic complexity of IP spectral signatures, being the RF and MLR
the most most strongly affected methods, and SVM the one with better results when less than 10%
labeled samples per class are used. For 10–20% training percentages, the 1D-CNN and MLP obtain
similar results to those obtained by the SVM. The 2D-CNN is negatively affected by the limited
number of training samples and also by the fact that the 11× 11 neighborhood cannot properly capture
spatial information, suggesting that IP samples are more difficult to characterize when using only small
patches of spatial information than when using the full spectral information. However, the combination
of spatial and spectral features allows the model to improve substantially its performance, even when
only 1% of the available labeled samples are used, as the results obtained by the 3D-CNN suggest. In
this sense, we can observe how the proposed method is able to reach the best accuracy for different
training percentages, being closely followed by the 3D-CNN model when 15–20% of labeled data are
used. These results demonstrate that, although the proposed model is the deepest classifier, the reuse
of different levels of features and the regularization performed by the internal connections indeed help
to mitigate the overfitting and gradient vanishing problems.
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Similar conclusions can be obtained by looking at the UP results. In this case, when comparing the
different spectral methods, we can observe that the spectral characteristics allow the 1D-CNN to reach
the best results, being closely followed by the SVM and the MLP when 5% of the available labeled
data are used for training. Also, the spatial features present in UP dataset provide more discriminative
information, allowing the 2D-CNN model to obtain better accuracy when more than 10% of the
available training data are used. This represents a significant improvement wuth regards to the IP
results. However, looking at the accuracy results with 1-10% training percentages, we can conclude
that the spatial classifier is still the worst method when very few training samples are available. Again,
the combination of spectral and spatial features allows spectral-spatial models (in our case, 3D-CNN
and the proposed method) to achieve the best accuracy results, even with a neighborhood window of
small size. This suggest that UP spatial features are more discriminative than those in the IP dataset.
Finally, we emphasize that the proposed model is able to outperform the accuracy reached by the
3D-CNN model with all the considered training percentages.

Figure 6. Performance in terms of overall accuracy (OA) of the proposed method as compared to
several traditional HSI classification methods with different percentages of training samples per class
over the IP (left) and UP (right) datasets.

3.3.3. Experiment 3: Deep&Dense Model Learning Procedure

Once we have tested how the proposed model is able to deal with overfitting, we now study the
characteristics of its learning process. To do that, we perform a comparison between the 3D-CNN
model and the proposed one, taking into account the training and overall accuracy (OA) reached
by both models as the number of epochs increases, with the goal of observing how the network is
learning the features at different epochs and how this affects in the final OA during the testing step.
The obtained results are shown in Figure 7. In both the IP and UP datasets, we can observe that the
training accuracy is higher than the OA at the first training epochs, whereas the OA tends to vary
below the training accuracy until reaching a more stable state from the 48th epoch.

Regarding the variations present in OA during the earliest epochs, these are produced by the
employed optimizer and the selected learning rate. In fact, the Adam optimizer [116] is characterized
by being quite aggressive during the gradient descent process, producing large jumps in the function to
be optimized. Also, the selected learning rates (0.001 for IP and and 0.0008 for UP) are large enough to
allow those jumps in the optimization process, being the models robust enough to stabilize themselves
in relatively few epochs (between 40–48).

Finally, we can observe that the proposed model is able to adjust better its OA values to those
accuracies obtained during the training procedure, as compared with the standard 3D-CNN model.
This suggests that the reuse of features through dense connections allows deep supervision, where
additional information in each inner-block enforces discriminative feature learning.
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Figure 7. Training and overall accuracy (OA) of a 3D-CNN and the proposed deep model for HSI
classification as the number of epochs increases for the IP (left) and UP (right) datasets.

3.3.4. Experiment 4: Comparison between the Proposed Deep&Dense Model and Fast Convolutional
Neural Networks for HSI Data Classification

In this experiment we compare the proposed method with the DFCNN architecture in
Paoletti et al. [71]. In this case, two HSI data sets have been considered: IP and UP, using a fixed
number of samples per class, as shown in the samples column of Tables 6 and 7. These samples have
been randomly extracted from the original scenes in patches of size 9× 9, 19× 19 and 29× 29 for
DFCNN and 9× 9 for the proposed method when considering the IP dataset. For the UP dataset,
patches have been fixed to 15× 15, 21× 21 and 23× 23 for DFCNN and 15× 15 for the proposal (the
difference is due to the higher spatial resolution of the UP scene). The main objective of this experiment
is to demonstrate the performance of the proposed architecture by employing the minimum amount of
spatial information in comparison with DFCNN, highlighting its robustness and precision compared
to that model. The obtained results have been calculated as the average of 5 Monte Carlo runs.

Table 6. Classification results obtained for the IP dataset using the DFCNN model in Paoletti et al. [71],
with patch sizes of 9× 9, 19× 19 and 29× 29, and the proposed model, with the smallest patch size of
9× 9.

Classes Samples d = 9 d = 19 d = 29 Proposed d = 9

1 Alfalfa 30 100.00 100.00 100.00 100.00
2 Corn-notill 150 90.57 94.06 97.17 98.24
3 Corn-min 150 97.69 96.43 98.17 99.37
4 Corn 100 99.92 100.00 100.00 100.00
5 Grass/Pasture 150 98.10 98.72 98.76 99.67
6 Grass/Trees 150 99.34 99.67 100.00 99.73
7 Grass/pasture-mowed 20 100.00 100.00 100.00 100.00
8 Hay-windrowed 150 99.58 99.92 100.00 100.00
9 Oats 15 100.00 100.00 100.00 100.00

10 Soybeans-notill 150 94.28 97.63 99.14 99.65
11 Soybeans-min 150 87.75 92.93 94.59 96.89
12 Soybean-clean 150 94.81 97.17 99.06 99.53
13 Wheat 150 100.00 100.00 100.00 100.00
14 Woods 150 98.09 97.88 99.76 98.85
15 Bldg-Grass-Tree-Drives 50 89.79 95.80 98.39 98.24
16 Stone-steel towers 50 100.00 99.57 98.92 99.57

Overall Accuracy (OA) 93.94 96.29 97.87 98.65
Average Accuracy (AA) 96.87 98.11 99.00 99.36

Kappa 93.12 95.78 97.57 98.46
Runtime (s) 74.47 189.51 158.42 132.04
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Table 7. Classification results obtained for the UP dataset using the DFCNN model in Paoletti et al. [71],
with patch sizes of 15× 15, 21× 21 and 23× 23, and the proposed model, with the smallest patch size
of 15× 15.

Classes Samples d = 15 d = 21 d = 23 Proposed d = 15

1 Asphalt 548 97.53 98.80 98.59 99.97
2 Meadows 540 98.98 99.46 99.60 99.96
3 Gravel 392 98.96 99.59 99.45 100.00
4 Trees 542 99.75 99.68 99.57 99.75
5 Painted metal sheets 256 99.93 99.78 99.61 99.94
6 Bare Soil 532 99.42 99.93 99.84 100.00
7 Bitumen 375 98.71 99.88 100.00 100.00
8 Self-Blocking Bricks 514 98.58 99.53 99.67 99.99
9 Shadows 231 99.87 99.79 99.83 100.00

Overall Accuracy (OA) 98.87 99.47 99.48 99.96
Average Accuracy (AA) 99.08 99.60 99.57 99.96

Kappa 98.51 99.30 99.32 99.94
Runtime (s) 43.16 94.57 107.56 519.09

Table 6 shows the results obtained for each class of IP dataset, as well the OA, AA and Kappa
statistic. As we can see in Table 6, the FDCNN improves its accuracy by incrementing the input
patch size. The proposed method is able to reach an OA value 4.71 percentual points higher than the
FDNN with the same amount of spatial information (9× 9 patch size). Also, it is able to reach an OA
2.36 percentual points higher using 77.56% less spatial information than FDCNN (19× 19 patch size)
and 0.78 percentual points higher using a 90.37% less spatial information than FDCNN (29× 29 patch
size). Focusing on runtime, we can observe that the fast full-GPU implementation of FCNN is able to
reach the lowest execution time when spatial patches of size 9× 9 are processed, while the proposed
model is faster than the FCNN when patches of 19× 19 and 29× 29 are adopted.

Table 7 shows the results obtained for the UP dataset. Again, the FDCNN improves its results
by adding more spatial information but, after a saturation point, the improvement is not relevant
(the difference between 21× 21 and 23× 23 patch sizes is just 0.01 OA). With 15× 15 patch size,
the proposed architecture is 1.09 percentual points better points better. Even with patches of size
21× 21 and 23× 23 the DFCNN cannot improve the accuracy obtained by the proposed method.
The aforementioned results demonstrate that the proposed model architecture is able to achieve
the best global performance with two HSIs with different spatial resulutions, exhibiting relevant
performance improvements even with reduced input patch spatial sizes. Finally, focusing on runtime,
we can observe that the fast full-GPU implementation of FCNN is able to reach the lowest execution
time again. In both cases (IP and UP dataset) we emphasize that FCNN has been implemented to be
highly efficient in GPU. On the other hand, as Figure 7 demonstrates, the proposed network is able to
reach a good OA value in the first epochs (from 40–48 epochs), although we run several additional
epochs in order to ensure the correct convergence of the model.

3.3.5. Experiment 5: Comparison between the Proposed Deep&Dense Model and Spectral-Spatial
Residual Networks for HSI Data Classification

Our last experiment performs a comparison between the proposed network and a recent
state-of-the-art spectral-spatial classification method. Particularly, in this experiment we compare
the proposed architecture with the spectral-spatial ResNet (SSRN) proposed by Zhong et al. [119] for
HSI data classification, a model that also employs shortcut connections between its residual units,
increasing the variety of the input information of each one by adding an identity mapping. To carry out
this experiment, 20% of the available labeled samples in the IP and KSC datasets have been randomly
selected. For, the UP dataset, 10% of the available labeled samples have been randomly selected. Also,
patches with different spatial sizes have been considered: 5× 5, 7× 7, 9× 9 and 11× 11. The results
have been obtained as the average of five Monte Carlo runs.
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Table 8 shows the results obtained in this experiment. The table indicates that the proposed
architecture provides remarkable improvements in terms of OA regardless of the sizes of the considered
input patches (only in the case of KSC with a patch size of 7× 7 the SSRN reaches an OA that is slightly
superior to the one obtained by the proposed approach). This suggests that the proposed deep&dense
exhibits good generalization ability, extracting discriminative features that are effectively exploited
in each dense block, adding more information to each layer. Table 8 also shows that the standard
deviation values for the proposed approach are very small, indicating that our deep&dense CNN
architecture exhibits a robust and stable behavior.

Table 8. Overall Accuracy (%) achieved by the SSRN method [119] and the proposed approach when
considering different input spatial patch sizes.

Indian Pines (IP) Kennedy Space Center (KSC) University of Pavia (UP)
Spatial Size SSRN [119] Proposed SSRN [119] Proposed SSRN [119] Proposed

5× 5 92.83 (0.66) 97.85 (0.28) 96.99 (0.55) 97.11 (0.48) 98.72 (0.17) 99.13 (0.08)
7× 7 97.81 (0.34) 99.24 (0.14) 99.01 (0.31) 98.81 (0.23) 99.54 (0.11) 99.71 (0.10)
9× 9 98.68 (0.29) 99.58 (0.09) 99.51 (0.25) 99.52 (0.19) 99.73 (0.15) 99.82 (0.07)

11× 11 98.70 (0.21) 99.74 (0.08) 99.57 (0.54) 99.73 (0.15) 99.79 (0.08) 99.93 (0.03)

4. Conclusions and Future Lines

This work introduces a new deep neural network architecture for spectral-spatial classification
of HSI datasets. The proposed model adds internal connections between the hidden blocks of
convolutional layers in order to forwardly propagate all the obtained feature maps to all the layers
that compose the network. As a result, more quantity and variety of information is provided to the
internal operators, which are able to better discriminate the features contained in the original HSI,
resulting in improved classification accuracies. Our method has been evaluated using four well-known
HSIs and compared to traditional spectral-based classifiers (SVM, RF and RF), convolutional neural
models (2D-CNN, 3D-CNN and FDCNN) and new deep techniques (SSRN), using different training
percentages as well as input spatial dimensions. The obtained results reveal that the proposed model
exhibits competitive advantages with regards to state-of-the-art HSI data classification methods,
demonstrating higher robustness and stability when dealing with limited amounts of training data.
This makes the proposed approach a powerful tool for the analysis of large and complex hyperspectral
datasets. In future developments, we will consider additional HSIs for the evaluation of the method.
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