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Abstract 19 

Nanofibrillated cellulose films have garnered attention due to their interesting proprieties such as 20 

transparency and high mechanical strength. However, they are brittle, very hydrophilic, which is 21 

decreasing their potential applications. We have successfully achieved a simple and effective 22 

chemical modification based on polymer grafting and through plasticizer additions to increase the 23 

performance of the films as well as to improve the compatibility within conventional polymer. A 24 

preliminary study shows the possibility of using this film as an interlayer in safety glazing and/or 25 

bulletproof glass with polyvinyl butyral (PVB). The modified NFC films displays high optical 26 

transmittance (93%), increases tensile stretch and is more hydrophobic (83°). A higher flexibility 27 

was also achieved, as the film was greatly stretched and bended without cracking or breaking. The 28 
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NFC / PVB composite has three times more elongation at break, 13% more specific energy 29 

absorbed with a half-tensile stress compared to an interlayer of PVB. 30 

1. Introduction 31 

In recent decades, petroleum-based plastics have emerged and diversified to reach a considerable 32 

space in our daily life due to their numerous advantages, which allow to adapt to the desired 33 

applications. According to a study by the University of Santa Barbara in California in 2017, global 34 

production of plastics reached 9.1 billion tonnes, more than half of this volume, 5.4 billion tonnes, 35 

has ended in the environment (Simon & Schulte, 2017). However, in addition to the sustainability 36 

problems arising from the depletion of fossil fuels, the environmental impacts due to the wide use 37 

of these non-renewable sustainable materials are seriously increasing, putting terrestrial and 38 

aquatic ecosystems at risk (Bagheri, Radi, & Amiri, 2019; Floyd, 2016; Kumar Singla, Maiti, & 39 

Ghosh, 2016; Simon & Schulte, 2017). Therefore, a rational use of biodegradable polymers 40 

derived from renewable resources combined with an improvement in the quantity and quality of 41 

recycling, are the key points of sustainable development of plastics materials (Floyd, 2016). 42 

Nevertheless, the research on bio-based plastics produced from cellulose derivatives is challenging 43 

because of the complexity in recycling strategies and far from providing a long-term sustainable 44 

solution (Bagheri et al., 2019; Kumar Singla et al., 2016).  45 

The 4-acetamido-2, 2, 6, 6 tetramethylpiperidine-1-oxyl (TEMPO) oxidized cellulosic nanofibrils, 46 

NFC, are promising nanomaterials, widely used as attractive biopolymers for the production of 47 

biobased films. The obtained films received reasonable attention because of their large specific 48 

surfaces, rigidity, transparent nature and biodegradability (Bideau, Cherpozat, Loranger, & 49 

Daneault, 2016; García, Gandini, Labidi, Belgacem, & Bras, 2016; Islam & Rahman, 2019; Niu, 50 

Gao, & Wu, 2014; Rol, Belgacem, Gandini, & Bras, 2019; Syverud, Xhanari, Chinga-Carrasco, 51 

Yu, & Stenius, 2011; Xhanari, Syverud, Chinga-Carrasco, Paso, & Stenius, 2011).  However, the 52 

non-flexibility and hydrophilic nature limits their potential applications in many fields and affects 53 

their compatibility in most non-polar polymer matrices. Therefore, modifications of the surface 54 

chemistry of NFCs were used in order to improve the performance of the films as well as their 55 

compatibility with the polymer matrix (Islam & Rahman, 2019; Rol et al., 2019; Syverud et al., 56 

2011; Xhanari et al., 2011). The major challenge of modifying NFC is to increase the 57 



hydrophobicity and flexibility of the films while keeping satisfactory mechanical and optical 58 

properties (Tong, Chen, Tian, & He, 2020). The originality of our work is to synthesize flexible, 59 

transparent and less hydrophilic nanofibrillated cellulose (NFC) films, but in a purely aqueous 60 

medium. 61 

In our study, NFC is chemically modified by radical polymerization of glycidyl methacrylate 62 

(GMA) in aqueous medium. The monomer GMA, which is inexpensive and highly reactive 63 

(Kocak, Solmaz, Tuncer, & Bütün, 2019), is often used to improve the mechanical properties and 64 

hydrophobicity of films including cellulose-based films. It is also used as a compatibilizer and 65 

coupling agent in the manufacture of composites (Abbasi et al., 2018; Cherifi, Boukoussa, Zaoui, 66 

Belbachir, & Meghabar, 2018; Faria et al., 2019; Khan et al., 2018; Kocak et al., 2019; Reis et al., 67 

2009). Other studies have shown that adding plasticizers can improve the flexibility of films such 68 

as, starch–chitosan films (Liu, Adhikari, Guo, & Adhikari, 2013), Na-alginate films (Bagheri et 69 

al., 2019), silk fibroin films (Li et al., 2018), corn starch films (Šoltýs et al., 2019) and cellulose 70 

acetate oleate films (Tedeschi et al., 2018). Glycerol is generally recognized as one of the most 71 

suitable plasticizers (Bagheri et al., 2019; Li et al., 2018; Liu et al., 2013; Šoltýs et al., 2019).  72 

The objective of the current research is to synthesize transparent and biodegradable films, which 73 

would have satisfactory mechanical properties like resistance and elongation at break, and an 74 

improvement of hydrophobic character compared to pure NFC film. Therefore, a simultaneous 75 

modification of NFC oxidized TEMPO by GMA and glycerol was performed. According to the 76 

literature, the amounts of monomer and plasticizer can significantly influence the characteristics 77 

of films (Abbasi et al., 2018; Bagheri et al., 2019; Pracella, Haque, Paci, & Alvarez, 2016). 78 

Therefore, a statistical response surface model was developed to study changes in the target 79 

properties of the final product. This method has been widely used to optimize the process 80 

conditions using a mathematical algorithm based on experimental results generated from 81 

experiments designed by statistical analysis software. Response-surface design overcomes the 82 

drawbacks of traditional optimization methods, which monitor the effect of a single parameter on 83 

the process at a time regardless of the interactive effects among the parameters examined. In 84 

addition, using statistical analysis requires less time and chemicals compared to the optimization 85 

of each parameter separately. 86 



2. Experimentation 87 

2.1. Materials 88 

The pulp used in this work is a bleached kraft pulp of resinous wood from the paper company 89 

Domtar. The catalyst 4-acetamido-TEMPO is purchased from Sigma-Aldrich (Canada) and the 90 

sodium bromide from Fisher Scientific (Canada). The sodium hypochlorite used is 6 % 91 

concentrated as found in supermarkets. Poly (vinyl butyral-co-vinyl, alcohol-co-vinyl acetate) 92 

powder (Co PVB,>90 %, Sigma), glycidyl methacrylate (GMA, 97%, Sigma) and glycerol (99%, 93 

Sigma) are used as received. The other chemicals and solvents are laboratory grade and supplied 94 

by Sigma-Aldrich (USA) without further purification. 95 

2.2. Preparation of NFC by TEMPO-mediated oxidation 96 

The preparation of TEMPO oxidized NFCs is carried out based on a previously published protocol 97 

from our research group (Loranger, Paquin, Daneault, & Chabot, 2011; Paquin, Loranger, 98 

Hannaux, Chabot, & Daneault, 2013; Rattaz, Mishra, Chabot, & Daneault, 2011). The basic 99 

principle consists in the oxidation of cellulose fibers by adding NaClO to aqueous cellulose 100 

suspensions in the presence of catalytic amounts of 2, 2, 6, 6-tetramethyl-1-piperidinyloxy 101 

(TEMPO) and NaBr at pH 10–11 at room temperature. Ultrasounds are optional and may be used 102 

to further reduce the amounts of reactive used without any effect on the final properties of the 103 

nanofibrillated cellulose. The NFCs obtained had a carboxyl content of 1700 mmol / kg. The 104 

obtained NFC gel is dispersed in a homogenizer as optimized by Loranger et al. (Loranger, Piché, 105 

& Daneault, 2012). 106 

2.3.  Preparation of modified NFC film 107 

The TEMPO oxidized NFC gel (3.3%) is diluted 50% up to 1.65 % with distilled water and then 108 

centrifuged for 15 minutes at 13,000 rpm. A transparent aqueous dispersion is obtained (0.1%) by 109 

recovering the supernatant and removing the micro suspensions. Then, the aqueous NFC solution 110 

is concentrated up to 0.9% using a rotavapor. 111 

The modification consists in synthesizing poly (glycidyl methacrylate)-co-NFC (PGMA-co-NFC) 112 

followed by the addition of a plasticizer. An aqueous solution of NFC (200 ml) is stirred 113 

magnetically with ammonium persulfate (APS) (0.05 ± 0.0001 g) to initiate the in situ 114 



polymerization of GMA. Then different volumes of glycidyl methacrylate (GMA) are added at 115 

40°C. After stirring for 48 hours, different amounts of glycerol as a plasticizer are added at 70°C 116 

for 5 hours. Based on a Response-surface design as explained earlier, Table 1 shows the 117 

composition of the mixtures prepared in this study. Finally, the solutions are poured into aluminum 118 

cups and dried in an oven at 30°C for 2 days. 119 

2.4. Preparation of composite NFC/PVB 120 

The PVB / NFC composite is prepared by a coating method developed by our group (Maury, 121 

Loranger, & Daneault, 2016). First, the PVB is mixed with anhydrous ethanol (1% by weight) and 122 

stirred for 30 minutes until being completely dissolved. Then, the solution is poured into an 123 

aluminum cup already containing a previously dried NFC film. Finally, the cup is dried in an oven 124 

at 30°C for 2 days. 125 

2.5. Characterization   126 

Fourier-transform infrared spectroscopy (FTIR). The functional groups of native and modified 127 

NFC are analyzed by infrared spectroscopy FTIR in the range of 4500–600 cm−1 from 16 scans 128 

with a resolution of 4 cm−1. FT-IR Spectra are obtained using a Nicolet IS10 FT-IR 129 

spectrometer (ThermoScientific, USA) at room temperature. 130 

Mechanical properties. The mechanical properties of the films are measured by universal testing 131 

machine Instron 4201 equipped with a 500 N load cell. Rectangular shaped samples (30 mm 132 

length, 15 mm width) are stretched at a rate of 10 mm min-1. All the stress-strain curves are 133 

recorded in a controlled room at 25°C and a relative humidity (RH) of 50%. Three measurements 134 

are carried out for each sample. As the mean and median values are very close, only the mean is 135 

reported. The Young’s modulus, the stress, the elongation at break and the absorbed energy values 136 

are extracted from the stress-strain curves. A specific energy absorbed is calculated by the ratio 137 

between the energy absorbed at automatic break and the cross area of the sample. The thicknesses 138 

are measured with a Lhomargy micrometre (± 0.01 mm). 139 

Transparency. Light transmission of films is measured by a Tint Meter Inspector Model 200. 140 

Scanning electron microscopy (SEM). Scanning electron micrographs of the cross-section and 141 

surfaces of the samples are obtained by scanning electron microscopy (SEM) with a JEOL JSM 142 

T300 microscope. An acceleration voltage of 5 KV and magnification of 2500× (cross section) 143 



and 1000× (surface) are used to observe the morphology of samples. Before analysis, all samples 144 

are deposited on a steel plate and coated with a mix of gold and platinum. 145 

Contact angle. In order to characterize the hydrophobicity of the film surface, a FTA4000 146 

contact angle measuring system (First Ten Angstroms) is used. Water contact angles are measured 147 

with the drop method at room temperature at five different locations on each surface. One drop 148 

(0.8 μl ± 0.07) of purified water (milli Q) is deposited on the surfaces and 300 images are captured 149 

within 90 s. 150 

Thermogravimetric Analysis (TGA). Analysis of the thermal stability of the samples is carried 151 

out in a Perkin-Elmer Thermogravimetric analyzer TGA 8000 (Pyris Series). The samples 152 

(Table1) are heated in platinum pans from 50 to 575°C, under a nitrogen atmosphere, at a heating 153 

rate of 5°C / min. Then the samples are heated from 575 to 900°C of 10°C / min under a nitrogen 154 

flow of 20 ml / min. 155 

Statistical analysis. To assess the effect of the amounts of monomer (GMA) and plasticizer 156 

(glycerol) on the properties of the film, a central composite design-response surface model (CCD) 157 

is used. Preliminary results in the laboratory showed that for an amount of 200 ml of NFC, if the 158 

volumes of GMA and glycerol are increased to more than 4.5 and 1 ml respectively, no film can 159 

be obtained. Therefore, a volume of GMA in the range of 0 to 4.5 ml and a volume of glycerol in 160 

the range of 0 to 1 ml were introduced to the JMP® Start Statistics 2007 (SAS Institute Inc., 161 

Cary, NC, USA) to design the experiments (Table1). Consequently, 11 different random 162 

experimental combinations of variables including 3 central points were proposed and their 163 

corresponding responses were measured. 164 

 165 
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 173 



Table 1. Response-Surface design array of experiments 174 
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3. Results 186 

3.1. Fourier-transform infrared spectroscopy (FTIR) 187 

The FTIR spectra (600-4000 cm-1) of pure NFC 11, modified NFC 3 films are shown in Figure 1. 188 

The analysis of the spectra shows that the chemical structure of the NFC does not change during 189 

the modification process, as characteristic bands typical of the original form were observed. The 190 

band located at 3404 cm-1 is attributed to OH stretching vibrations, the band at 2904 cm-1 to CH2 191 

stretching vibrations and the band at 1660 cm-1 to carboxylic functional groups of native NFC film. 192 

The band at 1720 cm−1 and the weak broad band at 1285 cm−1 are attributed to the C=O and C-O 193 

stretching of GMA, respectively (Abbasi et al., 2018; Faria et al., 2019). The schematic of 194 

modifying the cellulose to obtain a modified NFC film is shown in Figure 2A while photographs 195 

of NFC 4 films are found in Figure 2B for comparison purposes. 196 

Test 

number 

Sample 

name 

Volume of 

GMA 

(ml) 

Volume of 

Plasticizer 

(ml) 

1 NFC 1 2.25 1 

2 NFC 2 2.25 0.5 

3 NFC 3 4.5 0 

4 NFC 4 4.5 0.5 

5 NFC 5 4.5 1 

6 NFC 6 2.25 0.5 

7 NFC 7 2.25 0 

8 NFC 8 0 1 

9 NFC 9 2.25 0.5 

10 NFC 10 0 0.5 

11 NFC 11 0 0 



 197 

Figure 1. ATR-FTIR spectra of pure NFC 11 (a), modified NFC 3 (b) films  198 

 199 
Figure 2.A) Schematic of cellulose modifications, B) Photographs of the pure NFC and modified NFC 200 

(Example: NFC 4) films placed on a white background paper to demonstrate their properties 201 

3.2. Effect of monomer and plasticizer quantities 202 

A central composite design-response surface model is applied for modeling and optimizing the 203 

influence of GMA quantity (X1) and glycerol quantity (X2) on the properties of the films: Young's 204 



modulus E (Y1), tensile stress (Y2), elongation at break ε (Y3), specific absorbed Energy (Y4), 205 

contact angle (Y5) and light transmission (Y6). Results from experiments are illustrated in Table 206 

2. Analysis of variance is used to identify the significance of factors with a P value < 0.05. Based 207 

on the regression coefficient (R2) and adjusted regression coefficient (adjR2), polynomial models 208 

for each response are determined. Thus, the execution of the model provides Iso-response profilers, 209 

which help determine the variation of responses for each combination of factors (Figure 3).  210 

Table 2. Experimental design and results of different dependent variables 211 

 212 

Test 

number 

X1 

(ml) 

X2 

(ml) 

Y1 

(MPa) 

Y2 

(MPa) 

Y3 

(%) 

Y4 

(J/cm2) 

Y5 

(°) 

Y6 

(%) 

1 2.25 1.0 32.0 1.2 5.1 0.1 83.0 93.0 

2 2.25 0.50 67.9 4.6 13.7 1.0 46.3 73.0 

3 4.50 0.00 1016.0 7.5 1.3 0.1 51.8 70.0 

4 4.50 0.50 156.4 8.1 13.2 2.5 76.6 90.0 

5 4.50 1.00 22.0 3.3 16.4 0.9 81.7 93.0 

6 2.25 0.50 79.3 5.1 16.1 1.8 50.1 75.0 

7 2.25 0.00 2324.8 11.6 1.6 0.2 52.3 34.0 

8 0.00 1.00 23.7 0.9 12.3 0.3 37.8 93.0 

9 2.25 0.50 66.4 4.8 17.9 1.6 43.2 74.0 

10 0.00 0.50 47.4 2.6 12.5 0.7 34.7 85.0 

11 0.00 0.00 2168.7 16.5 2.2 0.3 38.3 93.0 



 213 

Figure 3. Iso-response profilers predicting effects of GMA (horizontal axis) and glycerol (vertical axis) 214 

volumes on Young’s modulus E (Y1), tensile stress (Y2), Elongation at break ε (Y3), Specific Absorbed 215 
Energy (Y4), Contact Angle (Y5) and Light Transmission (Y6) 216 

3.2.1. Mechanical properties 217 

Tensile stress-strain curves of pure NFC 11, modified NFC 3, 4, 5 and 6, Films are shown in Figure 218 

4. Pure NFC film (NFC 11) is a fragile material, which fractures directly when it is subjected to 219 

mechanical stress. Previous research has shown that the rupture of brittle materials is due to the 220 

presence of initial defects (Hild, 1992). This is confirmed by the shape of the stress-strain curve. 221 

The detection of breaking point for this type of material is very difficult so, we had to stop the 222 

testing manually. 223 

The modification of NFC increases the elongation at break to around 17.9 % (Film 9) to be 224 

compared with an elongation at break of 2.2% for pure NFC film. Contrariwise, the tensile strain 225 

values of the purest natural polymer-based film are around 15% (Huang, Zhong, Zhang & Cai, 226 

2017; Tong, Chen, Tian, & He, 2020). NFC films modified by GMA and glycerol simultaneously 227 

exhibit ductile behavior, which undergoes great deformation before rupture. The photographs 228 

shown in Figure 2 confirm these results. The modified film (Example film 4) can be rolled, folded 229 



and stretched without cracking. These advantages can lead to a much-improved NFC-based film 230 

for applications that require transparent and flexible films. 231 

The results from the statistical analysis show that the change in the volume of glycerol has a 232 

significant effect on the mechanical properties of the film while the amount of GMA has no. As 233 

shown in Figure 3, when the glycerol volume increases, the Young’s modulus E and tensile stress 234 

decrease, however, the elongation at break ε and absorbed energy increase. This is explained by 235 

the plasticizing effect of the glycerol (Li et al., 2018; Liu et al., 2013). Therefore, a minimum level 236 

of glycerol volume is determined to achieve maximum rigidity, whereas a maximum level is 237 

determined as optimum to achieve maximum flexibility. These results are confirmed by tensile 238 

stress-strain curves presented on Figure 4. Indeed, for a same volume of GMA (4.5 ml), when the 239 

quantity of glycerol increases from 0.25, 0.5 to 1 ml, we can clearly see the change in the shape of 240 

the curves towards a more ductile behavior of NFC 3, 4, 5 films respectively. The model equations 241 

are: 242 

 243 

Y1 �Young’s modulus E (MPa)� = 83.492 − 905.308X2 + 847.696X2 

(R2 = 87% , R2adj = 84%) 

 

Y2 �Tensile stress (MPa)� = 6,011 − 5,057X2 

(R2 = 69%,  R2adj = 66%) 

 

Y3 �Elongation at break ε (%)� =  14,683 + 4,778X2 − 8,175X22 

(R2 = 79%, R2adj = 74%) 

 

Y4 (Specific Absorbed Energy (J. cm−2)) =  1,524 + 0,127X2 − 1,206X22 

 (R2 = 64%, R2adj = 55%) 

 

 

Even though the statistical analysis shows no significant effect on addition of GMA, visual tests 244 

support that this step is very important to obtain a complete NFC films, maintaining similar 245 

mechanical properties of pure NFC films, which are fragile and crack down easily while handling 246 

(Figure 2). This is particularly the case when comparing NFC 11 to NFC modified with GMA only 247 

NFC 3. In addition, tensile stress-strain curves of NFC 6 and 4 films (Figure 4) show that, for the 248 

same amount of glycerol (0.5 ml), when we increase the quantity of the monomer (GMA) from 249 

2.25 to 4.5 ml respectively, tensile stress increases, while tensile strain decreases. 250 

 251 



 252 
Figure 4. Tensile stress-strain curves of pure NFC 11, modified NFC 3, 4, 5 and 6, Films 253 

3.2.2. Contact angle measurements 254 

It is clear from the Table 1 and Iso-response profilers (Figure 3) that both glycerol and GMA 255 

volumes have significant effects on contact angle which is increased from 38.3° (pure film 11) to 256 

83° (modified film 1 ). To support our results, Figure 5 shows the droplet profiles and the 257 

evaluation of the contact angle on different types of films: pure NFC (NFC 11), NFC modified 258 

with only GMA (Example NFC 3), NFC modified with only glycerol (Example NFC 8) and NFC 259 

modified with both GMA and glycerol respectively. Previous studies have shown that the grafting 260 

of epoxy chains onto allyl cellulose increases the hydrophobicity of the films (Tong, Chen, Tian, 261 

& He, 2020). These observations are confirmed by our study, for films 3 (51.8°) and films 7 262 

(52.3°). On the other hand, the addition of only glycerol has an opposite effect and the contact 263 

angle of the films always remains small, e.g. film 8 (37.8°) and film 10 (34.7°). These results are 264 

also confirmed by previous studies (Coupland, Shaw, Monahan, O'Riordan, & O'Sullivan). 265 

However, the contact angle results drawn from this study show that the polymerization by GMA 266 

followed by the addition of plasticizer presents an excellent compromise for increasing the 267 

hydrophobic character of the films as shown by film 1 (83°), film 4 (76.6°) and film 5 (81.7°) 268 

(Figure 5). The outstanding flexible and transparent cellulose films show contact angle values 269 

higher than that of nanocellulose film (47°) (Fukuzumi,  Saito, Iwata, Kumamoto, & Isogai, 2009) 270 

and modified nanocellulose film, of which contact angle does not exceed 79° (Tong, Chen, Tian, 271 

& He, 2020). Ultimately, the model equation for Contact Angle Y5 is given by:   272 



Y5 (Contact Angle  ) =  54,173 + 16,555X1 + 10,029X2 + 7,595X1X2 

 (R2 = 77%, R2adj = 68%) 

 
Figure 5.Water contact angles of pure NFC 11, Glycerol modified NFC (NFC 8), GMA modified 

NFC (NFC 3) and modified NFC (NFC 5) 

 

 

3.2.3. Optical properties 273 

The optical transmittance values of our films are very promising. Hence, the majority of the films 274 

obtained (Table 2) show high light transmittance values (optimal 93%) (Figure 2). They are 275 

comparable to those of commercial cellophane (85%), Nanopaper (90%) (Tong, Chen, Tian, & 276 

He, 2020) and ginger nanofiber (82%) (Abral et al., 2020) films. However, the film NFC 3 (70%) 277 

and film NFC 7 (34%) have moderately to low light transmission values. Statistical analyses with 278 

p value < 0.05 do not indicate which factor has a significant effect on the optical transmittance of 279 

films. Nevertheless, based on Iso-response profilers (Figure 3) we can notice that the presence of 280 

glycerol increases the transparency of the films. In fact, studies have shown that the glycerol 281 

plasticizer improves the homogeneous dispersion in the polymer matrix by interfacial interactions 282 

(Figure 2 (A)) (Li et al., 2018). 283 



 284 

3.3. Morphological characterization 285 

Figure 6 shows the comparison of SEM micrographs of the cross section and surfaces of pure NFC 286 

and modified NFC with both GMA and glycerol. The surface morphology of the modified NFC is 287 

more homogeneous and clearly different, supporting successful modification of TEMPO oxidized 288 

NFC. As it has been demonstrated by Liu et al. (Liu, Adhikari, Guo, & Adhikari, 2013), the 289 

formation of plasticized and rubbery films is supported by the formation of a homogeneous and 290 

smooth surface. The cross-section micrographs show that the pure NFC appears as a layer with a 291 

few pores and cracks whereas the modified NFC seems to be strongly entangled and less porous 292 

showing that probably more interactions between modified NFC. In conclusion, SEM images show 293 

a strong entanglement of the multiple layers of NFC.  294 

 295 

Figure 6. SEM micrographs of the cross section and surfaces of pure NFC and modified NFC 296 

 297 

3.4. Thermogravimetric Analysis 298 

Thermal behaviours of NFC based-films are studied using Thermogravimetric analysis (TG) under 299 

nitrogen atmosphere from 50-900°C (Figure 7). In all the curves, the first part of the analysis from 300 



50 to 105 ° C was removed because it corresponds to the evaporation of solvent (water). Thus, 301 

depending on the water content, the curves may not start at 100% in weight. Initially, the modified 302 

films (NFC 2, 3) show a thermal stability from 50 up to 200°C more than the native film (NFC 303 

11). The first decrease in the mass of pure NFC 11 film shows up to 140° C, which could be 304 

attributed to the release of moisture and a weakly bonded water, while the modified films show a 305 

lower weight loss due to its more hydrophobic characteristics (Ashori, Babaee, Jonoobi, & 306 

Hamzeh, 2014). In addition, the modification of NFC by grafting only PGMA (NFC 3) was found 307 

to introduce thermal degradation behavior in several stages. The first and second decomposition 308 

steps (240.07°C and 384.03°C) can be attributed to the decomposition of the glycidyl and carboxyl 309 

groups of the GMA respectively (Abbasi et al., 2018; Cherifi et al., 2018). For the modification by 310 

grafting of PGMA followed by the addition of plasticizer (NFC 2-6-9), we note the appearance of 311 

a new degradation step at 172.98°C, which can be attributed to the decomposition of glycerol. As 312 

shown in Figure 7, the proposed modification of NFC has increased the thermal degradation 313 

resistance of the films at higher temperature. 314 

 315 

 316 
Figure 7. Thermogravimetric analysis of pure NFC 11, NFC (2-6-9) and NFC 3 films 317 

3.5. Discussion: NFC/PVB composite 318 

Today, safety glass is laminated using a thermoplastic polymer, polyvinyl butyral (PVB) which is 319 

petroleum-made, non-biodegradable and expensive. NFC 4 film was chosen to synthesize a NFC 320 

/ PVB composite as a candidate interlayer for safety glass and bulletproof glazing because of its 321 



interesting properties such as flexibility, transparency and above all, the highest specific absorbed 322 

energy (2.45 j/cm2). The results presented in Figure 8 show that the composite exhibits attractive 323 

mechanical characteristics compared to a PVB film alone. Despite a drastic reduction in tensile 324 

stress, there is a strong increase in the elongation at break property, which is very important for 325 

resistance in the case of impact (Petroudy, 2017). In addition, there was a 13% increase of energy 326 

absorbed at break.  327 

 328 

 329 

Figure 8.Mechanical properties of Composite NFC (4)/PVB 330 

 331 

4. Conclusions 332 

In the present study, different films were prepared by modifying the NFC oxidized TEMPO by 333 

different amounts of GMA and glycerol. The synthesized films have interesting properties such as 334 

transparency, flexibility, resistance and a less hydrophilic nature. The response surface 335 

methodology (RSM) was successfully applied to model and optimize the performance of modified 336 

NFC-based films. The optimal conditions for modification depend on the objectives. For example, 337 

to get the best flexibility independently of the other parameters, it is necessary to work with 2.25 338 

ml of GMA and 0.5 ml of glycerol (NFC 9 Film). If we are looking for a good compromise between 339 



flexibility, hydrophobicity, and transparency, NFC 5 is a good candidate with volumes of GMA 340 

and glycerol of 4.5 and 1 ml respectively. The enhancement of the properties can make these films 341 

a potential alternative to petroleum-based films depending on the target applications such as 342 

electronic substrates, cars, packaging, sports equipment, etc. It could also position this solution as 343 

candidates for interlayers in security glazing.  344 
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