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Generating Difficult CNF Instances in Unexplored
Constrainedness Regions

GUILLAUME ESCAMOCHER, BARRY O’SULLIVAN, and STEVEN DAVID PRESTWICH,
Insight Centre for Data Analytics, School of Computer Science & IT, University College Cork, Ireland

When creating benchmarks for SAT solvers, we need CNF instances that are easy to build but hard to solve.
A recent development in the search for such methods has led to the Balanced SAT algorithm, which can
create k-CNF instances withm clauses of high difficulty, for arbitrary k andm. In this paper we introduce
the No-Triangle CNF algorithm, a CNF instance generator based on the cluster coefficient graph statistic. We
empirically compare the two algorithms by fixing the arity and the number of variables, but varying the number
of clauses. We find that the hardest instances produced by each method belong to different constrainedness
regions. In the 3-CNF case for example, hard No-Triangle CNF instances reside in the highly-constrained
region (many clauses), while Balanced SAT instances obtained from the same parameters are easy to solve.
This allows us to generate difficult instances where existing algorithms fail to do so.
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1 INTRODUCTION
The Boolean Satisfiability Problem, commonly called SAT, is the problem of assigning values to a set
of variables while satisfying a set of disjunctive clauses, each consisting of literals representing either
a variable or its negation. An instance of this problem is called a CNF instance when represented
in Conjunctive Normal Form. Results on the hardness of random CNF instances have the potential
to positively impact the performance and effectiveness of solvers in many different decision and
optimization domains, from Artificial Intelligence to engineering applications [2]. This has led to
significant effort being devoted to find efficient ways to generate random CNF instances that can
be customized by tuning pertinent parameters.

State-of-the-art SAT solvers perform extremely well on industrial CNF instances of large dimen-
sions. There exist however families of small CNF instances with explicitly defined interdependent
parameters (such as the number of variables or the number of clauses) that are challenging for
these same solvers. Therefore, in order to develop and test the new techniques for solving SAT,
it is important to have a way to create at will difficult CNF instances with any combination of
parameters. Encoding a different type of problem into SAT is not a practical way to achieve this
goal, as the conversion to CNF would considerably alter the structure of the original instance
and prevent precise control of the main parameters (number of literals in each clause, number of
variables, and number of clauses).

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
1084-6654/2020/1-ART1 $15.00
https://doi.org/10.1145/3385651

ACM Journal of Experimental Algorithmics, Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3385651
https://doi.org/10.1145/3385651
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In major SAT competitions [11], the smallest instances that cannot be solved within the time
limit are obtained by hiding cardinality constraints. They offer a great deal of difficulty to solvers
when presented for the first time, but can usually be solved by special techniques when identified.
As an illustration, the sgen6 algorithm is able to generate instances with fewer than two hundred
variables that no solver can solve in less than 10 minutes [20], but these instances can be reduced
to a simple matching problem [14].
A more general drawback of this kind of generator is that they are not easily parameterizable.

Because of their rigid structure, fixing one parameter (such as the number of variables) constrains
the other parameters (such as the arity or the number of clauses) to very specific values. The sgen6
algorithm, for example, outputs instances with clauses of different arity, including clauses with
only two literals, and with a fairly low number of clauses compared to the number of variables
(approximately twice as many). Generators that rely on algorithm configuration tools have a larger
degree of freedom, but still have at least one parameter that they do not control, usually the number
of clauses [5]. Furthermore, using a configuration tool implies a costly preprocessing phase.

To address these issues, a new method of generating difficult instances has been proposed, called
Balanced SAT [19]. The main idea of Balanced SAT is to balance the number of occurrences of each
literal, as well as minimizing the number of variable pairs that appear in different clauses. Instances
created by Balanced SAT do not challenge solvers as much as the hardest crafted instances, but
because of their random nature there is no known special technique that can easily solve them.
Furthermore, Balanced SAT can generate instances of any arity, any number of variables, and any
number of clauses.

While the Balanced SAT algorithm can create extremely varied instances, not all of these are hard
to solve. Indeed, satisfiability problems exhibit a phase transition phenomenon, in which instances
under a given constrainedness (ratio of clauses to variables) threshold are increasingly likely to be
satisfiable as the size increases, while instances with greater constrainedness are increasingly likely
to be unsatisfiable [7]. Empirically, instances close to this threshold are found to be extremely hard,
while under- and highly-constrained instances are found to be much easier [16].

For CNF instances with n variables,m clauses, and exactly 3 literals in each clause, the threshold
is conjectured to lie betweenm = 4.2n andm = 4.3n (values of 4.258 [10] and 4.267 [15] have been
advanced). For completely random instances this ratio is where the hard instances are. The peak
of difficulty for instances built by generators of hard instances is distinctly lower. As mentioned
above, the ratio for sgen6 instances is about 2, while for Balanced SAT it is approximately 3.6 [19].
These low figures might possibly be explained by the fact that instance generators of this kind
try to force solvers to look at a large number of possible variable assignments, and adding more
clauses decreases the number of paths to explore. In any case, we are not aware of any existing
generator of difficult instances with an observed peak in the highly-constrained region of random
3-CNF instances.
Our main contribution in this paper is a new algorithm for generating CNF instances, called

No-Triangle CNF. Like Balanced SAT, No-Triangle CNF can generate instances of any arity, any
number of variables, and any number of clauses. It balances the number of occurrences of each
literal, again like Balanced SAT, but as well as avoiding redundant variable pairs, it also minimizes
the number of constraint triangles in the constraint graph associated with the instance. Constraint
triangles, defined in Section 2.1, are related to the cluster coefficient measure of the constraint
graph, the graph that indicates which pairs of variables appear in a same clause.

While parts of our No-Triangle algorithm are inspired from Balanced SAT, we show in Section 3
that the behavior of instances obtained from these two generators is drastically distinct. For a fixed
arity and a fixed number of variables, difficult No-Triangle CNF instances appear at a different
number of clauses than Balanced SAT instances. No-Triangle CNF instances that are hard to solve
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are generated from parameters from which Balanced SAT only gives easy instances. No-Triangle
CNF thus constitutes a way to create difficult instances in constrainedness regions where they were
not found before.
In the next section we describe both the existing Balanced SAT generator and our novel No-

Triangle CNF generator. We also define some graph notions that are integral to our algorithm. In
Section 3 we present the core results of the paper, empirical studies for different instance sizes and
arities of the behavior of No-Triangle CNF instances compared to Balanced SAT as well as random
instances. Finally we conclude in Section 4.

2 GENERATORS
2.1 Preliminary notions
We begin by formally defining the Boolean Satisfiability Problem (SAT).

Definition 2.1. ACNF instance is composed ofn variablesv1,v2, . . . ,vn andm clausesC1,C2, . . . ,Cm ,
where each clause Ci is a disjunction of ki literals l1 ∨ l2 ∨ · · · ∨ lki and each literal is either a
variable from {v1,v2, . . . ,vn} or the negation of one such variable. The arity of the CNF instance
is the number of literals in the clause with the most literals.

A literal is positive if it corresponds to a variable, and negative if it corresponds to the negation
of a variable. The polarity of a literal is its sign. A k-CNF instance is a CNF instance with exactly k
literals in each clause. A solution for a (k-)CNF instance I is an assignment of boolean values to all
n variables such that allm clauses of I are satisfied.

The problem of determining whether a given CNF instance admits a solution was the first to
be shown NP-Complete [8]. Binary CNF instances are polynomial [18] but allowing even just 3
literals in each clause (3-SAT) is known to be NP-Complete [13]. Since its inception in Karp’s 21 NP-
Complete problems, 3-SAT has in fact been a popular problem to reduce from in NP-hardness proofs.
Note however that both the Balanced SAT algorithm and our own No-Triangle CNF generator can
be used to generate CNF instances of any arity.
The intuition behind our method is to minimize the amount of similarities between clauses.

We present a few concepts to help structure this idea. We start by the notion of repeated pairs of
variables, which is also used by Balanced SAT.

Definition 2.2. Let I be a CNF instance. Let v and v ′ be two variables of I . We say that v and v ′
form a repeated pair if they occur together in at least two different clauses of I , regardless of the
polarity of their literals.

To benefit from several Graph Theory properties, we view a CNF instance as a graph.

Definition 2.3. Let I be a CNF instance. The constraint graph of I is the graph G such that the
vertices of G are the variables of I and the edges of G are the pairs of variables of I that occur
together in a same clause, regardless of the polarity of their literals.

While a repeated pair of variables forms an edge in the constraint graph, not all constraint graph
edges are repeated pairs.

Our No-Triangle CNF algorithm does not just study pairwise relations. It goes one step further
and also looks at three-sided transitive structures.

Definition 2.4. Let I be a CNF instance and let v1, v2, and v3 be three variables of I . We say that
v1, v2, and v3 form a constraint triangle if the three pairs ⟨v1,v2⟩, ⟨v1,v3⟩, and ⟨v2,v3⟩ are edges in
the constraint graph of I . If exactly two out of these three pairs are edges in the constraint graph of
I , we instead say that v1, v2, and v3 form an incomplete constraint triangle.
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Note that it is possible for three variables to form a constraint triangle even if no single clause
contains all three of them. The notion of constraint triangle is related to the cluster coefficient
graph metric, one of the measures characterizing small-world networks [21].

2.2 Balanced SAT
When k , n, andm are the desired arity, number of variables, and number of clauses respectively,
the Balanced SAT algorithm [19] creates k×m

n rows of variables, where each row contains every
variable exactly once (except the last row if k ×m is not a multiple of n). The variables are then
sorted within each row by a greedy heuristic that picks the variable that minimizes the number
of variable pairs in the current clause that are already edges in the constraint graph. Finally, the
polarities are assigned randomly for the first occurrence of each variable, and alternatively for the
remaining occurrences.

2.3 No-Triangle CNF
Considering only repeated pairs for discriminating between variables can still leave several potential
candidates, and Balanced SAT has no choice but to pick one of them randomly. No-Triangle CNF
introduces an additional tie-breaker: the number of constraint triangles formed by adding the
variable considered to the current clause. This corresponds to Lines 10-15 and 20 in Algorithm 1.
While seemingly only a minor alteration, we shall show in the next section that No-Triangle CNF
instances behave very differently than Balanced SAT ones.

When trying to generate hard instances, we avoid constraint triangles and encourage incomplete
constraint triangles. This mirrors results in Constraint Satisfaction Problems, where it has been
shown that the absence of patterns similar to incomplete constraint triangles fulfills the Joint-
Winner Property and constitutes a tractable class, while merely forbidding complete constraint
triangles still yields an NP-Complete complexity class [9].

3 EXPERIMENTAL RESULTS
We empirically compared four different ways to generate k-CNF instances with n variables and
m clauses. The first is Random CNF, where every literal in each clause is randomly picked from
the 2n possible choices, with no influence from previous picks, with the exception of not allowing
the exact same clause twice. This construction is equivalent to a known method for creating CNF
instances [1]. The second algorithm is q-Planted SAT [12], which plants a solution in a random
CNF instance and tries to hide it by altering the polarity of the literals according to the parameter
q. We set the values of q to the ones that for a given k balance the number of positive and negative
literals, as computed in a previous SAT competition [4]. The third algorithm is Balanced SAT, and
the last one is our No-Triangle CNF.

We tested the four algorithms on 3-CNF instances of sizes n = 175, n = 200, and n = 225, with the
results presented in Figure 1, 2, and 3 respectively. To capture the most interesting instances, that is
the ones around the peak of difficulty, we varied the number of clauses fromm = 3n tom = 5n, with
a step of 10. The X axis represents the ratio r equal to the number of clauses divided by the number
of variables, while the Y axis represents CPU time. Each point in the Figures represents the average
of 20 instances. Each instance was solved by four different solvers: Lingeling 18.05 [6], CaDiCal
18 [6], Glucose 4.1 [3], and MapleLCMDistChronoBT [17]. As is the custom in SAT competitions,
only the lowest time of the four was kept for each individual instance. Experiments were conducted
on a Dell PowerEdge R410 with an Intel Xeon E5620 processor.

The general behavior is the same for all three sizes: the peak of difficulty for No-Triangle CNF is
about as tall as the one for Balanced SAT and occurs at a very different ratio (precise results can be
found in Table 1). In fact, for 3-CNF instances with at least four times as many clauses as variables,
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Data: Three integers k , n, andm.
Result: A k-CNF instance with n variables v1,v2, . . . ,vn andm clauses C1,C2, . . . ,Cm .

1 Start with I , a CNF instance withm empty clauses C1,C2, . . . ,Cm ;
2 for i ← 1 tom do
3 for j ← 1 to k do
4 Pick the variable v that occurs the fewest in I so far;
5 if several variables are tied then
6 for each tied variable do
7 Compute the number of repeated pairs added by introducing the variable in Ci ;
8 end
9 Pick the variable v with the smallest number;

10 if several variables remain tied then
11 for each tied variable do
12 Compute the number of constraint triangles added by introducing the

variable in Ci ;
13 end
14 Pick the variable v with the smallest number;
15 end
16 end
17 Add the literal v to Ci ;
18 Increment the number of occurrences of v by 1;
19 Update the database of variable pairs present in I ;
20 Update the database of incomplete constraint triangles present in I ;
21 end
22 end
23 for i ← 1 to n do
24 With probability 1

2 , change the first occurrence of vi in I to a negative literal;
25 Set each subsequent occurrence of vi to the negation of the previous occurrence;
26 end
27 return I ;

Algorithm 1: No-Triangle CNF generator.

No-Triangle CNF instances are for all three sizes one order of magnitude harder then Balanced SAT
instances.
It is important to note that while the time needed to determine whether a given CNF instance

admits a solution is solver dependent (hence why we used four different solvers), the answer itself is
not. In other words, while the precise height of the peak of difficulty for a particular solver depends
on a number of parameters, its location will always be at the transition between satisfiability and
unsatisfiablity [16]. To illustrate this phenomenon, we show in Figure 4 where exactly the phase
transition takes place for Balanced and No-Triangle 3-CNF instances. This corroborates what we
observed in the previous Figures and shows that the differences in behavior between the two
methods come from the instances, not from the solvers.

We suspect that as the number of variables increases, the behavior of No-Triangle CNF instances
diverges more and more from the one of Balanced SAT instances. Indeed, the maximum possible
number of edges in a graph is quadratic in the number of vertices, but because the arity k of the
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Fig. 1. Instance difficulty for 3-CNF instances with 175 variables.

Fig. 2. Instance difficulty for 3-CNF instances with 200 variables.

instances is fixed, the number of actually occurring variable pairs is linear (equal to 3m for k = 3).
Therefore it is easier to avoid repeated pairs for larger values of n, and the additional tie-breaker
from No-Triangle CNF will be used more often. This would explain why in our experiments the
peak of difficulty for No-Triangle CNF seems to grow faster as n increases than the one for Balanced
SAT.
Since we designed No-Triangle CNF to work for any arity, we also experimented on 4-CNF

instances. CPU time average plots for k = 4 and n = 100 can be found in Figure 5. The comparison
of phase transitions for this configuration is in Figure 6 and the exact values for the peaks of
difficulty are indicated, along with the ones for 3-CNF instances, in Table 1. We also present in
Figure 7 the results of experiments on 4-CNF instances with 120 variables, but since the runtimes
were prohibitely long for this size we imposed a timeout of 3600 seconds (one hour) for each
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Fig. 3. Instance difficulty for 3-CNF instances with 225 variables.

Fig. 4. Phase transitions for 3-CNF instances.

individual instance. The main properties observed in the 3-CNF tests are conserved in the 4-CNF
experiments: difficult No-Triangle CNF instances are at least as hard as difficult Balanced SAT
instances, and appear in a different constrainedness region. The only oddity is that while in 3-CNF
the peak of difficulty for No-Triangle CNF occurs after the one for Balanced SAT, in 4-CNF the
No-Triangle CNF peak occurs before the Balanced SAT one.
As a concrete example of how No-Triangle CNF can find difficult instances in constrainedness

regions where other generators only see easy instances, we present in Table 2, for each combination
of k and n featured in our experiments, detailed results for one particular number of clauses. So
for k = 3 and n = 175, there exists a number of clauses, namelym = 775, for which the average
No-Triangle CNF instance is ten times as hard to solve as the average Balanced SAT instance. As
n increases, we can find a value of m that improves further this ratio: for k = 3, n = 225, and
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Fig. 5. Instance difficulty for 4-CNF instances with 100 variables.

Fig. 6. Phase transitions for 4-CNF instances with 100 variables.

m = 1085, the average No-Triangle CNF instance is eighteen times as hard to solve as the average
Balanced SAT instance. Since these are averages, it is not guaranteed that No-Triangle CNF will
always generate an instance that difficult. However, perhaps more impressively, even the easiest
No-Triangle CNF instance for k = 3, n = 225, andm = 1085 is still more than ten times as difficult
to solve as the hardest Balanced SAT instance for the same parameters.
From our 4-CNF experiments, not only can we also pick a value of m that exhibits a clear

advantage in favor of No-Triangle CNF, but the difference is even starker. For n = 100 andm = 750,
the average No-Triangle CNF instance is more than eight thousand times as hard to solve as the
average Balanced SAT instance. And at the same number of clauses, the easiest No-Triangle CNF
instance among the twenty that we generated was still more than fifteen hundred times as difficult
to solve as the hardest instance among the twenty that Balanced SAT found. In fact, that easiest
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Fig. 7. Instance difficulty for 4-CNF instances with 120 variables.

Table 1. Comparison of the peaks reached by the generators.

Random CNF q-Planted SAT Balanced SAT No-Triangle CNF
CPU CPU CPU CPU

m (r ) time m (r ) time m (r ) time m (r ) time
(sec) (sec) (sec) (sec)

Average 775 .14 805 .04 635 36.22 745 21.50
k = 3 (4.4) (4.6) (3.6) (4.3)
n = 175 Median 775 .13 805 .04 635 44.02 725 27.03(4.4) (4.6) (3.6) (4.1)

Average 880 .49 900 .16 720 170.00 820 151.34
k = 3 (4.4) (4.5) (3.6) (4.1)
n = 200 Median 870 .48 900 .12 720 178.33 800 212.18(4.4) (4.5) (3.6) (4.0)

Average 985 1.43 965 .42 815 592.82 905 588.66
k = 3 (4.4) (4.3) (3.6) (4.0)
n = 225 Median 985 1.29 965 .34 795 706.74 895 758.50(4.4) (4.3) (3.5) (4.0)

Average 1000 12.73 1030 4.22 910 344.70 730 696.98
k = 4 (10.0) (10.3) (9.1) (7.3)
n = 100 Median 980 15.09 1030 3.25 890 434.43 730 807.04(9.8) (10.3) (8.9) (7.3)

No-Triangle CNF instance took more time to solve than the average instance at the peak of difficulty
for Balanced SAT with k = 4 and n = 100 (see Table 1).
Of course there also exist values for the number of clauses for which Balanced SAT beats No-

Triangle CNF. We do not claim that Balanced SAT is made redundant by No-Triangle CNF. What
we are claiming is that our algorithm succeeds in parts of the constrainedness map where existing
hard instance generators fail.
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Table 2. Examples of significant hardness differences between Balanced SAT and No-Triangle CNF. (TO)
denotes that the timeout limit was reached.

Balanced SAT No-Triangle CNF
Size #clauses CPU time (seconds) CPU time (seconds)

Average Highest Lowest Average
k = 3,n = 175 775 1.29 1.70 7.09 12.89
k = 3,n = 200 870 7.94 12.33 86.11 98.98
k = 3,n = 225 1085 5.29 7.42 76.55 94.61
k = 4,n = 100 750 .08 .33 519.98 671.72
k = 4,n = 120 980 14.20 48.20 3600.00 (TO) 3600.00 (TO)

Table 3. Solver score by instance size. For each generator/size combination, the number of points scored by
a solver indicates the number of instances for which that solver was the fastest. Scores can be non-integer
because points are shared in case of ties.

Generator (k,n)
Lingeling CaDiCal Glucose MapleLCMDist
18.05 18 4.1 ChronoBT

Random CNF

(3,175) 26.66 189.66 413.66 90.00
(3,200) 81.75 247.91 377.91 112.41
(3,225) 175.25 240.41 400.41 103.91
(4,100) 155.08 229.25 566.08 69.58

q-Planted SAT

(3,175) 24.91 234.91 374.75 85.41
(3,200) 66.91 288.41 367.41 97.25
(3,225) 128.33 315.33 362.33 114.00
(4,100) 208.16 300.50 439.00 72.33

Balanced SAT

(3,175) 109.50 110.00 489.00 11.50
(3,200) 125.00 78.16 480.66 136.16
(3,225) 90.16 72.66 433.66 323.50
(4,100) 79.00 173.16 274.16 493.66

No-Triangle CNF

(3,175) 90.00 141.00 465.00 24.00
(3,200) 69.08 150.08 390.25 210.58
(3,225) 97.16 127.33 206.33 489.16
(4,100) 59.50 80.50 132.00 748.00

We display in Tables 3 and 4 some statistics of interest pertaining to the solvers used. For each of
the instances we generated, we added 1 point to the score of the solver that solved the instance in
the lowest time. If two (respectively three, four) solvers shared the lowest time for one particular
instance, they each got half (respectively a third, a fourth) of a point on that instance. We did not
include the 4-CNF instances with 120 variables, as the presence of instances on which all solvers
time out would have skewed the results.
Table 3 highlights a difference in performance between Glucose and Maple for large 3-CNF

instances. Glucose dominates Maple on Balanced SAT instances with k = 3 and n = 225, while the
reverse is true for No-Triangle CNF instances with the same parameters. In general Maple seems to
perform better on difficult instances. This is confirmed by Table 4 which shows that Maple was the
fastest solver on all 155 instances that required at least ten minutes to be solved. It is interesting to
note that more than two thirds of these instances were generated by No-Triangle CNF. No-Triangle
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Table 4. Solver score by instance difficulty. For each generator/difficulty combination, the number of points
scored by a solver indicates the number of instances for which that solver was the fastest. Scores can be
non-integer because points are shared in case of ties.

Generator CPU time Lingeling CaDiCal Glucose MapleLCMDist
(seconds) 18.05 18 4.1 ChronoBT

Random CNF <30 438.75 907.25 1758.08 375.91
≥30 0 0 0 0

q-Planted SAT <30 428.33 1139.16 1543.50 369.00
≥30 0 0 0 0
<30 394.66 410.00 1487.50 71.83

Balanced SAT 30-599 9.00 24.00 190.00 844.00
≥600 0 0 0 49.00
<30 297.75 472.91 1028.58 86.75

No-Triangle CNF 30-599 18.00 26.00 165.00 1279.00
≥600 0 0 0 106.00

CNF is also responsible for 58% of the moderately hard instances, the ones requiring between thirty
seconds and ten minutes to solve.

4 CONCLUSION
We have introduced No-Triangle CNF, an algorithm that can generate CNF instances with any
arity, number of variables, and/or number of clauses. In particular No-Triangle CNF can build
very difficult instances in constrainedness regions where no hard instance had been previously
generated. For some combinations of the aforementioned parameters, the easiest instance created
by No-Triangle CNF is still more than 1500 times as hard to solve as the most difficult instance
returned by the state-of-the-art Balanced SAT generator.
Our results show that No-Triangle CNF is useful at tightness values where other instance

generators fail to provide difficult instances. It can also be combined with other algorithms like
Balanced SAT to form an instance generator with a large, comprehensive scope. Additionally, we
believe that future work on constraint triangles could help solver heuristics for instances with a
low constraint graph cluster coefficient.
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