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Abstract

The majority of genome-wide association study (GWAS)-identified SNPs are located in noncoding regions of genes and are
likely to influence disease risk and phenotypes by affecting gene expression. Since credible intervals responsible for
genome-wide associations typically consist of �100 variants with similar statistical support, experimental methods are
needed to fine map causal variants. We report here a moderate-throughput approach to identifying regulatory GWAS var-
iants, expression CROP-seq, which consists of multiplex CRISPR-Cas9 genome editing combined with single-cell RNAseq to
measure perturbation in transcript abundance. Mutations were induced in the HL60/S4 myeloid cell line nearby 57 SNPs in
three genes, two of which, rs2251039 and rs35675666, significantly altered CISD1 and PARK7 expression, respectively, with
strong replication and validation in single-cell clones. The sites overlap with chromatin accessibility peaks and define
causal variants for inflammatory bowel disease at the two loci. This relatively inexpensive approach should be scalable for
broad surveys and is also implementable for the fine mapping of individual genes.

Introduction

The majority of genome-wide association study (GWAS)-identi-
fied SNPs are located in noncoding regions of genes and are likely
to influence disease risk and phenotypes by affecting gene ex-
pression [1]. Fine mapping of causal variants responsible for
these signals is important for understanding which genes medi-
ate phenotypic variation, dissecting mechanisms of action, as-
sembling regulatory networks, and designing therapeutic
interventions. It is recognized increasingly that GWAS peaks
have a complex structure, the resolution of which is limited by
linkage disequilibrium (LD) and the presence of multiple

independent signals at many loci [2–4]. Since GWAS peaks often
overlap with expression quantitative trait loci (eQTL) signals,
namely associations with gene expression, transcription-based
experimental screening approaches can be used to prioritize
likely causal variants within credible intervals that contain �100
polymorphisms. Two classes of approach have been reported,
Clustered Regularly Interspaced Short Palindromic Repeats-
Cas9CRISPR-Cas9) genome editing [5], and massively parallel re-
porter assays [6], but have not been developed to systematically
scan across the regulatory element(s) of a target gene.
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Previous high-throughput CRISPR-based approaches to dis-
secting the impact of noncoding DNA have focused on defining
cis-acting regulatory elements, rather than allelic effects of
polymorphisms. They have generally utilized selection strate-
gies followed by sequencing of barcodes from bulk cellular pop-
ulations, assaying for enrichment or depletion of guide RNAs
(gRNAs) targeting elements that are required for gene expres-
sion. In this way, Sanjana et al. [7] surveyed 700 kb around the
NF1, NF2, and CUL3 loci by selecting for resistance to inhibition
of BRAF in a melanoma cell line when transcription of the genes
is reduced, and Rajagopal et al. [8] tiled 40 kb around four genes
into which they had inserted a green fluorescence protein
marker to select for gene expression.

Extending this approach genome-wide, two groups have sur-
veyed function of the majority of binding sites for p53 and estro-
gen receptor-a in the context of oncogene-induced senescence
in a breast cancer cell line [9], and for FOXA1 and CTCF media-
tion of target gene activity in breast and prostate cancer cell
growth [10]. These experiments define enhancer elements re-
quired for essential gene function, and incidental findings re-
lated to the existence of polymorphisms in some elements are
reported, but they do not provide a mechanism to systemati-
cally scan candidate SNPs in credible intervals.

Here we report an adaptation of the CROP-seq (CRISPR drop-
let sequencing) protocol [11], for regulatory fine-mapping.
CROP-seq involves multiplex CRISPR-Cas9 transfection of a cell
line with dozens to hundreds of gRNAs targeting different
genes, followed by single-cell RNAseq (scRNAseq) transcrip-
tome profiling to monitor the consequences of inferred editing
of the target gene. Even though not all cells are edited, the abil-
ity to detect which gRNA was present in each sequenced cell
allows quantitative comparison of the effect of loss of function
of the gene. In expression CROP-seq, we instead transfect doz-
ens of gRNAs targeting different eSNPs in a credible regulatory
interval and use the scRNAseq to monitor abnormal expression
of linked transcripts (Fig. 1). Micro-deletion or mutation of the
SNP in hundred or more cells provides sufficient power to detect
up- or downregulation of expression consistent with most eQTL
effect sizes. In a single experiment, we screened 57 SNPs in
eQTL intervals of three genes associated with inflammatory
bowel disease (CISD1, PARK7, and DAP), and showed, with repli-
cation and subsequent validation, that in two cases a single SNP
located within an open chromatin peak is likely responsible for
the genetic association.

Materials and methods
gRNA design and cloning

Approximately 20 SNPs were chosen for each gene based on
prior eQTL mapping in peripheral blood mononuclear cells
(PBMC) [4], along with five positive controls targeting the coding
regions of the essential genes, TUBB and RUNX1, three negative
controls that have no perfect target in the human genome, and
one non-SNP targeting control. Each SNP was targeted for muta-
tion, micro-deletion, or micro-insertion, by one single gRNA
predicted in silico with COSMID software [12] to have a minimal
likelihood of inducing off-target effects. The chromosomal posi-
tion of each SNP and the flanking sequences were obtained
from dbSNP [13]. All 19-base sequences followed by the correct
Streptococcus pyogenes (S. pyogenes) Cas9 protospacer adjacent
motif (PAM) sequence (NGG) inside the window were screened.
gRNAs with GC rate >80% or <40% were filtered out to ensure
better cutting performance. The gRNAs with the shortest

distance from the cut site to targeted SNP (in most cases <10
bases) and minimal predicted off-target effects were used in our
study. All selected gRNAs (listed in Supplementary Table S1)
have only one perfect match to the whole reference genome,
and negative controls had no perfect match in the human
genome.

The CROPseq-Guide-Puro plasmid [11] (Addgene, Watertown
MA, catalog number #86708, originally from Christoph Bock’s
lab) was digested by Esp3I (NEB, R0734S). For each designed
gRNA sequence, a pair of annealed oligos was cloned into the
vector before the gRNA scaffold and after the U6 promoter.
Clones were pooled for Maxi-prep (Qiagen, Hilden Germany, cat-
alog number #12165) following the manufacturer’s protocol. The
gRNA distribution in the plasmid prep was validated by next-
generation sequencing.

In order to estimate the nature and rate of editing, single-
cell clones were generated from the same cell population that
was transduced by the two lentivirus vectors in preparation for
scRNAseq. Integrated gRNA sequences of each single-cell clone
were identified by amplifying a 300–400 bp fragment surround-
ing the relevant target SNP from 73 single-cell clones represent-
ing one of the 19 individual gRNAs. Next-generation sequencing
was used to characterize the edited sequences. Supplementary
Table S2 reports the exact edit in each clone and shows that
92% of the cells contained at least one edited allele, with 29%
showing a single edited allele. The remainder either had two
different edits, or only a single edit (implying biallelic editing, or
that the alternate allele was not amplified). Additional columns
show whether the target SNP was disrupted by a mutation
within 3 bp of the target (67% of all clones) or whether the target
SNP was directly disrupted (46%).

CROP-seq lentivirus library construction and
transfection

Lentivirus production from lentiviral vectors CROPseq-Guide-
Puro and lentiCas9-Blast [14] (Addgene, 52962) and was per-
formed following Addgene’s standard lentivirus production pro-
tocol using the Lenti-X 293 T cell line (Takara, Kusatsu Japan,
catalog number #632180). LentiCRISPRv2GFP [15] (Addgene, cat-
alog number #82416) was used as the reporter in each transfec-
tion. Lentivirus was pelleted by using L-90K ultracentrifuge
(with SW32-Ti rotor, 25 000 rpm for 1.5 h at 4�) and dissolved in
100 ll 1�PBS.

Spinfection of HL60/S4 was performed according to the pro-
tocol from Feng Zhang lab [16]. Cells were seeded in a 24-well
plate at a density of 1� 106/ml with 5 lg/ml of polybrene (EMD
Millipore, Burlington MA, catalog number TR-1003-G). Up to 10
microliter (ll) of concentrated lentivirus was then added to each
well, and cells were centrifuged at 1200� g for 1.5 h at 33�C.
HL60/S4 cells were first transduced by CROPseq-Guide-Puro len-
tivirus. Twenty-four hours after spinfection, cells were replated
at a density of 5� 105/ml with 2 lg/ml puromycin
(SigmaAldrich, P8833) selection for 8 days or until no viable cells
were observed. Cell viability was monitored every 24 h, the me-
dia was changed every 48 h, and cell density was maintained
under 1� 106/ml. The multiplicity of infection (MOI) was calcu-
lated, and the group with the least nonzero MOI was marked as
HL60/S4-PuroR and used for downstream experiments for
achieving optimal single gRNA assignment in the cell
population.

After 3 days of recovery in regular culture media, HL60/S4-
PuroR was transduced by lentiCas9-Blast lentivirus using spin-
fection with the same protocol as the CROPseq-Guide-Puro
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lentivirus transduction. Twenty-four hours after spinfection,
cells were plated at a density of 5� 105/ml with 10 microgram
(lg) / ml blasticidin (Research Products International, Mt
Prospect IL, catalog number B12200) selection for 7 days. After
3 days of recovery, cells were further selected by dual drug se-
lection for 3 days (1 lg/ml puromycin and 5 lg/ml blasticidin) to
remove residual nonpuroR-blastR cells. Cells were then cultured
in normal media for 10 days for global gene expression recovery.

Single-cell RNA sequencing and data processing

Single-cell RNA sequencing libraries were prepared using 10X
Genomics (Pleasanton, CA, USA) Chromium single-cell 30 re-
agent kit V2 (PN-120267) and V3 chemistry (PN-1000092) with
fresh cells for Replicate 1 and Replicate 2, respectively. The av-
erage cDNA library size was 484 bp and 505 bp for Replicate 1
and Replicate 2, respectively. Sequencing was performed on an
Illumina NextSeq 550 system in high-output mode, generating
paired-end libraries (28 bp for read1 and 98 bp for read2). Raw
sequence data were first de-multiplexed from BCL files into
FASTQ files by using “cellranger mkfastq”, with 10X Cell Ranger
software. The human reference genome (hg38) was supple-
mented with 67 gRNA artificial chromosomes, each of which

includes 241 bp U6 promoter sequences, 8 bp gap sequences be-
tween U6 promoter and gRNA, 20 bp gRNA sequences and
261 bp backbone sequences downstream of the gRNA. This 67
gRNA extended hg38 was indexed by “cellranger mkref” with
extension “.fa” and “.gtf” files as input. Single-cell gene counts
were generated by “cellranger count” by aligning reads to the
extended hg38 by STAR aligner [17] with default settings. The
estimated total number of cells detected was 8671 and 10 087 for
Replicate 1 and Replicate 2, respectively. The average total se-
quencing read depth per cell were 58 413 and 45 636 for
Replicate 1 and Replicate 2, respectively.

Each cell was distinguished by a cell barcode and a gRNA se-
quence, and in the majority of cases, a single gRNA was
uniquely assigned to each cell (Fig. 2A). To confirm that the
scRNAseq profiles adequately represent rates of lentiviral trans-
formation, we amplified and sequenced the integrated gRNA se-
quence from 96 single-cell derived CRISPR-Cas9 clones,
observing a similar distribution of gRNAs (Fig. 2B).

The count of unique molecular identifiers (UMIs) for each
gRNA per cell was quantified by “cellranger count.” The gRNA-
cell expression matrix was extracted from the cell-gene expres-
sion matrix. Only cells with a single gRNA expressed were in-
cluded in the downstream analysis. If the gRNA UMI count was

Figure 1: Experimental design of expression CROP-seq screening of eSNPs. (A) SNPs were selected with various eQTL P-values from one or two credible intervals for

each eGene. Additional SNPs in low LD with the credible interval were selected as control SNPs. Each SNP was targeted by a single gRNA with minimal predicted off-tar-

get effect. The horizontal black line represents a hypothetical locus with exons indicated by solid blocks. (B) The Cas9 editing site may be a few bases away from the

targeted SNP and can introduce four possible genetic alterations: deletion of both the cutting site and target SNP; insertion; deletion of only the cutting site; and muta-

tion of the target SNP. (C) Pooled CROP-seq lentiviral libraries with 67 gRNA were transduced into the HL60/S4 cell line. Most cells were transduced with a single gRNA.

Red, green, yellow, and blue represent four different gRNAs. A few cells have zero (gray cell) or multiple gRNAs. After 10X single-cell RNA-seq identified the gRNA of

each cell, differential expression of the linked transcript is evaluated between cells with the gRNA relative to cells with all other gRNAs.
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>0, it was coded as 1, otherwise coded as 0. This updated gRNA-
cell identity matrix was appended to the cell gene expression
matrix, providing the gRNA assignment for each uniquely
assigned cell.

Expression data quality control and normalization

The R package Seurat V3.0 [18] downloaded from https://github.
com/satijalab/seurat was used for scRNAseq expression data
processing and analysis. Low-quality cells with <200 genes
expressed as well as lowly expressed genes detected in fewer
than six cells were filtered out. Next, cells that had between
2000 and 7000 expressed UMIs and cells having <25% mitochon-
drial counts were retained. After quality control, 8192 cells and
16 372 genes were kept for Replicate 1, and 8921 cells and 16 407
genes were kept for Replicate 2. Then gene expression measure-
ments were normalized by dividing by the total UMI counts and
multiplying by the scaling factor 10 000, and transformed to log-
arithm base 2.

Linear dimensional reduction principal component analysis
(PCA) was first performed with the top 2000 identified highly
variable genes and default settings in Seurat [18]. The
“JackStraw” function implemented in Seurat was used to deter-
mine the significant PCs. Nonlinear dimensional reduction by
uniform manifold approximation and projection (UMAP) [19]
was then performed based on the top 20 significant PCs with de-
fault settings. Each cell was assigned a score summarizing ex-
pression of G2/M and S phase gene markers implemented in

Seurat package, and thereby classified into either G2M, S, or G1
phase according to its cell cycle score. The UMAP projection in
Supplementary Fig. S1 suggests some clustering of cells by cycle
identity (f) which also correlates with read depth (e) and number
of detected genes (d). However, individual transcripts do not
cluster with respect to these properties (a–c).

Hypothesis testing

While more complex models, e.g., cell cycle fitting, or matching
cells according to UMI count, were considered, they did not
change the conclusions. We, therefore, report the simplest sta-
tistical approach to hypothesis testing. Each of the candidate
eSNPs from one credible interval was fit with the normalized
expression of its respective target eGene. Univariate linear re-
gression was performed with “lm” function in R. Student’s t-test
was conducted to test the null hypothesis that the coefficient of
eSNP equals to zero in the regression. Bonferroni correction was
applied for the simultaneously performed independent t-tests
within each locus, namely alpha¼ 0.05 divided by 20 tests per
gene for a gene-wise nominal adjusted critical value of 0.0025.

Validation in CRISPR edited cells with single gRNAs

We further validated the effects of the two identified eSNPs on
expression of the target genes CISD1 and PARK7 with two single
gRNA approaches. First, HL60/S4 cells were transduced by
lentiCas9-Blast and CROPseq-Guide-Puro lentivirus with the
same gRNAs targeting rs2251039, rs35675666, or a negative

Figure 2: Guide RNA distributions. (A) The distribution of number of gRNA per cell detected from scRNAseq. (B) Similar distributions were observed for amplified gDNA

insertions in 96 single-cell clones. (C) Histogram showing the number of cells containing each gRNA in the two replicates. (D) Raw read counts of each gRNA in the

pooled library with respect to the candidate eSNPs or negative controls. (E) Number of cells assigned to each gRNA in scRNAseq shows a similar profile. (F) Log2 ratio of

normalized RNA to DNA implying no deviation from expected equivalence, except for positive controls in the essential genes RUNX1 and TUBB.
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control, using the same protocol as described before but as indi-
vidual gRNAs in three separate transfection experiments. DNA
was extracted from the bulk edited cells, the targeted regions
were amplified by PCR, and genotypes were assessed by Sanger
Sequencing (Eurofins Genomics) using the Synthego ICE strat-
egy [20]. Supplementary Table S4 shows the proportions of most
commonly edited alleles at the two loci, accounting for 87% of
the rs2251039 and 79% of the rs3567566 edits. In both cases, the
bulk of the edits are micro-insertions or micro-deletions (indels)
indels adjacent to the SNP. Transcript abundance in duplicate
bulk RNA extracts was estimated by real-time quantitative re-
verse transcription-polymerase chain reaction (qRT-PCR).

Second, these bulk edited cell suspensions were single-cell
sorted and seeded into 96-well plates with standard culture me-
dia and cultured for 14 days. Half of the cells for each single-cell
clone were taken at Day 7 for genotyping using next-generation
sequencing of the targeted region. From these, a set of single-
cell clones that expanded successfully and had the SNP re-
moved/affected were chosen for qRT-PCR, including seven
rs22510396 gRNA-edited clones, six rs35675666 gRNA-edited
clones, and four clones edited with a nontargeting negative con-
trol gRNA. The sequences of the targeted alleles are shown in
Supplementary Table S5. RNA from each selected single-cell
clone was extracted using a RNeasy Mini Kit (Qiagen, cat. no.
74104) and reverse transcribed with iScriptTM cDNA Synthesis
Kit (Biorad, cat. no. 1708891) following standard protocols. Cycle
thresholds for CISD1, PARK7, GAPDH, and ACTB were quantified
by qRT-PCR with three technical replicates. The 2�DDCt method
was used to analyze the qRT-PCR results, in which gene expres-
sion in cells with gRNA targeting CISD1 or PARK7 was normal-
ized by the average of corresponding expressions in negative
controls as well as the average of two housekeeping genes.
Similar results were obtained with each single control gene.

Results

Multiplex CRISPR-Cas9 editing of myeloid HL60/S4 cells, fol-
lowed by single-cell RNA sequencing (scRNAseq), was used to
monitor the impact of candidate regulatory SNP disruption on
gene expression of three genes in a single experiment. We
screened 57 candidate SNPs along with 10 control SNPs, using
lentiviral transfection of a single-cell clone of the HL60/S4 mye-
loid human cell line. Approximately 20 SNPs were chosen for
each gene based on prior eQTL mapping in PBMC [4], along with
five positive controls targeting the coding regions of the essen-
tial genes TUBB and RUNX [21], three negative controls that have
no perfect target in the human genome, and one non-SNP tar-
geting control. Each SNP was targeted for mutation, micro-
deletion or micro-insertion, by one gRNA predicted to have a
minimal likelihood of inducing off-target effects [12]. Two lenti-
viral vectors were used to successively infect HL60/S4 cells, the
first one encoding both the puromycin resistance gene, and a
single gRNA (positioned such that transcripts containing the
guide would be captured by RNAseq), the second encoding both
a blasticidin resistance gene and the Cas9 enzyme. This design
facilitates identification of which guide(s) from the pool of 67
guides in the transformation mix, each single cell has taken up.

Each cell was distinguished by a cell barcode and a gRNA se-
quence, and in the majority of cases a single gRNA was uniquely
assigned to each cell (Fig. 2A). To confirm that the scRNAseq
profiles adequately represent rates of lentiviral transformation,
we amplified and sequenced the integrated gRNA sequence
from 96 single-cell-derived CRISPR-Cas9 clones, observing a
similar distribution of gRNAs (Fig. 2B). The distribution of cells

per unique guide ranged from 10 to 550, with an average of
117.3 6 66.5 cells, ensuring sufficient statistical power to detect
eQTL with moderate to high effect sizes (Fig. 2B). Furthermore,
each of the 67 gRNAs was evenly distributed in the transfection
mix of cloned DNA plasmids. There were no significant fold
changes in guide abundances in scRNAseq relative to DNA plas-
mid levels, with the exception of the essential genes RUNX1 and
TUBB (Fig. 2D and E). These results confirm the efficiency of
Cas9-mediated editing and imply that disruption of the regula-
tory regions of the three target genes did not compromise cell
viability.

We characterized the transcriptional profiles of 6358 and
6974 single gRNA assigned cells in two biological replicates,
with on average 58 413 and 45 636 sequencing reads per cell.
Cells with two or more gRNAs were excluded from the eQTL
analysis. UMAP projection shows that the expression of CISD1,
DAP, and PARK7 was uniformly allocated among the clusters
(Supplementary Fig. S1A–C). There was some clustering of the
cells with respect to total number of reads and of UMI, which to
some extent correlates with cell cycle stage (G1, S, or G2/M;
Supplementary Fig. S1D–F), while a small number of low-
transcript abundance cells were also excluded from further
analysis. Figure 3A shows that cells with a single gRNA (e.g., tar-
geting to rs2251039) (orange) and cells with gRNAs other than
the one targeting to rs2251039 (blue) were also evenly distrib-
uted with respect to the clustering.

Univariate linear modeling was sufficient to resolve individ-
ual eSNP effects observed in two replicates of the experiment
conducted several months apart. In the first replicate, two SNPs,
one in CISD1 (rs2251039) and one in PARK7 (rs35675666) were
identified as putatively causal (P�10�6 and P< 10�20; both with
Bonferroni corrected P< 0.0025). The same two SNPs replicated
in the second experiment, at similar significance levels (Fig. 3B
and C). Only two other nominally significant associations were
observed, in a single replicate at DAP and a single replicate at
CISD1. Moreover, we also examined if the knockout or mutation
of targeted SNP would also influence the expression of adjacent
genes. We tested the association between CISD1 eSNPs with
IPMK or UBE2D1 expression, as well as between PARK7 eSNPs
and ERRFI1 (TNFRSF9 abundance was too low to assess), and be-
tween DAP eSNPs and ANKRD33B expression. None of the candi-
date eSNPs showed significant association with the nearby
transcripts in either replicate (Supplementary Table S3).

Both of the significant SNPs were also among the most sig-
nificant hits in the CAGE study that motivated sampling of the
three genes [4]. Further evidence that they are likely causal is
provided by the observation that they both lie under chromatin
accessibility assay peaks. Figure 3D and E show the location of
each assayed SNP at CISD1 and PARK7 relative to ATACseq and
DNase-seq (ENCSR000ENU) profiles of HL60/S4 cells [22]. The
majority of the nonsignificant expression CROP-seq SNPs lie be-
tween ATAC or DHS sites. Furthermore, rs2251039 is located
just 28 bp upstream of the transcription start site of CISD1 and is
within a binding motif for the Bhlhe40 transcription factor, a
known regulator of cytokine production in T-cells [23].

The function of both SNPs was validated using qRT-PCR on
both bulk edited cells and in single-cell clones, with results il-
lustrated in Supplementary Fig. S2. Bulk transfection of HL60/S4
cells with single guides resulted in downregulation of the asso-
ciated CISD1 and PARK7 transcripts relative to cells transfected
with nontargeting control gRNAs to a similar degree as inferred
in the expression CROP-seq assays. More precise evidence for
downregulation of gene expression after disruption of the tar-
geted SNP was obtained by qRT-PCR of six single-cell clones
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containing indels in or adjacent to rs35675666 in PARK7, or
seven single-cell clones containing indels in or adjacent to
rs2251039 in CISD1. Relative to expression in four nontargeting
control clones and normalized to the unaffected housekeeping
genes GAPDH and ACTB with the 2�DDCt method [24], all targeted
transcripts showed between 20% and 87% reduced abundance,
with P< 0.005 for both genes.

Discussion

Published genome-editing strategies for interrogating regulatory
elements either utilize CRISPRi or CRISPRa to inhibit or activate
transcription [25, 26], or rely on assays that select for essential
gene function [7, 9, 10] or reporter gene expression [8]. Neither ap-
proach is suitable for systematically screening the function of
each of the candidate SNPs in a credible interval of a typical gene.
Massively parallel reporter assays have been used to this end
more successfully. For example, Ryan Tewhey et al. [27] evaluated
32 373 variants at 3642 eQTL by inserting 180 bp oligonucleotides

encompassing each SNP in front of a minimal promoter, finding
842 polymorphisms that drive reporter expression in a lympho-
blast cell line at different levels. An even larger scale experiment
by van Arensbergen et al. [28] surveyed 5.9 million variants,
namely 57% of all known common variants in the human ge-
nome, by associating short DNA fragments with a barcode and
assaying tag abundance in hepatic and erythroid cell lines. They
identified over 30 000 candidate eSNPs, most cell type specific,
and described enrichment with various chromatin features.
Impressive as these studies are, there is always the caveat that
enhancer activity outside normal chromatin context may not be
accurate, and perusal of the SuRE database [28] suggests that
many sites have large but nonsignificant effects since the major-
ity of the cloned fragments do not drive expression. Hence, false-
negative rates are not known, and complementary assays that
systematically interrogate credible intervals in the same pro-
moter context should also be informative.

Our approach is to directly measure expression of a gene after
genome editing of a set of regulatory polymorphisms. Targeted

Figure 3: Identification of causal variants by expression CROP-seq. (A) Nonlinear dimensional reduction of 20PCs of single-cell transcriptome profiles by UMAP in

Seurat (18). Cells are color coded as orange rs2251039 gRNA; blue gRNAs other than rs2251039; gray without any gRNA. Excluded cells with abnormally low number of

UMI indicated by the dashed circle. (B, C) Violin plots show kernel density distributions of the expression of normalized log2 CISD1 and PARK7 UMI counts of cells with

(þ) or without (�) gRNAs targeting rs2251039 or rs35675666. Boxplots show the median, first and third quantiles of the data. (D, E) Chromatin accessibility of identified

expression CROP-seq peaks for CISD1 and PARK7. Top and middle histograms show HL60 ATAC-seq (GSM2083754) peaks and HL60 DNase-seq (ENCSR000ENU) peaks,

respectively. The third panel shows the negative log10 P-value of student’s t-test statistic corresponding to the genomic location of the tested SNPs in two biological

replicates, with the gene-wise Bonferroni adjusted P¼0.0025 threshold indicated by the dashed line. The bottom panel is a schematic of all gene transcripts annotated

from the UCSC gene table (hg38). Red arrows point to the two inferred causal eSNPs in both replicates.
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reporter assays analyzing RNA from bulk preparations of clonal
cell lines have low power to resolve typical eQTL effects that ex-
plain in the range of 10–20% of the variance of the target gene.
The CROP-seq single-cell eQTL screening strategy gains power
from the sequencing of thousands of cells in parallel. The effect
size of rs2251039 in CISD1 corresponds to a reduction of �0.5
standard deviation units due to gene editing, equivalent to an
eQTL explaining between 5% and 10% of the variance (depending
on the allele frequency and assumptions about whether one or
both alleles are disrupted in the CROP-seq). The much larger
rs35675666 effect at PARK7 could correspond to a 3-times larger
effect eQTL, or may reflect more efficient gene editing by the par-
ticular gRNA, which appears to create large deletions encompass-
ing the SNP (Supplementary Table S2).

Interestingly, rs35675666 is located in the first intron of the
PARK7 transcript and is a GWAS SNP for ulcerative colitis
(P¼ 5� 10�9) and inflammatory bowel disease (P¼ 1� 10�15) [29].
Although McCole [30] argued that ERRF11 is a strong candidate
gene in the interval due to the impact of ErbB receptor feedback
inhibition on epithelial apoptosis and possibly barrier function,
the absence of effect on ERRF11 transcript abundance calls into
question that inference and instead promotes PARK7 as the
likely causal gene. PARK7 encodes a C56 peptidase family mem-
ber that has been shown to function as a regulator of mitochon-
drial respiration and lysosomal function [31]. Autosomal
recessive loss of function leads to early-onset Parkinson’s dis-
ease, and reduced expression may conceivably disrupt autoph-
agy or oxidative stress sensing, both of which are implicated in
ulcerative colitis [32].

In theory, expression CROP-seq should be powered to fine
map eSNPs within credible intervals that explain just a few per-
cent of the expression of a target gene. We were able to confirm
the identity of autoimmune disease-associated GWAS variants
in two loci, but did not detect the third eQTL or resolve the sec-
ondary associations that are nevertheless present at each of the
loci we tested. Comprehensive fine mapping will often require
�100 gRNAs per gene, but is well within the scope of the experi-
mental pipeline described here. Limitations include the inability
to target all SNPs due to absence of appropriate PAM sequences,
reduced power for genes expressed at levels close to the limit of
detection in scRNAseq, and appropriateness of the cell line(s)
chosen for the assay. Replication is likely to be important for
the confident identification of relatively small effect eSNPs, par-
ticularly given that cell passaging, mutation, and random vari-
ability during cell culture can affect the transcriptional
background [33]. Future experiments may also use prime editing
[34] to specifically replace one allele with the alternate allele,
rather than inducing mutations at or near the site. Finally, we
also show that integration with functional annotation data may
help to validate inferred eSNPs and identify the likely transcrip-
tion factors they bind. In all, our method facilitates the genetic
screening of noncoding variants and the transcriptional inter-
pretation of risk variants in the post-GWAS era.

Supplementary data

Supplementary data is available at Biology Methods and
Protocols online.
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