
UCC Library and UCC researchers have made this item openly available.
Please let us know how this has helped you. Thanks!

Title Characterisation and monitoring of forest disturbances in Ireland using
active microwave satellite platforms

Author(s) Malur Balaji, Preethi

Publication date 2020

Original citation Malur Balaji, P. 2020. Characterisation and monitoring of forest
disturbances in Ireland using active microwave satellite platforms. PhD
Thesis, University College Cork.

Type of publication Doctoral thesis

Rights © 2020, Preethi Malur Balaji.
https://creativecommons.org/licenses/by-nc-nd/4.0/

Item downloaded
from

http://hdl.handle.net/10468/10911

Downloaded on 2021-11-27T11:15:14Z

https://libguides.ucc.ie/openaccess/impact?suffix=10911&title=Characterisation and monitoring of forest disturbances in Ireland using active microwave satellite platforms
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://hdl.handle.net/10468/10911


 
 

 
 

Ollscoil na hÉireann, Corcaigh 

National University of Ireland, Cork 

 

 

 

CHARACTERISATION AND MONITORING OF FOREST 

DISTURBANCES IN IRELAND USING ACTIVE 

MICROWAVE SATELLITE PLATFORMS 

 

Thesis presented by 

PREETHI MALUR BALAJI, B.E., M.Sc. 

for the degree of 

Doctor of Philosophy 

 

University College Cork 

DEPARTMENT OF GEOGRAPHY 

Head of School/Department: Kieran Hickey 

Supervisors: Dr. Fiona Cawkwell 

               Dr. Ned Dwyer 

2020 

Research funded by Department of Agriculture, Food and the Marine 



 
 

 
 

 

 

 

 

 

DEDICATED TO MY AWE-INSPIRING PARENTS, 

TO THE COVID FRONTLINERS AND TO ALL THE 

COVID-19 VICTIMS WHO LOST THEIR LIVES 

DURING THE PANDEMIC 2020!  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

i 
 

Contents 

  

List of Figures.……………………………………………………………………….....v 

List of Tables………………………………………………………………………….viii 

Acronyms………………………………………………………………………………..x 

Abstract…………………………………………………………………………………xi 

Acknowledgements…………………………………………………………………….xv 

1 General Introduction ............................................................................................1 

 Forests ....................................................................................................................... 2 

 Climate change and role of forests as a carbon sink .................................................... 3 

1.2.1 Tackling climate change – global context ........................................................... 4 

1.2.2 Importance of forests as carbon sinks ................................................................. 6 

 Forests in Ireland ....................................................................................................... 7 

1.3.1 Forest species in Ireland ..................................................................................... 9 

 Forest Carbon reporting system in Ireland ................................................................ 10 

 Forest disturbances and their impact on forest carbon stock ...................................... 11 

1.5.1 Importance of forest monitoring in Ireland........................................................ 12 

 Remote Sensing technology – potential and scope in forest change monitoring......... 13 

 Research Rationale .................................................................................................. 15 

1.7.1 Relevance of the work to End Users ................................................................. 16 

 Research objectives .................................................................................................. 17 

2 Monitoring and Characterizing Forest Disturbances: A review of common 

approaches used ......................................................................................................... 19 

 Introduction ............................................................................................................. 20 

 Microwave remote sensing ....................................................................................... 20 

2.2.1 Radar remote sensing of forests – basic theory .................................................. 21 

 Change detection techniques .................................................................................... 26 

2.3.1 Algebra-based .................................................................................................. 28 

2.3.2 Transformation based ....................................................................................... 29 

2.3.3 SAR Interferometry based ................................................................................ 31 

2.3.4 Classification based .......................................................................................... 32 

2.3.5 SAR Texture .................................................................................................... 38 

2.3.6 Others .............................................................................................................. 39 

 Concluding remarks ................................................................................................. 40 



 

ii 
 

3 Study Area and Datasets..................................................................................... 42 

 Introduction ............................................................................................................. 43 

 Description of Study Sites ........................................................................................ 43 

3.2.1 Topography ...................................................................................................... 43 

3.2.2 Forest cover ..................................................................................................... 45 

3.2.3 Climate ............................................................................................................ 47 

 SAR Data acquisition and pre-processing ................................................................. 49 

3.3.1 ALOS PALSAR ............................................................................................... 49 

3.3.1.1 ALOS PALSAR pre-processing.................................................................... 50 

3.3.2 ALOS -2 PALSAR-2 ....................................................................................... 51 

3.3.2.1 ALOS-2 PALSAR-2 pre-processing ............................................................. 53 

 Reference datasets.................................................................................................... 54 

4 Mapping the Fragmented Forest Covers of Ireland – A Systematic Approach

 57 

 Introduction ............................................................................................................. 58 

 Methodology ........................................................................................................... 58 

4.2.1 Backscatter analysis of PALSAR images .......................................................... 60 

4.2.2 Data preparation for classification .................................................................... 63 

4.2.2.1 Introduction to non-forests classes ................................................................ 63 

4.2.2.2 GLCM Texture measures.............................................................................. 64 

4.2.2.3 Polarimetric discriminators ........................................................................... 66 

4.2.2.4 Elevation, slope and aspect from DEM ......................................................... 66 

4.2.3 Training data collection .................................................................................... 67 

4.2.4 Random Forests Classification ......................................................................... 68 

4.2.5 Post-classification filtering ............................................................................... 72 

 Classification results and discussion ......................................................................... 73 

4.3.1 Classification maps of area1 and visual comparison between Forestry12 and SAR 

derived forest polygons.................................................................................................... 73 

4.3.2 Algorithm transferability to area2 and area3 ..................................................... 77 

4.3.3 Quantitative analysis ........................................................................................ 82 

4.3.3.1 Classification accuracies ............................................................................... 82 

4.3.3.2 Comparison of forest polygons from FIPS and SAR datasets – commission and 

omission errors ............................................................................................................ 85 

4.3.3.3 Forest area estimation ................................................................................... 85 

4.3.4 Discussion and conclusions .............................................................................. 86 



 

iii 
 

5 Characterisation and Monitoring of Forest Disturbances in Ireland using 

Divergence-guided ISODATA Clustering Algorithm ............................................... 92 

 Introduction ............................................................................................................. 93 

5.1.1 Working principles of divergence guided ISODATA clustering algorithm ........ 95 

 Methodology ........................................................................................................... 96 

Stage 1: ISODATA clustering guided by Divergence statistics and selection of suitable 

bands to be used for clustering ......................................................................................... 97 

 Detailed Methodology and Results ........................................................................... 98 

5.3.1 Stage 1: Selection of bands to be used for clustering ......................................... 98 

5.3.1.1 Experiment parameters: All the experiments for ISODATA clustering were run 

on Erdas Imagine version 10 ...................................................................................... 100 

5.3.2 Stage 2: Cluster Grouping .............................................................................. 105 

5.3.3 Stage 3 and Stage 4: Signature Analysis and Labelling; Use of reference data to 

aid labelling ................................................................................................................... 108 

5.3.3.1 Groups of clusters with less than 1 dB variation between the four years ...... 111 

5.3.3.1.1 Groups 1, 2 and 3: Misclassification ..................................................... 114 

5.3.3.1.2 Groups 4, 5, 6, 7: Mature and Young forests ......................................... 115 

5.3.3.2 Groups of clusters with greater than 1dB variation between four years ........ 116 

5.3.3.2.1 Group 8 and Group 9 – Drop of 4dB between two consecutive years..... 116 

5.3.3.2.2 Group 10 – Drop of 2dB between two consecutive years ....................... 125 

5.3.3.2.3 Groups 11, 12, 13 -  Increase in backscatter over the years .................... 128 

5.3.3.2.4 Group 14 – Increase and drop of 6-8 dB between two consecutive years 131 

5.3.3.2.5 Group 15 – A decrease of 2dB from 2007-2010 .................................... 132 

5.3.3.3 Final groups of clusters ............................................................................... 133 

5.3.4 Transferring the algorithm on the other two study areas (Area2, Area3) .......... 134 

5.3.4.1 Common groups identified by the algorithm across all study areas .............. 144 

 Discussion and conclusions .................................................................................... 147 

6 ALOS PALSAR Based Algorithm Transferability to ALOS-2 PALSAR-2 ... 151 

 Introduction ........................................................................................................... 152 

 Methodology ......................................................................................................... 153 

 Transition in the SAR pre-processing software and assessment of SAR speckle filters 

to be used .......................................................................................................................... 153 

 Backscatter analysis ............................................................................................... 155 

 Forest non-forest maps using RF classifier and evaluation ...................................... 159 

6.5.1 Post-classification filtering (PCF) ................................................................... 160 



 

iv 
 

6.5.2 Comparing Forest/Non-Forest maps with ALOS PALSAR derived maps and 

reference data ................................................................................................................ 162 

6.5.2.1 Visual analysis ........................................................................................... 162 

6.5.2.2 Quantitative analysis .................................................................................. 163 

6.5.2.2.1 Classification accuracies ....................................................................... 163 

6.5.2.2.2 Forest area estimation ........................................................................... 166 

 Forest disturbance maps using divergence guided ISODATA clustering approach .. 168 

6.6.1 Cluster groups ................................................................................................ 170 

6.6.1.1 Groups formed in Area1 ............................................................................. 170 

6.6.1.1.1 New signature pattern formed in Area1 ................................................. 175 

6.6.1.2 Groups formed in Area2 and Area3 ............................................................ 176 

 Deforestation monitoring ....................................................................................... 178 

 Discussions and conclusions .................................................................................. 181 

7 Conclusions and Recommendations ................................................................. 186 

 Conclusions ........................................................................................................... 187 

7.1.1 Contributions of this work .............................................................................. 189 

7.1.1.1 Machine learning classifiers for forest mapping .......................................... 189 

7.1.1.2 ISODATA clustering and dendrograms for signature definition .................. 189 

7.1.1.3 Transferability of algorithm between ALOS PALSAR and ALOS-2 PALSAR-

2 sensors 190 

7.1.2 Research constraints ....................................................................................... 191 

7.1.3 Recommendations for future work .................................................................. 192 

Appendix .................................................................................................................. 219 

 

 

 

 

 

 

 

 

 



 

v 
 

List of Figures 

 

Figure 1.1: Proportionate carbon stock in the five different pools in Irish forests in 2017 (Forest 

Service, 2018a) ................................................................................................................ 10 

Figure 3.1: DEM from OSi of 10m resolution .......................................................................... 44 

Figure 3.2:Study areas in the Republic of Ireland ..................................................................... 45 

Figure 3.3: Location of three meteorological stations for which 30 year average weather data are 

extracted .......................................................................................................................... 48 

Figure 3.4: SAR pre-processing steps ...................................................................................... 50 

Figure 3.5: PALSAR false color composites with HH backscatter in red band, HV backscatter in 

green band and the HH/HV backscatter ratio in the blue band for all the study areas. All 

data are in ITM projection ............................................................................................... 51 

Figure 3.6: ALOS-2 PALSAR-2 data frames that were ordered; the square boxes are the data 

frames covering the study areas ....................................................................................... 52 

Figure 3.7: PALSAR-2 false color composites with HH backscatter in red band, HV backscatter 

in green band and the HH/HV backscatter ratio in the blue band for all the study areas. All 

data are in ITM projection ............................................................................................... 53 

Figure 4.1: Flow diagram displaying three stages of methodology ........................................... 60 

Figure 4.2: Boxplots of L-band HH and HV backscatter γ⁰ for forest, non-forest and urban 

samples for study area1, 2 and 3 ...................................................................................... 62 

Figure 4.3: TD distance showing separability between classes for texture window ................... 65 

Figure 4.4: Location of training samples for Area1 .................................................................. 68 

 70 

Figure 4.5:  Variable Importance Plot for 2010 to select the optimal variables for classification70 

Figure 4.6: Effect of Mean GLCM texture measures on classification. The green lines indicate 

the forest boundaries of Forestry12 parcels (left images) and the blue lines refer to forest 

boundaries obtained by including the mean in RF classification (right images). The areas 

under the red circles show the “smoothing” effect of the mean filter. ............................... 71 

Figure 4.7: Land cover map (a) and forest/non-forest maps (b) derived from (a) from 2010 SAR 

image of Area1 (the red circle area is highlighted in figure 4.8)........................................ 74 

Figure 4.8: Zoomed-in extent of forest cover in area1 (b) 2007 (c) 2008 (d) 2009 (e) 2010; (a) is 

from Google Earth dated April 26, 2015; red circles highlight areas that undergo changes 75 

Figure 4.9: Zoomed-in extent of three regions displaying a visual comparison between 

Forestry12 polygons and SAR derived forest polygon outlines ......................................... 76 

Figure 4.10: Location of training samples (a) Area2 (b) Area3 ................................................. 78 

Figure 4.11: Land cover map (a) and forest/non-forest maps (b) derived from (a) from 2010 

SAR image of Area2 ....................................................................................................... 79 

Figure 4.12: Land cover map (a) and forest/non-forest maps (b) derived from (a) from 2010 

SAR image of Area3 ....................................................................................................... 80 

Figure 4.13: Zoomed in extent of selected regions in Area2 and Area3 displaying a visual 

comparison between Forestry12 polygons and SAR derived forest polygons .................... 81 

Figure 4.14: Inter-annual difference between SAR-derived forest estimates ............................. 88 

Figure 5.1: Main steps of an unsupervised classification .......................................................... 93 

Figure 5.2: Modifications made to unsupervised classification ................................................. 94 

Figure 5.3: The four stages of methodology ............................................................................. 98 



 

vi 
 

Figure 5.4: Divergence statistics plot derived on the 8 band raster stack for Area1 indicating 80 

as the optimal number of clusters to be used for further analysis .................................... 103 

Figure 5.5: Spatial clusters generated using ISODATA unsupervised clustering algorithm on 

Area1 using ALOS PALSAR HV and HH intensity bands over the four year (2007-2010) 

time-series ..................................................................................................................... 104 

Figure 5.6: Dendrograms showing cluster merges at different Euclidean distances, highlighting 

the 7 groups formed within the green circles for a y-axis value of 2.5 ............................. 107 

Figure 5.7: Final groups of clusters representing the different patterns within the previously 

mapped forest land ........................................................................................................ 109 

Figure 5.8: Application of sieve filter on the classified map ................................................... 110 

Figure 5.9: Removal of forest areas of less than 1.125 ha from classified map ....................... 110 

Figure 5.10: Signature patterns within cluster groups with less than 1 dB variation between 

consecutive years ........................................................................................................... 113 

Figure 5.11: Example of an arable land represented by cluster groups 1, 2 and 3 .................... 114 

Figure 5.12: An snippet of groups 4, 5, 6, 7 bound by FIPS polygon ...................................... 115 

Figure 5.13: (a)left: Signature means of group 8 clusters for HV; (b)right: signature means of 

group 9 clusters for HV. The black dotted lines mark two years between which the change 

has occurred. ................................................................................................................. 117 

Figure 5.14: upper: Group 8 clusters (change between 2009-2010) representing change in 2010 

as verified by the Felled polygon; lower: Group 9 clusters (change between 2008-2009) 

representing change in 2008 as verified by the Felled polygons ...................................... 119 

Figure 5.15: Illustration of a linear polygon ........................................................................... 122 

Figure 5.16: Example of a Google Earth image showing no change between 2006 and 2011-

marked as felled in 2009 in the Coillte felled polygon database ...................................... 123 

Figure 5.17: Signatures of Group 10 clusters ......................................................................... 126 

Figure 5.18: Examples of appearance of group 10 clusters within Coillte felled polygons ...... 126 

Figure 5.19: An example of  group 10 clusters indicating the possibility of thinning event ..... 127 

Figure 5.20: Weevils – a type of beetle that feed on young pine trees (taken during a field visit in 

April 2017) .................................................................................................................... 128 

Figure 5.21: Signature pattern of group 11 cluster.................................................................. 129 

Figure 5.22: A forest site showing recently planted trees under the red circles ....................... 129 

Figure 5.23: Signature pattern of group 12 cluster.................................................................. 130 

Figure 5.24: Signature pattern of group 14 clusters ................................................................ 131 

Figure 5.25: Signature pattern of group 15 cluster in both HV and HH band .......................... 133 

Figure 5.26: Final cluster groups and sub-divisions: G=Group; MF=Mature Forest; YF=Young 

Forest; CF1=Clear Fell (2009-2010); CF2=Clear Fell (2008-2009); PF=Plant Failure; 

TG=Tree Growth; AN=Anomaly; UN=Unknown .......................................................... 133 

Figure 5.27: Extract from the final cluster map showing spatial locations of the final cluster 

groups ........................................................................................................................... 134 

 136 

Figure 5.28: Divergence statistics plot dervied on Area2 indicating peaks at 74 and 83 clusters

 ...................................................................................................................................... 136 

Figure 5.29: Divergence statistics plot dervied on Area3 indicating peak at 80 clusters .......... 137 

Figure 5.30: Map of final groups of clusters of Area2 ............................................................ 142 

Figure 5.31: Map of final groups of clusters of Area3 ............................................................ 143 



 

vii 
 

Figure 5.32: Signature profiles of clusters in HV representing clear fells across all three 

areas;A1=Area,A2=Area2,A3=Area3. The black lines mark the period of change on the 

graph ............................................................................................................................. 144 

Figure 5.33: Boxplots for forest profiles across all areas of study for HV polarisation; A1 = 

Area1, A2 = Area2, A3 = Area3 .................................................................................... 145 

Figure 5.34: Signature profiles of clusters representing tree growth across all three areas 

;A1=Area,A2=Area2,A3=Area3 .................................................................................... 146 

Figure 6.1: Workflow of the methodology used to generate forests and forest change maps using 

PALSAR-2 data ............................................................................................................ 153 

Figure 6.2: Viusal comparison between (a)unfiltered, (b) De Grandi and (c) Lee speckle filtered 

ALOS PALSAR image .................................................................................................. 155 

Figure 6.3: Distribution of ALOS-2 PALSAR-2 HV γ° values across all areas and classes 

(forests, non-forests and urban) ...................................................................................... 156 

Figure 6.4: Distribution of ALOS-2 PALSAR-2 HH γ° values across all areas and classes 

(forests, non-forests and urban ....................................................................................... 157 

Figure 6.5: Distribution of ALOS PALSAR HV γ° values from Area1 - 2010 for forests, non-

forests and urban classes ................................................................................................ 158 

Figure 6.6: Variable Importance Plots generated by the RF classifier for (a)Area1, (b)Area2, 

(c)Area3 for ALOS-2 PALSAR-2 image classification .................................................. 160 

Figure 6.7: Comparison of a single forest patch derived from ALOS PALSR and ALOS-2 

PALSAR-2 before and after PCF ................................................................................... 161 

Figure 6.8: Visual analysis of selected SAR derived forest polygons from Area1 (2007-2016)162 

Figure 6.9: Visual analysis and comparison of ALOS-2 PALSAR-2 derived forest polygons with 

Forests12_16 dataset ..................................................................................................... 163 

Figure 6.10: Forest area estimates as derived from SAR and reference datasets for the period 

2007-2016 for the coincident ALOS PALSAR and ALOS-2 PALSAR-2 areas of Area1, 

Area2 and Area3............................................................................................................ 167 

Figure 6.11: Divergence statistics plot for Area1 derived from the 4-band raster stack, indicating 

80 as the optimal number of clusters to be used for further analysis................................ 169 

Figure 6.12: New cluster signatures identified from ALOS-2 PALSAR-2 clustering process .. 175 

Figure 6.13: Conversion of forest patches to wind turbines (a) Google Earth image – wind 

turbines highlighted by red circles – image from Area1-2012(b) forest patch as mapped 

from ALOS PALSAR image in 2010 (c) forest patch as mapped from ALOS-2 PALSAR-2 

image with red diamonds highlighting location of forest patches converted to wind turbines

 ...................................................................................................................................... 180 

 

 

 

 

 

 

 

 



 

viii 
 

List of Tables 

 

 

Table 1.1: Forest ownership in Ireland (Department of Agriculture, Food and the Marine, 2018)7 

Table 1.2: Forest area in Ireland (Department of Agriculture, Food and the Marine, 2018) ......... 8 

Table 1.3: Quantitative information on forest age and ownership  (Department of Agriculture, 

Food and the Marine, 2019) ............................................................................................... 9 

Table 2.1: Summary of SAR change detection approaches with relevance to forest monitoring 27 

Table 3.1: Forest cover information for selected study areas from 2019 ................................... 46 

Table 3.2: Species information for each county of the study area (NFI 2017) ........................... 46 

Table 3.3: 30 year average annual Temperature and Rainfall (1981-2010) records ................... 48 

Table 4.1: Impact of different post-classification filters on the overall accuracy ....................... 73 

Table 4.2: Classification accuracies for all land cover classes for Area1 where PA=Producer’s 

Accuracy, UA=User’s Accuracy, OA=Overall Accuracy ................................................. 82 

Table 4.3: Classification accuracies for all land cover classes for Area2 where PA=Producer’s 

Accuracy, UA=User’s Accuracy, OA=Overall Accuracy ................................................. 83 

Table 4.4: Classification accuracies for all land cover classes for Area3 where PA=Producer’s 

Accuracy, UA=User’s Accuracy, OA=Overall Accuracy ................................................. 83 

Table 4.5: Classification accuracies for forests and non-forest classes (area1) where 

PA=Producer’s Accuracy, UA=User’s Accuracy, OA=Overall Accuracy ......................... 84 

Table 4.6: Classification accuracies for forests and non-forest classes (area2) where 

PA=Producer’s Accuracy, UA=User’s Accuracy, OA=Overall Accuracy ......................... 84 

Table 4.7: Classification accuracies for forests and non-forest classes (area3) where 

PA=Producer’s Accuracy, UA=User’s Accuracy, OA=Overall Accuracy ......................... 84 

Table 4.8: Summary of the number of forest polygons in SAR and Forestry12 dataset ............. 85 

Table 4.9: Forest area estimates from SAR and Forestry12 datasets ......................................... 86 

Table 5.1: Different band combinations used for clustering experiments .................................. 99 

Table 5.2: Final band combination used for clustering and characterising the clusters ............ 101 

Table 5.3: Comparison of number of felling instances between Coillte felled polygons and SAR 

image clusters ................................................................................................................ 120 

Table 5.4: Polygon area based analysis .................................................................................. 120 

Table 5.5: Categories for missing polygons between the Coillte felled areas and SAR derived 

results ............................................................................................................................ 121 

Table 5.6: Signature patterns observed in Area2 and Area3 ................................................... 138 

Table 5.7: Comparison of number of felling instances between Coillte felled polygons and SAR 

image clusters ................................................................................................................ 139 

Table 5.8: Polygon based analysis for Area2 felling events .................................................... 139 

Table 5.9: Polygon based analysis for Area3 felling events .................................................... 139 

Table 5.10: Defined categories for missing polygons in Area2 ............................................... 140 

Table 5.11: Defined categories for missing polygons in Area2 ............................................... 140 

Table 5.12: Cluster groups and their labels for Area2 and Area3 ............................................ 141 

Table 6.1: ENL for different speckle filters ............................................................................ 154 

Table 6.2: Overall accuracies of land cover maps derived from ALOS-2 PALSAR-2 images . 164 

Table 6.3: Forests and Non-forests classification accuracies from ALOS-2 PALSAR-2 (PA= 

Producer’s Accuracy, UA=User’s Accuracy) ................................................................. 165 



 

ix 
 

Table 6.4: Commission and omission errors from ALOS-2 PALSAR-2 datasets compared with 

the Forests12_16 reference dataset ................................................................................. 166 

Table 6.5: Groups formed from ALOS-2 PALSAR-2, also found in ALOS PALSAR clustering 

results ............................................................................................................................ 171 

Table 6.6: Comparing the number of clear-fell instances derived from ALOS-2 PALSAR-2 with 

Coillte data (2015-2016) ................................................................................................ 172 

Table 6.7: Groups formed through the clustering process in Area1 from ALOS PALSAR and 

ALOS-2 PALSAR-2 datasets and percentage area ......................................................... 176 

Table 6.8: Groups formed through clustering process in Area2 from ALOS PALSAR and 

ALOS-2 PALSAR-2 datasets and percentage area ......................................................... 177 

Table 6.9: Groups formed through the clustering process in Area3 from ALOS PALSAR and 

ALOS-2 PALSAR-2 datasets and percentage area ......................................................... 178 

Table 6.10: Details of deforested areas between ALOS PALSAR and ALOS-2 PALSAR-2 

image acquisitions (2007-2016) ..................................................................................... 179 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

x 
 

ACRONYMS 

 

 

ALOS – Advanced Land Observing Satellite 
CORINE – Co-Ordinated Information on the Environment 
CLC – CORINE Land Cover  
DAFM – Department of Food, Agriculture and the Marine 
DEM – Digital Elevation Model 
DN – Digital Number 
ECV – Essential Climate Variable 
EO – Earth Observation 
ESA – European Space Agency 
EU – European Union 
FAO – Food and Agricultural Organization 
FBD – Fine Beam Dual Polarisation Mode 
FIPS – Forest Inventory and Planning System 
GHG – Green House Gas 
GLCM – Grey-Level Co-occurrence Matrix 
HH – Horizontal Transmit Horizontal Receive 
HV – Horizontal Transmit Vertical Receive 
IPCC – Intergovernmental Panel on Climate Change 
ISODATA – Iterative Self Organizing Data Analysis 
ITM – Irish Transverse Mercator 
JAXA – Japan Aerospace Exploration Agency 
MDA – Mean Decrease Accuracy 
MDG – Mean Decrease Gini 
NFI – National Forest Inventory 
OSi – Ordnance Survey of Ireland 
PALSAR – Phased Array L-band Synthetic Aperture Radar 
RADAR – Radio Detection and Ranging  
RF – Random Forests  
SAR – Synthetic Aperture Radar 
UNFCCC – United Nations Framework Convention on Climate Change  
 
 
 
 

 

 

 

 

 



 

xi 
 

 

 

 

 

Declaration 

  

  

 

This is to certify that the work I am submitting is my own and has not been submitted for 

another degree, either at University College Cork or elsewhere. All external references 

and sources are clearly acknowledged and identified within the contents. I have read and 

understood the regulations of University College Cork concerning plagiarism.  

  

  

    Preethi Malur Balaji 

 

 

 

 

 

 

 

 

 

 



 

xii 
 

ABSTRACT 

 

 

Forests are one of the major carbon sinks that significantly contribute towards achieving 

targets of the Kyoto Protocol, and its successors, in reducing greenhouse (GHG) 

emissions. In order to contribute to regular National Inventory Reporting, and as part of 

the on-going development of the Irish national GHG reporting system (CARBWARE), 

improvements in characterisation of changes in forest carbon stocks have been 

recommended to provide a comprehensive information flow into CARBWARE. The Irish 

National Forest Inventory (NFI) is updated once every six years, thus there is a need for 

an enhanced forest monitoring system to obtain annual forest updates to support 

government agencies and forest management companies in their strategic decision making 

and to comply with international GHG reporting standards. Sustainable forest 

management is imperative to promote net carbon absorption from forests. Based on the 

NFI data, Irish forests have removed or sequestered an average of 3.8 Mt of atmospheric 

CO2 per year between 2007 and 2016. However, unmanaged and degraded forests become 

a net emitter of carbon. Disturbances from human induced activities such as clear felling, 

thinning and deforestation results in carbon emissions back into the atmosphere. Funded 

by the Department of Agriculture, Food and the Marine (DAFM, Ireland), this PhD study 

focuses on exploring the potential of data from L-band Synthetic Aperture Radar (SAR) 

satellite based sensors for monitoring changes in the small stand forests of Ireland.  

Historic data from ALOS PALSAR in the late 2000s and more recent data from ALOS-2 

PALSAR-2 sensors have been used to map forest areas and characterise the different 

disturbances observed within three different regions of Ireland. Forest mapping and 

disturbance characterisation was achieved by combining the machine learning supervised 

Random Forests (RF) and unsupervised Iterative Self-Organizing Data Analysis 

(ISODATA) classification techniques. The lack of availability of ground truth data 

supported use of this unsupervised approach which forms natural clusters based on their 

multi-temporal signatures, with divergence statistics used to select the optimal number of 

clusters to represent different forest classes. This approach to forest monitoring using SAR 
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imagery has not been reported in the peer-review literature and is particularly beneficial 

where there is a dearth of ground-based information. When applied to the forests, mapped 

with an accuracy of up to 97% by RF, the ISODATA technique successfully identified 

the unique multi-temporal pattern associated with clear-fells which exhibited a decrease 

of 4 to 5 decibels (dB) between the images acquired before and after the event. The 

clustering algorithm effectively highlighted the occurrence of other disturbance events 

within forests with a decrease of 2±0.5dB between two consecutive years, as well as areas 

of tree growth and afforestation.  

A highlight of the work is the successful transferability of the algorithm, developed using 

ALOS PALSAR, to ALOS-2 PALSAR-2 data thereby demonstrating the potential 

continuity of annual forest monitoring. The higher spatial and radiometric resolutions of 

ALOS-2 PALSAR-2 data have shown improvements in forest mapping compared to 

ALOS PALSAR data. From mapping a minimum forest size of 1.8 ha with ALOS 

PALSAR, a minimum area of 1.1 ha was achieved with the ALOS-2 PALSAR-2 images. 

Moreover, even with some different backscatter characteristics of images acquired in 

different seasons, similar signature patterns between the sensors were retrieved that helped 

to define the cluster groups, thus demonstrating the robustness of the algorithm and its 

successful transferability. 

Having proven the potential to monitor forest disturbances, the results from both the 

sensors were used to detect deforestation over the time period 2007-2016. Permanent 

land-use changes pertaining to conversion of forests to agricultural lands and windfarms 

were identified which are important with respect to forest monitoring and carbon reporting 

in Ireland.  

Overall, this work has presented a viable approach to support forest monitoring operations 

in Ireland. By providing disturbance information from SAR, it can supplement projects 

working with optical images which are generally limited by cloud cover, particularly in 

parts of northern, western and upland Ireland. This approach adds value to ground based 

forest monitoring by mapping distinct forests over large areas on an annual basis. This 

study has demonstrated the ability to apply the algorithm to three different study areas, 

with a vision to operationalise the algorithm on a national scale. The main limitations 
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experienced in this study were the lack of L-band SAR data availability and reference 

datasets. With typically only one image acquired per year, and discrepancies and 

omissions existing within reference datasets, understanding the behaviour of certain 

cluster groups representing disturbances was challenging. However, this approach has 

addressed some issues within the reference datasets, for example locating areas for which 

a felling licence was granted but where trees were never cut, by providing detailed 

systematic mapping of forests. Future satellites such as Tandem-L, SAOCOM-2A and 2B, 

P-band BIOMASS mission and ALOS-4 PALSAR-3 may overcome the issue of limited 

SAR image acquisitions provided more images per year are available, especially during 

the summer months.  
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1 General Introduction 
 

“I walked among the seven woods of Coole: Shan-walla, where a willow-

bordered pond  Gathers the wild duck from the winter dawn; Shady Kyle-

dortha; sunnier Kyle-na-no, Where many hundred squirrels are as happy 

As though they had been hidden by green boughs Where old age cannot 

find them; Pairc-na-lee, Where hazel and ash and privet blind the 

paths...” – W.B.Yeats 
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 Forests 

 

orests are undoubtedly one of the most valuable resources on Earth covering 

one third of the land surface. Our planet is covered by 4 billion hectares of 

forests (Martone et al., 2018). The importance of forests cannot be 

underestimated. In terms of economic, social, ecological, environmental and aesthetic 

aspects, the services that forests provide to humankind are manifold and they also 

regulate the overall health of the planet. Being the most important part of the 

ecological cycle, forests are one of the natural carbon sinks, are havens for 

biodiversity, provide food, medicinal and forest products, regulate the hydrological 

cycle, protect soil resources, provide recreational uses, spiritual needs and aesthetic 

values.  

To emphasise the importance of forests to our planet, three inspiring quotes about 

forests by renowned personalities have been presented below: 

“The clearest way into the universe is through a forest wilderness” – John Muir 

“A nation that destroys its soils destroys itself. Forests are the lungs of our land, 

purifying the air and giving fresh strength to our people” – Franklin D. Roosevelt 

“The forest is a peculiar organism of unlimited kindness and benevolence that makes 

no demands for its sustenance and extends generously the products of its life activity; 

it affords protection to all beings, offering shade even to the axe-man who destroys it” 

– Gautama Buddha 

The majority of the world’s forests belong to tropical (comprising 50% of the world’s 

forests, occuring in areas where temperatures are relatively high), boreal (occuring 

exclusively in the Northern Hemisphere) and temperate biomes (occuring in the cool 

temperate regions of the Earth) (Abramovitz et al., 1998;  Landsberg and Waring, 

2014). According to the Food and Agricultural Organisation (FAO),  in the global 

context, forest is defined as  “Land spanning more than 0.5 hectares with trees higher 

than 5 meters and a canopy cover of more than 10 percent, or trees able to reach these 

thresholds in situ. It does not include land that is predominantly under agricultural or 

urban land use” (FAO, 2018). Forests are complex ecosystems that undergo human 

induced and natural changes which influence their interaction with the surroundings. 

F 
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This PhD study focuses on monitoring and understanding the kind of changes the 

forests in Ireland undergo using satellite imaging technologies. This chapter provides 

context on how these changes influence climate change and on the carbon reporting 

system in Ireland. 

 Climate change and role of forests as a carbon sink 

Climate change has been a major concern for a number of decades. Global warming 

is one of the most evident aspects of climate change which has caused many negative 

consquences on physical, biological, human and other systems on Earth. Global 

warming is the gradual increase in the temperature of the Earth’s atmosphere attributed 

to the enhanced greenhouse effect caused by the increased levels of greenhouse gases 

(GHGs) in the atmosphere which are mainly Carbon Dioxide (CO2), Methane (CH4), 

Nitrous Oxide (N2O) and Ozone (O3). In the report on understanding global warming 

by the Intergovernmental Panel on Climate Change (IPCC) (Intergovernmental Panel 

on Climate Change, 2018), it has been reported that as of 2017 human activities have 

caused approximately 1.0°C of global warming compared to pre-industrial levels. It 

has also been estimated that global warming is likely to reach 1.5°C between 2030 and 

2052 if the current trend continues.  In the fourth assessment report of the IPCC 

Working Group II (Solomon et al., 2007), it has been declared that CO2 is the most 

important anthropogenic GHG.   The atmospheric CO2 concentration was 411.0 ± 0.1 

parts per million (ppm) in October 2019 and has increased from 277 ppm in 1750, the 

beginning of the industrial era (Le Quéré et al., 2018). Since 2000, there has been a 20 

ppm rise in CO2 per decade, which has been the fastest rise during the past 800,000 

years (Intergovernmental Panel on Climate Change, 2018). The primary reasons for 

the increase of CO2 in the atmosphere above pre-industrial levels is the release of 

carbon from fossil-fuel burning, cement production, deforestation and other land-use 

change activities (Philippe et al., 2013). According to the State of the World’s forest 

2018 report by FAO (FAO, 2018), the world’s forest area decreased from 31.6% of 

global land area to 30.6% between 1990 and 2015. This 1% comprises of a loss of 129 

million hectares of trees (about the size of South Africa) with an annual net loss rate 

of 0.13% (Food and Agriculture Organization of the United Nations, 2016). This has 

caused a decrease of 11 gigatonnes (Gt) of global carbon stocks in forest biomass 

which is a threat to global climate. 
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The IPCC states “Taken as a whole, the range of published evidence indicates that the 

net damage costs of climate change are likely to be significant and to increase over 

time”. Some of the main findings from the fourth assessment report of the IPCC 

(Solomon et al., 2007) have been presented here to get an understanding of the impacts 

of climate change on Earth. 

“Observational evidence from all continents and most oceans shows that many natural 

systems are being affected by regional climate changes, particularly temperature 

increases” (Solomon et al., 2007 pg.no.8) 

“A global assessment of data since 1970 has shown it is likely that anthropogenic 

warming has had a discernible influence on many physical and biological systems” 

(Solomon et al., 2007 pg.no.9) 

“Some large-scale climate events have the potential to cause very large impacts, 

especially after the 21st century” (Solomon et al., 2007 pg.no.17) 

Melting of glaciers at the poles and sea water thermal expansion in turn causing rise 

in the sea levels, extreme and violent weather conditions such as hurricanes, floods, 

tsunamis, drought, fires, extinction of flora and fauna, disruption and cause of 

catostrophic effects on human lives, destruction of food chain and economic resources 

are some of the worst climate change impacts the world is facing today.  

1.2.1 Tackling climate change – global context 

Tackling climate change is a challenge and many efforts are being taken to reduce 

carbon emissions by up to 50% by 2050 compared to 1990 levels. In 2007, the 

European Commission issued a communication (Commission of the European 

communities, 2007) stating that the European Union’s (EU) objective is to limit global 

average temperatures to less than 2°C compared to pre-industrial levels. The European 

Council came to an agreement that developed countries will have to take the lead to 

reduce their emission between 15 to 30% by 2020. It also emphasises that many 

developing countries will need to take efforts to reduce their emissions significantly 

(Weaver et al., 2007). International agreements on climate action were started to bring 

countries to work together to limit GHG emissions and thus mitigate climate change. 

The main international agreement on climate action is the United Nations Framework 

Convention on Climate Change (UNFCCC) which was adopted at the Rio Summit in 
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1992. The Kyoto Protocol to the UNFCCC was agreed in 1997 to set out GHG 

emission reduction targets for each developed country. During the first commitment 

period of the Kyoto Protocol (2008-2012), participating countries were committed to 

reduce emissions by an average of 5% below 1990 levels. Ireland’s target under EU 

burden-sharing is to limit emissions to no more than 13% from the 1990 baseline year 

(European Commission, 2012). The second commitment period of the Kyoto Protocol 

started in January 2013 and will end in 2020. The participating countries have comitted 

to reducing emissions by atleast 18% below 1990 levels. Under the UNFCCC, the 

Paris Agreement entered into force in November 2016 with an action plan to limit 

global warming below 2°C. Signatory countries have committed to reducing carbon 

emissions to achieve the assigned temperature target.  

To assess the regular status of global climate observations and provide guidance for it, 

the World Meteorological Organisation (WMO), Intergovernmental Oceanographic 

Commission of UNESCO (IOC-UNESCO), United Nations Environment Programme 

(UN Environment) and International Science Council (ISC) have co-sponsored the 

Global Climate Observing System (GCOS) programme. GCOS defines Essential 

Climate Variables (ECVs) that characterize Earth’s climate. Three main categories of 

ECVs are defined – Atmosphere, Land and Ocean. The Land category includes 

aboveground biomass and land cover variables which are crucial for understanding the 

changes in the greenhouse gas sinks and the climate system. Vegetation systems have 

the potential to sequester large amounts of carbon and have a direct influence on the 

local, regional and global climate. Being ECVs, global assessment of forests and land 

cover changes are essential inputs to climate models that guide mitigation and 

adaptation strategies. The programme by the European Space Agency (ESA) called 

the Global Monitoring of ECVs (also known as ESA Climate Change Initiative) is an 

initiative started by ESA to respond to the climate change challenge. The Integrated 

Carbon Observing System (ICOS) is another system developed to quantify and 

understand greehouse gas balance in Europe and neighbouring regions. ICOS data are 

openly available  at the ICOS Carbon Portal that provides data on natural and human 

emissions and uptake of greenhouse gases from ocean, land and atmosphere. ICOS is 

an international organisation of 12 European member countries and 130 greehouse gas 

measurement stations (“ICOS - Integrated Carbon Observation System,” 2020).  
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Globally, people, especially youth, are becoming more aware of the climate change 

threats to the planet and are contributing in their own ways to put pressure on world 

leaders to take actions to address climate change. The massive wildfires faced by the 

Amazon forests in 2019 raised an alarm, compared to recent years, starkly highlighted 

the issue of global change and ecosystem destruction (“Amazon fires,” 2019). A 

global climate strike took place from 20-27 September 2019 where 7.6 million people 

took to the streets and demanded climate action. In parallel to these strikes, the climate 

action summit of the UN general assembly on 23rd September 2019 showcased new 

initiatives by government, business and civil society to increase the commitments to 

achieve the goals of the Paris agreement and work towards reducing net emissions to 

zero by mid-century.  

1.2.2 Importance of forests as carbon sinks 

One of the pathways to achieve the Kyoto Protocol emission reduction target is 

through sustainable management of forests as they play key roles as carbon sinks. 

Climate change and Irish forestry by Hendrick and Black, (2009) states  

 “Unlike many other sectors, forestry can contribute both to reducing emission 

sources and to increasing sinks. Due to the direct link between land-use decisions and 

sustainable development, forestry plays a key role when addressing the climate change 

problem in the broader context of global change and sustainable development” 

(Hendrick and Black, 2009, pg.no.2) 

A sink is defined as a storage reservoir that is increasing in size (Cannell, 1996).  A 

carbon sink is anything that absorbs more carbon than it releases. The carbon cycle is 

an ongoing process in which the carbon circulates between the reservoirs in a 

continous cycle- the main reservoirs being forests, soils, oceans and the atmosphere. 

Forests can play the role of a sink or a source (anything that releases more carbon than 

it absorbs) of carbon at different times (FAO, 2015). According to the findings from 

FAO1, forests have been a carbon sink by storing an average of 2.1 Gt of CO2 annually 

between 2011-2015 (FAO, 2015). In forests, carbon is stored in several pools such as 

vegetation (the above-ground and below-ground biomass – wood and non-wood 

 
1 FAO forest assessment involves people with local field knowledge of the vegetation and land use, this 

contributing to enhanced quality of the data collected. Considering FAO as one of the rigorous 

methodologies, it has been referenced here. 
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material and the root-system); dead-wood and litter (dead plant biomass/plant debris) 

and soil. In all forests, tropical, temperate and boreal together, 31% of carbon is stored 

in the biomass and 69% in the soil (FAO, 2001).  

 Forests in Ireland 

According to the National Forest Inventory (NFI), (Forest Service, 2013) forest in 

Ireland is defined as “Land with minimum area of 0.1 ha, a minimum width of 20 m, 

trees higher than 5 m and a canopy cover of more than 20% within the forest boundary, 

or trees able to reach these thresholds in situ”. Irish forests belong to the category of 

temperate forest biome which is situated in areas with relatively milder winter seasons 

in comparison with boreal forests (Grebner et al., 2013).  By the beginning of 20th 

century, only about 1% of the country was covered in forests (Cross, 2012). Ireland 

experienced mass destruction of forests due to human activities. To reverse 

deforestation, the Irish state carried out afforestation programmes which continue 

today. Ireland has the lowest forest cover of all European Union – 11% of the total 

land area of the Republic of Ireland. 

To manage the State’s commercial forests, the Irish Government established a new 

state body, Coillte Teoranta. Under the Forestry Act 1988, Coillte was established as 

a private limited company. A State grant scheme was introduced to encourage private 

landowners to plant forests. At present, the national forest estate is managed by three 

forest owners (i) Public: State Owned (Mainly Coillte); (ii) Private (grant-aided); (iii) 

Private (non grant-aided). Table 1.1 shows the forest ownership in Ireland.  

Table 1.1: Forest ownership in Ireland (Department of Agriculture, Food and the 

Marine, 2018) 

Ownership Area (ha) Percentage (%) 

Public 391,357 50.8 

Private (grant-aided) 268,100 34.8 

Private (non-grant-

aided) 

110,563 14.4 

Total 770,020 100 
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The Forest Service is responsible for setting national forest policy, control of tree 

felling, promotion of forest research and development and promotion of private 

forestry and administration of the State forestry grant schemes. The increase in grant-

aided privately owned land parcels has resulted in a highly fragmented forest 

landscape with privately owned forests being on average <11 ha in size (Devaney et 

al., 2015). However, the target set by the government to expand the forest estate to 

18% by 2050 may help reduce the fragmentation (COFORD, 2014). Changes in forest 

area in Ireland since 1656 are indicated in table 1.2. The forest estimates presented in 

table 1.2 have been collected from various reports such as Aalen et al., (1997); 

Department of Fisheries and Forestry, (1973) and others by Department of 

Agriculture, Food and the Marine, (2018). For further details of the reports, 

Department of Agriculture, Food and the Marine, (2018), pg. no. 6 can be referred. 

Table 1.2: Forest area in Ireland (Department of Agriculture, Food and the 

Marine, 2018) 

Year Area (ha) % Total Land Area 

1656 170,000 2.5 

1841 140,000 2.0 

1908 125,200 1.8 

1918 100,717 1.4 

1928 89,000 1.2 

1949 144,000 2.1 

1965 254,350 3.7 

1973 323,654 4.6 

1985 411,529 5.9 

2006 697,730 10.1 

2012 731,650 10.5 

2017 770,020 11 

 

Table 1.2 shows how after Ireland’s independence in 1922 forest area has grown from 

just over 1% to the current 11% of the total land area. The first statistical and multi-

resource inventory (NFI) carried out on the national forest estate took place between 

2004 and 2006. The NFI was established to record and access the extent and nature of 

Irish forests (both public and private). The NFI is a detailed timely survey of forest 

sample plots based on a randomised systematic grid of 2km × 2km. The NFI records 
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information on forest area and species composition, health and carbon content, 

biodiversity and growing stock volume for the entire national forest estate. The second 

NFI cycle began in 2009 and was completed in 2012. The third cycle began in 2015 

and was completed in 2017.  

1.3.1 Forest species in Ireland 

Much of the forest expansion in Ireland since the early 20th century has been with non-

native species. Because the native tree resources such as oak, ash, Scots pine and 

willow were depleted, the Irish State’s forestry programme decided to introduce non-

native trees that would supply Ireland’s timber needs and to develop a sustainable 

forest industry (Cross, 2012).  The prominent non-native trees that were brought are 

Sitka spruce, Norway spruce, beech, sycamore and larch. These trees host a lot of 

benefits - due to their fast growing nature, they provide great financial returns to forest 

owners, they provide an efficient method of sequestering atmospheric CO2. Inspite of 

the benefits they provide, these trees are posing a major threat to biodiversity and 

ecosystems. They drive out endangered animal species by transforming their habitats. 

Irish sitka spruce monocultures require pesticides and fertilizers and when these are 

harvested through clear-felling process, acid sulphate is generated, affecting 

waterways (Murphy, 2020).  

The national forest estate is comprised of 479,530 ha (71.2%) conifers and 193,580 ha 

(28.7%) broadleaves. The conifer – Sitka spruce is the most common species found in 

Ireland (51.1% of forest area) (Department of Agriculture, Food and the Marine, 

2019). Many forests also contain a mixture of species. The age of these trees is 

ownership dependant. Quantitative information based on forest age and ownership is 

given in table 1.3. 

Table 1.3: Quantitative information on forest age and ownership  (Department of 

Agriculture, Food and the Marine, 2019) 

Age <30 

Ownership Forest area (ha) 

Public 235,000 

Private (grant aided) 225,000 

Private (non-grant aided) 37,000 
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Age >51 

Ownership Forest area (ha) 

Public 25,000 

Private (grant aided) 5,000 

Private (non-grant aided) 25,000 

 

The rotation of forests depends on the quality of timber, some of which take more than 

50 years to meet the harvest standards. Usually in Ireland, conifers have a shorter 

rotation period than broadleaves. 

 Forest Carbon reporting system in Ireland 

The NFI measures carbon stocks in the forest pools. The carbon stock present in five 

different forest pools as per 2017 NFI records is shown in figure 1.1.  

 

Figure 1.1: Proportionate carbon stock in the five different pools in Irish forests in 

2017 (Forest Service, 2018a) 

Looking at the carbon pools of Irish forests, most of the carbon is stored in the soil. 

According to Forest Service,(2018a), most of the forests in Ireland are grown on 

mineral soils (60.8%) and the rest 39.2% are grown on peats. This conversion of 

peatland into forestry and other land use has caused moderate to severe damage of 
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peatlands in Ireland. The drainage of peat soils for conversion to land use (forestry and 

agriculture) promotes increased emissions of CO2 due to oxidation of organic matter 

within the aerobic layers of the peatlands (carbon emissions and removal). However, 

the impact of afforestation on carbon cycle in peatland ecosystems is complex and 

much research is being conducted in the country to understand this better. The conifer 

forests dominating in the country also accumulate carbon rapidly over time. The 

carbon stock in the above-ground biomass (stems, leaves and branches) was 45.6 

million tonnes in 2017. This carbon stock and stock changes using the NFI data were 

calculated using a software called CARBWARE (Black et al., 2011) which is the 

national forest carbon reporting system in Ireland. The CARBWARE model estimates 

changes in the five forest carbon pools (figure 1.1) needed for international reporting. 

Forest carbon emissions and removals are recorded in the model resulting from 

afforestation, reforestation and deforestation.  

 Forest disturbances and their impact on forest carbon stock 

Changes in the carbon stock arising from forest disturbances such as afforestation, 

deforestation and harvesting are required to be quantified to comply with the Land 

Use, Land Use Change and Forestry (LULUCF) reporting requirements. In Ireland, 

Kyoto forests were started (afforestation since 1990) to meet the reporting 

requirements. In Ireland, young trees grow quickly2 and absorb large amounts of 

carbon dioxide. The forest management practice in Ireland includes harvesting the 

trees before they die naturally; this locks the carbon in the wood and wood products. 

Followed by almost immediate replantation this starts the carbon storage cycle again.  

According to the second NFI cycle results (Forest Service, 2018b), 3.6 million m3 of 

mean annual standing were harvested between 2006 and 2012. Clear felling is the 

dominant harvest type in Ireland, accounting for 76.6% of the timber felled between 

these years. In Private forests (grant aided), first thinning is the dominant harvest type 

(Department of Agriculture, Food and the Marine, 2018). Although the national forest 

area continues to expand, evidence from Devaney et al., (2015) suggests that the gross 

national deforestation rate is increasing. The first national deforestation map was 

developed by Devaney et al.,(2016) for the years 2000-2012 as part of the 

DEFORMAP project. A total of 5,457 ha of deforested land were identified in the 

 
2 The fast growth is related to the fast-growing nature of non-native conifer trees. 
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country. Apart from the human induced changes, forests in Ireland are regularly 

subjected to threats from natural events such as strong winds (Storm Darwin in 2014 

for example), fire (Galway fire in 2018) and insect pests. Such events result in damage 

to forests. These changes in the forests would benefit from annual monitoring to ensure 

improved forest management.  

1.5.1 Importance of forest monitoring in Ireland 

Research has improved understanding of climate change in Ireland. Rise in sea-levels, 

increase in temperatures and changes in patterns of storms and precipitation are some 

of the negative effects of climate change reflected on the country (Dwyer, 2013). This 

trend is projected to continue and intensify in future with Ireland’s climate become 

warmer  and drier (European Environment Agency, 2017). In response to climate 

change mitigation, Ireland introduced the National Adaptation Framework (NAF) to 

provide plans for adaptation measures to reduce the negative effects of climate change 

on the country. The NAF has identified forestry as one of the sectors (Department of 

Communications, Climate Action and Environment, 2018) and has developed 

guidelines to ensure a consistent approach to adaptation planning is adopted by the 

forestry sector. In response to climate change, the first policy pursued address the 

reduction of GHG and afforestation to increase carbon sinks (Department of 

Communications, Climate Action and Environment, 2018). Programmes such as the 

forestry programme 2014-2020 have been introduced to contribute to Europe 2020 

objectives and targets (European Commission, 2010) and comply with the Kyoto 

Protocol emission reduction targets. 

One of the targets set by the European Union is to reduce the GHG emissions by at 

least 20% compared to 1990 levels. To comply with these targets, DAFM has identifed 

specific needs in Ireland’s forestry sector (Davies and Image, 2014). One of them is 

the need to permanently increase forest cover. Afforestation to increase carbon 

sequestration without disturbing the natural habitats for wildlife must be a top priority 

of a forest management system. With the Irish forest monoculture, affecting 

ecosystems, Ireland is taking efforts to introduce schemes such as Native Woodland 

Scheme to encourage farmers to protect and expand Ireland’s native woodlands and 

associated biodiversity. 
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Ireland has been involved in forest monitoring for over 20 years through collecting 

data and reporting on the forest condition. It is crucial to understand the role that 

forests play in absorbing carbon, providing natural habitats for flora and fauna and 

conserving soils and water. In this regard, it is therefore essential that forest monitoring 

continue both in Ireland and across the world. 

 Remote Sensing technology – potential and scope in forest change 

monitoring 

At a global scale, forest monitoring is important to comply with the GHG emission 

reduction targets and to understand climate change to safeguard the planet. It is equally 

important to monitor forests at a regional scale to assess their health and provide 

maximum benefits to the forest owner and help maintain a healthy ecosystem.  

Remote Sensing is defined as the art, science and technology of observing an object, 

scene or phenomenon by instrument-based techniques (Tempfli et al., 2009). In the 

past, foresters would use field and aerial surveys to collect forest data. With the 

introduction of space-borne remote sensing around 60 years ago, the era of 

supplementing field data with satellite images began. The advancements in satellite 

remote sensing such as availability of higher spatial, temporal and spectral resolution 

products, are benefitting the remote sensing community immensely. Many 

international organizations have been established to promote Earth Observation (EO) 

for the benefit of the society. Missions like Global Earth Observation System of 

Systems (GEOSS) by Group on Earth Observations (GEO) and Copernicus previously 

known as Global Monitoring of Environment and Security (GMES) have been useful 

for forest monitoring applications. One of the important utilities of EO technologies is 

using them as a tool to measure and map the past and existing forests and calculate the 

GHG estimates. By exploiting several parts of the electromagnetic spectrum, many 

EO satellites have been developed for conducting space-based monitoring and forest 

management of the world. With the advancements in the EO technologies, faster and 

robust approaches have created platforms to monitor forests and extract the different 

forest parameters to examine the forest health.  

Optical EO sensors that operate with wavelengths ranging from 0.7 to 300 μm 

(Infrared) and 0.4 to 0.7 μm (visible) of the electromagnetic spectrum offer many 

benefits for forest monitoring. The visible bands of the optical sensors are sensitive to 
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the photosynthetic activity of vegetation, type of forest and forest density (Lynch et 

al., 2013). They have a vast spatial coverage along with good spatial resolution and 

provide frequent observations, thus delivering good annual coverage. Many optical 

satellites such as Landsat, RapidEye, SPOT and Sentinel-2 provide high spatial, 

temporal and spectral resolution supply products and services in forest cover and other 

land-cover mapping and in many other application areas. The Light Detection and 

Ranging (LiDAR) has been a powerful technique for forest monitoring. Obtaining 

canopy height data, observing canopy damage and other structural changes have been 

made possible using LiDAR which is an active sensor for capturing and analysing 

forest data in 3D format. Many studies (Wulder, 1998; Banskota et al., 2014; Wulder 

et al., 2012; Tusa et al., 2020) have explored the potential of multispectral optical and 

LiDAR sensors for forest monitoring. However, given the limitations of these satellites 

such as dependence on weather conditions and high cost, sensors operating within the 

microwave region of the electromagnetic specturm have been widely explored in 

recent years.  

Synthetic Aperture Radar3 (SAR) sensors using the microwave portion of the 

electromagnetic spectrum (wavelength: 1mm to 1m) have become an important source 

of EO data due to the distinct capabilities they offer over the optical and thermal infra-

red regions. Especially in a country like Ireland where there is heavy cloud cover, 

Active SAR data (which provide their own source of illumination) are particularly of 

great use because of their cloud penetrating, weather independent capabilities4.  

Many civilian based space-borne imaging Radar systems have been launched since the 

launch of the first such system SEASAT-1 in 1978 by National Aeronautics and Space 

Administration (NASA). A number of radar sensors have been launched by countries 

such as the USA, Canada, India, Germany, Japan and others to support different 

applications. Few of the current missions that prioritize forest monitoring are 

Radarsat-2 launched by the Canadian Space Agency, TessaSAR-X and TanDEM-X 

by the German Aerospace Centre (Deutsches Zentrum für Luft- und Raumfahrt; DLR), 

Sentinel-1 by ESA, and Advanced Land Observing Satellite (ALOS and ALOS-2) 

Phased Array Type L-band Synthetic Aperture Radar (PALSAR and PALSAR-2) by 

 
3 Radar – Radio Detection and Ranging 
4 Due to the longer wavelengths compared to visible and infra-red regions, these are 

largely unaffected by cloud cover, rain and haze 
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the Japan Aerospace Exploration Agency (JAXA). BIOMASS is another satellite 

mission foreseen in 2021, operating at P-band, that will focus on forest studies.  

To monitor global forests, many global forest maps have been developed using 

satellite imaging technologies. One of them is the Global Forest Watch (GFW). It is 

an online platform that provides tools and data necessary to monitor forests- the key 

focus being forest extent and change. NASA has also developed forest height maps 

and forest fires maps. The European Forest Fire Information System (EFFIS) managed 

by the European Commissions’s Joint Research Centre (EC-JRC) uses the most 

updated satellite data to identify wildifres and forest damage in Europe (Sedano et al., 

2012). Martone et al., (2018) derived global forest/non-forest classification mosaics 

from Interferometric SAR data acquired by the TanDEM-X mission. The data were 

collected between 2011 and 2016. Shimada et al., (2014) generated global mosaics of 

ALOS PALSAR data to monitor variability in forests between regions and proved the 

potential of L-band ALOS PALSAR data in mapping forests.  

On a national and local scale, studies such as McInerney et al., (2016); J. Devaney et 

al., (2015) and Devaney et al., (2017) have conducted forest monitoring in Ireland 

using RapidEye and aerial photography data, L-band SAR data and fusion of aerial 

photos and satellite imagery. LiDAR/Airborne Laser scanning is a good choice for 

detailed mapping of forests, but they are very expensive (McInerney et al., 2016). 

While selecting the optimal satellite data for a particular study, factors such as cost, 

temporal and spatial resolution, weather conditions and the field of application must 

be considered.  

 Research Rationale 

Articles 3.3 and 3.4 of the Kyoto Protocol (Nabuurs et al., 2000) state the following 

`... direct human induced land use change and forestry activities, limited to 

afforestation, reforestation and deforestation since 1990, measured as verifiable 

changes in stocks ... shall be used ...'  - Article 3.3, (Nabuurs et al., 2000, pg.no.124) 

that decisions will be taken concerning inclusion of `... additional human induced 

activities ... by sources and removals by sinks in the agricultural soils and the land-

use change and forestry (LUCF) categories’ – Article 3.4, (Nabuurs et al., 2000 

pg.no.124) 
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To provide the necessary estimates for the activities under Article 3.3 of the Kyoto 

Protocol, improvements to CARBWARE were necessary (Duffy et al., 2012). 

COFORD has funded many climate change projects such as CLI-MIT programme, 

CARBiFOR and CARBiFOR II to facilitate improvements to CARBWARE. Although 

the current reporting complies with the International Panel for Climate Change Good 

Practice Guidance (IPCC GPG) (IPCC et al., 2003), annual UNFCCC reviews for 

Ireland recommended improvements under three areas 

1. Reassessing soil-C stock changes following land-use change and forest-

management impacts 

2. National tracking of annual changes in forest area from deforestation and 

disturbances 

3. Assessing stock changes from disturbances and management interventions 

This PhD study focuses on point 2 to support tracking of annual changes in Irish 

forests using active L-band SAR data to provide comprehensive information flow 

to CARBWARE. 

1.7.1 Relevance of the work to End Users 

• Facilitate National GHG reporting: Assessment of the forest change and extent 

through improved tracking of deforestation and other forest disturbances. 

Frequent monitoring of forest disturbances will supply relevant data to 

CARBWARE and therefore help making decisions compliant with Kyoto 

Protocol emission reduction targets 

• Provide annual forest updates: As the NFI is conducted once in six years, there 

is information gap. Private forest owners and forest companies need annual 

updates to run an effective forest management industry from an economic, 

social and environmental perspective 

• Capturing illegal deforestation and felling activities non-compliant with the 

felling license conditions: the forest service offers felling licenses under the 

Forestry Act 1946 (Maguire and COFORD, 2001), but illegal felling activities 

are not recorded in the current system. This study has the potential to provide 

relevant data and enable improvement of the felling compliance verification.  
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 Research objectives 

The objectives of this study are to investigate the potential of L-band SAR sensors 

(ALOS PALSAR and ALOS-2 PALSAR-2) in identifying the different disturbance 

types in the forest areas of Ireland. In particular, the objectives are: 

• Explore the potential application of microwave satellite platforms in mapping 

the forest fragments in Ireland using a machine learning approach 

• Develop an unsupervised algorithm to characterise the different disturbance 

types in Irish forests and assess the type and extent of change.  

• Transfer the developed algorithm for forest mapping and change monitoring to 

the data from the currecntly active ALOS-2 sensor and examine the robustness 

of the algorithm to facilitate a continuous forest monitoring operability 

• Make recommendations to support the continuous operation of a forest 

monitoring system in Ireland to address the refinements proposed to the Irish 

carbon reporting system 

This thesis is divided into seven chapters. 

Chapter 2: This chapter entitled “Literature review” provides a brief survey of 

scholarly sources on SAR remote sensing for forest change mapping and monitoring  

Chapter 3: This chapter entitled “Study Area and Datasets” provides a description 

of the areas selected for the study along with ALOS PALSAR and ALOS-2 PALSAR-

2 sensors and the different data sources used for the project 

Chapter 4: This chapter entitled “Mapping the Fragmented Forest Covers of 

Ireland – a Systematic Approach” investigates the potential of ALOS PALSAR data 

to map the forest fragments in Ireland using a machine learning approach 

Chapter 5: In this chapter entitled “Characterisation and Monitoring of Forest 

Disturbances in Ireland using Divergence Guided ISODATA clustering 

algorithm”, an unsupervised classification algorithm has been presented to 

characterise and monitor the different disturbance types in Irish forests 

Chapter 6: In this chapter entitled “ALOS PALSAR Based Algorithm 

Transferability to ALOS-2 PALSAR-2”, the algorithm developed in chapters 4 and 
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5 have been transferred to another SAR sensor to investigate the robustness of the 

algorithm and examine the forest monitoring operability  

Chapter 7: This chapter entitled “Conclusions and Recommendations” summarizes 

the research findings and presents a general outlook for future research 
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 Introduction 

For several decades, in situ forest information has been complemented with remote 

sensing-based observations which provide consistent data over a large spatial extent 

in a cost-effective manner. Several efforts such as Hansen et al., (2013), Shimada et 

al., (2014) and Hu et al., (2016) have been made to map forests around the globe from 

regional to global scales to establish a systematic and sustainable operational 

monitoring system. Optical and active SAR sensors are two dominant types of sensor 

systems that satellite platforms have been carrying for the past few decades. The 

former, spanning the range of electromagnetic spectrum from 400-3000 nm, is more 

sensitive to tree foliage and forest biochemical properties whereas the latter, 

measuring the backscattered radiation at wavelengths between 1 cm and 1000 cm, 

provide information on woody biomass and forest structure. Microwave systems have 

increased the possibility of obtaining cloud-free data and hence are particularly 

favoured given that many forests are located at higher elevations, temperate and sub-

Arctic latitudes, and tropical regions where there can be persistent cloud cover.  

Spaceborne SAR systems have proliferated as a result of recommendations by various 

studies which have demonstrated the potential of SAR systems for mapping forest 

cover (Isola and Cloude, 2001; Dwyer et al., 2000; Dostálová et al., 2016; Lei et al., 

2018; Tomppo et al., 2019).   

The purpose of this chapter is to provide a comprehensive review of SAR change 

detection approaches and their application to forest disturbance mapping. This chapter 

starts with an overview of microwave remote sensing with relevance to forests, 

covering the influence of different bands, polarization and incidence angle, followed 

by a brief discussion of speckle reduction and coregistration which are vital for change 

detection (section 2.2). The next part (section 2.3) of the review is focused on the 

different SAR change detection techniques that have been most widely evaluated in 

the literature. The review concludes with a summary of potential techniques which 

could be applied to Irish forest cover, based on an assessment of advantages and 

limitations of each technique.  

 Microwave remote sensing  

Microwave remote sensing comprises both passive and active systems. Passive 

systems (radiometers) offer a unique view of the Earth’s surface by detecting the 
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naturally emitted microwave radiation within their field of view, however they 

typically have a coarse spatial resolution (for example 25km) as the amount of emitted 

energy is very low so has to be resolved over a large area. Active systems on the other 

hand provide their own source of illumination with an additional factor – the timing 

of the return pulse to measure distance. Active sensors can be categorized as imaging 

(radar/SAR) and non-imaging sensors (scatterometers and altimeters). Active imaging 

radars can penetrate through cloud cover and most weather conditions and image the 

surface at any time, day or night. Because of these attributes, SAR has become a 

valuable remote sensing tool for both military and civilian users with various 

applications such as intelligence gathering, weapons guidance, topographic mapping, 

sea ice monitoring, forest monitoring, oceanography, agricultural monitoring, mining 

and many more. Scatterometers are mainly designed to study ocean wind speed and 

directions, but they have also been applied to the study of the cryosphere, vegetation 

and soil surface properties (Naeimi and Wagner, 2010). Altimeters have been used to 

measure elevation profiles of the Earth’s surface. Other applications in geodesy, 

hydrology and atmospheric sciences have also been explored.  

2.2.1 Radar remote sensing of forests – basic theory 

The forest canopy represents a heterogeneous volume system with structural 

components of varying sizes and densities. This makes the interaction of the 

microwaves with forests complicated. The different scattering elements of a forest are 

leaves (needle-like, flat-like), stems and branches as well as the soil (Ulaby et al., 

1981). Varying sizes of these elements in terms of diameter can be found in a large 

forest. In the smaller stands of forests of Ireland, mixed tree species can be found that 

vary in their structure, resulting in complex scattering. Given the complexity of the 

forest canopies, it is appropriate to model them as a random volume (Woodhouse, 

2005). The amount of radar backscatter received from a forest canopy is dependent on 

the wavelength, polarization and incidence angle of the SAR system as well as the 

target parameters such as forest structure and moisture. The different wavelengths of 

the microwave region interact with different elements of the forest. The shorter 

wavelengths such as the X- (2.3 - 3.75 cm) and C-bands (3.75 - 7.5 cm) are of 

comparatively smaller order than the canopy elements and therefore, these bands do 

not tend to penetrate a dense forest canopy. For longer wavelengths such as L- (15 – 

30 cm) and P-bands (30 – 100 cm), the canopy elements appear smaller than the 
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wavelength, therefore the microwave pulses can penetrate further into the canopy. As 

a result, these wavelengths undergo multiple scattering between the canopy, branches 

and soil. It is imperative to consider the effect of soil moisture on backscatter. Water 

with a very high dielectric constant (80) leads to higher backscatter causing confusion 

with forests. In the presence of dense vegetation, L-band can retrieve soil moisture due 

to its deep penetrating properties. To separate the backscattering contributions from 

soil and vegetation, a number of SAR backscatter models have been proposed (Li and 

Wang, 2018). The most commonly used model is the Water Cloud Model (WCM) 

which can relate the backscattering coefficient to soil and vegetation properties and 

thus separate the moisture effects from SAR backscatter. However, while assessing 

the performance of WCM, the surface roughness and vegetation must be taken into 

account.  

In the absence of any P-band satellite sensors prior to the early 2020s,  most studies 

have used L-band for forest and vegetation studies (Fransson, 1999; Lucas et al., 

2007; Almeida‐Filho et al., 2007; Yu and Saatchi, 2016; Tanase et al., 2018; 

Belenguer-Plomer et al., 2018; Yun et al., 2019). In a study by Olesk et al., (2015), L-

band was deemed more suitable than C-band for detecting disturbances such as 

logging and thinning in areas smaller than 1 ha5. This conclusion is highly relevant to 

Irish forests given the presence of few forest stands of less than 1 ha. A review by 

Global Forest Observations Initiative (GFOI, 2013) which focused on improving 

remote sensing data inputs to enhance the forest monitoring systems, reported that L-

band can be used independently, while X- and C-band SAR are not sufficient on their 

own due to their reduced sensitivity to forest structural parameters. A comparative 

study by Haarpaintner et al., (2009) has shown how L-band was able to detect details 

such as regrowth better than C-band. Another study by Saatchi et al., (1997) illustrates 

the potential of using L-band SAR for monitoring deforestation in which the accuracy 

increased from 87% with C-band to 92% with L-band. The most commonly used L-

band SAR sensors, ALOS PALSAR (2006-2011) and ALOS-2 PALSAR-2 (2014-

present) have been extensively used for forest monitoring applications (Marshak et 

al., 2019; Fransson et al., 2007; Urbazaev et al., 2018; Shimada et al., 2014). 

 
5 This was because of the higher spatial resolution of the ALOS-2 L-band sensor 

than the Sentinel-1 C-band sensor. 
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As SAR is sensitive to soil moisture, care must be taken while performing change 

detection as variations in soil moisture can be misinterpreted as a disturbance signal. 

The shorter wavelength of C-band SAR primarily interacts with leaves and branches, 

partially penetrating the forest canopy (Reiche et al., 2018). In situations where the 

forests are less dense, C-band is largely responsive to surface roughness and soil 

moisture. An increase in backscatter may be reported after heavy rain events due to an 

increase in the soil moisture. Lower frequencies such as L-band also provide greater 

sensitivity to soil moisture as they can penetrate the vegetation layer and be influenced 

by moisture content. At L-band, the contribution from soil is dominant for most low 

vegetation covers (Woodhouse, 2005). Performing time-series analysis and having 

knowledge of weather data can help identify the effects of moisture and aid in 

interpreting the variations in received SAR signals. 

Another factor influencing SAR backscatter from forests is the polarization. Cross-

polarized data (HV/VH - Horizontal Transmit Vertical Receive/Vertical Transmit 

Horizontal Receive) can be more useful than co-polarized data (HH/VV - Horizontal 

Transmit Horizontal Receive/Vertical Transmit Vertical Receive) for forest 

monitoring. This is because the depolarizing effect in the cross-polarized data is 

related to volume scattering from forest elements than the latter which is more 

sensitive to surface components. Santoro et al., (2010) demonstrated that HV 

polarized data presented a strong contrast between forests and non-forests, whereas 

HH was more affected by environmental conditions (for example frozen, thaw or dry 

conditions) and was less able to discriminate between the vegetation types.  Another 

study by Santoro et al., (2012) used only HV L-band data as the contribution of HH 

band was found to be marginal. Although these studies emphasize the use of only HV 

data for forest change monitoring, Pantze et al., (2010), Almeida‐Filho et al., (2009) 

and Watanabe et al., (2018) stress  the importance of retaining the HH band as it can 

contain important information related to areas of recent deforestation (e.g. surface 

roughness caused due to uncleared debris leads to surface scattering detected by the 

HH channel). Reis et al., (2017) also demonstrated the use of fully polarimetric L-band 

SAR to detect forest changes and showed that the HV band presented the best results, 

once again underlining the potential of this polarization in forest change detection. 

However, the limited availability of this polarization in certain areas is a hindrance to 

using the fully polarimetric data. Reflecting on the general consensus from literature, 
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dual polarized (HV, HH) and longer wavelength (L-band) SAR data can be considered 

the most suitable for forest disturbance monitoring. 

Choosing the best sensor configuration for different applications is vital in order to 

obtain the best results. The dependence of radar backscatter on the SAR incidence 

angle (the angle between the Earth’s surface normal and the direction of illumination 

by radar) should not be underestimated. A study by Rauste, (1990) highlighted key 

points about the relationship of SAR incidence angle with forested and non-forested 

areas.  

➢ Thick canopies exhibit volume scattering, therefore, such targets have only 

a slight dependence on incidence angle 

➢ For rough surfaces (example: clear-cut areas with debris), backscatter is 

more uniform for all incidence angles 

➢ Areas that have been clear-cut and contain no debris exhibit specular 

scattering, thus the backscatter reduces with increasing incidence angle 

For L-band instruments, at low incidence angles most of the backscatter comes from 

the ground (Hoekman, 1987) and the contribution to backscatter from the forest 

canopy increases with incidence angle. Devaney et al., (2015) performed forest 

mapping and change detection using L-band data of incidence angle corresponding to 

38°.  

Monitoring disturbances requires images before and after the disturbance has 

occurred. In general, change detection is the process of identifying differences in the 

state of an object or phenomenon by observing it at different times (Singh, 1989). 

Change detection is more challenging in SAR systems that optical systems due to the 

geometric distortions and speckle involved. It is important to acknowledge the 

geometric distortions that SAR images are subjected to due to their side-looking 

geometry. The two main geometric distortions relating to SAR image acquisition and 

interpretation are scale distortions and relief displacement. Scale distortions are a 

result of the distance measured in slant range and not ground range. Due to the slant 

range distance, objects in near-range appear steep while in the far-range, the objects 

appear shallow. This can be resolved by converting the slant range distance to ground 

range distance – this can be achieved by calculating the true horizontal distance along 

the ground corresponding to each point measured in slant range (CCRS, 2006). The 
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main geometric relief distortions are layover, foreshortening and shadowing. As the 

distance is measured in slant range, top of a tall feature is displaced towards the flight 

direction from its true position on the ground. This effect is called layover which 

occurs when the radar beam reaches the top of a tall feature first before illumating its 

base. On contrary to this effect, foreshortening occurs when the radar beam reaches 

the base of a tall feature such as mountain tilted towards the sensor before it reaches 

the top. The effects of layover and foreshortening look very similar to each other on a 

radar image. Layover effects are more severe for small incidence angle (for near-

range) and decrease towards far range (large incidence angles). Both foreshortening 

and layover effects result in radar shadow. Shadow occurs behind vertical features or 

slopes with steep sides. These are the areas that the radar beam cannot illuminate and 

no signal is received in return. The shadowing effects increase from near to far range 

and these areas appear dark on the SAR image. These effects add bright or dark effects 

on the image which interfere with the change detection analysis. Therefore, it is very 

important to remove such terrain-induced geometric distortions before making any 

further processing. Using Digital Elevation Models (DEMs) can help in removing 

some of such effects by making the slant to ground range conversion by compensating 

for foreshortening.  

Speckle is a common feature present in SAR images which is a multiplicative noise 

(Lou et al., 2019; Ajadi et al., 2016; Shang et al., 2014). Speckle is generated by 

different scatterers within the same resolution cell behaving differently leading to 

constructive and destructive interference of the coherent SAR signal (Goodman, 

1976). Speckle can be reduced through techniques such as multi-looking and speckle 

filtering. Multi-looking improves the radiometric resolution but compromises the 

spatial resolution. Many studies (e.g. Lee et al., 1991; Hagg and Sties, 1994; Kulkarni 

et al., 2018) have documented the use of adaptive and non-adaptive filters to reduce 

speckle. Non-adaptive filters, based on the use of mean, median or mode, apply the 

same set of weights over the entire image regardless of the distribution of radar 

reflectivity. Although these filters are easy to implement and compute, they smooth 

high frequency information. Adaptive filters such as the Lee filter (Lee, 1980), Frost 

filter (Frost et al., 1982), Kuan filter (Kuan et al., 1985), Gamma-Maximum-A-

Posteriori (MAP) filter (Lopes et al., 1990), refined Gamma-MAP (RGMAP) filter 

(Nezry et al., 1991), Lee Sigma filter (Lee, 1983a, 1983b), and Improved Lee Sigma 
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filter (Jong-Sen Lee et al., 2009) are better at preserving subtle image information 

(Mather and Tso, 2016). Depending on the degree of speckle in the image, these filters 

adapt their weights accordingly, which can result in more reliable outputs but with a 

high computational cost. A De Grandi multi-temporal filter  (De Grandi et al., 1997) 

may be applied to multi-temporal images acquired of the same track and frame, 

exploiting the temporal correlation of speckle among the images. Another critical step 

in multi-temporal image change detection is the co-registration of images 

(Abdelrahman et al., 2011), to ensure that coincident pixels within the images 

correspond to the same ground area.  

 Change detection techniques 

Various change detection approaches have been developed and applied to SAR data. 

This section discusses some of the commonly used methods for SAR change detection, 

and their relevance to forest disturbance monitoring. The methods have been 

categorized into different groups for convenience. The different SAR change detection 

approaches discussed in this chapter have been listed in table 2.1 along with their 

advantages and limitations. 
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Table 2.1: Summary of SAR change detection approaches with relevance to forest monitoring 

 

 

 

 

 

 

 

 

 

 

 

 

Approach Examples Advantages Disadvantages 

Algebra-based: 

• Image Differencing 

• Image Ratioing 

(Pantze et al., 2010) (Durieux et al., 
2019) 

 

 

Straight-forward approaches and easy to 
implement 

Requires selection of threshold to separate 
change and no-change pixel; image ratioing 
assumes non-normal distribution  

Principal Component Analysis (PCA) (Yun et al., 2019) Reduces the dimensionality of the dataset; 
change can be detected in new components 
and enhances such patterns in the data; 
speckle reduction in SAR images 

It is scene dependent, therefore results 
between different dates are difficult to 
interpret and label. Also, assumes that multi-
temporal data are highly correlated 

Interferometry 

• Interferometric SAR (InSAR) 

(Balzter, 2001) (Cloude and 
Papathanassiou, 1998) 

Along with amplitude, phase is used which 
reveals information of the target 

Temporal and geometric decorrelation limit 
this approach 

 

• Coherence 

(Wagner, 2003) (Askne et al., 1997) Additional information complementing the 
information contained in the intensity of the 

backscatter 

Several factors cause phase decorrelation; 
coherence values very low for forests making 

it unreliable. 

Classification 

• Maximum 
Likelihood/Mahanalobis distance 

 

(Wijaya et al., 2010) (Lehmann et 
al., 2011) 

Until recently, the most widely used 
classifiers – works best for normally 
distributed datasets 

Classification process is slow, not all datasets 
are normally distributed – leading to 
misclassification. 

• Machine learning 
 

(Wheeler et al., 2017) (Liesenberg 
and Gloaguen, 2013) (Wang and 
Xue, 2014) (Ghimire et al., 2010) (J. 
Devaney et al., 2015b) 

Automatic methods that learn about the data. 
More accurate than the traditional methods. 
Robust and handle complex and large 
number of datasets. Non-parametric that do 

not assume any data distribution. 

Require lot of training data to train the 
algorithm, requires extensive ground-truth 
data. Requires programming knowledge and 
not straight forward to implement.  

• Unsupervised (Ali et al., 2013) (Pierce et al., 
1998) 

No training data is required, simple and easy 
to implement. Clustering is purely based on 
pixel values and therefore it is unbiased. 

Post-classification interpretation is time 
consuming and grouping the clusters is 
challenging.  
Difficult to apply correct labels without good 
in situ data. 

SAR Polarimetry (Pardini et al., 2012) (Trisasongko, 

2010) 

All polarizations can be used to describe the 

complex scattering mechanisms within a 
pixel. The scattering mechanisms can be 
separated and more information can be 
derived 

Limited availability of fully polarimetric data 

in certain areas  

SAR and optical data fusion (Pourshamsi et al., 2018) 
(Kellndorfer et al., 2010) 

Full capabilities of multi-sensor platforms 
can be exploited. 

Scaling and validation issues 



 

28 
 

2.3.1 Algebra-based  

Algebra-based approaches, which were amongst the earliest change detection 

algorithms to be developed, include image ratioing and image differencing. The latter 

is simply the pixel by pixel subtraction of DN values of two spatially registered 

images, while the former is the ratio of DN values of corresponding pixels on two co-

registered images. The key concept behind these algorithms is the generation of a 

Difference Image. These algorithms are straight forward, easy to implement and 

widely applied, and require threshold selection to determine areas of change (Lu et al., 

2004). Given the speckle present in a SAR image, image ratioing is better adapted to 

the statistical properties of SAR image than image differencing (Hecheltjen et al., 

2014; Chen et al., 2019) as it can decrease the influence of calibration and radiometric 

errors (Lu et al., 2004; Rignot and van Zyl, 1993 ;Singh, 1989). Studies such as those 

described by Pantze et al., (2010) and Ban and Yousif, (2012) have successfully 

applied image ratioing techniques to SAR data for change detection of forests and 

other features such as urban. 

One common problem with both image differencing and ratioing is the selection of a 

threshold between Change and No-change which can be challenging, and in some 

instances subjective. To select these thresholds, standard deviation is often used as 

reference values (THÉAU, 2007). Incorrect thresholds lead to unreliable results. In 

forest monitoring, selecting a threshold for one area may not work when applied to a 

different area, depending on the type and forest conditions. Selecting a common 

threshold that can be applied for national scale monitoring becomes laborious and 

unreliable. Image ratioing is also criticized because of the non-normal distribution of 

the resultant image which limits the validity of the threshold selection using the 

standard deviation of resultant pixels (THÉAU, 2007; Lu et al., 2004 ;Singh, 1989). 

A variation to the ratio method – the log-ratio method - has been presented for change 

detection on SAR images (Bovolo and Bruzzone, 2005; Zhuang et al., 2018a; Zhuang 

et al., 2018b). This is because the logarithmic transformation can convert 

multiplicative noise into additive noise and compress the value range. Although many 

studies support the fact that the log-ratio method outperforms the ratio method, a study 

by Zhuang et al., (2019), p.491 disagreed with this finding and stated the notion that 

“log ratio outperforms ratio is a misunderstanding in change detection of SAR 
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images”. This experiment was conducted over three study areas in Berne, Switzerland, 

Ottawa, Canada and FengFeng, China using C-band SAR sensors: ERS-2, Radarsat-1 

and Radarsat-2 satellites. However, the effect of this experiment on L-band sensors is 

unknown and requires to be examined to decide if the log-ratio method performs better 

than the ratio method for SAR change detection.  

The ratio technique can be applied well to a pair of images, but with more than two 

images, several temporal ratios have to be fused to detect the changing areas. Bujor et 

al., (2004) concluded that the ratio of means was useful for step, or abrupt, changes 

such as deforestation which correspond to a significant modification of the land cover 

between two dates. Mermoz and Le Toan, (2016) successfully used the ratio technique 

to detect large changes in the tropical forests of Vietnam using ALOS PALSAR HH 

and HV polarization data. Most of the studies such as Joshi et al., (2015) and Motohka 

et al., (2014) have used SAR backscatter ratios to detect changes in tropical forests.  

Image differencing and image ratioing have been widely discussed in literature to 

detect changes between SAR images, however, these methods do not provide a 

detailed change matrix from which the time and extent of change can be derived. 

Added to this, the challenging tasks of selecting appropriate thresholds limit the full 

potential of these approaches. Consequently, advances in change detection of SAR 

images have seen the development of more robust approaches to track and characterize 

the disturbances.  

2.3.2 Transformation based  

Principal Component Analysis (PCA) is a technique for reducing the dimensionality 

of a data set (Jolliffe and Cadima, 2016). Also called Eigenvector analysis, it is a 

powerful statistical technique to generate a new reduced set of uncorrelated variables 

of components by transforming several correlated variables. Studies by Baronti et al., 

(1994); Gimeno et al., (2003); Lee and Hoppel, (1992); Henebry, (1997) have 

recognized its utility for analysis of SAR images where it has one main advantage– 

speckle reduction using multiple image dates, with minimal loss of spatial resolution 

(Henebry, 1997). Lee and Hoppel, (1992) developed a generalized principal 

component transform (PCT) which maximized the signal-to-noise ratio (SNR) and 

was tailored to the multiplicative speckle noise characteristics of polarimetric SAR 
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images. It was found that PCT could compress information, reduce speckle and 

enhance details at the same time.  

During the process, the principal components (PCs) are calculated from eigenvectors 

based on all pixels, including the changed pixels. The first PC contains more 

information and the variance of data is strongly concentrated in the first component.  

However, the change pixels (oriented along the second PC axis) introduce certain 

amount of erroneous information in the first and other PCs. To minimise this effect, 

Wiemker, (1997) developed an iterative PCA approach which calculates the 

covariance matrix by incorporating a weighting coefficient for all pixels that quantifies 

the probability of each to be a no-change pixel. This method improves the ability to 

extract change information and the identification of no-change pixels (Hecheltjen et 

al., 2014). Yun et al., (2019), applied the PCA technique to a time series of ALOS 

PALSAR imagery to screen noise components – the study was performed over the 

dense North and Eastern Korean forests, which are mainly boreal and cool-temperate 

with native conifer trees. However, even with the application of PCA transformation, 

a large number of errors in the time series signatures were found. These errors were 

associated with factors such as mis-coregistration of SAR images and weather factors 

such as wind and moisture. To address these issues, a kernel PCA was introduced in 

the study from which the noise components in the time series were eliminated and the 

performance was improved. 

As PCA is scene dependent, the change detection results between different dates are 

often difficult to interpret and label. A thorough examination of the eigen structure of 

the data accompanied by a visual inspection of the images is required to ascertain the 

exact nature of the PCs derived from temporal datasets (Coppin et al., 2004), but 

uncertainty can remain. This has an impact for forest change monitoring when using 

multi-temporal datasets over a period when the change may arise from a variety of 

different sources, and can manifest in a number of different ways. Fung and LeDrew, 

(1987) state that this analysis technique should not be applied as a change detection 

method without a proper knowledge of the study area, which can be challenging when 

the ground information is lacking.  
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2.3.3 SAR Interferometry based 

Repeat-pass SAR Interferometry (InSAR) is a technique that generates an 

interferogram (in which a fringe pattern appears) which is an image of the complex 

correlation between two image SAR images. This interferogram contains phase and 

coherence information which are useful in the image interpretation. The interferogram 

calculates the phase difference between two images which shows the difference in the 

two-way (satellite to target and back) travel path of the radar signal. Phase is a measure 

of path-length, and in a single image the exact number of complete wave cycles is 

unknown which makes it of no practical use (Woodhouse, 2005). However, comparing 

phase measurements by calculating the phase differences obtained from two or more 

SAR images can generate topographic products such as DEMs. When the phase of the 

backscattered signal is affected, for example as a result of topographic change due to 

an earthquake, the fringe pattern and the number of fringes in the interferogram is 

altered.  

Coherence is the degree of similarity between two SAR images ranging from 0, 

showing no coherence, to 1 showing perfect coherence. The success of repeat pass 

InSAR depends on the interferometric coherence, if the ground surface remains 

undisturbed between the first and second overpasses (Zhou et al., 2009). Spatial 

baseline decorrelation (changes in the viewing geometry) and temporal decorrelation 

(physical changes in the surface between acquisition) are the most important factors 

that result in destruction of the interferometric phase (Zebker and Villasenor, 1992). 

Suga and Takeuchi, (2000), Askne et al., (1997), Lei et al., (2018a) applied InSAR 

coherence approaches to map and monitor forest disturbances, however, they found 

that several issues contribute to the phase decorrelation and generate unreliable 

coherence results. The temporal decorrelation is high for forests (Balzter, 2001) due 

to changes in wind motion, disturbance causing loss of trees, or changes in their 

dielectric constant. Separating the signal caused due to a forest disturbance from other 

factors contributing to decorrelation is challenging. This factor is immensely reduced 

in single-pass interferometry when the two images are acquired simultaneously. The 

TanDEM-X mission comprises of bistatic SAR system with twin satellites TerraSAR-

X and TanDEM-X. For forest mapping, the potentials of TanDEM-X data have been 

demonstrated in Schlund et al., (2013) and Martone et al., (2015). Many studies that 

have used TanDEM-X for forest height and biomass estimation (Toraño Caicoya et 
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al., 2016; Schlund et al., 2015; Kugler et al., 2014; Chen et al., 2016; Lee et al., 2018). 

Mapping forest changes can be accomplished by using stacks of repeated acquisitions 

as demonstrated in (Martone et al., 2018).  

 Differential SAR Interferometry (DInSAR) is another technique in which an 

interferometric pair and a DEM are used to generate a differential interferogram. In 

this technique, the phase changes due to topography are removed. Tanase et al., (2015) 

used a TanDEM-X DInSAR and Shuttle Radar Topography Mission (SRTM) 

technique to map forest changes in semi-arid and tropical forests in Australia. Being 

semi-arid region, the influence of a change in dielectric constant was relatively low. 

Forest height was calculated, and negative height was considered as a sign of forest 

degradation or deforestation while positive height was considered as a sign of forest 

growth or afforestation. The synergy between SRTM and TanDEM-X datasets 

allowed identifying changes in forest extent.  

To summarise, although InSAR has proven to be a powerful and promising technique, 

it is more suitable for applications such as ground deformation monitoring, and in 

forestry, for canopy height estimation. Factors such as temporal and geometric 

decorrelation limit the use of InSAR and DInSAR approaches to analysis of forests 

which are areas of low coherence (Ferretti et al., 2001). More on the advantages and 

limitations of using InSAR for forest mapping can be found in Balzter, (2001). The 

TanDEM-X mission, which avoids temporal decorrelation, is an alternative approach 

however, the shorter wavelength X-band limits the canopy penetration and obtaining 

full-coverage height may be challenging. The L-band TanDEM-L mission planned for 

launch in 2022, may offer a better alternative to overcome such issues and derive more 

information on, not only the forest structure, but also on the level of disturbance in the 

forest.  

2.3.4 Classification based 

Image classification techniques are amongst the oldest techniques developed to 

generate land cover information with post-classification comparison used to analyze 

changes between images acquired on different dates. Most traditional classification 

approaches employ the image pixel as the basic unit of analysis (Li et al., 2014; Wang 

et al., 2004),  and many pixel-based classification methods for forest cover mapping 

and change detection can be found in the literature (Lu and Weng, 2007; Gislason et 
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al., 2006; Pal and Mather, 2005; Walker et al., 2010; Pantze et al., 2014; Rignot et 

al., 1994; Saatchi and Rignot, 1997).  

Pixel-based supervised image classification is a widely used approach and requires an 

analyst to build a model using labeled information of selected pixels which is 

generalized to the whole image. Among the various supervised classification 

techniques available, machine learning (ML) algorithms are gaining widespread 

recognition in preference to parametric methods such as maximum likelihood which 

operate on the assumption that the data are normally distributed (Jawak et al., 2015). 

Moreover, the increasingly high temporal and spatial resolution nature of 

multitemporal datasets can be too large for these statistical classifiers to handle 

resulting in poor performance. ML can be broadly defined as “computational methods 

using experience to improve performance or to make accurate predictions” (Mohri et 

al., 2018, p.1). Over the past decade, ML techniques have been widely adopted to 

provide solutions to excavate the information hidden in big datasets. The ML 

algorithms can handle many input variables, do not assume any data distribution, can 

work on different measurement scales for both categorical and numeric variables and 

there is no issue of over fitting. Traditional ML approaches within remote sensing 

involve image classification, feature selection and extraction, signal unmixing and 

model inversion (Camps-Valls, 2009). Recent advancements in ML techniques for 

tackling remote sensing problems include manifold learning, semi-supervised 

learning, transfer learning, active learning and structured learning (Criminisi et al., 

2012). 

ML algorithms such as Decision trees (Random Forests (RF), Extremely Randomised 

Trees (ERT)), Support Vector Machines (SVM) and Artificial Neural Networks 

(ANN) have been gaining more acceptance in forest cover mapping applications 

(Wheeler et al., 2017; Liesenberg and Gloaguen, 2013; Wang and Xue, 2014; Ari 

Sambodo and Indriasari, 2013; Mellor et al., 2013; Mascaro et al., 2014; Krizhevsky 

et al., 2012; Ghimire et al., 2010; Bosch et al., 2007; Devaney et al., 2015)  because 

they can handle different scaled data and many input features and are effective in high 

dimensional spaces.  

One of the ML classifiers extensively used for forest monitoring is the Random Forests 

(RF) classifier. First proposed by Breiman, (2001), it is a decision tree classifier that 
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builds an ensemble of individual trees and the decision from each tree is later 

combined to arrive at a final decision based on a voting scheme. Using a bootstrapped 

sample of the original data, the RF algorithm generates multiple Classification and 

Regression tree (CART)-like trees from two thirds of training data provided and the 

remaining one third are left out of the sample (Gislason et al., 2006a). These out-of-

bag (OOB) samples are used to test the individual trees as well as the entire forest. The 

OOB error estimates the average misclassification from all trees. These classifiers are 

non-parametric (do not assume normal data distribution) and they deliver a variable 

importance plot (a graph to assess the most relevant variables to the classification). 

The variable importance plot derived from this algorithm provides valuable insight as 

the importance of each variable can be assessed, and the variables of most importance 

can be retained for further improving the classification. A study by Devaney et al., 

(2015) applied a RF classifier for forest cover monitoring to two test sites in Ireland 

and obtained 97% accuracy for forest class mapping. The performance of a supervised 

classifier depends on the quality of the input features and the sufficiency of 

information in training samples, in addition to the robustness of the classifiers (Du et 

al., 2015; Rodríguez-Galiano et al., 2011). Du et al., (2015) evaluated a RF classifier 

used on fully polarimetric SAR data and found that the use of spatial features such as 

the Gray-Level Co-occurrence Matrix (GLCM) texture measures increased the 

classification accuracies by at least 30%. Studies such as Mellor et al., (2013), 

Gislason et al., (2006), Walker et al., (2010), Simard et al., (2000), Waske and Braun, 

(2009) also evaluated the performance of RF classifier for land cover mapping and 

found that RF outperformed single decision tree classifiers and are less sensitive to the 

number of training samples. For multitemporal stacks of SAR imagery, RF are highly 

efficient. Although best classification accuracies were obtained for classes such as 

grassland and urban with completely different backscatter, in Simard et al., (2000) 

forest was found to be mixed up with swamps, temporarily flooded woody vegetation 

and open forests. To improve understanding of the correlation between pixels (closely 

located or contiguous pixels), an independent accuracy assessment of the classification 

is suggested by (Mellor et al., 2013). Further, understanding how the classifier 

manages noise and outliers requires research. A review by Belgiu and Drăguţ, (2016) 

summarized the use of RF in remote sensing with a focus on its parameterization, the 

influence of changes in sampling procedures, and the size and representativeness of 

training sample sets. The paper emphasizes the need to set two parameters to produce 
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the forest trees – Ntree which is the number of trees to be generated and Mtry which 

is the number of variables to be selected and tested for the best split. The variable 

importance measurement provided by the RF classifier is one of the most useful 

features and has been extensively used for various applications such as reducing the 

number of dimensions in data and identifying the most relevant variables for 

classification.  

Although many studies acknowledge the use of RF for SAR classification, a 

comparative study by Trisasongko et al., (2017) using a fully polarimetric (PLR) 

ALOS PALSAR dataset showed that SVM outperformed RF and ANNs for land cover 

classification. It demonstrates the importance of tuning in non-parametric classifiers – 

substantial improvements in classification accuracies (20%) were observed. SVM 

responded primarily to tuning. It was found that tuning parameters such as Ntree and 

Mtry were unresponsive in the case of RF. In another study by Attarchi and Gloaguen, 

(2014), both SVM and RF produced better classification values at the 95% confidence 

level compared to Neural Network (NN) for complex mountainous Hyrcanian forest 

on ALOS PALSAR imagery. There is no way to state which classifier is better in 

performance as it depends on the dataset and application. In general, RF can be simpler 

to tune than SVM and ANN, it can be faster than SVM and works well with categorical 

data.  

Recently, Deep Learning (DL), a subset of ML algorithms which is gaining high 

popularity in pattern recognition, is being applied to SAR data for more robust 

information extraction (Zhang et al., 2019). DL extracts information through multi-

layer artificial neural networks, whereby each layer extracts one or more features of 

the image. The greater the number of layers, the better the interpretation of the images 

through extraction of higher-level features. Keshk and Yin, (2019),Cui et al., (2019), 

L. Chen et al., (2019)  have explored the potential of DL on SAR imagery for 

classification and change detection of features as woods, farmland, roads and others. 

Hamdi et al., (2019) used deep convolutional neural networks (CNNs) to detect 

changes in forests using X-band COSMO-SkyMed Stripmap SAR images. For areas 

ranging between 0.1 ha and 0.5 ha, accuracies slightly above 80% were obtained, while 

for areas greater than 0.01 ha, accuracies of 50% were obtained. One limitation of DL 

in comparison to other ML methods is that it typically requires a large amount of 

training data as well as hardware issues related to graphics processing unit (GPU) 
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computing power. In remote sensing, there exists few studies for classification and 

mapping of forest types and disturbances using DL (Onishi and Ise, 2018; 

Freudenberg et al., 2019). More evaluation of the potential of DL is required in 

applied forestry as there exists a knowledge gap between deep learning and remote 

sensing for application areas such as forestry. 

Post-classification comparison can be performed to detect changes within the mapped 

land covers. As none of the classified maps can be considered to have perfect accuracy, 

due to various factors such as the unavailability of ground truth data to derive training 

samples, the influence of image noise and the complex background (Wang and Cheng, 

2010), comparing them induces classification errors from each input and decreases the 

overall accuracy of the final output.   Using unsupervised learning provides a possible 

solution when the main application is change detection (Jawak et al., 2015). The most 

commonly used classifiers under the category of unsupervised clustering algorithms 

are the K-means and Iterative Self-Organizing Data Analysis (ISODATA) approaches. 

Used by Long and Singh, (2013), Abbas et al., (2016), Rahman, (2016), these methods 

exploit the spectral distance between adjacent pixels to divide the feature space by 

identifying natural groupings based on spectral similarities (Tempfli et al., 2009). Used 

on multi-temporal images, various clusters are formed based on the data distribution 

or as defined by the user. A key step in this approach is the separability of clusters 

based on their mean and standard deviation. The nature of a target before and after 

change in temporal images can be studied using the cluster signatures. These 

signatures carry information on the temporal behavior of clusters and this level of 

detail is useful in extracting information on change – when, where and the extent of 

change that has occurred. While monitoring change in forests using multi-temporal 

images, this ability of ISODATA algorithm aids in characterizing the disturbance type. 

Any supervised/unsupervised algorithm can identify change within multi-temporal 

images, the main difference being the use of training data. The unsupervised 

ISODATA classifier does not require any training data to identify areas of change and 

is more helpful in areas where there is a lack of reference data to extract different types 

of changes. Most of the studies based on ISODATA clustering have used optical 

imagery, however a few studies such as Pierce et al., (1998), Quegan et al., (2003) 

and Rignot et al., (1992) have studied the application of ISODATA clustering on SAR 

datasets and found that when polarimetric classifiers such as the Wishart classifier are 
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combined with the ISODATA classifier, there is an increase in the overall accuracy of 

around 10%. A study by Sgrenzaroli et al., (2002) conducted on tropical forest cover 

in three sites – Mato Grosso, Rondonia and Colombia displayed different results to the 

ones that have been mentioned before. This study focused mainly on the comparison 

between wavelet segmentation and ISODATA techniques, with ISODATA showing 

poor performance in detecting clear-cuts. The performance of ISODATA depends on 

the input parameters such as standard deviation and minimum distance values, 

convergence threshold, the maximum number of iterations and the number of clusters 

to be used. It is important to choose all these parameters carefully to improve the 

classifier performance.  

Due to the challenge of defining a priori the number of clusters, many cluster validity 

indices have been proposed in the literature (Arbelaitz et al., 2013; Ramze Rezaee et 

al., 1998; Wang and Zhang, 2007) that measure the distance between the signatures 

of two clusters and extract statistical separability values. Used by Goodenough et al., 

(1978) and Swain and King, (1973), divergence, which is computed using the mean 

and variance-covariance matrices of the data representing feature clusters, was one of 

the first separability indices applied to remote sensing imagery (Halls, 2001). de Bie 

et al., (2012) used the Divergence index to derive the optimal number of clusters for 

ISODATA clustering in land cover classification using hyper-temporal optical 

imagery. The index can be calculated on any number of image bands to represent the 

variability in land cover. Agricultural landscapes which were used in the study 

displayed a high temporal (seasonal/inter-annual) variability – the divergence indices 

were able to provide guidance in making the best choice in terms of the number of 

clusters that could be generated to represent the variability. More details on this 

approach can be found in Ali et al., (2013) and De Bie et al., (2008). Other studies by 

Nguyen et al., (2012) and Khan et al., (2010) have used a similar approach for 

classification with an overall accuracy of approximately 94% in mapping crop 

patterns. To explore the usability of indices such as the divergence index on SAR for 

forestry applications, no relevant literature was found.  

In summary, both supervised and unsupervised approaches to land cover classification 

of radar imagery have been used for forest monitoring, land cover mapping and change 

detection. Both the approaches offer advantages and limitations as listed in table 2.1. 

Combining both approaches to map forests and characterize and label the type of 
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disturbances occurring in them provides a platform to explore the utility of each 

approach. 

2.3.5 SAR Texture 

Texture is a representation of the grey-level variations  and their spatial relationships 

in an image (He et al., 2010). It is an important source of information as different 

surfaces have distinct textural features that help in discriminating the different land-

cover types. If there is a change from one land-cover type to another, a difference in 

texture may be observed. There are various techniques to analyze texture features such 

as the GLCM (R.M. Haralick et al., 1973), Markov Random Field (Deng and Clausi, 

2005, 2004) and Gabor filters (Jain and Farrokhnia, 1990; Gong et al., 2014). Among 

these approaches, the GLCM based methods are the most predominant (Baraldi and 

Parmiggiani, 1995; Kandaswamy et al., 2005; Shanmugan et al., 1981; Gebejes and 

Huertas, 2013). First proposed by Haralick et al., (1973), GLCM indicates the 

relationships between pixel grey levels in a particular direction or distance specified. 

The textural information in a SAR image is derived from statistical measures based on 

the statistical dependencies between neighboring pixels. The statistical texture 

measures are grouped into first-, second- and higher-order statistics. The first order 

measures also known as the occurrence measures include elements such as mean, 

skewness, variance and kurtosis. These measures are derived from the histogram of 

pixel intensities in a given neighborhood and do not account for spatial relationships 

(Jones and Vaughan, 2010). The second-order measures or the co-occurrence 

measures include elements such as contrast, correlation, dissimilarity, entropy, 

homogeneity and second moment. These measures describe the statistical 

dependencies between pixel pairs (spatial relationship of pixels) given the direction 

and inter-pixel distance.  The second order measures are derived from the GLCM. 

While the second-order measures deal with the relationship between two pixels, 

higher-order measures analyze the properties of two or more pixels.  

For forest monitoring and mapping applications, texture has been used as a valuable 

input to classification (Pierce et al., 2003; Han et al., 2005; Benelcadi et al., 2014). 

De Alban et al., (2018) used SAR-derived GLCM textures to discriminate forest 

classes in the tropical biodiversity hotspot of the Tanintharyi region in Myanmar. It 

was found that except for contrast measures, the rest of the texture measures did not 
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influence the classification, potentially because of the use of the small 3x3 kernel in 

comparison with other studies. Longepe et al., (2011) used two different kernel sizes 

of 5×5 and 13×13 for classification of tropical rainforest in the Riau province in 

Sumatra using ALOS PALSAR data. The larger window size (13×13) was found to 

be preferable to estimate the spatial variations and the entropy was the most relevant 

texture measure. Care must be taken in choosing the right window size, especially 

where there are features such as hedgerows at the edges of forests. An inappropriate 

window size will blur these edges, and lead to incorrect land cover classification and 

change estimation. The choice of the window size therefore depends on the structure 

of the study area and spatial resolution of the imagery (Chen et al., 2004). While 

texture measures are a useful input for SAR applications, their value can be affected 

by the selection of window size and application area.   

2.3.6 Others 

Additional change detection techniques include the Kittler-Illingworth threshold 

method (Bazi et al., 2005; Moser and Serpico, 2006; Hu and Ban, 2014) wavelets 

(Bovolo and Bruzzone, 2005; Celik, 2010; Gong et al., 2012), curvelets which have 

shown better representation than wavelets (Schmitt et al., 2010), fuzzy hidden Markov 

chains (Carincotte et al., 2006), object-based image segmentation techniques (Yousif 

and Ban, 2015), and SAR and optical image data fusion approach (Lehmann et al., 

2015; Hirschmugl et al., 2018; Poulain et al., 2011). Recent article by Tewkesbury et 

al., (2015) provides a clearer, synoptic review of change detection approaches in 

remote sensing. Specific to SAR, polarimetric decomposition algorithms and 

classifiers have been used for forest monitoring using fully polarimetric data 

(Trisasongko, 2015b; Trisasongko, 2010; Pardini et al., 2012; Coulibaly et al., 2012; 

Park et al., 2012; Durden et al., 1989; Trisasongko et al., 2010; Trisasongko, 2015a). 

In the light of growing volumes of remote sensing data, integrating multi-sensor 

frameworks have been used in applications such as urban and forest monitoring. 

Developing global monitoring systems that take advantage of the potential synergies 

and complementary nature of optical and radar datasets has been of significant interest 

as shown in studies by Lehmann et al., (2012) and Lehmann et al., (2015) as they 

provide combined benefits from both datasets to provide an effective monitoring 

system. Research activities combining LiDAR (Light Detection and Ranging) and 



 

40 
 

radar remote sensing have also increased in recent years. Studies such as Pourshamsi 

et al., (2018) and Kaasalainen et al., (2015) have integrated the benefits of 

polarimetric interferometric SAR (PolInSAR) data with LiDAR measurements to 

obtain improved forest canopy height estimates and retrieve above-ground biomass. 

Using the advantage of wide-scene coverage offered by PolInsar and the variables 

derived from PolInsar such as coherence, scattering from HV, HH and VV channels, 

more accurate results were achieved using a small Lidar sample. Kellndorfer et al., 

(2010) used LiDAR from the Laser Vegetation Imaging Sensor (LVIS), InSAR from 

SRTM and Landsat ETM+ data to characterize forest stand heights. The predicted map 

was tested against ground survey data which resulted in a correlation coefficient r = 

0.83 with 9% error. Although LiDAR provides exceptional spatial detail of forest 

structure, it is limited in terms of complex data processing and high cost of data 

collection.  

 Concluding remarks 

Given the small-scale coverage of traditional ground-based methods of forest 

monitoring, satellite remote sensing approaches have become significant contributors 

to operational studies. The preference of SAR sensors over optical sensors for forest 

monitoring is mainly due to their longer wavelengths and polarization capabilities and 

the fact that they are largely unaffected by cloud cover and haze. The variation in 

backscatter before and after change depends on surface roughness and dielectric 

properties of the target which requires knowledge of the area to label the changes.  

Regarding SAR, several factors are to be considered before using the data. For forestry 

applications, the longer wavelengths such as the L-band have more penetrating 

capability and hence provide more information on the forest health, height and the 

disturbances.  Moreover, cross polarized HV/VH data is better as it is more sensitive 

to volume scattering which is common within forests. The capabilities of co-polarized 

HH data cannot be underestimated and retaining HH data for forest monitoring will 

add value to the process of change detection of forests. Therefore, using dual- or quad-

polarized SAR data is more useful than single-polarized data to extract their full 

potential in understanding the different scattering mechanisms.  

 The most commonly used change detection techniques are algebra-based, 

transformation-based, interferometry based, and classification based. Significant 
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progress has been made in change detection approaches which includes advanced 

techniques such as InSAR, machine learning classifiers and deep learning. While the 

usefulness of the traditional statistical classifiers cannot be underestimated, the power 

that advanced machine learning classifiers and the conventional unsupervised 

clustering algorithms provide are unique and are of great potential.  
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3 Study Area and Datasets 

 

“The goal is to turn data into information and information into insight” 

– Carly Fiorina  
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 Introduction 

Selecting an optimal remotely sensed dataset is ironically a challenge as a consequence 

of the wide range of data currently available. The question is how to optimize the data 

characteristics that will effectively address the application or the research problem. 

For example, an issue with using multi-temporal datasets is that, with too little data, 

the quality of the analysis is reduced and too much detail will have a negative effect 

which can be burdensome leading to inaccurate results (Warner et al., 2009). Keeping 

in mind the project budget, required spatial, temporal, spectral and radiometric 

resolution for the application, along with the knowledge of the study area, a decision 

must be made in making the right choice of data. As detailed in Chapter 2 of the thesis, 

for forest monitoring applications, L-band dual-/quad-polarized SAR data has shown 

to be a useful data source. Given the limited availability of quad-polarized data and 

based on the factors discussed in chapter 2, section 2.2.1 that could lead to the best 

results for this project, L-band dual polarized data has been selected for the present 

work. The only available L-band dual polarized data at the time of data order was 

JAXA’s ALOS PALSAR data, the details of which have been given in section 3.3 of 

this chapter.  

The focus of this chapter is to describe the study sites and datasets selected for the 

study. Pre-processing steps for the acquired datasets are also presented. 

 Description of Study Sites 

“A man and his environment are more intimate than a snail and his shell” – Paul 

Vidal de la Blache, French geographer. 

In order to select the study areas for this work, the country was assessed and the most 

suitable sites were chosen at a nationwide level. This assessment was based on 

topography, forest/land use and climate which are described in the following sections.  

3.2.1 Topography 

A topographical image of Ireland is presented in figure 3.1 with elevation data 

acquired from the Ordnance Survey of Ireland (OSi). The resolution of this DEM is 

10m.  
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Figure 3.1: DEM from OSi of 10m resolution 

A mix of these lowland and upland areas were selected for the study to incorporate the 

various topographical features within the algorithm which is useful for transferability. 

Based on this assessment, three areas from South, North and East were identified 

which were a mix of mountains and plainlands. This would allow consideration of 

interaction of different topographies with SAR backscatter and provide a fair 

evaluation of the algorithm developed for the study. Processing the SAR image by 

accounting for backscatters from targets such as steep mountains that would interefere 

with forest backscatter would allow in developing a robust algorithm. The three areas 

identified from this assessment were Cork (South), Donegal (North) and Wicklow 

(East). However, when the ALOS PALSAR images for these areas were explored, the 

images covered parts of the neighbouring areas which were then included in the study. 

The study areas as covered by the ALOS PALSAR images are shown in figure 3.2. 

The blue frames are the KML files generated from the ALOS PALSAR datasets. These 

areas were grouped into three main areas based on their location. 

Area1: Cork, Limerick – Located in the South 

Area2: Donegal, Leitrim – Located in the North 

Area3: Wicklow, Meath, Kildare, Carlow, Dublin, Wexford – Located in the East 

Areas of low 

elevation 

Areas of high 

elevation 
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Figure 3.2:Study areas in the Republic of Ireland 

3.2.2 Forest cover 

The areas selected based on topography were then assessed with respect to forest 

cover. Relevant recent forest information from Department of Agriculture, Food and 

the Marine, (2019) has been extracted for each area; the forest area information based 

on ownership for each county is presented in table 3.1. According to the NFI third 

cycle conducted between 2015 and 2017, the area of forest in Ireland is estimated to 

be 770,020 ha (11% of total land area). Species information in each county is presented 

in table 3.2. 
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Table 3.1: Forest cover information for selected study areas from 2019 

Study 

area 

Counties % Forest cover within 

county ( forest as a 

proportion of total land 

area) 

State-

owned 

forests (%) 

Private forests 

(grant-aided; 

other) (%) 

Area1 Cork 12.1 52.9 47.1 

Limerick 10.4 35.7 64.3 

Area2 Donegal 11.4 64.9 35.1 

Leitrim 18.9 48.6 51.4 

Area3 Wicklow 17.9 62.2 37.8 

Meath 5.7 24.2 75.8 

Kildare 6.1 46.1 53.9 

Carlow 9.4 57.2 42.8 

Dublin 6.5 66.7 33.3 

Wexford 6.2 46.0 54.0 

  

Table 3.2: Species information for each county of the study area (NFI 2017) 

Study area Counties % Conifer forests % Deciduous forests 

Area1 Cork 73.4 26.6 

Limerick 82.9 17.1 

Area2 Donegal 82.0 18.0 

Leitrim 70.0 30.0 

Area3 Wicklow 71.8 28.2 

Meath 28.1 71.9 

Kildare 34.7 65.3 

Carlow 69.9 30.1 

Dublin 59.9 40.1 

Wexford 72.1 27.9 

 

From table 3.1, Leitrim has the highest percentage of forest cover (18.9%) followed 

by Wicklow (17.1%) and Cork (12.1%). In the study sites, the non-native tree species 
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Sitka Spruce (Picea sitchensis) is predominant. Although Sitka Spruce is the most 

common tree species, other native and non-native species such as Alder (Alnus 

glutinosa), Birch (Betula pubescens), Oak (Quercus), Norway Spruce (Picea abies), 

Japanese larch (Larix kaempferi) and Lodgepole pine (Pinus contorta) are also found 

in the study areas – a mix of conifers and broadleaves are common in these areas. In 

Meath and Kildare, higher percentage of broad-leaved trees are found than the conifers 

(table 3.2).  

There is predominance of peatbogs in Area2 particularly over the northern parts. 

Covered by lesser peatbogs, Area2 and Area3 are dominated by croplands and 

grasslands. While there is a higher concentration of settlement class in Area3 

particularly over Dublin, water bodies are more prevalent in Area2. The different land 

cover classes present in these areas was an important factor while choosing the study 

areas.  

3.2.3 Climate 

Ireland is mostly characterized by mild, moist climate with abundant rainfall. The local 

climate across the country differs from place to place. The mountains face the wettest 

weather and counties such as Dublin and Kildare that are located on the east coast have 

the driest weather. The distribution of rainfall is highly variable in Ireland and 

therefore Met Éireann (the Irish Meteorological Service) has planted 500 rainfall 

recording stations across the country to acquire countrywide rainfall readings. To 

describe the climate of Ireland, details of two weather elements – temperature and 

rainfall are given below. The data for three stations within the study sites are extracted 

from Met Éireann; the location of the stations are shown in figure 3.3. The 30 year 

average annual temperature (degree celcius) and rainfall (mm) for 1981-2010 from the 

three meteorological stations are given in table 3.3. The data are derived from 

SÉAMUS, (2012). 
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Figure 3.3: Location of three meteorological stations for which 30 year average 

weather data are extracted 

 

Table 3.3: 30 year average annual Temperature and Rainfall (1981-2010) records  

Station 30 year average 

Temperature (degree 

celcius) 

30 year average 

Rainfall (mm) 

 Min Max Mean  

Cork Airport -8.0  28.7 9.9 1227.9 

Malin Head -6.2 25.9 9.8 1076.0 

Casement -15.7 31.0 9.7 754.2 

 

From table 3.3, Cork Airport of Area1 has received the highest rainfall over the 30 

years.  Receiving the highest rainfall, Area1 also has the highest mean temperature 

recorded over the 30 years. The other two areas have faced relatively lesser rainfall 

over these years with lesser temperatures. Summer months are usually drier in Ireland 

compared to spring, winter and autumn.  
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Considering the differences in topography, forest/other land use classes and climate, 

Area1, Area2 and Area3 were finalised for further analysis. 

 SAR Data acquisition and pre-processing 

3.3.1 ALOS PALSAR 

The Advanced Land Observing Satellite (ALOS) was launched on 24th January 2006 

and it was operational until 12th May 2011 (Rosenqvist et al., 2007). This satellite 

carried three remote sensing instruments – Panchromatic Remote-Sensing Instrument 

for Stereo Mapping (PRISM), the Advanced Visible and Near-Infrared Radiometer 

type 2 (AVNIR-2) and the polarimetric Phased Array L-band Synthetic Aperture 

Radar (PALSAR).  This research is focused on PALSAR data. The Equator pass time 

of the satellite is ~10.30 (descending) and ~22.30 (ascending) UTC with a repeat-pass 

cycle of 46 days. All acquisitions for the study were acquired from ascending orbits in 

Fine Beam Dual-Polarization (FBD) mode which comprised of both HH and HV data 

with a swath of 70km and an incidence angle at scene center of approximately 38° 

(off-nadir angle of 34°).  

A total of 50 images were acquired from the European Space Agency (ESA), following 

the successful evaluation of a category-1 proposal (ID 17771). All data were delivered 

as Level 1.1 Single Look Complex (SLC) products. The characteristics of the data 

products acquired are given in the appendix of the thesis. Common characteristics of 

the data are 

• Sensor: PALSAR 

• Mode: FBD 

• Polarization: HH, HV 

• Incidence angle (ϴ): 38° 

• Wavelength: 23.6cm 

The sensor mode, geographical region and time of acquisition were fixed for the ALOS 

satellite to support the systematic observation strategy. This therefore limits image 

availability. Two frames for each area were required in order to maximise coverage of 

the selected regions (figure 3.1). All images were acquired for the months of June with 

one FBD image per year.  
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3.3.1.1 ALOS PALSAR pre-processing 

The standard SAR pre-processing steps according to Sarmap, 2009 as shown in figure 

3.4 were followed to convert the SLC data into meaningful backscatter data to enable 

further processing and analysis. All SAR pre-processing was carried out using the 

SARscape 5.0.001 software within an ENVI 4.8 environment.  

 

Figure 3.4: SAR pre-processing steps 

The acquired SLC products were multi-looked with factors of 1 (in range) and 4 (in 

azimuth) to create square pixels of 15×15m. All the multi-looked images were 

subsequently coregistered and speckle filtered using a De Grandi multi-temporal 

speckle filter which preserves the structural features of the image without adding any 

blurring effect which is seen with other non multi-temporal speckle filters. Each 

element in the homogenous area is averaged with uncorrelated elements in the time-

series. This multi-temporal filtering works assuming that the same resolution element 

on the ground is reflected in the same way and corresponds to the same co-ordinates 

in the image plane in all images of the time-series. The data scenes were then 

radiometrically and geometrically calibrated and values converted to decibels (dB) 

using the equation (Shimada et al., 2014; Woodhouse, 2005) 

 

                                                𝛾° =
𝜎°

𝑐𝑜𝑠𝜃
               (1)                                               

Where, γ°  is normalized with the cosine of the incidence angle, expressed in dB  

σ° (Backscattering coefficient or differential radar cross-section) = 10*log10 

(DN); DN is the pixel digital number value in HH or HV 

ϴ is the local incidence angle 

To ensure proper geometric correction of the SAR scenes, the OSi DEM of 10m spatial 

resolution and many ground control points (GCPs) were used. The scenes were 
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geometrically corrected to Irish Transverse Mercator (ITM) projection (EPSG:2157). 

Terrain-induced distortions such as layover and shadowing were masked from the 

images. The local incidence angle (angle between the normal to the backscattering 

element and the incoming radiation) generated by the DEM was used to identify the 

layover and shadowed areas, where negative values represented active layover areas 

and values greater than 90⁰ represented active shadow areas. Finally, the two frames 

covering each study site were mosaicked.  

 

Figure 3.5: PALSAR false color composites with HH backscatter in red band, HV 

backscatter in green band and the HH/HV backscatter ratio in the blue band for 

all the study areas. All data are in ITM projection  

The false color composites of the mosaicked backscatter images for all the areas for 

one year (2007) are shown in figure 3.5. Forests appear in greenish yellow color, water 

bodies in blue and agricultural and peatlands are in varying shades of purple – in Area2 

more peatlands can be observed on the hilly terrains in shades of purple and red. Most 

of the agricultural activities in Ireland take place in the South Eastern parts of Ireland 

and hence in Area1 and Area2, more of the purple and blue shades can be observed.  

3.3.2 ALOS -2 PALSAR-2 

ALOS-2 was launched on May 24th, 2014 after ALOS became dysfunctional in 2011. 

This L-band satellite also contains three remote sensing instruments AVNIR-2, 

Area1 Area2 Area3 
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PRISM and PALSAR-2. The PALSAR-2 sensor with a reduced revisit cycle of 14 

days has three modes – Spotlight mode, Stripmap mode and ScanSAR mode. For this 

research, stripmap FBD mode data were used with HH+HV polarization bands with 

an incidence angle of 36° (off-nadir angle of 32.7°). Similar to PALSAR data, all 

PALSAR-2 data were acquired as level 1.1 SLC products. A total of 150 PALSAR-2 

images were made available by Japan Aerospace Exploration Agency (JAXA) 

following the successful evaluation of the proposal submitted to the 6th Research 

Announcement for ALOS-2 (ID: 3342).   

With the launch of this satellite in 2014, images from 2015 and 2016 were ordered 

over the same study areas chosen for ALOS PALSAR data processing to extend the 

forest monitoring algorithm to 2015 and 2016 and thereby evaluate the transferability 

of the algorithm to the new sensor. The available KML files covering the study areas 

are shown in figure 3.6.  

 

 

 

 

 

 

 

 

 

 

Figure 3.6: ALOS-2 PALSAR-2 data frames that were ordered; the square boxes 

are the data frames covering the study areas 

The frames are presented in different colors to highlight the overlapping areas between 

them. The image dates and other characteristics are given in the Appendix. 
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While the FBD ALOS PALSAR datasets were available consistently over the summer 

months for the period 2007-2010 as discussed in section 3.3.1, the FBD mode of 

ALOS-2 PALSAR-2 sensor was available with infrequent acquisitions (~1-2 

observations per year) over Ireland. This is because of the particular global data 

acquistion plan put in place by JAXA. Therefore, only winter images were available 

in some parts of the study areas along with autumn images in other parts of the study 

area. 

3.3.2.1 ALOS-2 PALSAR-2 pre-processing 

The PALSAR-2 datasets with dual polarization (HH, HV bands) and incidence angle 

of 36° were processed using the Sentinel Application Platform (SNAP) version 7.0 as 

the version of SARscape licensed by the Department of Geography did not support the 

processing of PALSAR-2. With 1 look in range and 2 looks in Azimuth, co-registered, 

speckle filtered, calibrated and geometrically corrected backscatter 𝛾° images were 

generated using the OSi 10m DEM. The 8×8m spatial resolution images were 

mosaicked and clipped to the area extent corresponding to the areas of ALOS 

PALSAR processing for further processing and analysis. The false colour composites 

of the backscatter images for all areas are shown in figure 3.7.  

Figure 3.7: PALSAR-2 false color composites with HH backscatter in red band, 

HV backscatter in green band and the HH/HV backscatter ratio in the blue band 

for all the study areas. All data are in ITM projection 

Area1 Area2 Area3 
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 Reference datasets 

To evaluate the results generated by the forest disturbance monitoring algorithm and 

to aid their interpretation, reference datasets were acquired from several sources. 

1) Forestry12 and PrivateForests2016 from Forest Service: The Irish Forest 

Service has been providing forest datasets in Ireland since 1995 (Gallagher et 

al., 1999). The first dataset was known as the Forest Inventory and Planning 

System (FIPS) and was derived for the period of 1993-1997 from automatic 

classification of satellite imagery and on-screen interpretation of Landsat TM 

imagery (1993-1997), panchromatic orthophotos (1995)  and the OSi 25” map 

series. A new dataset (FIPS98) was generated in 1998, in which private 

afforestation records for plantations in receipt of grant aid were appended. The 

subsequent updates were made in 2007 (Forestry07) and 2016. An updated 

dataset Forestry12 was ordered which appended Forestry07 and afforestation 

records from 2008-2012. The current dataset is called PrivateForests2016 

which consists of newly afforested areas (grant aided) appended to the FIPS98 

dataset. The update to the FIPS forest cover which began in 2014 is the 

PrivateForests2016 datasets which consists a of forest cover layer for the 

private estate. Access to these datasets was acquired through DAFM. These 

datasets are used for generating forest cover maps in chapter 4 and 6 of the 

thesis. 

2) Felling information from Coillte: Coillte is Ireland’s semi-state forestry 

company owning 7% (440,000 ha) of Ireland’s land which represents almost 

50% of the country’s forest estates. It’s harvest information which comprises 

of spatial information on clear felling was necessary to validate the disturbance 

results calculated through the algorithm developed in this project. Shapefiles 

of felled areas for the years 2007-2010 and 2015-2016 over the study areas 

were acquired from Coillte following completion of a data agreement. Two 

main files namely MU_Felled (Minimum Unit Felled) and SUBS (sub 

compartments) were received for the study areas. The MU_Felled shapefile 

contained attribute information on the felled year and the area felled; details 

on the forest species and planting year could be obtained from the SUBS 

shapefile.  These datasets are used to validate the SAR derived clear-fells in 

chapter 5 and 6 of the thesis.  
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3) Land Parcels Identification System (LPIS) from DAFM: The LPIS is a 

spatial database developed by the DAFM with more than 1.3 million land 

parcels. Spatial information on peatlands and croplands over the study areas 

were acquired to aid land cover classification. This dataset is used in chapter 4 

and 6 of the thesis. 

4) The Co-Ordinated Information on the Environment (CORINE): In 

Ireland, the Environmental Protection Agency (EPA) is responsible for 

conducting the CORINE Land Cover (CLC) mapping process. The dataset 

updated in 2012 (CLC2012) and 2018 (CLC2018) were used to mask urban 

areas from classification. This dataset was also used as reference data for water 

and grassland classes to aid classification. The datasets contain 44 classes with 

a Minimum Mapping Unit (MMU) of 25 ha.  These datasets are used in chapter 

4 and 6 of the thesis in which the urban areas are masked before land cover 

classification.  
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Part II 

MAPPING AND CHARACTERISING 

FOREST DISTURBANCES USING 

SUPERVISED MACHINE LEARNING AND 

UNSUPERVISED CLASSIFIERS – TESTED 

AND APPLIED ON TWO SENSORS 

 

 

 

 

Chapters 4 and 5 – Algorithm tested on ALOS PALSAR sensor data 

Chapter 6 – Algorithm applied on ALOS-2 PALSAR-2 sensor data 
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Approach 
 

 

 

“A breakthrough in machine learning would be worth ten Microsofts” – 

Bill Gates 
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 Introduction 

Large scale mapping of forests on a global level has been performed by some recent 

research such as Kempeneers et al., (2013); Caccetta et al., (2012); Hansen et al., 

(2013); Bartholome and Belward, (2005); Hansen et al., (2010); Rosenqvist et al., 

(2000); many studies have been carried out on European forests (Rosenqvist et al., 

2004; Quegan et al., 2000; Pekkarinen et al., 2009; Wilkinson et al., 1995). Most 

forest studies using SAR have been done on dense forest covers such as the Brazilian 

Amazon (Walker et al., 2010), dense tropical Asian forests (Achard et al., 2001; 

Shimada and Isoguchi, 2002), Siberian forests (Wagner et al., 2003) and African 

forests (Ryan et al., 2012). Relatively fewer studies have been done on fragmented and 

sparse forest covers existing in Ireland.  

As discussed in chapter 2, the algorithm developed in the current project for mapping 

and monitoring forest disturbances in Ireland comprises of both supervised and 

unsupervised classification approaches; this chapter describes the Random Forests 

machine learning supervised approach to map forests in Ireland. The main objective 

of the present study is to investigate the potential use of dual-polarized (HH, HV) L-

band SAR data in mapping the fragmented forests of Ireland. A systematic 

methodology was developed and implemented on Area1 and then it was transferred 

on the other study areas (Area2 and Area3) to evaluate the robustness of the algorithm 

for a possible application on a national scale.  

 Methodology 

A systematic methodology was adopted for the present work – the end product was a 

forest/non-forest classification map.  The approach consists of various steps such as 

analysis of the SAR backscatter from different targets (forests, non-forests6 and urban), 

choosing the most relevant input variables, collection of training samples, RF 

classification and accuracy assessment. A flow diagram is shown in figure 4.1 

displaying the three stages to the process chain. Each step of the algorithm is discussed 

in the following sections. 

 

 
6 All classes such as water, cropland, grassland and peatland excluding forests. Urban 

category was treated as a separate class 
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Process chain 2: Collection of Training samples 

collection 

Process chain 1: Data preparation for classification 
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Figure 4.1: Flow diagram displaying three stages of methodology 

4.2.1 Backscatter analysis of PALSAR images 

The backscatter of the pre-processed PALSAR (from Chapter 3) images was analyzed 

to understand the reflected power obtained from forests and non-forests. This was 

performed as a preliminary step before classification to understand the behavior of 

forest and non-forest classes from L-band HH and HV PALSAR images. While HV 

polarisation occurs due to volume scattering from forest canopy, branches, stems and 

leaves leads to HV polarisation, HH polarisation is more sensitive to surface scattering 

observed from forest floor from which information about soil moisture can be gained. 

It was noted that the volume scattering from forests and double bounce and corner 

Process chain 3: Random Forests classification and generation of forest/non-forest 

maps 
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reflections from urban areas give similar backscatter values and hence may lead to 

misclassification of forests. 

Using ground truth data from Forestry12 dataset, HV and HH intensity values from 

500 forest pixels were collected; 500 non-forest (excluding urban) pixels using Bing 

Maps and with the aid of CORINE 2012 data 500 urban pixels were extracted from 

both HH and HV SAR images. This collection was done in ENVI using the Region of 

Interest (ROI) facility available. Boxplots were plotted for all three classes and the 

distribution of the backscatter coefficient values for the forests, non-forests and urban 

classes are shown in figure 4.2. This analysis was performed for each of the three study 

areas. From the boxplots it is evident that forest and non-forest classes are separable 

from each other with an overlap between the 1st quartile of forest class and 4th quartile 

of non-forest class, causing confusion in classification. This pattern is visible for both 

HH and HV bands across all study areas. More discrimination can be observed in HV 

polarization than HH polarization with a difference of 8dB between the two classes. 

Considering urban class, approximately 50% of the data lie within the second and third 

inter-quartile range of the forests suggesting higher level of confusion in separating 

these classes. The received signal gets depolarized from urban areas due to double 

bounce and corner reflections displaying a similar behavioral pattern to that of trees. 

This could lead to false classification of urban areas as forests. One possibility in 

avoiding such errors is to use external ancillary data such as the CORINE to mask out 

the urban areas (Dostálová et al., 2016). This approach was adopted for the study and 

using the CORINE 2012 urban mask, urban areas were masked out from all the study 

areas. With the aid of CORINE technical guide (Bossard et al., 2000), CORINE land 

cover classes – Continuous and Discontinuous Urban fabric, Industrial or Commercial 

Units, Sports and Leisure Facilities, Airports and Mineral Extraction Sites were 

extracted and masked out from the SAR imagery. 

Nomenclature of classes within the boxplots 

• For = Forests 

• NF = Non-Forests 

• Urban = Urban areas 



 

62 
 

 

Figure 4.2: Boxplots of L-band HH and HV backscatter γ⁰ for forest, non-forest 

and urban samples for study area1, 2 and 3 
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4.2.2 Data preparation for classification 

Several variable bands were prepared and stacked together for classification. These 

variables were evaluated to determine their contribution to classification accuracies 

and then the most relevant variables were selected for the final run of classification. 

Through analysis of radar HV and HH backscatter (section 4.2.1), it was understood 

that cross-polarized images are better for discriminating between forests and non-

forests and hence only HV backscattering coefficient was used for classification. The 

different variables that were prepared for initial classification were HV backscattering 

coefficient (γ⁰), GLCM texture measures based on HV, polarimetric ratio (HH/HV) 

and HH+HV band, elevation from OSi DEM, and slope and aspect parameters derived 

from the DEM.  

4.2.2.1 Introduction to non-forests classes 

The focus of this study is to explore the ability of L-band SAR to distinguish between 

forests and non-forests on a fragmented landscape. To understand further the errors 

that arise in forest classification the individual classes that make up the non-forest 

classes (cropland, peatland, water and grassland) were also assessed in this study. The 

rules for forest carbon reporting are done according to the strict guidelines set out by 

the IPCC GPG. To adhere to the rules, the classes for classification were chosen from 

the IPCC guidelines (IPCC, 2000). The UNFCCC invited the IPCC to produce good 

practice guidelines for land-use, land-use change and forestry (LULUCF) in 1998 

(IPCC et al., 2003). The GPG 2000 provides guidance on the selection of suitable 

methods to identify and represent land areas. This information on land is required for 

carbon-stock estimation and removal of GHGs associated with the LULUCF. Six 

broad categories of land have been defined by the IPCC GPG2000. The categories are 

(i) Forestland (ii) Cropland (iii) Grassland (iv) Wetlands (water and peatbogs) (v) 

Settlements and (vi) Other land – bare soil, rock, ice and unmanaged land areas. These 

classes are a mixture of land cover (Forestland, Grassland and Wetlands) and land use 

(Croplands, Settlements) categories. However, for convenience, these are referred to 

as land cover categories in this thesis. For this study, the classes have been slightly 

modified depending on the availability of reference data – Forestry12 for forestry, 

LPIS for Cropland, Grassland and Peatland, CORINE 2012 for water and settlements. 

No valid reference was available for the category (vi – other land) and also in Ireland 
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there is limited coverage of these classes, especially in the selected study areas. 

Therefore, for this study, classification was done only based on the first four categories 

(with settlements masked out) and the final category was amalgamated with the other 

non-forest classes.  

4.2.2.2 GLCM Texture measures 

Texture is a variation of the intensity of the surface. It is a measure to statistically 

quantify surface smoothness, coarseness and regularity (Davis et al., 1979), and can 

be used to increase accuracy of classification (Dekker, 2003). GLCM (R. M. Haralick 

et al., 1973) functions, the most common of all the texture measures (Longepe et al., 

2011; Li et al., 2012; Lu et al., 2007), were applied to extract textural features. The 

GLCM contains information about the frequency of occurrence of two neighboring 

pixel combinations in an image (Gebejes and Huertas, 2013). Eight textural 

parameters (Mean, Variance, Homogeneity, Contrast, Dissimilarity, Entropy, Second 

Moment and Correlation) were computed using window sizes starting from 3×3 up to 

19×19 in order to identify the most appropriate window to aid the classification. For a 

more detailed description of each of the texture measures, Clausi and Zhao, (2002); 

Albregtsen, (2008) can be referred. 

Choosing suitable parameters such as direction, grey-level quantization and window 

size is crucial when using texture measures. The parameters chosen were 

a) Direction: To describe the relation between neighboring pixels, four separate 

GLCMs in four directions - 0⁰ (horizontal neighbors), 45⁰ (NE-SW), 90⁰ 

(vertical), 135⁰ (NW-SE) were derived. The texture value for an individual 

pixel was then derived as the average of the texture values derived in all the 

four directions. This is done in order to derive a matrix which is independent 

of direction (Albregtsen, 2008).  

b) Grey-level quantization: In computing the GLCM, the number of grey levels 

is an important parameter. The quantization is done to merge similar grey 

levels in the image and thus reduce the noise to some extent. The textural 

information is more accurate with more quantization levels, but higher levels 

include more computation time and smaller levels lead to loss of information. 

Considering the trade-off between computation time and preservation of 

information, a quantization level of 64 was adopted in the present work. More 
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information on grey-level quantization can be found in work done by Soh and 

Tsatsoulis, (1999). 

c) Texture moving window size: The statistical separability of classes can be 

used as a criterion for window size selection (Ferro and Warner, 2002). To 

select the texture window size appropriate for the study, separability analysis 

was conducted using Transformed-Divergence (TD) distance as shown by 

Mishra et al., (2014); Bindel et al., (2011). The TD distance is a measure of 

statistical distance between classes and varies between 0 and 2.0. Values 

greater than 1.9 indicate that the classes have a good separability (Elsharkawy 

et al., 2012). From the SAR image, training samples were derived for the five 

classes. The TD distance was calculated between forest and non-forest classes 

individually for each window size to observe the distinction between forests 

and other classes. The window size that gave the maximum separation was 

chosen and used to extract GLCM measures for classification. These classes 

were chosen according to the IPCC GPG2000 as explained in section 4.2.2.1 

using the reference data available for each class. 

 

 

Figure 4.3: TD distance showing separability between classes for texture window 

According to figure 4.3, forest is separable from water by all the window sizes with a 

maximum separability distance of 2 between the classes. For the separability between 

forest and grassland/peatland/cropland, the values become stable from window size 

11. The seperability between forestland and peatland saturates at 1.75 from window 

size 11. This suggest that forests are not clearly separable from peatlands. The high 



 

66 
 

moisture content in peatlands leads to confusion in forest classification. Texture 

measures are of more use in classification if the within-class texture of each class is 

uniform and different from the other classes. Hence, larger windows take into account 

the variability of the texture elements, thus giving a stable measure, but blurred edges. 

Smaller windows have a reduced edge effect but they do not provide uniform or stable 

within-class texture values. A balance needs to be achieved between the two 

parameters while choosing the appropriate window size (Wen et al., 2009). Based on 

this analysis, a texture window of size 11×11 was chosen to extract GLCM texture 

measures required for classification.  

4.2.2.3 Polarimetric discriminators 

The proportion of horizontally and vertically polarized components in the received 

backscatter can vary for different targets depending on the target orientation towards 

the radar sensor look direction and the transmitted polarization (Patel et al., 2006). 

Studies by Cable et al., (2014); Attarchi and Gloaguen, (2014); Turkar et al., (2012)  

have shown the use of multi polarization SAR channels for effective land cover 

classification. Radar polarimetric information (dual or full) can be used to study land 

use and land cover  information using polarimetric discriminators (ratio, addition, etc) 

which are effective in characterizing the different types of scattering mechanisms 

(Dusseux et al., 2014a). Since these combinations carry extra information useful for 

decomposing the scattering mechanisms, two combinations, the ratio HH/HV and 

HH+HV, were calculated and added for classification. 

4.2.2.4 Elevation, slope and aspect from DEM 

Terrain has been found to affect the spatial and temporal vegetation distribution 

significantly (Koppad and Janagoudar, 2017) and is therefore an important factor to 

consider in addition to texture, especially in mountainous areas. Dorren et al., (2003); 

Shrestha and Zinck, (2001); Peng et al., (2005), Albright et al., (1998)  have used 

terrain information such as elevation, slope and aspect for their Land-Use/Land Cover 

classification and have observed reduction in the confusion between different classes. 

Terrain parameters (elevation, slope and aspect) were generated from the OSi DEM 

and were added as additional bands in the classification. 
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4.2.3 Training data collection 

A stack derived from the 2010 SAR image with the different input bands was used to 

train the classifier. This date was chosen because the reference for different classes 

were available for the year 2012, and the 2010 image was the closest to this in time. 

Using the training data from this image, the classifier was trained and the other images 

from the years 2007-2009 were classified subsequently. The training samples were 

collected from five different classes using the reference data available for those classes 

– forestland (Reference data: Forestry12), cropland and peatland (LPIS 2012), 

grassland and water (CORINE 2012, BING Aerial imagery). 

To collect training data, the procedure requires training polygons and, based on a user-

defined number of samples, pixels are randomly selected for each land cover type. The 

data value for that pixel is determined and these data are used to run the random forest 

model. A total of 5000 training samples were collected from the SAR 2010 image 

(forest = 3200; cropland = 300; grassland = 200; peatland = 650; water = 650). These 

made up a total of 3200 forest samples and 1800 non-forest samples. The location of 

training samples within Area1 is shown in figure 4.4. These boxes cover the five 

different landcover classes and user-defined number of pixels were randomly selected 

for each class from the boxes. 
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Figure 4.4: Location of training samples for Area1 

 

4.2.4 Random Forests Classification 

A Random Forests machine learning classifier was used in this study to classify the 

forest and non-forest classes on a SAR image. The algorithm creates a set of decision 

trees from a bootstrap sample of training data (randomly selected subset of training 

dataset). It builds a committee of a number of individual decision tree classifiers and 

the votes cast by each tree are later combined to make a decision based on the majority 

votes derived. It is a group of “weak learners” coming together to form a “strong 

learner”. From an individual tree, when the training set is drawn by sampling with 

replacement, one-third of the cases are left out of the sample (this is the out-of-bag- 

OOB data). Estimates of variable importance plots are also derived using this OOB 

sample (Brieman and Cutler, 2002). 

The main reasons why a RF classifier was chosen are 

1) It can handle several input variables 

2) It gives the estimate of which variables are most important to the classification  

via a graph which shows the strength of each variable in the model, giving a 
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better insight into which variables are the most relevant for the classification 

and reducing data redundancy (Cutler et al., 2007). It is crucial not to have 

either too few or too many variables that will not separate the data or over 

explain the differences (Zhang et al., 2017; Wang et al., 2015). 

3) There is no need for cross-validation or a separate test for validation as this is 

done internally through the OOB error estimate which is an estimate of the 

classification accuracy. When the random forests algorithm is run, about one-

third of the training data are held back internally for each tree to be used for 

testing accuracy. 

4) Robustness against over-fitting of data 

5) Being non-parametric in nature, it does not assume any statistical distribution 

of data 

RF classification was applied to the stack of radar backscatter coefficient (γ⁰), GLCM 

texture measures (from window size 11×11), HH/HV, HH+HV, and ancillary data - 

elevation, slope and aspect. The variable importance plot for each year of data for 

Area1 is displayed in figure 4.5. Two indices to estimate the importance of the 

variables for classification are considered widely in literature (Han et al., 2016; Archer 

and Kimes, 2008; Rodriguez-Galiano et al., 2012) – Mean Decrease Accuracy (MDA) 

and Mean Decrease Gini (MDG). For this study, MDA was used as it is simpler to 

interpret and more robust, whereas MDG is relatively biased and unstable (Strobl et 

al., 2007) as it is a permutation based function. The MDA is calculated during the 

OOB estimation phase. The more the accuracy of the classification decreases due to 

the exclusion of a single variable, the more important is that variable for classification. 

To assess the importance of each variable, the algorithm removes one of the variables 

while keeping the rest of the input variables constant, and it estimates the decrease in 

accuracy that has taken place by removing that variable by calculating the OOB error. 

The plot in figure 4.5 shows the variables on the y-axis and their importance scores on 

the x-axis. The most important variables are shown starting from the top. The variables 

with large “MeanDecreaseAccuracy” are more important for classification of the data.  
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Figure 4.5:  Variable Importance Plot for 2010 to select the optimal variables for 

classification  

Elevation is the most important variable according to the plots of each year, with the 

classification accuracy reduced by 70% if elevation is removed. HV gamma, slope and 

mean GLCM measure take the next three most important positions. SAR backscatter 

coefficient and texture measures can be regarded as relevant to SAR image 

classification as they are derived from the SAR image. Variables that are correlated 

can be eliminated to remove data redundancy and bias in the estimation of important 

variables. Elevation, slope and aspect are terrain related variables that are correlated 

to one another and are important controls on land use and land cover. Elevation shows 

a dominant response in the plot and it could drive a biased classification with a 

disproportionate impact on the outcome. Importantly, changes in land cover between 

years would not necessarily be detected as the elevation remains constant, therefore, 

elevation was removed from the classification. Balzter et al., (2015) included slope 

and aspect from SRTM in classification and found to gain high accuracies. In order to 

take into account, the prevalence of forests on slopes and aspects and to incorporate 

the terrain element in the classification, these two variables were retained. 

(%) 
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Considering the next most important variable – the mean texture measure, further 

investigation showed that it introduced an aggregating effect on classification, because 

of which there was an exaggeration of forest plot boundaries as shown in figure 4.6 

under the red circles. 

 

 

 

Figure 4.6: Effect of Mean GLCM texture measures on classification. The green 

lines indicate the forest boundaries of Forestry12 parcels (left images) and the 

blue lines refer to forest boundaries obtained by including the mean in RF 

classification (right images). The areas under the red circles show the 

“smoothing” effect of the mean filter. 

The mean filter induces a smoothing effect by reducing the amount of intensity 

variation between neighboring pixels. One of the problems of including the mean filter 

for classification is that when the filter spans an edge, it will interpolate new values 

for the edge pixels, thus blurring the edge. Therefore, sharp edges or forest boundaries 

cannot be reliably obtained using the mean measure as part of the classification.  

Texture is a measure of the variation of the surface smoothness, coarseness and 

regularity (Davis et al., 1979), in this case highlighting where there are differences in 

the backscatter intensity. The blurred boundaries and edges that induce error are 

Forestry12 polygons SAR derived forest 

polygons with Mean GLCM 

texture measure 
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naturally handled by textures by detecting the various texture regions in the image and 

as a result forests, water bodies and urban areas are well characterized (Kumar et al., 

2015). The variation in the image intensity levels is the primary cause of the difference 

in the order of texture importance in each plot, with the actual percentage values 

differing by only 2 to 5% between the texture variables. Due to these small differences 

in the percentages between the texture variables, all texture measures were included 

for the classification.  

The last two variables (HH/HV and HH+HV), are consistently in the bottom positions 

in all the plots and identified as least important for classification by the RF classifier. 

As these have very limited impact on the accuracies, these variables were removed 

from further analysis. 

4.2.5 Post-classification filtering 

SAR backscatter images are characterized by speckle, which is not entirely removed 

by procedures such as multi-looking and speckle filtering, and the effect can still be 

seen on the further processed outputs in the form of single, or small clusters of, 

misclassified pixels. Therefore, it is important to perform another round of filtering on 

the output products. Small shrubs and hedgerows were removed by selecting a specific 

filter size through analyzing the connectivity of the originally classified forest pixels. 

As a first step, a majority filter was run on the classified map to eliminate single 

isolated pixels or noise. Next, seven post-classification filters were applied in ArcGIS 

using the nibble tool, which dissolved contiguous regions of 4 to 82 pixels, and the 

forest area and accuracy were calculated for each filtered map. Trial 1 started by 

dissolving 4 contiguous pixels, trial 2 dissolved 20 pixels followed by trail 3 with 32, 

trial 4 with 46, trial 5 with 59, trial 6 with 73 pixels and trial 7 with 82 pixels. Before 

filtering, the originally classified forest map estimated a forest area of 85,765 ha with 

an accuracy of 82.72% but dissolving 82 contiguous pixels gave an estimate of 81,795 

ha with the highest accuracy of 87.74% compared to the other filters. In table 4.2, the 

impacts of different trials on the accuracy are shown. 
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Table 4.1: Impact of different post-classification filters on the overall accuracy 

Filter Trials Overall Accuracy 

Trial1 83.91% 

Trial2 84.22% 

Trial3 84.80% 

Trial4 85.13% 

Trial5 86.11% 

Trial6 86.52% 

Trial7 87.74% 

 

 Classification results and discussion 

4.3.1 Classification maps of area1 and visual comparison between Forestry12 

and SAR derived forest polygons 

The land cover map of Area1 with all classes and forest/non-forest maps for 2010 are 

shown in figure 4.7. Detailed analysis of the rest of the land cover classes is beyond 

the scope of the study. Therefore, focusing on forest and non-forest maps, a zoomed-

in extent of an area on the border of counties Cork and Limerick is shown in figure 

4.8. The Google Earth image of the same area is also provided for reference. The forest 

changes are clearly seen in each forest map under the red circles highlighting the 

changes in each year. 
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Figure 4.7: Land cover map (a) and forest/non-forest maps (b) derived from (a) from 2010 SAR image of Area1 (the red circle area 

is highlighted in figure 4.8) 

0 10 20 30 405
Kilometers

(a) (b) 



 

75 
 

 

 

 

 

 

 

 

 

Figure 4.8: Zoomed-in extent of forest cover in area1 (b) 2007 (c) 2008 (d) 2009 

(e) 2010; (a) is from Google Earth dated April 26, 2015; red circles highlight areas 

that undergo changes 

A visual inspection was carried out between the Forestry12 polygons and the SAR 

derived forest polygons for the entire study area. An example from two different 

regions is shown in figure 4.9.   

(b) (c) 

(d) (e) 

Google Earth 
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Figure 4.9: Zoomed-in extent of three regions displaying a visual comparison 

between Forestry12 polygons and SAR derived forest polygon outlines 

The forest boundaries of both the datasets coincide visually – blue lines corresponding 

to SAR forest boundaries and red lines corresponding to Forestry12 polygons. Out of 

the 5035 SAR derived forest polygons, this visual analysis was performed for 55% of 

the total polygons and the boundaries were observed to be coincident between the two 

data sources. This percentage was a random choice which also gave a fair estimation 

as it covers more than half of the total percentage and was checked on polygons 

distributed spatially over the entire area. The examples in figure 4.9 are a typical 

representation of how well the two data sources match. The SAR image considers the 

entire forest polygon whereas the Forestry12 layer consists of compartments7 and sub-

 
7 A discrete forest area – can contain one or many forest parcels 

Forest polygons from SAR 

RF algorithm 
Forestry12 

polygons 

(a) (b) 
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compartments8 and hence more polygons are seen. In the Forestry12 dataset, attributes 

such as Compartment numbers were missing for some polygons. For a simple and 

direct comparison, the Forestry12 internal polygons were dissolved and the 

comparison is explained in section 4.3.3.2 of this chapter. In figure 4.9(c), (d) and (e), 

the RF classifier for SAR image has generated a forest polygon that has a complete 

coverage of the forest parcel, while Forestry12 omits some of the boundary pixels, 

with over and under estimation of the boundaries a known problem within the 

Forestry12 dataset (Department of Agriculture and Food and Forest Service, 2008). 

4.3.2 Algorithm transferability to area2 and area3 

The methodology developed for Area1 was applied to the other two study areas (Area2 

and Area3). The training samples were collected from the stack of input variables and 

the locations of the samples are shown in figure 4.10. 

 

 

 

 

 

 

 

 

 

 
8 A homogenous forest unit with respect to forest class, area is at least 0.5ha, average width 

is greater than 40m.  
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Figure 4.10: Location of training samples (a) Area2 (b) Area3 

Using these training data from the 2010 image, 2007-2010 images of Area2 and Area3 

were classified using the same approach followed for area1. The 2010 classified maps 

are given in figures 4.11 and 4.12 for both the study areas. 

(a) (b) 
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Figure 4.11: Land cover map (a) and forest/non-forest maps (b) derived from (a) from 2010 SAR image of Area2 

 

(a) (b) 
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Figure 4.12: Land cover map (a) and forest/non-forest maps (b) derived from (a) from 2010 SAR image of Area3 

(a) (b) 
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Proceeding to the visual assessment of the forest polygons, figure 4.13 shows samples of 

forest areas (from four different regions) covered by the Forestry12 forest polygons and 

SAR derived forest polygons. 

 

 

 

 

 

 

 

 

Figure 4.13: Zoomed in extent of selected regions in Area2 and Area3 displaying a 

visual comparison between Forestry12 polygons and SAR derived forest polygons 

The forest edges and the shape of the forest areas shown in figure 4.13 visually appear to 

be consistent between the polygons from both the datasets. Interestingly in the lower right 

image (figure 4.13), the Forestry12 polygon has missed part of the forest area, but the 

SAR derived polygon has covered the entire forest patch. Out of the 3933 and 2987 

polygons in Area2 and Area3 respectively, 55% of polygons were studied for visual 

analysis and the forest boundaries were consistently matching between the two datasets 

with some parts missing in Forestry12 due to the limitation explained in section 4.3.1.  
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4.3.3 Quantitative analysis 

Three types of quantitative analysis were carried out for further analysis of the results 

obtained. 

1) Classification accuracies 

2) Count of number of forest polygons each dataset has identified – commission and 

omission errors 

3) Forest area estimation from each dataset 

4.3.3.1 Classification accuracies 

When RF is run, one-third of the training data are held back for each tree to be used for 

testing accuracy and this gives the OOB error estimate. One caveat is that this approach 

will give results biased towards high accuracy when training data are correlated. Texture 

measures are also usually correlated with one another. Therefore, an independent accuracy 

assessment was performed on all land cover classes to obtain robust overall, user’s and 

producer’s accuracies based on the reference data used for training sample collection. This 

consisted of 750 points for forestland, 150 for cropland, 150 for grassland, 250 for 

peatland and 250 for water. The RF radar classification accuracies for Area1, Area2 and 

Area3 are presented in tables 4.3, 4.4 and 4.5.  

Table 4.2: Classification accuracies for all land cover classes for Area1 where 

PA=Producer’s Accuracy, UA=User’s Accuracy, OA=Overall Accuracy 

 2007 2008 2009 2010 

 PA UA PA UA PA UA PA UA 

Forestland 96.00 96.98 96.85 91.92 94.78 96.95 95.87 93.93 

Cropland 79.01 82.03 79.99 98.11 85.97 90.12 85.99 95.03 

Grassland 71.86 99.00 88.06 70.15 90.88 83.97 91.06 79.98 

Peatland 91.00 70.99 81.02 79.15 85.21 94.12 85.00 76.99 

Water 84.98 94.01 93.00 95.96 84.96 94.93 81.98 94.02 

OA 87.72% 87.91% 89.62% 88.93% 

Kappa 0.83 0.84 0.86 0.85 
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Table 4.3: Classification accuracies for all land cover classes for Area2 where 

PA=Producer’s Accuracy, UA=User’s Accuracy, OA=Overall Accuracy 

 2007 2008 2009 2010 

 PA UA PA UA PA UA PA UA 

Forestland 95.97 97.99 94.78 96.99 97.03 94.86 97.98 98.16 

Cropland 71.15 97.79 68.12 96.13 80.04 91.97 79.06 96.01 

Grassland 90.99 71.96 93.89 65.03 89.99 76.05 80.19 75.02 

Peatland 85.98 80.01 89.00 78.99 78.92 79.94 98.96 89.06 

Water 94.96 95.07 93.04 94.06 92.96 93.89 87.84 92.88 

OA 87.83% 87.18% 87.64% 88.75% 

Kappa 0.84 0.83 0.84 0.85 

 

Table 4.4: Classification accuracies for all land cover classes for Area3 where 

PA=Producer’s Accuracy, UA=User’s Accuracy, OA=Overall Accuracy 

 2007 2008 2009 2010 

 PA UA PA UA PA UA PA UA 

Forestland 98.01 97.06 97.99 98.87 96.89 96.94 97.95 98.01 

Cropland 88.69 77.86 88.97 77.07 89.10 81.17 87.99 88.76 

Grassland 82.67 88.76 82.97 88.98 83.97 84.11 85.23 81.25 

Peatland 84.13 86.11 83.06 85.09 84.00 86.99 84.89 83.06 

Water 83.04 86.88 88.00 87.99 86.90 84.06 83.99 87.89 

OA 87.53% 87.42% 87.15% 88.18% 

Kappa 0.84 0.84 0.84 0.85 

 

Overall accuracies between 87% and 89% were obtained for all study areas over all the 

data acquisition periods and the producer’s and user’s accuracies for the forest class are 

consistently higher than those of the rest of the classes. With respect to the outliers from 

table 4.3, cropland has a very high user accuracy of 98% in 2008 indicating the tendency 

of the algorithm to overestimate cropland class (classify more non-cropland class to 

cropland class). Similarly selecting the producer’s accuracy from peatland class of year 

2007 from table 4.3, 91% accuracy indicates underestimation of peatland classes in the 

classification.  

An accuracy assessment was then conducted on the binary class forest and non-forest 

maps. The results are shown in tables 4.6, 4.7 and 4.8 for Area1, Area2 and Area3 

respectively. 
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Table 4.5: Classification accuracies for forests and non-forest classes (area1) where 

PA=Producer’s Accuracy, UA=User’s Accuracy, OA=Overall Accuracy 

 2007 2008 2009 2010 

 PA UA PA UA PA UA PA UA 

Forests 96.14 97.98 95.99 98.04 97.06 97.89 97.99 99.00 

Non-forests 98.01 97.06 97.06 95.99 95.87 97.89 96.97 95.99 

OA 97.23% 97.31% 97.22% 97.28% 

Kappa 0.98 0.99 0.97 0.98 

 

Table 4.6: Classification accuracies for forests and non-forest classes (area2) where 

PA=Producer’s Accuracy, UA=User’s Accuracy, OA=Overall Accuracy 

 2007 2008 2009 2010 

 PA UA PA UA PA UA PA UA 

Forests 96.99 99.03 95.99 99.02 96.05 98.04 95.99 98.00 

Non-forests 97.05 99.04 98.02 97.13 97.15 96.10 97.21 98.22 

OA 97.51% 97.12% 97.03% 97.42% 

Kappa 0.99 0.98 0.97 0.99 

 

Table 4.7: Classification accuracies for forests and non-forest classes (area3) where 

PA=Producer’s Accuracy, UA=User’s Accuracy, OA=Overall Accuracy 

 2007 2008 2009 2010 

 PA UA PA UA PA UA PA UA 

Forests 96.89 98.92 96.98 99.06 97.03 99.04 98.22 98.97 

Non-forests 96.04 96.06 97.98 96.94 96.97 95.88 97.99 95.97 

OA 97.62% 97.31% 97.22% 97.01% 

Kappa 0.99 0.98 0.97 0.97 
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An increase in the overall accuracies can be observed for the forest and non-forest maps, 

compared to the full land cover map, as the confusion between the non-forest classes was 

removed. To understand the slight differences observed between the producer’s accuracy 

and user’s accuracy, the number of forest polygons identified by the SAR RF algorithm 

and Forestry12 dataset were compared. To simplify the investigation, and also due to the 

fact that the Forestry12 dataset becomes less reliable for the earlier years, this was only 

checked for 2010 over all the study sites. 

4.3.3.2 Comparison of forest polygons from FIPS and SAR datasets – commission 

and omission errors 

The SAR and Forestry12 (with dissolved sub-compartments) datasets were compared for 

three scenarios 

1) Scenario 1: Forests coincident between SAR and Forestry12 

2) Scenario 2: Forests in SAR shown as non-forests in Forestry12 (commission error) 

3) Scenario 3: Non-forests in SAR shown as forests in Forestry12 (omission error) 

Table 4.9 gives a summary of the polygon numbers for all three scenarios 

Table 4.8: Summary of the number of forest polygons in SAR and Forestry12 dataset 

 Agree Commission Omission 

Area1 4995 37 3 

Area2 3893 34 6 

Area3 2953 29 5 

 

As can be seen in table 4.9, more commission error is observed than omission error i.e. 

more forest polygons are identified by the SAR algorithm than that are not present in the 

Forestry12 data (commission), with 6 or fewer polygons identified by Forestry12 missed 

by the SAR RF algorithm (omission).  

4.3.3.3 Forest area estimation 

The results of comparative analysis of forest area estimates for the three study sites for 

the Forestry12 and SAR datasets are presented in table 4.10. In Area1, the total forest area 
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varied between 76,619.9 ha in 2007 to 81,795.0 ha in 2010; in Area2, the forest area is 

almost constant from 2007-2009 with a reduction of 3000 ha in 2010 amounting to an area 

of 63,640.5 ha; in Area3, the smallest area was observed in 2010 with 63,403.5 ha with 

the largest in 2009 of 67,989,7 ha. It can be noted from the table that the Forestry12 forest 

area is smaller than the SAR derived forest area in all three areas. More discussion on this 

is given in the following section. 

Table 4.9: Forest area estimates from SAR and Forestry12 datasets 

 Forest area from SAR RF classification (ha) Forestry12 forest 

area (ha) 

 2007 2008 2009 2010 2012 

Area1 76,619.9 77,532.2 79,495.1 81,795.0 74,144.1 

Area2 66,201.6 66,504.5 66,374.0 63,640.5 61,390.5 

Area3 64,619.9 67,358.2 67,989.7 63,403.5 56,213.9 

 

4.3.4 Discussion and conclusions 

Quantitative analysis shows that the forest class consistently achieved higher producer’s 

and user’s accuracy ranging between 94% and 98% across all years and study areas when 

compared with the other classes (table 4.3-4.5). The overall accuracies achieved are 

between 87% and 89%, and one of the reasons is the similar backscatter responses that 

grassland and cropland tend to show (Dusseux et al., 2014b). In this context, for 

monitoring other land cover classes such as grasslands and croplands, multi-temporal data 

with images from different stages of the phenological cycle are useful for inter- and intra- 

annual monitoring. But for this study, as forests are of the main interest, the classification 

of two classes (forests and non-forests) even with one image per year has resulted in high 

classification accuracies of 97% and the algorithm has been shown to work equally well 

in all study areas.  
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From a comparison of the number of forest polygons, it can be seen that the RF algorithm 

has identified more forest plots than are present in the Forestry12 dataset. The main 

reasons for the differences could be: 

1) SAR derived forest maps might have identified some non-forest vegetation such 

as small shrubs as forest, leading to an over estimation of what is considered forest 

areas from a Forestry12 perspective and therefore forest polygon count. Upon 

verification with Google Earth images, among the 37, 34 and 29 extra forest 

polygons in SAR for the three areas respectively, 12, 15 and 16 polygons belong 

to shrubs misclassified as forests.  

2) Privately owned woodlands might be missed by Forestry12 as it is a State forest 

company and does not record private grant aided forests. 

3) In some instances, pre-approved afforested plots are digitized for FIPS but never 

actually planted on ground (Department of Agriculture and Food and Forest 

Service, 2008) 

The SAR-2010 derived forest area estimate for Area1 is 9.35% greater than the Forestry12 

estimate, with Area2 and Area3 3.53% and 11.00% greater respectively than the 

Forestry12 estimate. Figure 4.14 shows the inter-annual differences between SAR-derived 

estimates.  
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Figure 4.14: Inter-annual difference between SAR-derived forest estimates 

Negative differences indicate a decrease in the forest area and positive differences indicate 

an increase. The spatial distribution of the differences was investigated to check if greater 

commission/omission errors were concentrated in one geographical location, for example 

due to the topography, or sensor near/far range, but the errors were well distributed 

throughout the study areas. These differences are expected as the classification has been 

run on each image set individually. To check if there are genuine errors such as presence 

of forest in 2007, absence in 2008 and presence again in 2009, time series analysis of these 

classified maps has been performed in Chapter 5. The nature and spatial location of such 

errors are then tracked. Other possible factors that can affect the radar backscatter from 

forests are changes in forest structure (Dobson et al., 1995), environmental conditions at 

the time of image acquisition such as soil moisture, surface roughness, temperature and 

heavy wind/gusts (Harrell et al., 1997; Kasischke et al., 2011; Lucas et al., 2010). Apart 

from the environmental parameters, the main changes in the forest area between each year 

are due to forest disturbances such as clear-felling and natural causes such as storm, fire, 

plant failure due to nutrient deficiency and also forest growth (increase in the forest 

biomass). The NFI carries out a systematic national assessment of forest damage in Irish 

forests and categorises the causes of forest damage into three classes - human induced 

(e.g. harvesting), abiotic (e.g. wind) and biotic (e.g. deer) (Forest Service of Ireland, 

2013). According to the NFI assessment, around 15 different types of forest damage are 

recorded each year which include human induced, windblow, frost, nutrient deficiency, 

Positive differences Negative differences 
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browsing, peeling, squirrel, defoliators, decay or canker fungi. These factors may be some 

contributors to the inter-annual changes in forests as shown in the quantitative analysis 

section (section 4.3.3).  

The three study areas selected are situated in three different geographical locations 

representing different terrain types. While Area1 has a greater plain terrain, Area2 is more 

mountainous with Area3 having a mixed terrain. To account for all different terrain types, 

the algorithm uses slope and aspect variables which are useful for classification of non-

flat areas. The three areas are also representative of different tree species and climatic 

conditions prevailing across Ireland. Given the high forest accuracies achieved using the 

methodology followed for the present study over the three study sites, this approach could 

be applied on a national scale to generate forest maps to obtain recent or updated 

information. 

This method, when used for operational monitoring of forests, can support FIPS 

monitoring system from forest service in determining annual forest updates. As FIPS is 

updated only once in six years, the RF algorithm could complement it by providing annual 

updates, based on objective analysis of satellite imagery.  

The processing time of the whole algorithm including SAR pre-processing of four image 

frames, using a 4GB RAM computer, is divided as per the following categories.  

• SAR image pre-processing for a stack of four images: 3 hours 

• GLCM texture measure extraction for one image: 1.5 hours 

• RF classification of one image: 40 mins  

As the classification was performed on R programming platform, it is important to be 

aware that R keeps all the data in RAM. As the size of the SAR images is 2GB, the 

processing requires memory to store all the processed data and sometimes R may crash if 

the internal memory of the computer is not sufficient. Therefore, it is beneficial to use a 

computer with a RAM minimum of 4 GB (the higher the better and lesser processing 

time).  

The present work aims to map the discontinuous and sparse forests of Ireland using the 

FBD ALOS PALSAR data. As the forestland in Ireland consists of isolated fragments of 
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forests, the challenge here was to select variables and filter parameters that assist in 

producing high accuracy forest maps, eliminating small shrubs and hedgerows that are 

not forests and also retaining sharp forest edges/boundaries. The algorithm used random 

forests machine learning classifier by using the variables that are most influential to 

classification through the variable importance plot generated by the classifier. SAR 

backscatter coefficient, GLCM texture measures, DEM derived slope and aspect aided in 

producing forest and non-forest maps with overall classification accuracies of 97%. This 

chapter illustrates the use of  L-band SAR images, the procedure to select the optimum 

variables necessary for classification, how the variables have an impact on the forest maps 

and a comparison between the SAR derived forest maps and the Forestry12 dataset in 

terms of classification accuracies, commission and omission errors and forest area.  

In this work, one image per year was used which successfully resulted in high accuracy 

forest maps. To get intra annual forest updates, more images per year can be used. As 

more frequent ALOS PALSAR data were unavailable over Ireland, one image per year 

was chosen - ideally summer images have been used where trees have full canopy cover 

leading to volumetric scattering for the SAR sensor. One of the limitations of the study 

was that high classification accuracies for the rest of the land cover classes could not be 

achieved due to the confusion in the backscatter responses mainly between cropland and 

grassland. But as only forest mapping was the main objective of the study and as it resulted 

in higher accuracies, this did not impact on the subsequent analysis. For the end users who 

wish to use SAR data for land cover class mapping, multiple acquisitions per year of fully 

polarimetric ALOS PALSAR data is recommended which can distinguish different 

phenological aspects and different scattering mechanisms respectively.  

The algorithm has been shown to be robust over three differing study sites and based on 

the evidence and understanding, this could be implemented on a national scale as part of 

a continuous forest monitoring system. In this chapter, the first objective of the thesis 

which is exploring the potential of microwave sensor in mapping Irish forests using a 

machine learning approach has been achieved. As ALOS PALSAR malfunctioned in 

2011, ALOS-2 PALSAR-2 (L-band) can be used to provide contemporary forest 

monitoring operations. This algorithm can support Irish forest agencies, such as the Forest 
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Service, to provide updates on forests annually and hence support private foresters and 

other end users in making forest management decisions.  

In the following chapter, the forest maps generated in this chapter are further used to 

characterize and monitor disturbances that have occurred within the forest areas mapped. 

An unsupervised approach has been presented to understand the nature and extent of 

change which is the second objective of this PhD work. 
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 Introduction 

Measure, Monitor and Manage are the main aspects of an operational forestry industry to 

balance the forest carbon emissions and address climate change issues. Accurate and 

consistent information on forest area and its change is important given the carbon 

reporting requirements that countries are committed to. To comply with the carbon 

emission targets, countries are designing different strategies. To achieve the contracted 

targets, through forestry activities, four major strategies are available: (i) Reforestation 

and Afforestation: Increase the forest land area by planting trees; (ii) Increase the carbon 

stocks in existing forests by management activities such as forest fertilization, pest 

control, forest quantity and attention to soil health before planting; (iii) sustainable 

management of forest products to replace fossil-fuel CO2 emissions; and (iv) to reduce 

emissions from human induced forest disturbances such as felling, deforestation and 

forest degradation (Canadell and Raupach, 2008). Forests, being the largest terrestrial 

carbon sink, influence the future trajectory of atmospheric carbon dioxide (Collalti et al., 

2019). Monitoring forests on a global, national and regional scale is therefore important 

to understand the forest dynamics impacted by the changing environmental conditions 

and anthropogenic activities.  

This chapter focuses on monitoring changes within the forest areas mapped in Chapter 4 

by understanding their characteristics and labelling them depending on the nature of 

change. Following on Chapter 2, after exploring the various change detection approaches, 

the unsupervised ISODATA classification approach has been used. The signatures of the 

different clusters formed through the classification process are analyzed and labelled. 

Figure 5.1 shows the main steps of an unsupervised classification. 

 

 

 

Figure 5.1: Main steps of an unsupervised classification 
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In this study, a modification was made to the classic ISODATA unsupervised clustering 

technique, illustrated in figure 5.2. The boxes in yellow are the new elements added to the 

standard ISODATA classification approach. This approach is guided by Divergence 

statistics to provide guidance on selecting the optimal number of clusters to be used, and 

hence the name Divergence guided ISODATA clustering algorithm. As the name 

suggests, it is a self-organizing algorithm that does not require any training data for 

classification; natural clusters are formed which are then grouped into various categories 

based on cluster similarities. The signatures of the cluster groups are studied and with the 

help of ground truth data, the groups are labelled.  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 5.2: Modifications made to unsupervised classification 

This methodology was adopted from the work by de Bie et al., (2012) and Ali et al., (2013) 

where hyper-temporal NDVI images were used to map land cover gradients. Application 
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the main purpose of the current study, and is the first time such a study has been carried 

out for Irish forests. 

5.1.1 Working principles of divergence guided ISODATA clustering algorithm 

Understanding clustering: Dividing objects into groups (clustering) and assigning 

objects to groups (classification) is a skill that humans have developed. Conceptually 

meaningful groups of objects, or classes, sharing common characteristics play a critical 

role in how human beings generally analyse and describe the world. In the context of 

deriving information from data, clustering is an unsupervised classification of data items 

into different clusters or classes based on statistical similarity (Jain et al., 2000). Given 

an unlabelled dataset, clustering separates the dataset into a finite and distinct set of 

natural data structures based on the similarity measure chosen to create relevant clusters 

(Baraldi et al., 2005; Baraldi and Alpaydin, 2002; Backer and Jain, 1981). Deducing the 

optimal number of clusters which represent the variability in the dataset (in the present 

case – forest cover as represented on multiple satellite images) is a difficult task that most 

of the algorithms face (Boudraa, 1999). 

K-means and ISODATA are two unsupervised clustering algorithms that are iterative. 

They start by assigning an arbitrary initial cluster vector. In the second step, each pixel is 

classified to the closest cluster, and in the third step, new cluster means are calculated 

based on all the pixels in one cluster. The ISODATA clustering algorithm is derived from 

the K-means clustering technique with refinements such as splitting and merging of 

clusters. The ISODATA technique forms clusters of pixels through the “self-organizing” 

ability by minimizing the Euclidean9 distances (Swain, 1973). The clusters with a small 

distance between their centroids are merged into a single cluster and then the cluster with 

the largest variance is divided into two clusters (Jain et al., 1999). During the iterations, 

the initial k centroids are updated and after a user-defined number of iterations, those k 

centroids represent the k clusters. The divergence separability index entails extracting 

statistical separability values which denote the average and minimum separability values 

for the set of clusters within each classification. “The average separability is a measure of 

the mean similarity between temporal signatures amongst all possible pairwise 

 
9 Square root of the sum of the squares of the distances between each pair of band mean values 



 

96 
 

combinations of output clusters, while the minimum divergence value expresses the 

similarity between the temporal signatures of the two most similar clusters” (Ali et al., 

2014, pg.no.178). According to the approach by de Bie et al., (2012), based on two 

conditions, the optimal number of clusters was chosen from the separability plot 

- Coincident average and minimum divergence peak (both the clusters should be as 

high as possible to separate the clusters); Dij is the statistical distance between two 

classes i and j, and a value below 24 indicates a poor separability (Jensen, 2005; 

Mather, 2001) 

- Lowest possible number of clusters  

The methodology was applied on Area1 initially, and is described in detail in section 5.2 

and 5.3. Briefly, using cluster statistics and a hierarchical clustering approach (a method 

of cluster analysis which builds a hierarchy of clusters, or a cluster tree known as a 

dendrogram), similar clusters were merged into groups. By investigating the means and 

standard deviations of the cluster groups, and with the aid of the available ground truth 

data, the cluster groups were labelled, and the disturbance clusters were extracted. The 

algorithm was then transferred to the other two study areas and the signature profiles of 

the common cluster groups were compared and the transferability of the algorithm was 

assessed.  

 Methodology  

The algorithm developed to achieve forest disturbance maps is divided into four main 

stages (Figure 5.3), The overall idea of the methodology can be gained from figure 5.2 

which highlights the modifications made to the standard unsupervised classification 

procedure (figure 5.1) which lead to the final map of clusters with labels for each type of 

cluster group highlighting forest type and disturbances.  
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Stage 1: ISODATA clustering guided by Divergence statistics and selection of 

suitable bands to be used for clustering 

 

 

 

Stage 2: Cluster Grouping  
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Stage 3: Signature Analysis and Labelling 

 

Stage 4: Quantitative Analysis 

 

Figure 5.3: The four stages of methodology 

 Detailed Methodology and Results 

This section presents a detailed methodology for each process, and the results obtained at 

each stage of the methodology for Area1. 

5.3.1 Stage 1: Selection of bands to be used for clustering 

The band combinations selected for different clustering trials are presented in table 5.1. 
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Table 5.1: Different band combinations used for clustering experiments 

Combination 1 72 bands (bands from each individual year 2007-2010) 

• HV gamma nought 

• 8 GLCM texture measures derived from HV 

• HH gamma nought 

• 8 GLCM texture measures derived from HH 

Combination 2 36 bands (bands from each individual year 2007-2010) 

• HV gamma nought 

• 8 GLCM texture measures derived from HV 

Combination 3 36 bands (bands from each individual year 2007-2010) 

• HH gamma nought 

• 8 GLCM texture measures derived from HH 

Combination 4 16 bands (bands from each individual year 2007-2010) 

• HV gamma nought 

• 1 GLCM image from each group: contract from contrast 

group, entropy from orderliness group, correlation from 

stats group derived from HV 

Combination 5 16 bands (bands from each individual year 2007-2010) 

• HH gamma nought 

• 1 GLCM image from each group: contract from contrast 

group, entropy from orderliness group, correlation from 

stats group derived from HH 

Combination 6 8 bands (bands from each individual year 2007-2010) 

• HV gamma nought  

• HH gamma nought 

 

Each layer of the combinations presented in table 5.1 was clipped to the forest extent 

derived from RF classification in Chapter 4 (Chapter 4 - Forest maps figure 4.7). The 

products (HV and HH gamma nought and GLCM texture measures) used in the current 
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chapter were derived in chapters 2 (Study area and Datasets) and 4 (Mapping forests using 

RF classifier). These layers from each year were then stacked according to the different 

band combinations to form 1 image per combination to run the clustering algorithm. 

5.3.1.1 Experiment parameters: All the experiments for ISODATA clustering 

were run on Erdas Imagine version 10 

Number of clusters: Started with 10 clusters up to 100 clusters with an interval of 10 

between each run (i.e. 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 clusters each).  

Standard Deviation (SD) and Minimum Distance (MD): Clusters that have a standard 

deviation greater than the specified value are split into two and clusters pairs with a 

Euclidean distance less than the specified value are merged into a single cluster (“ERDAS 

IMAGINE Ribbon Workspace” 2019). As an initial trial, these values were kept at the 

default value of 5.  

Convergence Threshold: This is the maximum proportion of pixels that do not change 

classes between successive iterations. This was given a value of 0.95 (default value), 

which specifies that as soon as 95% or more of the pixels stay in the same cluster between 

one iteration and the next, the processing should stop.  

Maximum iterations: A high number of 25 was set. This high number was chosen to 

ensure that the algorithm would run enough times to reach the convergence threshold. 

With the above parameters, the experiment trials were run on the different band 

combinations. With combinations 1-5, certain issues were encountered as discussed 

below.   

• Technological: Combinations 1-3, due to their higher file size (24GB and 12GB) 

could not be processed due to technical constraints (in a 4GB RAM processor) 

which eventually led to system crash.  

• With combinations 4 and 5, it was observed that, the algorithm resulted in few 

empty classes. For example, if the classifier was instructed to generate 10 classes, 

only 6 classes would be filled, leaving the rest of the 4 classes empty. This was 

because clusters with a standard deviation greater than 5 (default value that the 

classifier was set to) were split into two clusters and clusters pairs with a Euclidean 
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distance less than 5 were merged into a single cluster indicating that the specified 

values were inappropriate for the experiment. However, after running various 

trials, the SD and MD values were set to 0.1 which then resolved the issue. 

• With combinations 4 and 5, the different data ranges for the intensity and the 

texture bands required data normalisation. However this resulted in values 

suppressed between 0 and 1, making interpretation challenging. All cluster values 

in the time-series lied between 0 and 1 which made separating changed and 

unchanged clusters unreliable and insignificant.  

These issues were avoided in combination 6 in which only HV and HH intensity bands 

from each year were stacked together. 

With Combination 6 (8 bands): 

 The potential of HV in forest monitoring has been discussed in Chapter 2 in which studies 

such as Pantze et al., (2010), Fransson et al., (2007), Tanase et al., (2018) and 

Haarpaintner et al., (2015) proved the higher sensitivity of the HV channel to forest 

changes than the HH channel. Although the classification in this study was run on the 

combined HV and HH bands, the potential of HV to perform cluster grouping and most 

cluster analysis in stages 3 and 4 is demonstrated. The HH band is used primarily to aid 

the characterisation of cluster groups through investigating the signatures from the targets 

and understanding the scattering mechanism generating them. 

Combination 6 comprised of the set of bands shown in table 5.2 which was subjected to 

ISODATA clustering. 

Table 5.2: Final band combination used for clustering and characterising the clusters 

Band1 HV ɣ° 2007 

Band2 HH ɣ° 2007 

Band3 HV ɣ° 2008 

Band4 HH ɣ°2008 

Band5 HV ɣ°2009 

Band6 HH ɣ° 2009 

Band7 HV ɣ° 2010 

Band8 HH ɣ° 2010 
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Divergence statistics were calculated for each classification run for clusters from 10-100, 

and the minimum and average divergence were plotted against the number of clusters. 

Figure 5.4 shows the graph with average and minimum divergence statistics and the 

selection of the optimal number of clusters for this classification. A sharp peak in the 

minimum separability at a value of  1282, coinciding with a moderate peak in average 

separability at a value of 1969 at 80 clusters can be observed from the figure. The map 

generated from 80 clusters is shown in figure 5.5. The clusters in this map represent the 

variability within the mapped forest areas. SAR intensity profiles exhibiting similar 

temporal behaviour are then grouped through a hierarchical clustering approach aided by 

signature analysis.  
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Figure 5.4: Divergence statistics plot derived on the 8 band raster stack for Area1 indicating 80 as the optimal number of 

clusters (with coincident average and minimum divergence peak) to be used for further analysis 
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Figure 5.5: Spatial clusters generated using ISODATA unsupervised clustering algorithm on Area1 using ALOS PALSAR 

HV and HH intensity bands over the four year (2007-2010) time-series 
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5.3.2 Stage 2: Cluster Grouping 

The next stage was to extract the cluster signatures, analyse their patterns and then assign 

clusters with similar characteristics into groups. For each cluster starting from 1 to 80, a 

signature file was derived. The signatures were examined carefully, and to facilitate the 

cluster grouping certain initial preparations were necessary.  

Different patterns in the signatures of clusters were observed.  

1) Pixel values remained constant to within 1 dB over the four years 

2) A drop greater than 4dB occurred between two consecutive years 

3) A drop of 2 dB occurred between two consecutive years 

4) An increase of 4 dB occurred gradually over the years from 2007 to 2010 

5) An unusual rise and fall of 6-8 dB occurred between 2 consecutive years 

6) A gradual decrease of 2 dB from 2007 to 2010 

As a first step, the 58 clusters whose pixel values remained the same to within 1 dB were 

segregated and grouped. These clusters were then grouped using the Hierarchical 

Clustering Analysis (HCA) approach, using the HV cluster means from 2007. This is an 

exploratory method which is designed to reveal natural groupings within a dataset (Ali et 

al., 2013; Gauch and Whittaker, 1981; Sidorova, 2012; Marcal and Castro, 2005). 

Hierarchical clustering produces dendrograms which represent branching, tree-like 

relationships. A cluster tree is formed with different branches and nodes. The x-axis shows 

the cluster numbers and the y-axis shows at which level fusion of clusters occur (it 

represents the distance of dissimilarity between clusters). In this study, agglomerative 

clustering as described by Huang (2002) is used as each object is a single cluster and the 

intention is to form groups of most similar clusters. 

The next step is to calculate the similarity between the clusters. This has been calculated 

here using the Euclidean distance between two clusters. Among the many cluster 

agglomeration methods such as complete linkage, single linkage, average linkage and 

centroid linkage, the complete linkage hierarchical clustering has been used to merge the 

clusters.  
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Figure 5.6 shows dendrograms formed for the 58 clusters, whereby each node in the tree 

contains a group of data that are statistically similar to each other. The next crucial step 

was to decide when to stop merging the clusters, which is a somewhat subjective decision. 

Many trials were performed with different threshold values. Different thresholds were set 

starting from 1.25 to 15 as shown in figure 5.6. After much experimentation, it was 

observed that thresholds above 2.5 merged more clusters and led to lesser number of 

groups and thresholds below 2.5 resulted in more number of groups. For example, a step 

above 2.5 (3.75, indicated by the blue line in figure 5.6) formed 5 groups whereas a step 

below 2.5 (1.25, indicated by the green line in figure 5.6) formed 15 groups.  Under-

grouping resulted in information loss, and over-grouping resulted in too much information 

making the process of deciphering the cluster signatures complicated. In this case, the 

dendrogram tree was cut with a horizontal line at height 2.5 as shown in figure 5.6 in 

dotted red line. This resulted in 7 cluster groups shown by the green circles.  
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Figure 5.6: Dendrograms showing cluster merges at different Euclidean distances, highlighting the 7 groups formed 

within the green circles for a y-axis value of 2.5 
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To study clusters that exhibited a change greater than 1dB between the years, the clusters 

were manually seggregated based on the amount and year of change. The hierarchical 

clustering process as described above was applied for the remaining patterns. The extent 

and year of change and the number of groups formed for each case is given below. 

• Drop greater than 4dB between 2009 and 2010: 1 group was formed with 

clusters 56 and 62 from the Dendrogram 

• Drop greater than 4dB between 2008 and 2009: 1 group was formed with 

clusters 24, 17 and 33 

• Drop of 2dB between 2008 and 2009: 1 group was formed with clusters 43, 51, 

19, 36, 27, 37 

• Increase of 4dB from 2007 to 2010: 3 groups were formed with 1 group 

containing cluster 11, another group containing clusters 63, 44, 55 and a third 

group containing clusters 34, 35 and 39 

• Unusual raise and drop of 6-8 dB between 3? consecutive years: 1 group was 

formed containing cluster 14 

• A decrease of 2 dB from 2007 to 2010: 1 group containing cluster 65 was formed.  

In total, 15 groups were formed for Area1. 

5.3.3 Stage 3 and Stage 4: Signature Analysis and Labelling; Use of reference 

data to aid labelling 

Signatures from the cluster groups were plotted to understand the extent and year of 

change. Figure 5.7 shows the consolidated map with 15 groups formed in stage 2. This 

map was filtered to clean the map and eliminate isolated pixels as shown in figure 5.8. To 

aid labelling, reference data were used.  
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Figure 5.7: Final groups of clusters representing the different patterns within the previously mapped forest land 

LEGEND: Group numbers 
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Once the clusters were assigned to their respective groups, the map was filtered using 

a sieve filter to remove noise and clean the map. After experimentation, the sieve size 

selected removed all areas less than or equal to 1.125 ha. Figure 5.8 shows the 

classified map before and after the application of sieve filter.  

   

 

 

 

Figure 5.8: Application of sieve filter on the classified map 

This resulted in omission of forestlands of area less than or equal to 1.125 ha from the 

final classified map. An example is shown in figure 5.9. Forest pixels under the red 

circle are missing from (b) which is a post sieved image. 

  

 

 

Figure 5.9: Removal of forest areas of less than 1.125 ha from classified map 

 

Before After 

(a) Before sieveing (b) After sieveing 
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When quantified with Forestry12 dataset, 52 ha of forestland were missing from the 

final classified map. This was the final classified map that was used for further 

analysis.  

To support the analysis and characterization of cluster groups, ground truth 

information from Coillte, Forestry12, historic Google Earth imagery and Bing imagery 

were used. Data for the Coillte estate included compartment id, sub-compartment id, 

planting year, land cover type, and species, and polygons containing information 

referring to clear fells year and area. While clear fells were validated with these 

polygons, other cluster groups in this chapter have been discussed and labelled based 

on hypothesis as limited evidence was available.  

5.3.3.1 Groups of clusters with less than 1 dB variation between the four years 

Figure 5.10 shows the mean and standard deviation of all 58 cluster signatures 

assigned to the 7 groups. The shaded part of the graph shows the lower and upper 

bounds of one standard deviation. The cluster means of groups fall within the limits 

of the next similar cluster (validating the dendrograms). From the graphs it can be 

observed that groups 1, 2 and 3 have a lower mean backscatter of less than -24 dB. 

Group 4 clusters have the highest backscatter between -13 and -15 dB. Clusters within 

group 5 have mean backscatter signatures less than -15 dB up to -17 dB. While clusters 

within group 6 have values less than -20 dB and greater than -23 dB, group 7 clusters 

have values ranging between -17 dB and -20 dB. A certain level of overlap between 

the groups is apparent. 
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Figure 5.10: Signature patterns within cluster groups with less than 1 

dB variation between consecutive years 
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5.3.3.1.1 Groups 1, 2 and 3: Misclassification 

The clusters within these groups displayed a signature in which the mean HV backscatter 

values were very low relative to the other cluster groups. The spatial distribution of these 

clusters was inspected by overlaying them on BING imagery. These clusters appeared on 

non-forest lands and at forest edges. One example is shown in figure 5.11 which shows a 

ploughed field. The undulations on the land have caused a higher backscatter due to higher 

surface roughness and it is likely that the texture measures have detected these undulations 

on the ground and mapped them as a tree canopy.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Example of an arable land represented by cluster groups 1, 2 and 3 

Misclassifications were also observed at forest edges, where mixed pixels occurred. The 

clusters of these groups were assigned into 3 different groups by the dendrograms based 

on the HV means. This highlights the inter group variability and the properties of the land 

represented by the clusters. The HH signatures were examined due to their higher 

sensitivity to surface scattering. Clusters representing surface undulations displayed a 

higher backscatter of -8 dB and smoother surfaces showed a lower backscatter, as low as 

-23 dB, over the years. Based on these analyses, these classes were found to be 

misclassified pixels and hence, these groups were labelled as Misclassifications. These 

Group 1 

Group 2 

Group 3 
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groups together represent 4% of the land of Area1. These can be masked out of the 

classification map if necessary. 

5.3.3.1.2 Groups 4, 5, 6, 7: Mature and Young forests 

These groups have a HV backscatter range between -13.4 dB and -22 dB and a HH range 

of -8.1 dB and -15.2 dB. The spatial distribution of these groups were observed with the 

aid of BING maps and Forestry12 layer. An example is shown in figure 5.12. 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 5.12: An snippet of groups 4, 5, 6, 7 bound by FIPS polygon 

These groups corresponded with the Forestry12 polygons representing forests, and the 

backscatter values are coherent to those expected over forest for both HH and HV 

channels as described in chapter 4. The difference in the range of backscatter returns is 

related to factors such as age of the trees, forest type and the tree species, amount of 

biomass and soil conditions.  

The planting date information was useful to extract the age of the different groups of 

clusters and therefore label them accordingly. Only 34% of Forestry12 polygons 

contained the planting date information and hence the planting year (PY) information 

from Coillte was used for further analysis and labelling of these groups.  
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Upon investigation, it was found that for some polygons the PY information was not 

updated. With the aid of Google Earth imagery for visual inspection, Coillte polygons 

with updated PY were tested against these four groups of clusters. For mature and young 

looking forests appearing on Google Earth imagery, the PY information was checked and 

hence tallied. Through this approach, groups 4 and 5 were then assigned the label of 

mature trees (age: 10-30) and groups 6 and 7 were labelled as young trees (age: 0-9).  The 

intra variability between these individual groups based on the tree species and other 

factors causing the difference in the energy return was beyond the scope of this project 

and this would require further analysis of the scattering mechanisms.  

5.3.3.2 Groups of clusters with greater than 1dB variation between four years  

This section presents the signatures and analysis of the remaining 22 clusters that were 

indicative of change within the forests.  

5.3.3.2.1 Group 8 and Group 9 – Drop of 4dB between two consecutive years 

Groups 8 and 9 exhibited a characteristic feature in which a difference of greater than 4 

dB was observed between two consecutive years. This difference was apparent in both 

HV and HH bands. In group 8, this difference occurred between 2009 and 2010 and in 

group 9, this difference occurred between 2008 and 2009.  Figures 5.13(a) and (b) show 

the annotated time series signatures 
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Figure 5.13: (a)left: Signature means of group 8 clusters for HV; (b)right: signature means of group 9 clusters for HV. The black dotted 

lines mark two years between which the change has occurred. 
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These groups were further examined spatially with the help of reference data obtained 

from Coillte. Upon examination it was found that these groups matched with the felled 

polygons representing clear-fells. Figures 5.14 (upper) and (lower) show examples of 

group 8 and group 9 clusters contained within the felled polygon. The PY as entered 

in the felled attributes is also shown. In the two example polygons in figure 5.14 

(upper) with fell_year 2010, the felling has taken place in 2010 which is reflected in 

the SAR image. This indicates that the areas represented by group 8 clusters have been 

felled before 24 June 2010 which is the SAR image acquisition date.  The two 

polygons in figure 5.14 (lower) have undergone felling in 2008 as per the fell_year 

record. The  corresponding SAR clusters show this change in the year 2009 indicating 

that the felling has occurred between the SAR acquistion 03 May 2008 and before the 

start of the year 2009. To support this analysis, results from Fransson et al., (2008), 

Santoro et al., (2010) and Pantze et al., (2014) described similar backscatter returns 

from a felling event.  
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Figure 5.14: upper: Group 8 clusters (change between 2009-2010) representing 

change in 2010 as verified by the Felled polygon; lower: Group 9 clusters (change 

between 2008-2009) representing change in 2008 as verified by the Felled 

polygons 

 

A quantitative analysis was performed and the groups were characterized. Before 

proceeding further, the following points were considered 

• The felled polygons from Coillte contain only the year of felling information. 

The month/date of felling are not provided.  

Group 8 clusters Group 9 clusters 

Felled polygons from Coliite 
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• Changes in SAR images occur between June(2007)-May(2008)-June(2009)-

June(2010). 

Because of this discrepancy between the datasets, it was not possible to do a yearly 

comparison of felling events between them. Therefore, the total number of group 8 

and group 9 instances were compared against the entire felled dataset of Coillte and 

the number of matching cases were recorded. Table 5.3 sums up the number of felling 

events recorded in each dataset. Zonal statistics were retrieved for the Coillte felled 

polygons with respect to the group 8 and 9 pixels, and the count of pixels within each 

polygon was recorded. SAR pixel clumps greater than or equal to 6 contiguous pixels 

were considered. 

Table 5.3: Comparison of number of felling instances between Coillte felled 

polygons and SAR image clusters 

 Number of felled polygons 

from Coillte (2007-2010) 

Number of instances identified by SAR 

corresponding to the Coillte felled 

polygons 

Area1 145 94 

 

 The percentage agreement between the two datasets was 64.82%. The rest of the 51 

Coillte felled polygons that the SAR based algorithm did not identify were next 

examined. The analysis involved checking these 51 polygons based on the polygon 

area and verifying each polygon with historic Google Earth imagery. Table 5.4 shows 

the polygon division based on their area. 

Table 5.4: Polygon area based analysis 

Polygon area Number of polygons 

<0.1ha 1 

>0.1ha<1.0ha 7 

>1ha<10ha 36 

>10ha<15ha 7 

 

From table 5.4, 44 polygons which are less than 10ha in size have been missed by the 

clustering algorithm,and 7 polygons of between 10ha and 15ha have been missed. 
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Another observation was that among the 145 Coillte felled polygons, 23 polygons had 

an area greater than 15ha and the rest were smaller than 15ha and all these 23 polygons 

have been identified by the SAR derived algorithm. The 51 missing polygons from 

table 5.4 were further investigated to understand the disparity between the two 

datasets.  

Upon deeper investigation, six categories were defined for the 51 missing polygons as 

shown in table 5.5. 

Table 5.5: Categories for missing polygons between the Coillte felled areas and 

SAR derived results 

Category Number of polygons 

Linear polygons 6 

Validated with GE and discovered not 

felled 

25 

Very close to buildings 3 

Very small polygons (<0.1 ha; <1 ha) 8 

Bare Upland (Calluna (Heather) cover) 1 

No definite reason 8 

The description of each category and key notes on the forest inventory system at 

Coillte is given in the section below.  

1) Linear polygons 

These are polygons with a diagonal width ranging between 20m and 30m as shown in 

figure 5.15 and of varying lengths. If the width is between 20 and 30m, the polygon 

would consist of 1 or 1.5 pixels. Given the smaller width of such polygons, these areas 

were not identifed by SAR as change pixels. 
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Figure 5.15: Illustration of a linear polygon 

 

2) Validated with Google Earth and discovered not felled 

Historic Google Earth images from 2003 – 2011 were checked as a means of validation 

to support this analysis. It was discovered that 25 polygons recorded as felled by 

Coillte were not felled on ground,  and the SAR data has naturally not categorised 

these areas as disturbances. One example is shown in figure 5.16. 
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Figure 5.16: Example of a Google Earth image showing no change between 2006 

and 2011-marked as felled in 2009 in the Coillte felled polygon database 

 

3) Very close to buildings 

Forests planted within a 60m buffer of buildings or monuments are left unfelled, 

however these polygons have not been updated in the database and they still appear as 

felled.  

4) Very small polygons 

Eight polygons were found to be less than 1ha in size, with one of them less than 0.1ha. 

These polygons correspond to less than 4 pixels. During the sieve operation, clumps 

2006 2011 

Felled polygons from Coillte 
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of 6 or fewer pixels were eliminated to make the results as coherent as possible. Due 

to this, these polygons were not idenitfied as change by SAR algorithm. 

5) Bare Upland 

A polygon of area 9.38ha was identifed as no change by SAR but categorised as felled 

by Coillte. When this was cross verified with Google Earth and Coillte Sub-

compartment polygons, this polygon was found to be Bare Upland that was covered 

by Calluna, or Heather, which is abundant on acidic soils on mountains and bogs in 

Ireland. As this is clearly a non-forest land, occurrence of a felling event on this land 

is unlikelyand it has been incorrectly entered in the database as felled.  

6) No definite reason 

Eight polygons did not fall under any of the above categories and therefore no definite 

reason could be arrived at to address the question of why these are felled according to 

felled polygons of Coillte and not felled according to SAR. These polygons were 

spatially well distributed and they belonged to groups 4, 5, 6 and 7, indicating the 

presence of trees during the entire four year period.   

Some possible reasons for the discrepancy between the two data sources are 

From the perspective of the forest inventory process at Coillte 

1) Once the felling license has been issued by the forest service, the foresters 

prepare to perform the felling operation for that particular compartment. 

2) But in some places, trees marked as felled are not actually cut. A part of the 

polygon or the entire polygon is left unfelled leaving inconsistency between 

what has been recorded digitally and what has taken place on the ground. The 

exact area felled is not recorded in the database. 

3) In areas with very poor ground (very soft and wet) where the timber is of 

limited value, and on very steep slopes where the machinery used for felling 

cannot operate, forests are left unfelled.  

4) Biodiversity is one of the factors taken into account before any forest operation 

is performed. During the breeding season from April to July, forests with birds 

nesting are not felled.  
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From SAR perspective 

1) The felling event might have occurred before or after the image acquisition 

period. As Coillte records the events throughout the calender year, there could 

be occurrences of felling events from 1 January  – 16 June 2007 and 24 June – 

31 December 2010. 

2) Environmental effects and high dielectric constant of the ground  

Taking into account the 26 polygons (25 validated with Google Earth and 1 Bare 

Upland) which are confirmed to be not felled, the percentage agreement between the 

two data sources now increased from 64.82% to 78.33%.  Based on the analysis and 

evidence, this pattern exhibited by clusters within groups 8 and 9 were attributed to 

felling events and labelled as Clear Fells.  

5.3.3.2.2 Group 10 – Drop of 2dB between two consecutive years 

The signature pattern of this group of clusters showed a difference of 2dB between 

two consecutive years (2008 and 2009)  in both the HV and HH channels (Figure 5.17). 
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Figure 5.17: Signatures of Group 10 clusters 

No reference data was available to understand the nature of this group of clusters.   

Investigation of the spatial distribuiton of this group revealed two observations  

• 27 polygons from groups 8 and 9 (clear-fells) were found to contain pixels 

from this group near the edges as shown in figure 5.18 

 

 

 

 

 

 

 

 

 

Figure 5.18: Examples of appearance of group 10 clusters within Coillte felled 

polygons 

 

Group 10 clusters 

Group 9 clusters 

Group 8 clusters 

Coillte felled polygons 
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• Where reference data were unavailable, with the use of Google Earth imagery, 

it was found that these clusters represented areas with thinning lines in between 

indicating thinning event. One such example is shown in figure 5.19.  

 

   

 

Figure 5.19: An example of  group 10 clusters indicating the possibility of 

thinning event 

Three theories were drawn from the many observations made  

• The reason 27 polygons from groups 8 and 9 are found to contain a small 

percentage of group 10 clusters is the possibility of the presence of debris. 

After a felling event, the debris are completely removed or piled to form 

windrows. The surface roughness from this debris has caused a lower amount 

of decrease in the backscatter as compared to the actual felling.  

• Young plants need utmost care otherwise they get subjected to nutrient 

deficieny or insect bites or animals such as deer eat them. Insects such as 

Weevils as shown in figure 5.20 attack pine trees when they are young and 

cause major loss for the forest company. 
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Figure 5.20: Weevils – a type of beetle that feed on young pine trees (taken during 

a field visit in April 2017) 

• Thinning: Plantations that are heavily stocked are subjected to thinning at 

intervals of forest crop rotation. The sole purpose of thinning is to increase the 

overall timber revenue by providing a provisional income for the owner. The 

timing of thinning mainly depends on the yield class. Crops with a higher yield 

class are thinned earlier. 

Based on the field visits and practical knowledge of the ground reality, these theories 

were drawn. This group was therefore categorised into one of the above groups and 

was given a generic label of Plant failure/Ground debris/Thinning. 

5.3.3.2.3 Groups 11, 12, 13 -  Increase in backscatter over the years  

An increase in the backscatter was recorded from 2007-2010 as shown in figure 5.21. 

A gradual increase is seen  starting at -26dB in 2007 and ending at -23dB by 2010.  
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Figure 5.21: Signature pattern of group 11 cluster 

 

Upon examining the spatial distribution of this group, two observations were drawn 

a. This group represented mowed grasslands and bare forest areas which were 

prepared for replantation. These two areas give similar surface roughness with 

undulations on the ground. Mowed grasslands have tractor lines, and areas 

prepared for replantation have windrows to align the new trees that are going 

to be planted,both of which give the very low backscatter in 2007. These areas, 

upon replantation in the subsequent years, generate the higher backscatter 

recorded in 2010. Figure 5.22, taken during a field visit with Coillte in April 

2017, shows an example of a felled area which has been replanted. . 

 

Figure 5.22: A forest site showing recently planted trees under the red circles 
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The total area represented by this group was very low at 218 ha i.e., only 0.25% of 

Area1. Based on the observations, this group was labelled as Mowed 

grasslands/Replantation ready areas. 

Group 12 with 4 clusters started with a backscatter of -19.9 dB in 2007 and showed an 

increase of 2 dB in 2010. Figure 5.23 shows the HV signatures of this group of clusters. 

There was also a similar pattern in HH signatures. This backscatter range, as explained 

for groups 6 and 7, was categorised as young trees. The gradual increasing pattern of 

backscatter in both HH and HV channels is indicative of growth in the tree structure 

leading to higher scattering.  

 

Figure 5.23: Signature pattern of group 12 cluster 

Figure 5.23 shows an example of this group overlaid on BING imagery encapsulated 

by Forestry12 polygon. The planting date is 2002, indicating that this group of clusters 

belong to young forests. 40% of sub-compartment polygons were checked for planting 

year and these indicated a Planting year between 2000-2002 clearly indicating the 

presence of young trees. The increasing backscatter in the signatures indicate the 

growth of these young trees.  

Group 13 also gave a similar pattern and  by checking the PY, this group along with 

groups 11 and 12 were labelled as Tree Growth. 
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5.3.3.2.4 Group 14 – Increase and drop of 6-8 dB between two consecutive 

years 

Figure 5.24 shows the cluster signatures of this group from both HV and HH channels. 

A large change was observed in the signatures between successive years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.24: Signature pattern of group 14 clusters 

In the HV bands of cluster 4, an increase from -27.9 dB to -22.3 dB was recorded 

between 2007 and 2008, and a drop from -22.3 dB to -28.7 dB was noted between 

2008 and 2009. In HH, the magnitude of change was not as high as in HV, but a change 
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of 3 dB was recorded between 2007-2008-2009. Similar change was observed in 

cluster 8 in 2009 in both HH and HV bands.  

Upon detailed investigation and examination, this group was labelled as anomalous 

because of the unexplainable characteristic of the signature pattern. Considering the 

role of environmental factors in the backscatter signal, this type of change is unusual. 

The spatial distribution of these clusters did not reveal any specific pattern. Only 818 

ha of the entire Area1 was occupied by these clusters making less than 1% of Area1.   

5.3.3.2.5 Group 15 – A decrease of 2dB from 2007-2010 

A decrease from -16.8 dB to -18.3 dB was recorded from 2007 to 2010 in the HV 

bands as shown in figure 5.25. The HH signatures exhibited a similar pattern with 

different absolute values. 
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Figure 5.25: Signature pattern of group 15 cluster in both HV and HH band 

The spatial distribution of this group was examined and it was found that this pattern 

appeared in random locations; only 0.11% of the entire Area1 was occupied by this 

group.This group was labelled Unknown. 

5.3.3.3 Final groups of clusters 

The final labels have been divided into three broad categories shown in figure 5.26. 

 

 

 

 

 

 

 

 

Figure 5.26: Final cluster groups and sub-divisions: G=Group; MF=Mature 

Forest; YF=Young Forest; CF1=Clear Fell (2009-2010); CF2=Clear Fell (2008-

2009); PF=Plant Failure; TG=Tree Growth; AN=Anomaly; UN=Unknown 

Misclassification (G1, G2, G3) 

Forests 
MF (G4, G5) 

YF (G6, G7) 

Forest Disturbances 

CF1(G8) 

TG (G11, G12, G13) 

AN (G14) 

 UN (G15) 

CF2 (G9) 

PF/Debris/Thinning (G10) 
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An extract of the final map taken from a small area of interest is presented in figure 

5.27 representing the three broad categories and their sub-divisions. The disturbance 

events can be visualised spatially, and the exact area changed can also be derived. This 

can complement the forest inventory where discrepancies arise between the actual area 

felled and the fell area reported digitally.  

 

Figure 5.27: Extract from the final cluster map showing spatial locations of the 

final cluster groups 

5.3.4 Transferring the algorithm on the other two study areas (Area2, Area3) 

The algorithm with different experiment set up after being tested on Area1 was applied 

to Area2 and Area3. The data stack consisted of the HV and HH intensity bands from 

all four years forming an 8 band raster stack. The union of forest maps from each year 

generated from chapter 4 using the RF algorithm was used as a mask to ensure the 

clustering algorithm was appliede to the forest areas. 

Due to the differences in the topography, forest types and weather conditions (as 

explained in chapter 3), the variations in the backscatter from the targets in the 

different areas were necessarily considered in making the algorithm robust. The initial 

step of the algorithm – deriving divergence statistics was applied to each of the study 

areas. In Area2, two peaks were found at 74 and 83 and in Area3, the peak was found 

at 80 clusters, as in Area1. As the smaller number of clusters were to be selected 
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according to the conditions outlined in section 5.1.1, 74 clusters were selected for 

Area2. Figures 5.28 and 5.29 show the divergence statistics derived for Area2 and 

Area3 respectively.  
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Figure 5.28: Divergence statistics plot dervied on Area2 indicating peaks at 74 and 83 clusters 
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Figure 5.29: Divergence statistics plot dervied on Area3 indicating peak at 80 clusters 
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Dendrograms were used to group all the clusters to characterize the changes. Table 5.6 

provides information on the different signature patterns observed for these two areas.  

Table 5.6: Signature patterns observed in Area2 and Area3 

Signature pattern No. of groups in Area2 No. of groups in Area3 

Pixel values remained the 

same to within 1 dB over 

the four years 

7 7 

A drop greater than 4dB 

between two consecutive 

years 

2 3 

A drop of 2 dB between 

two consecutive years 

2 1 

An increase of 4 dB over 

the years from 2007 to 

2010 

1 1 

Increase and decrease of 6-

8 dB in the backscatter 

between 2 consecutive 

years 

1 1 

A decrease of 2 dB from 

2007 to 2010 

1 1 

 

In total 14 groups were formed in both Area2 and Area3. Similar patterns were 

noticeable between all the three study areas. One extra group was formed in 

Area3where a drop of greater than 4dB was recorded between two years in both the 

HV and HH bands. The pattern of this group was compared with that of Area1 and it 

showed similarity with the signatures of clear felling group of clusters. To analyse this 

further, the felled polygons from Coillte were used for validation.  
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Table 5.7: Comparison of number of felling instances between Coillte felled 

polygons and SAR image clusters 

 Number of felled polygons 

from Coillte (2007-2010) 

Number of instances identified by SAR 

corresponding to the felled polygons 

Area2 67 43 

Area3 154 98 

 

From table 5.7, an agreement of 64.8% and 62.3% was obtained between the two 

datasets in Area2 and Area3 respectively. Similar investigations were undertaken as 

described in section 5.3.3.2, with Tables 5.8, 5.9, 5.10 and 5.11 showing the area based 

analysis and the categories defined for the missing polygons for both areas. 

Table 5.8: Polygon based analysis for Area2 felling events 

Polygon area Number of polygons 

<0.1ha 1 

>0.1ha<1.0ha 9 

>1ha<10ha 10 

>10ha<15ha 2 

>15ha<20ha  2 

 

Table 5.9: Polygon based analysis for Area3 felling events 

Polygon area Number of polygons 

<0.1ha 3 

>0.1ha<1.0ha 19 

>1ha<10ha 28 

>10ha<15ha 3 

>15ha<20ha 3 
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Table 5.10: Defined categories for missing polygons in Area2 

Category Number of polygons 

Linear polygons 2 

Validated with GE and discovered not 

felled 

10 

Very close to buildings 0 

Very small polygons (<0.1 ha; <1 ha) 10 

Bare Upland (Mollinia, Purple Blue 

grass) 

1 

No definite reason 1 

 

Table 5.11: Defined categories for missing polygons in Area2 

Category Number of polygons 

Linear polygons 4 

Validated with GE and discovered not 

felled 

17 

Felled after June 2010 9 

Very small polygons (<0.1 ha; <1 ha) 22 

Not felled (recently planted in 2001) 1 

Bare UpLand (Furze) 1 

No definite reason 2 

 

Similar to the results for Area1, in these two areas as well, there were polygons 

discovered that were actually not felled on ground but were incorrectly recorded as 

felled in the database which led to the discrepancies. In Area3, 9 polygons were 

checked and found to be felled after the date of SAR image acquisition which is not 

counted as a discrepancy in SAR results. In the undefined category, 3 polygons were 

Identified, possible reasons for this have been discussed in section 5.3.3.2.  

The final agreements between the SAR and Coillte datasets were 75.43% and 74.67% 

for Area2 and Area3 respectively. Overall, in Area2 933 hectares were felled within 

the SAR derived forest areas based on the SAR results,with a slightly higher value in 

Area3 of 1029 hectares. 
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The same process for analysis of the cluster groups in Area1 was followed for Area2 

and Area3 and the groups were labelled accordingly as presented in table 5.12. Classes 

with misclassifications and anomalies were apparent in these two areas as well. The 

algorithm has been successful in identifying signatures related to a generic group of 

mature and young forests (labelled based on the planting year information), and 

disturbances such as clear fells and tree growth within them. Similar to Area1, the 

dendrograms divided the higher backscatter into two groups of mature forests and the 

two of young forests. These have been marginally divided into different groups 

although the planting dates for group 4 and group 5 overlap. The different classes in 

each area have been compared and discussed in the discussion section 5.4 below. 

Figures 5.30 and 5.31 show the final maps of the different clusters. 

Table 5.12: Cluster groups and their labels for Area2 and Area3 

Group Labels for Area2 Lables for Area3 

1 Misclassification Misclassification 

2 Misclassification Misclassification 

3 Misclassification Misclassification 

4 Mature forests Mature forests 

5 Mature forests Mature forests 

6 Young forests Young forests 

7 Young forests Young forests 

8 Clear fells (2007 and 2008) Clear fells (2007 and 2008) 

9 Clear fells (2009 and 2010) Clear fells (2008 and 2009) 

10 PF/Debris/Thinning (2008 and 

2009) 

Clear fells (2009 and 2010) 

11 PF/Debris/Thinning (2007 and 

2008) 

PF/Debris/Thinning (2007 and 

2008) 

12 Tree growth Tree growth 

13 Anomalies Anomalies 

14 Unknown Unknown 
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Figure 5.30: Map of final groups of clusters of Area2 

 

LEGEND: Group numbers 
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Figure 5.31: Map of final groups of clusters of Area3 

 

LEGEND: Group numbers 
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5.3.4.1 Common groups identified by the algorithm across all study areas 

Groups with a very low backscatter in HV (less than -25 dB) and HH (less than -23 

dB) existed across all three areas. Considering classes related to misclassifications and 

anomalies, 4.25%, 2% and 6% of Area1, Area2 and Area3 was occupied. The cluster 

profiles pertaining to three classes common in all areas are discussed below. 

1) Clear felling: This was unambiguously identified in all the areas with a distinct 

pattern. They were cross verified and validated with the available reference 

polygons and the occurrence of the events were confirmed. Clusters from all 

the years and from a representative site in each area which showed this change 

were plotted in Figure 5.32 for the HV band.. 

 

 

Figure 5.32: Signature profiles of clusters in HV representing clear fells across all 

three areas;A1=Area,A2=Area2,A3=Area3. The black lines mark the period of 

change on the graph 

A significant change of greater than 4 dB can be seen in the figure for the HV 

band. The difference in the 2007 pixel values between the areas, depends on 

the tree species, the management approach, and the age of trees. A similar 

pattern was observed in the HH band of all three sitesirrespective of the area. 

This similarity between areas and bands suggests that the SAR algorithm can 

successfully distinguish areas of clear felling, which is one of the primary 

harvesting methods in Ireland. 



 

145 
 

2) Forest group: The profiles from each area for the mature and young trees 

groups were compared against each other. Figure 5.33 shows the boxplots 

showing the distribution range of backscatter values in HV band for these 

groups. Across all the areas, the backscatter values fall within the same range 

for this category of clusters, thus stressing on the fact that these groups belong 

to the same category (Mature and Young forests) across all study areas. In the 

figure, the groups of mature and young forests have been combined to 

understand the intensity range of forests that have not undergone any change 

within the four year period. This can also be compared with the boxplots of 

backscatter analysis in chapter 4, section 4.2.1 in which the boxplot for forests 

have the same range as specified in this section. Across all the study areas, the 

backscatter range for these groups fall within the range -10  to -22dB  in HV 

and -8 dB and -16 dB  in HH. 

 

Figure 5.33: Boxplots for forest profiles across all areas of study for HV 

polarisation; A1 = Area1, A2 = Area2, A3 = Area3 

3) Tree growth: Clusters representing growth in the trees from 2007 to 2010 have 

the same pattern across all areas. This is shown in figure 5.34. There is an 

increase in the backscatter towards 2010 in all the areas. The value range may 

differ but the pattern is similar. A total of 3986 ha, 837 ha and 432 ha were 

afforested between 2007 and 2010 in Cork (bigger part of Area1), Donegal 

(bigger part of Area2) and Wicklow (bigger part of Area3) according to 

(DAFM, 2017) with Sitka Spruce as the dominant tree species. The fast growth 
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of these trees is identified by the clusters with the increasing backscatter with 

the increasing tree biomass.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.34: Signature profiles of clusters representing tree growth across all 

three areas ;A1=Area,A2=Area2,A3=Area3 

 

These analysis support the fact that the algorithm has worked succesfully on all the 

three areas. Other classes such as plant failure/thinning/debris and unknown were also 

analysed and similar patterns were found. Due to the lack of evidence supporting these 

classes, they could not be used for further analysis. The unknown class across each 

site occupied a very little area of each study area – 0.25% of A1, 0.01% of A2 and 

0.4% of A3 which was negligible.  

The results presented in the current section have been discussed in section 5.4.  
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 Discussion and conclusions 

This chapter described an approach to track and label the different types of 

disturbances within the forests of Ireland that were initially mapped in Chapter 4. 

Using the HV and HH composites of ALOS PALSAR data over the period of four 

years, ISODATA clustering was performed. The advantage of using the divergence 

index for this clustering approach was the possibility of choosing the number of 

clusters in defining the different variabilities within the mapped forests. Due to indices 

such as the Transformed Divergence and Jeffries-Matusita distance suffering from 

saturation, especially for values above 1.9, divergence indices were used which work 

on the condition that Dij must be > 24 (de Bie et al., 2012). The self-organizing 

algorithm formed clusters based on the input bands following which natural cluster 

groups were formed using the hierarchical clustering approach. No training data or 

extensive prior knowledge of the area were required, which was practical for this study 

where the forest monitoring system is conducted once in six years causing a lag in 

forest updates. However, the ISODATA approach has its own limitations and requires 

attention before performing the clustering process. The ISODATA algorithm strongly 

depends on the distance threshold for the merge of clusters (MD) and deviation 

threshold for the split of clusters (SD) as described in section 5.3.1. Incorrect choice 

of these parameters could result in an incorrect number of. The parameters are 

dependent on range of the input band values, and the most suitable parameters for this 

study derived after conducting many trials.  

By using only backscatter values, clear fell events have been identified with a definite 

pattern among all study areas. Inclusion of texture measures, and ancillary data such 

as slope and aspect, was not feasible due to the technical and data normalisation issues 

encountered as described in section 5.3.1. Improvements to this algorithm can be made 

by including polarimetric decomposition techniques to separate different scattering 

mechanisms – this is possible through fully polarimetric (quad-pol) SAR data on areas 

where these data are available. This will however limit the application of the algorithm 

to areas where fully polarimetric data are unavailable. This will hinder the forest 

monitoring application on a national level, however on a reginal scale specific to the 

availability of quad-pol data, forest monitoring is feasible. A recommendation is to 

modify the input bands depending on the specific application for example, choosing 

bands such as Radar Burn Ratio and Radar Burn Difference as input to the ISODATA 
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approach as shown in the study by (Lasaponara and Tucci, 2019) will enhance the 

potential of the algorithm in detecting burn scars in forests.  

This approach has used one image per year depending on the availability of ALOS 

PALSAR images over the study areas. Most often classes from ISODATA or K-Means 

classification overlap and using more images per year will be better. However while 

monitoring forest changes, including imagery from different seasons will add seasonal 

influences leading to mixed signals which can be confused with the actual disturbance 

events. In this study one image per year acquired during the summer months has been 

used. One reason for choosing one image per year was the low frequency of data – 

only 3 ALOS PALSAR images were acquired per year over the study areas (two from 

winter and one from summer). The growth and rotation cycle of forests is very 

different when compared to other land cover types such as grasslands and cropland in 

which the latter undergo the entire cycle of seeding, growing and harvesting within 

the year. In Ireland, on average for Sitka spruce, the forest rotation cycle is 40 years – 

annual changes are not common provided the trees are healthy. To assess yearly 

changes in forests, a minimum of two images are required to evaluate the condition of 

forests before and after a disturbance. To assess changes such as deforestation, a 

minimum of three temporal observations are required, the first one of which must 

represent forest (Hamunyela et al., 2016).  

The Forestry12 polygons and Coillte felled polygons have been useful sources of data 

in interpreting the cluster signatures. Although concrete evidence for groups of 

clusters other than clear fells was unavailable, these data sources provided vital 

information such as planting year which were useful in understanding the growth cycle 

of forests. Through this information it was possible to understand and draw theories 

on certain groups of clusters such as mature/young forests and tree growth and hence 

labelled. The discrepancies that these data have in terms of forest area coverage and 

reporting disturbances, have been addressed by SAR data in the study. Disturbance 

events that occurred in forest estates that are not owned by Coillte have been identified 

by SAR providing updates on forests. This will also be useful to private forest owners 

in monitoring their forest estates. An additional value provided by this algorithm is the 

size of the forest area disturbed. In some forest inventory reports, the exact area 

disturbed is incorrect leading to confusion in further stages of monitoring. This 

information can be supported by the algorithm presented here by extracting the exact 
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forest changed and help in the next stages of monitoring. The annual and timely 

updates provided by SAR through this algorithm can also supplement forest inventory 

databases that have inconsistencies in their reporting systems. Keeping the databases 

up-to-date by updating the missing/outdated attributes is certainly a promising service 

that this algorithm will provide, especifically for clear felled events.  

After the application of the ISODATA approach to Area1, its transferability to the 

other two areas was assessed. The approach used in this study was found to be robust 

in identifying clear fells over all study areas with a distinct pattern in the cluster 

signatures. The similar trends observed in each area demonstrated the consistency and 

robustness of the algorithm. A significant change of 4-5 dB was clearly observed in 

places where trees were felled. Both HV and HH bands showed a distinct difference 

in the backscatter after clear felling, with the HV band giving a better difference before 

and after change. The challenging part was to characterize the group of clusters with 

a decrease of 2dB between consecutive years. A limitation of this approach was it was 

unable to distinctly separate the signals coming these intra groups. No ground truth 

information was available to compare the results with and understand the type of 

behaviour the clusters exhibited. Based on the field knowledge and the PY from 

reference datasets, it was possible to gauge these disturbance types and categorise into 

one group. The signals for tree growth were visible with a gradual increase in the 

backscatter from 2007 to 2010. This type of change was assessed with the help of 

Google Earth imagery and the PY data from the reference datasets. Field visits were 

helpful in acquiring knowledge on what happens in the field which helped with the 

characterization of these cluster groups. The anomalies and unknown groups of 

clusters are also common in all areas with signatures unable to validate. This 

consistency in the algorithm across the study areas with slightly different geographic 

and topographic features is an indication of its applicability on a national scale. By 

testing the approach on three study areas, supporting local and regional scale forest 

monitoring is possible which will help local and regional forest owners/companies in 

making decisions. Ireland is supporting many forest monitoring programs as explained 

in chapter 1 of this thesis. The forest monitoring projects that use optical data can be 

supplemented with this algorithm which is beneficial for providing data on cloud 

covered areas. Supporting the NFI and providing forest updates on an annual basis is 

surely a foresight of this algorithm which will provide additional value to forest 
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monitoring in terms of providing weather unaffected images and identifying the 

nature, location and size of disturbed forests.  

The ISODATA transferability has shown encouraging results. However, these are 

purely data driven. These clusters do not necessarily have a direct meaning according 

to the semantic definitions of land categories as used by IPCC. There is a risk involved 

in interpreting the clusters that are formed purely based on information content of the 

SAR image. While assigning meaningful labels to these clusters, the onus is on the 

interpreter to make the meticulous transition from indirect to direct meaningful 

labelling of the clusters.  

The overall methodology of mapping forests and monitoring the disturbances within 

them presented in chapters 4 and 5 has shown to be consistent across all three study 

areas. The combination of supervised and unsupervised approaches for monitoring 

forests using SAR data carries the benefits and limitations of each approach. The 

power of machine learning has been presented in chapter 4 where, upon training a 

single image, other images can be classified without acquiring training data for each 

image. Running clustering algorithms on these images combined has helped enhance 

the algorithm by highlighting some of the misclassifications brought about by each 

individually image classified previously. The different misclassification groups, 

anomalies and unknown groups of clusters are either a result of the discrepancies 

between the two algorithms or SAR induced errors. Apart from this caveat, the overall 

methodology has been able to successfully map mature and young forests and identify 

changes such as clear fells, degradation and tree growth within the study areas.  

Considering the big picture of the project which is providing consistent updates to 

CARBWARE in the light of reporting carbon emissions to Kyoto Protocol, the 

algorithm presented here can be used as a support tool. However this requires 

consistent data acquisition which is an issue given the lifespan of satellites. In order to 

establish a continuous forest monitoring platform, this algorithm was transferred on 

the existing ALOS-2 PALSAR-2 L-band SAR sensor. The next chapter desribes the 

transferability of the algorithm on this sensor and its consistency is assessed.  
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6 ALOS PALSAR Based Algorithm 

Transferability to ALOS-2 PALSAR-2 

 

“The important thing is not to stop questioning. Curiosity has its own 

reason for existence” – Albert Einstein 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6 
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 Introduction 

The UNFCCC definition of deforestation refers to the “direct human-induced conversion 

of forested land to non-forested land” (FAO, 2020) and for most purposes, in Ireland, if 

replanting has not taken place within five years (Devaney et al., 2017), this is considered 

to be a permanent land-use change (i.e. deforestation). If replanting occurs within this 

period, disturbances such as clear-felling do not constitute deforestation. For the four-year 

period of ALOS PALSAR data discussed in chapter 4, identifying deforestation events 

according to this definition was not feasible, but with the incorporation of ALOS-2 

PALSAR-2 datasets from 2015-16, the window of five or more years provided an 

opportunity to monitor permanent loss of tree cover within the study areas. Monitoring 

forests and their short and long term changes in a robust, reliable and objective manner 

on an annual basis is crucial in understanding forest management operations and their 

implications, therefore, having a method that is applicable to more than one satellite 

sensor is important.  

The ALOS PALSAR sensor operating between 2006 and 2011 provided data for many 

operational and research endeavours worldwide (Almeida‐Filho et al., 2009; Shimada et 

al., 2014; Baghdadi et al., 2015; Khati et al., 2018). After reaching the end of its targeted 

life of 5 years, there was a gap before the launch of its successor ALOS-2 PALSAR-2 in 

2014 with enhanced features including higher spatial resolution and radiometric senstivity 

and better observation repetition frequency (Rosenqvist et al., 2014). This chapter aims to 

evaluate the potential of ALOS-2 PALSAR-2 data in mapping inter-annual and longer 

term forest disturbances in Ireland by applying the methodology developed in chapters 4 

and 5. The specific objectives are to:   

1) Evaluate the transferability of the algorithm to ALOS-2 PALSAR-2 datasets by 

assessing any inconsistencies identified during the process. 

2) Identify forest areas that were removed between 2007 and 2010 and not replanted 

by 2015-2016, thus indicating permanent land-use change. 
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 Methodology 

The consolidated methodology developed in chapters 4 and 5 is shown in figure 6.1. The 

workflow consists of generating forest/non-forest maps using the Random Forests 

classifier and, from the resulting forest cover maps, using an ISODATA classification to 

characterize disturbances. Steps 1 and 2 of the workflow (figure 6.1), along with ALOS-

2 PALSAR-2 data acquisition details have been discussed in chapter 3 (section 3.3.2). 

Steps 3, 4, 5 and 6 are discussed in sections 6.3, 6.4, 6.5, 6.6 and 6.7. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Workflow of the methodology used to generate forests and forest change 

maps using PALSAR-2 data 

 Transition in the SAR pre-processing software and assessment of SAR 

speckle filters to be used  
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Previously, in chapters 4 and 5, ALOS PALSAR datasets were pre-processed using the 

proprietary SARscape software. With a growing move towards open-source and freely 

available software, a transition was made to the ESA SNAP toolboxes to pre-process the 

ALOS-2 PALSAR-2 images. Both the software packages offer standard SAR pre-

processing modules, however the speckle filters are exclusive to each software. The De 

Grandi multi-temporal filter was used for the ALOS PALSAR data, and in order to select 

the most comparable speckle filter available in SNAP, an image that had been pre-

processed in SARscape was re-processed in SNAP and the data values were compared. 

Three assessments were conducted for the selection of the most appropriate filter. 

• Based on literature: Many studies have proposed the Lee filter as the most standard 

speckle filter because this is superior in preserving prominent edges and texture 

information (Qiu et al., 2004; Domg et al., 2001).  

• Based on Equivalent Number of Looks (ENL): “The equivalent (or effective) 

number of looks (ENL) is a parameter of multilook synthetic aperture radar (SAR) 

images, which describes the degree of averaging applied to the SAR 

measurements during data formation and sometimes also postprocessing” 

(Anfinsen et al., 2008, pg. no. 1). To assess the ability to suppress the speckle in a 

SAR image, the ENL is commonly calculated over a uniform area. Typically, the 

higher the ENL, the higher the efficiency of the filter in suppressing the speckle 

(Gagnon and Jouan, (1997), Wang et al., (2012) and Xiao et al., (2003). This was 

calculated over a large patch of homogeneous forest area, with the results shown 

in table 6.1. From table 6.1, the closest to De Grandi filter was Lee followed by 

frost, gammaMap, boxcar and IDAN filters. 

Table 6.1: ENL for different speckle filters 

 De Grandi Lee RLee Frost GammaMap Boxcar IDAN 

ENL 30.2 32.2 9.9 28.5 28.5 28.5 28.5 

 

• Based on visual assessment: It was found that the Lee filter worked well in 

achieving a balance between speckle reduction and preserving finer details. 

However, it was observed that the Lee filter blurs the image and does not retain 
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the edges to the same extent as the De Grandi filter. So, to minimise this, the 

window size was limited to 3×3. Figure 6.2 shows an ALOS PALSAR image 

before speckle filtering, the image filtered with the De Grandi filter in SARscape 

and the image filtered with the Lee filter in SNAP.  

 

 

 

 

 

 

 

Figure 6.2: Viusal comparison between (a)unfiltered, (b) De Grandi and (c) Lee 

speckle filtered ALOS PALSAR image 

 

 Backscatter analysis 

The backscatter values from ALOS-2 PALSAR-2 FBD HV and HH channels for the 

summer, autumn, and winter images of 2015 and 2016 were analysed to assess the 

response from various targets. Combining reference data from Forestry12 and 

PrivateForests2016 datasets, a single reference dataset (subsequently referred to as 

Forests12_16) was formed. Using this combined reference dataset, HV and HH 

backscatter (𝛾°) values from 500 forest pixels were collected; 500 non-forest (excluding 

urban) pixels were identified using Google Earth imagery and LPIS 2012, and, with the 

aid of CORINE 2018 data, 500 urban pixels were extracted from both HH and HV SAR 

images. The distribution of γ° values for forests, non-forests (excluding urban) and urban 

for all three areas and both acquisition years are shown in figure 6.3 and 6.4.  
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Figure 6.3: Distribution of ALOS-2 PALSAR-2 HV γ° values across all areas and classes (forests, non-forests and urban) 
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Figure 6.4: Distribution of ALOS-2 PALSAR-2 HH γ° values across all areas and classes (forests, non-forests and urban 
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As expected, a wider difference in the backscatter between forests and non-forest classes 

is observed in the HV channel, with an average difference of 10dB, compared to a 6dB 

difference in the HH channel. Within the samples chosen for this analysis, minimal 

overlap is observed between forests and non-forest classes for Area1-2015 (figure 6.3 (a)) 

and Area3-2016 (figure 6.3 (f)) which are summer acquired. The overlap between the 

forests and non-forest classes is apparent in the other boxplots in figure 6.3 (b, c, d, e), 

with the first quartile of the former containing the same range of values as the fourth 

quartile of the latter. Although summer images are ideal for the work, the impact of using 

non-summer images is studied in this chapter by considering autumn and winter images.  

A summer image from ALOS-2 PALSAR-2 was compared with a summer image of 

ALOS PALSAR covering the exact same area to understand the distribution of γ° values 

in both sensors (see section 4.2.1 for more detail on the ALOS PALSAR values). Figure 

6.5 shows the distribution of HV γ° values for ALOS PALSAR in June 2010 and ALOS-

2 PALSAR-2 in August 2015 for Area1. The mean difference between forests and non-

forests with ALOS-2 PALSAR-2 is -10dB while with ALOS PALSAR is -8dB which 

agrees with Rosenqvist et al., (2014) with the bigger difference between forests and non-

forests in ALOS-2 PALSAR-2 image than ALOS PALSAR image. 

 

Figure 6.5: Distribution of ALOS PALSAR HV γ° values from Area1 - 2010 for 

forests, non-forests and urban classes 
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Another observation from the boxplots is that a higher power is received from the targets 

for ALOS-2 PALSAR-2 when compared with ALOS PALSAR. For example, in figure 

6.5 the mean HV γ° value for forests from ALOS PALSAR is –13dB, while from ALOS-

2 PALSAR-2 it is -11dB. Similar observations were found for the HH channel with a 

mean of -8dB for ALOS PALSAR and -6dB for ALOS-2 PALSAR-2 for the forest class. 

Given the similarity between the urban and forest classes, as described in chapter 4, 

section 4.2.1, urban/settlement classes were masked out from all the images using the 

CORINE 2018 data (Copernicus, 2018).  

 Forest non-forest maps using RF classifier and evaluation 

A new RF model was built for ALOS-2 PALSAR-2 images by collecting new training 

samples from the 2015 images of Area1 and Area2 and the 2016 image for Area3, in 

preference to the winter 2015 image in order to achieve optimum forest/non-forest 

discrimination. A total of 3100 training samples were collected (forestland=1800; 

cropland=300; grassland=400; peatland=400; water=200). Reference data included 

Forests12_16 data for forestland, LPIS 2012 for cropland and peatland, and Google Earth, 

BING imagery and CORINE 2018 for grassland and water. As described in chapter 4, 

section 4.2.2, the RF classifier was run on the stack of radar HV backscatter coefficient 

images (γ⁰), seven GLCM texture measures (from window size 11×11 - variance, entropy, 

correlation, contrast, homogeneity, second moment and dissimilarity), slope and aspect.  

The variable importance plot was examined, and, as shown in figure 6.6, it was found that 

the two most important variables for Area1 were GLCM variance and HV gamma. For 

Area2 and Area3, slope was the most important variable, with HV γ⁰ and GLCM variance 

the next two most important variables. As these latter two areas are more mountainous 

than Area1, the classifier correctly identified that slope was a more important 

consideration for classification than the other GLCM texture measures, with slope taking 

a much lower importance value in classification for the flatter topography of Area1.  
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Figure 6.6: Variable Importance Plots generated by the RF classifier for (a)Area1, 

(b)Area2, (c)Area3 for ALOS-2 PALSAR-2 image classification 

From chapter 4, section 4.2.4, the most influential input for classification of ALOS 

PALSAR for all the three areas, apart from slope, was HV γ⁰ followed by different GLCM 

measures for each study site. From figure 6.6, for ALOS-2 PALSAR-2 classification, 

ignoring slope, GLCM variance and HV γ⁰ are the most important variables across all 

three regions. For both the sensors, HV γ⁰ plays an important role for RF classification 

followed by texture measures. GLCM variance represents the inter-class variations 

(abrupt changes in the DN values) which are more apparent in ALOS-2 PALSAR-2 

images due to the enhanced radiometric difference between forests and non-forests.  

6.5.1 Post-classification filtering (PCF) 

For the ALOS PALSAR classified images, many single misclassified pixels were 

generated, and the result was unacceptably noisy. However, for the ALOS-2 PALSAR-2 

images, the classification resulted in a cleaner and smoother appearance as shown in figure 

6.7. One plausible explanation for this is the application of the Lee filter, which is better 

at speckle suppression than De Grandi filter and well known to produce a smoother 

appearance on the image. However, single pixels existed that required cleaning, and as 

with the ALOS PALSAR images, the majority filter was applied to the ALOS-2 

(a) (b) (c) 
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PALSAR-2 classified outputs to remove the noise. Forest patches before and after PCF 

from both ALOS PALSAR and ALOS-2 PALSAR-2 are shown in figure 6.7. 

 

Figure 6.7: Comparison of a single forest patch derived from ALOS PALSR and 

ALOS-2 PALSAR-2 before and after PCF 

The next stages of the filtering process for the ALOS PALSAR images involved removing 

areas smaller than a threshold of 82 pixels, equivalent to an area of 1.8 ha (chapter 4, table 

4.2) resulting in the maximum overall accuracy of 87.7%. With the higher resolution of 

8×8m, when an area-equivalent filter of 293 pixels was applied to the ALOS-2 PALSAR-

2 data, lower accuracies of 76% were found for the classification. In an iterative process 

of reducing the value, filters with lower thresholds were applied, with the highest 

accuracies of 86% observed for a threshold of 175 pixels which equates to an area of 1.1 

ha. With fewer mixed pixels in the higher spatial resolution images of ALOS-2 PALSAR-

2 and the suppression of hedgerows and shrubs by the low pass Lee filter, cleaner result 
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has been obtained. This suggests that mapping with ALOS-2 PALSAR-2 is an 

improvement over ALOS PALSAR. 

6.5.2 Comparing Forest/Non-Forest maps with ALOS PALSAR derived maps 

and reference data 

 

6.5.2.1 Visual analysis 

All the forest polygons from 2007-2016 were overlaid, as shown by examples in figure 

6.8, to examine the consistencies/inconsistencies in the outlines over the years.  

  

 

 

 

 

 

 

 

 

 

Figure 6.8: Visual analysis of selected SAR derived forest polygons from Area1 (2007-

2016) 

It can be seen from figure 6.8 that more regular boundaries were formed with ALOS-2 

PALSAR-2 images when compared to ALOS PALSAR images. Due to the better 

radiometric separability between forests and non-forests for the ALOS-2 PALSAR-2 

sensor, as well as the higher spatial resolution, there is clearer distinction between forests 

and non-forests, and hence the forest boundaries more closely match those on the ground. 

Although removal of the mean GLCM measure for the ALOS PALSAR image 
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classification (chapter 4, section 4.2.4) helped to constrain the forest boundaries and limit 

their over estimation, in comparison with ALOS-2 PALSAR-2 forest boundaries, they 

appear more irregular. It can also be observed that the boundaries from 2015 and 2016 

appear much more similar to each other whereas boundaries from 2007-2010 have more 

irregularities between each other, which suggests that data from ALOS-2 PALSAR-2 are 

more stable than from ALOS PALSAR. 

Comparing the ALOS-2 PALSAR-2 derived forest polygons with the Forests12_16 

dataset as shown in figure 6.9, the boundary fit between the two datasets can be observed. 

Full area coverage is obtained by the ALOS-2 PALSAR-2 forest polygons in comparison 

with the reference datasets. 

 

Figure 6.9: Visual analysis and comparison of ALOS-2 PALSAR-2 derived forest 

polygons with Forests12_16 dataset 

6.5.2.2 Quantitative analysis 

The classified maps were quantitatively compared to assess their accuracies and estimate 

the forest area from 2007-2010 and 2015-2016.  

6.5.2.2.1 Classification accuracies 

The overall accuracies for the land cover maps are shown in table 6.2. Maximum overall 

accuracies of 86.23% and 86.15% were achieved for Area1-2015 and Area3-2016 
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respectively which are summer acquired. The autumn and winter images have a lower 

accuracy.   

Table 6.2: Overall accuracies of land cover maps derived from ALOS-2 PALSAR-2 

images 

Overall 

Accuracy 

Area1 Area2 Area3 

2015 

(August) 

2016 

(October) 

2015 

(October) 

2016 

(September) 

2015 

(January) 

2016 

(June) 

86.23 83.90 83.82 82.72 79.65 86.15 

 

The January 2015 image from Area3 produced the lowest overall accuracy among all the 

images, so precipitation, and wind effects for 2015 and 2016 from Met Éireann were 

examined. Average monthly precipitation from four weather stations in the vicinity of 

Area3 was derived (Glen Imaal, Hacketstown, Oldbridge and M.Sally Gap) for January 

2015 (407.8mm) and June 2016 (151.8mm). The highest precipitation for all these stations 

was recorded between November 2014 and January 2015 (Met Eireann, 2020). Historic 

wind records were available for only two stations within Area3 – Naas and Osprey. The 

maximum wind speed recorded from these two stations on the day of image acquisition 

(January 23, 2015) was are 4km/h and 6km/h respectively. For June 10, 2016, the wind 

speed record was available from only Naas at 1.6km/h. From these records it was inferred 

that January 2015 was wetter and windier than June 2016 which could account for some 

of the difference in classification accuracies.  

In Ireland, showers are commonly observed throughout the year irrespective of the season. 

However, prolonged periods of wet weather are observed from October- March. Such 

wetter conditions in winter increase the dielectric constant in the soil moisture, thus 

increasing the backsactter value. As explained in chapter 2, section 2.2.1, L-band is 

affected by soil mositure for low vegetation covers. Land cover such as bare soils on 

arable lands and peatlands absorb more water due to such wet conditions thus increasing 

the dielectric constant and giving a higher backscatter response to the SAR sensor. The 

increase in the vegetation water content is another factor to be considered that affects the 
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backscatter values. Very wet conditions might diminish SAR sensitivity to forest structure 

(Tanase et al., 2018). Concerning wind effects, generally, storm events in Ireland do not 

cause largescale damage in forests (Department of Agriculture, 2014). However, 

prolonged period of storm events, cause waterlogged soils which leads to damage in the 

trees. Strong winds can also cause injury to trees by affecting their branches, stems and 

roots, specially among the young trees.  

The forest and non-forest classes were assessed in more detail, with producer’s and user’s 

accuracies shown in table 6.3. 

Table 6.3: Forests and Non-forests classification accuracies from ALOS-2 PALSAR-2 

(PA= Producer’s Accuracy, UA=User’s Accuracy) 

 Forests Non-Forests OA 

2015 PA UA PA UA  

Area1 94.91 97.98 91.96 96.99 94.91 

Area2 88.96 85.01 89.98 91.97 89.21 

Area3 86.89 80.01 79.91 85.78 86.76 

2016      

Area1 88.85 86.11 88.74 91.98 90.81 

Area2 90.15 91.88 92.18 93.89 89.33 

Area3 94.92 97.05 92.02 96.67 94.72 

 

With approximately 95% probability of being classified as forests and agreement with 

Forests12_16 dataset, the summer images prove the potential of ALOS-2 PALSAR-2 data 

in mapping forests. Along with high user’s accuracies of 97%, these images are highly 

reliable for representing ground reality. Higher commission errors were observed than 

omission errors when compared with the Forests12_16 dataset, indicating potential over-

estimation of forests by the SAR processing over these areas (table 6.4). Area2 shows the 

greatest number of such false positives, however in both 2015 and 2016 the additional 

forest patches identified represent less than 2% of the total number of agreed patches.  
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Table 6.4: Commission and omission errors from ALOS-2 PALSAR-2 datasets 

compared with the Forests12_16 reference dataset 

2015 Agree Commission Omission 

Area1 2995 12 8 

Area2 3263 56 14 

Area3 2343 24 8 

2016    

Area1 2798 32 10 

Area2 3250 58 17 

Area3 2456 15 9 

 

The classification of the ALOS PALSAR images resulted in higher overall accuracies of 

97% for the forests/non-forests maps (section 4.3.3.1). The potential impact of the weather 

conditions has been already been considered as a possible cause of the lower accuracies 

for the ALOS-2 PALSAR-2 data, but a further limitation is the accuracy of the reference 

dataset. This dataset consists of all forests in 2012 but only private forests were updated 

to 2016, therefore changes in the much larger public forest sector have not been included 

and could be a cause for the potentially large number of commission errors. 

6.5.2.2.2 Forest area estimation 

The forest area estimates for the coincident areas from ALOS PALSAR and ALOS-2 

PALSAR-2 derived products are shown in figure 6.10 for the period 2007-2010 and 2015-

2016. The corresponding forest areas from the Forestry12 and Forests12_16 datasets are 

also presented.  
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Figure 6.10: Forest area estimates as derived from SAR and reference datasets for the 

period 2007-2016 for the coincident ALOS PALSAR and ALOS-2 PALSAR-2 areas of 

Area1, Area2 and Area3 

From figure 6.10, it can be observed that there is a generally increasing trend in the forest 

area between 2007 and 2016 across all the study areas. An increase of 13.3%, 19.8% and 

18.5% has been observed between 2010 and 2015 in Area1, Area2 and Area3. Between 

the three year gap between Forestry12 and 2015, there is an increase of 10.0%, 17.7% and 

17.34% in Area1, Area2 and Area3. However, due to the limitation within the 

Forests12_16 dataset as discussed above, there is a difference of 5,834 ha, 4,077 ha and 

4,060 ha between the SAR derived and reference datasets for the year 2016. A key 

limitation of the current reference datasets is their infrequency, and this approach has 

demonstrated that where satellite imagery are available consistent results can be generated 

on an annual basis. To understand local and regional changes in the forest area estimates 

in response to forest policy and management as well as natural events, obtaining annual 

forest updates is critical. 
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 Forest disturbance maps using divergence guided ISODATA clustering 

approach 

Following the steps described in chapter 5, section 5.2 for ISODATA clustering, the 

algorithm was run on the stack of HV and HH γᵒ bands for 2015 and 2016. The divergence 

statistics plotted for Area1 are shown in figure 6.11. The coincident peak of average and 

minimum divergence occurs at 80 clusters where the average separability is 1877 and the 

minimum separability is 328. For the corresponding ALOS PALSAR image (chapter 5, 

section 5.3.1.1), the average and minimum separability were observed at 1969 and 1282 

respectively but the peak also occurred at 80 clusters. The drop in the minimum 

separability between the two datasets could be a response of the divergence statistics to 

the different lengths of the two time series resulting in  a reduction in the number of bands 

from 8 for ALOS PALSAR to 4 for ALOS-2 PALSAR-2. Where ISODATA clustering 

guided by divergence statistics has been applied in previous studies it has primarily been 

for hyper-temporal time series (Ali et al., 2014; Bie et al., 2012) to obtain the best 

separability values.
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Figure 6.11: Divergence statistics plot for Area1 derived from the 4-band raster stack, indicating 80 as the optimal number of 

clusters (with coincident average and minimum divergence peak) to be used for further analysis
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For Area2 and Area3, coincident peaks were observed at 78 and 86 clusters 

respectively, compared to 74 and 80 clusters for the ALOS PALSAR images. It 

is possible that for the more varied topographic landscapes of Area2 and Area3, 

the higher spatial resolution of ALOS-2 PALSAR-2 has led to the detection of 

more variability within these areas. Alternatively, using images from mixed 

seasons, different classes have been identified due to mixed temporal signals.   

As described in chapter 5, after generation of the cluster map, the image was 

filtered using the sieve operation with a threshold of 6 pixels to eliminate 

fragmented and isolated pixels and make the interpretation more reliable. 

6.6.1 Cluster groups 

After examining the cluster signatures for each of the areas, they were grouped 

through the hierarchical clustering approach described in section 5.3.2. Groups 

common to both the ALOS PALSAR and ALOS-2 PALSAR-2 outputs were 

identified, as well as those that exhibited a signature different to those previously 

derived.  

6.6.1.1 Groups formed in Area1 

 

Signature patterns observed in ALOS-2 PALSAR-2 results that were also 

identifed for ALOS PALSAR.  

1) Pixel values remained constant to within 1dB over the two years of 2015-

2016– 43 clusters 

2) A drop greater than 4dB between the two years – 9 clusters 

3) A drop of 2±0.5dB between the two years – 9 clusters 

4) Increase of 2±0.5dB in the backscatter between two years – 13 clusters 

5) A drop of 13dB between the two years – 1 cluster 

The characteristics of these common groups are given in table 6.5 below. 
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Table 6.5: Groups formed from ALOS-2 PALSAR-2, also found in ALOS 

PALSAR clustering results 

Groups Clusters within 

the group 

Group labels Characteristics 

 

Percentage 

area covered 

by the group 

of clusters 

G1 1 Misclassification/Forest 

edges 

Mean γᵒ HV -19±2.5 dB 

Mean γᵒ HH -12±2.2 dB 

1.5% 

G2 2, 7 Misclassification/Forest 

edges 

Mean γᵒ HV -17±1.2 dB 

Mean γᵒ HH -11±1.3 dB 

G3 73, 76, 79, 80 Mature trees (age 10-30 

years) 

Mean γᵒ HV -7±0.5 dB 

Mean γᵒ HH -4±0.5 dB 

23% 

G4 57, 70, 74, 63, 68, 

69, 50, 71, 44, 65, 

28, 54, 58, 59, 46, 

75, 62 

Mature trees (age 10-30 

years) 

Mean γᵒ HV -9±1.1 dB 

Mean γᵒ HH -5±0.5 dB 

16% 

G5 4, 6, 12, 13, 14, 15, 

17, 43 

Young trees (age 0-9 years) Mean γᵒ HV -13±1.2 dB 

Mean γᵒ HH -8±0.7 dB 

14% 

G6 18, 19, 20, 22, 26, 

32, 34, 42, 51, 33, 

49 

Young trees (age 0-9 years) Mean γᵒ HV -15±0.5 dB 

Mean γᵒ HH -10±0.7 dB 

8% 

G7 8, 25, 30, 48, 53, 56, 

27 

Clear fells Drop > 4 dB between 2015 

and 2016 

7% 

G8 10, 21, 23, 35, 37, 

39, 41, 61, 67, 72, 

78 

Storm/fire/insect/plant 

failure/leaf-off conditions 

Drop of 2 dB ±0.5 between 

2015 and 2016 

10% 

G9 5,11,16,31,36,38,40,

47,52,55,60,66,77 

 

Afforestation/reforestation/Tr

ee growth/seasonal 

influences 

Increase of 2±0.5dB in 2016 

 

11% 

G10 3 Anomaly Drop of 13dB between the two 

years 

0.5% 

 

The groups representing misclassification are a testament to the fact that the 

signatures from ISODATA clustering can be used to eliminate misclassified 

clusters that have resulted from the supervised classification. These groups were 
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also formed in the ALOS PALSAR classified outputs and also include the forest 

boundaries which have a mix of forests and other land cover classes within a 

pixel. Thus errors of commission that occurred following the RF classification 

(discussed in section 6.5.2.2.1) that are genuine errors can be eliminated at this 

stage. 

The HV mean signatures of groups 3 and 4 were greater than -11dB, and thus 

combined as mature trees, while the HV mean signatures of groups 5 and 6 were 

below -11dB and combined as a class of young trees. This pattern was also 

observed in the ALOS PALSAR classification, with four forest groups  

representing different age groups of trees. These groups were characterized as 

mature and young trees respectively, but it was not possible to discriminate at  

species level.    

Group 7, with a drop greater than 4dB, matched the clear fell pattern seen in 

ALOS PALSAR. A comparison of ALOS-2 PALSAR-2 group 7 clusters with 

Coillte clear felled polygons for both years (2015 and 2016) is shown in table 

6.6. Additionally, 18 clear-felled instances were identified by the SAR data that 

were not identified in Coillte datasets. Among these 18 felling instances, 4 

belonged to private non-grant aided owners, 11 cases belonged to Coillte estates 

and 3 more were private premium grant aided ownerships. This highlights that 

SAR can be used to identify felling events that do not show up in any database 

(Coillte or NFI or FIPS). Clear-felling requires licencing, therefore the 

identification of deforested areas by SAR can support forest monitoring and 

compliance.    

Table 6.6: Comparing the number of clear-fell instances derived from ALOS-

2 PALSAR-2 with Coillte data (2015-2016) 

 Number of felled polygons 

from Coillte (2015-2016) 

Number of instances identified by 

ALOS-2 PALSAR-2 corresponding to 

the felled polygons 

Area1 298 175 
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From table 6.6, 123 clear-felling instances recorded in the Coillte dataset are 

missing from the ALOS-2 PALSAR-2 results. Some possible reasons for this are: 

1. that the polygons were not felled: 8 polygons verified with Google Earth 

imagery (any available imagery within the time frame – 2013-2016) were 

discovered to be felled after 2016 or not felled at all. As explained in 

chapter 5, section 5.3.3.2.1, discrepancies in the database were observed 

that are highlighted by SAR data.  

2. a temporal mismatch: as the SAR image acquisition period is between 

August 2015 and October 2016, records of felling events that have taken 

place before and after this period (January – August 2015 and October – 

December 2016) exist in the Coillte database and therefore lead to the 

difference in the numbers.  

3. Seasonal impacts: Rainfall data from Met Éireann for four stations located 

in Area1 were examined. Most rainfall for 2016 in this area was recorded 

for January and February, followed by September and December. The 

Area1-2016 image was acquired on October 05, 2016, when the ground 

was wet following the September rainfall. Soil moisture effects may 

influence the backscatter values resulting in some misclassifications of 

the ALOS-2 PALSAR-2 data.   

 

When the 8 polygons from (1) which were identified as having not been felled 

are included, the agreement between ALOS-2 PALSAR-2 and the Coillte dataset 

is 61.4%. For the same scenario and region, the agreement between ALOS 

PALSAR and the Coillte dataset was 78.3% (chapter 5, section 5.3.3.2.1). While 

the analysis for ALOS PALSAR was performed between June-June for the four-

year period, for ALOS-2 PALSAR-2, the analysis was performed between 

August and October of two consecutive years. Reflecting on (2), most of the 

clear-fells in Ireland occur between June-August therefore a possible hypothesis 

is that the clear-fells recorded in the Coillte database have not been detected in 

the SAR due to the inappropriate timing of the image acquisitions.   



 

174 
 

The signature pattern of group 8 clusters was also observed with ALOS PALSAR 

results (chapter 5, section 5.3.3.2.2) with a drop of 2±0.5dB between the two 

years. The potential reasons, as discussed previously in section 5.3.3.2.2., 

include:  

1) Presence of debris after felling 

2) Insect attack 

3) Animals such as deer feeding on the young planted trees 

4) Thinning 

5) Plant failure 

6) Storm/wind damage 

7) Fire 

However, an additional reason of relevance here is the seasonal impact as the 

image was from the autumn (October). Part of this area contains deciduous trees 

which will have lost their leaves in October 2016 when compared to leaf-on 

conditions in summer, and this will cause changes in the backscatter response.  

An increase of 2dB in the backscatter between two years represented tree growth 

in the ALOS PALSAR clusters, which showed this increasing pattern over the 

four years. For ALOS-2 PALSAR-2, there is an increase of 2dB in 2016 in group 

9 clusters suggesting afforestation, reforestation, tree growth or seasonal 

influences. Planting date information was not available from the recently updated 

PrivateForests2016 dataset and therefore further analysis could not be conducted 

for this group. However, FNF maps from the RF classifier were used to assist 

labelling of this group which is discussed in section 6.6.1.1.1 below. 

Anomalies were also found in the ALOS PALSAR clustering with an increase 

and fall of 6-8dB between three years. Within the two-year period of ALOS-2 

PALSAR-2 clustering, a drop greater than 13dB was found in 2016. This only 

concerned one cluster (cluster 3) in one Group (G10) and covered only 0.5% of 

the total area of Area1. Therefore, this was labelled as an anomaly.  



 

175 
 

6.6.1.1.1 New signature pattern formed in Area1 

A new signature pattern of an increase of more than 3dB between 2015 and 2016 

was identified. Figure 6.12 illustrates this increase in HV for these clusters that 

covered 8% of the total area of Area1. This suggests either new plantings or 

seasonal induced responses similar to the group 9 clusters (table 6.5) with a 

greater increase of backscatter in the time series. A similar increase was also 

observed in the HH signatures. Therefore, considering the similarities of 

signature patterns, these clusters were combined with group 9 clusters essentially 

indicating either afforestation, reforestation, tree growth or seasonal induced 

variations. The PrivateForests2016 dataset was checked for the year of planting 

or species information for these clusters, however none was available. 

 

 

 

 

 

 

Figure 6.12: New cluster signatures identified from ALOS-2 PALSAR-2 

clustering process 

These clusters cover 19% of Area1 with an increasing trend in the backscatter. In 

order to determine if afforestation/reforestation had taken place the FNF maps 

were examined. From this analysis only 1% of the area was deemed to have been 

afforested between the two years. Therefore tree growth is the predominant 

characteristic of these clusters.  

A comparison of cluster groups formed between ALOS PALSAR and ALOS-2 

PALSAR-2 for Area1 is given in table 6.7 along with the percentage area covered 

by each group.  
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Table 6.7: Groups formed through the clustering process in Area1 from 

ALOS PALSAR and ALOS-2 PALSAR-2 datasets and percentage area 

Groups ALOS PALSAR 

(4-year period): 80 

clusters 

ALOS-2 PALSAR-2 

(2-year period): 80 

clusters 

Misclassification/Forest edges G1, G2, G3 (4%) G1, G2 (1.5%) 

Forests (mature and young) G4, G5, G6, G7 

(66%) 

 

G3, G4, G5, G6 

(61%) 

Clear-felling G8, G9 (11%) 

 

G7 (7%) 

Storm/Fire/Plant 

failure/Thinning/plant 

debris/Insect or animal 

attack/leaf-off/seasonal 

conditions 

G10 (8%) G8 (10%) 

Afforestation/reforestation/tree 

growth/seasonal influence 

G11, G12, G13 

(9%) 

G9 (19%) 

Anomaly G14 (1%) 

 

G10 (0.5%) 

Unknown G15 (0.1%) 

 

- 

 

For the four-year period of ALOS PALSAR, 15 groups of forest character were 

formed, and for the two-year period of ALOS-2 PALSAR-2, 10 groups were 

formed.  

6.6.1.2 Groups formed in Area2 and Area3 

Similar to table 6.7, table 6.8 shows a comparison of groups formed in Area2 

from ALOS PALSAR and ALOS-2 PALSAR-2 datasets, along with the 

percentage area covered by each cluster group. 
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Table 6.8: Groups formed through clustering process in Area2 from ALOS 

PALSAR and ALOS-2 PALSAR-2 datasets and percentage area 

Groups ALOS PALSAR 

(4-year period): 74 

clusters 

ALOS-2 PALSAR-2 

(2-year period): 78 

clusters 

Misclassification/Forest edges G1, G2, G3 (0.8%) G1, G2 (0.8%) 

Forests (mature and young) G4, G5, G6, G7 

(67%) 

 

G3, G4, G5, G6 

(73%) 

Clear-felling G8, G9 (14%) 

 

G7 (8%) 

Storm/Fire/Plant 

failure/Thinning/plant 

debris/Insect or animal 

attack/leaf-off/seasonal 

conditions 

G10, G11 (7%) G8 (5%) 

Afforestation/reforestation/tree 

growth/seasonal influence 

G12 (10%) G9, G10 (13%) 

Anomaly G13 (0.7%) 

 

G11 (0.2%) 

Unknown G14 (0.5%) 

 

- 

 

A total of 14 groups were formed for ALOS PALSAR with 74 clusters, and 11 

groups for ALOS-2 PALSAR-2 with 78 clusters for Area2. Contrary to the 

comparison done to Area1 presented above, the clear-felling comparison between 

SAR data and Coillte database was performed for only 2016 clear-fells. As most 

clear-fells would have happened before October 2015 (which is the 2015 SAR 

image), and the reference database captures clear-fells for 2015, the comparison 

would be misleading. Therefore, comparing all 2016 clear-fells, an agreement of 

57% was found between the two datasets. 

Table 6.9 shows the groups formed in Area3 between both the sensor datasets.  
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Table 6.9: Groups formed through the clustering process in Area3 from 

ALOS PALSAR and ALOS-2 PALSAR-2 datasets and percentage area 

Groups ALOS PALSAR 

(4-year period): 80 

clusters 

ALOS-2 PALSAR-2 

(2-year period): 86 

clusters 

Misclassification/Forest edges G1, G2, G3 (0.5%) G1, G2 (1.2%) 

Forests (mature and young) G4, G5, G6, G7 

(66%) 

G3, G4, G5, G6 

(76%) 

Clear-felling G8, G9, G10 (12%) G7(12%) 

Storm/Fire/Plant 

failure/Thinning/plant 

debris/Insect or animal 

attack/leaf-off/seasonal 

conditions 

G11 (9%) G8 (4.7%) 

Afforestation/reforestation/tree 

growth/seasonal influence 

G12 (12%) G9 (6%) 

Anomaly G13 (0.3%) G10 (0.1%) 

Unknown G14 (0.2%) - 

 

The clear-felling group (G7) of Area3 showed a signature pattern with a decrease 

greater than 6.5dB from 2015 to 2016 with an agreement of 65% with Coillte 

datasets. Considering the wet soil and leaf-off conditions due to the winter image 

in 2015, such large difference must have occurred in this area.  

 Deforestation monitoring 

In addition  to identifying disturbance events such as clear fells, the ALOS-2 

PALSAR-2 datasets were explored to identify permanent deforestation events 

within the study areas.  Permanent land-use changes constituting deforestation 

may be due to construction of wind turbines, roads, human settlements on forest 

land, and conversion of forest to agricultural land.  

If a clear-felled patch identified between 2007-2010 remains non-forested in 

2015-2016, then it is considered as deforested. The ALOS-PALSAR clear-

fellings between 2007-2010 were compared with FNF maps from 2015-2016 to 

locate areas that were felled anytime between 2007 and 2010 and appeared as 
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non-forest in 2015 and 2016. This process was assisted by Google Earth imagery 

in an attempt to determine the reason for the change. Table 6.10 provides details 

of deforested areas identified across all the three study areas. 

Table 6.10: Details of deforested areas between ALOS PALSAR and ALOS-2 

PALSAR-2 image acquisitions (2007-2016) 

Study area Clear-felled 

Year 

Reasons for 

deforestation 

Total Area 

deforested in 

hectare (ha) 

Area1 2009-2010 Construction of 

wind turbines 

164.29 

Conversion to 

agricultural land 

49.01 

Area2 2007-2008 Conversion to 

agricultural land 

5.13 

 2009-2010 Construction of 

wind turbines 

33  

 Conversion to 

agricultural land 

20.75 

Area3 2007-2008 Construction of 

wind turbines 

12.6 

 2008-2009 Conversion to 

agricultural land 

106.74 

 2009-2010 Conversion to 

agricultural land 

55.13 

 After 2011 Construction of 

wind turbines 

11.56 

 

 

With respect to the final row of table 6.10, an area of 11.56 ha was found to be 

non-forest in the 2015/2016 images, although was forested up to June 2010 and 
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was therefore felled after this date. Inspection of Google Earth images, as shown 

in figure 6.13, confirmed that the land-use transition was permanent with 

construction of a wind turbine complex.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13: Conversion of forest patches to wind turbines (a) Google Earth 

image – wind turbines highlighted by red circles – image from Area1-2012(b) 

forest patch as mapped from ALOS PALSAR image in 2010 (c) forest patch 

as mapped from ALOS-2 PALSAR-2 image with red diamonds highlighting 

location of forest patches converted to wind turbines 

Further analysis revealed that: 

(a) Image from Google Earth 

(b) 2010 (c) 2015 
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• Deforestation was identified at 40 locations from all three sites combined 

• The smallest deforested area identified was 1.13 ha in Area3 where forests 

have been removed to construct wind turbines 

• The largest deforested area was 121.21 ha in Area1 which was converted 

to windfarms 

• A total of 213.3 ha, 58.8 ha and 174.47 ha of forests have been deforested 

in Area1, Area2 and Area3 respectively between 2007 and 2016 

• The greatest amount of deforestation occurred in Area1, with majority of 

the converted area becoming wind turbine parks 

• Among the deforested areas, a high proportion of approximately 85% was 

attributed to conifer mature spruce planted in 1998 

• Out of the total deforested area, 30% was in private ownership and was 

converted to agricultural land 

 Discussions and conclusions 

With a growing need for robust, reliable and objective forest monitoring, 

developing techniques using existing remote sensing data to obtain up-to-date 

and reliable forest estimates is important. It is also important to be able to apply 

equivalent and comparable techniques between different datasets for historic 

comparisons. The potential for ALOS PALSAR data to be used for mapping 

forests and forest disturbances from a combination of RF classification and 

ISODATA clustering was demonstrated in chapters 4 and 5. This chapter aims to 

evaluate the capabilities of ALOS-2 PALSAR-2 (operational from 2014 to the 

present day in June 2020) by transferring the forest monitoring algorithm 

previously developed for ALOS PALSAR.  

Three key issues need to be addressed in this chapter. First, the transferability of 

the methodology to ALOS-2 PALSAR-2 datasets to operationalise forest 

monitoring; second, SAR image selection for forest monitoring in Ireland; and 

third, deforestation monitoring between the ALOS PALSAR and ALOS-2 

PALSAR-2 time periods for three regions of Ireland.  
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To address the transferability of the algorithm to ALOS-2 PALSAR-2 datasets 

by assessing any inconsistencies identified during the process, results from 

sections 6.5, 6.6 and 6.7 were reviewed. Visual and quantitative analysis from 

the RF classification, based on the comparison with ALOS PALSAR results, 

reveal that the methodology can successfully be applied to ALOS-2 PALSAR-2 

datasets. Forest polygon boundaries which match with those from the ALOS 

PALSAR and Forests12_16 reference datasets were successfully generated, 

which confirms the ability to transfer the forest mapping methodology. 

Quantitative analysis shows that 95% classification accuracies for summer 

images were achieved, with slightly lower values of between 86% and 90% 

achieved for the images from the for the images from the autumn and winter 

months. The lowest producer’s and user’s accuracies were achieved for Area3, 

but these still show that there is 86% probability of forests being classified as 

forests and the maps are 80% reliable for the user on the ground. Additionally, 

the variable importance plot from the RF classification re-emphasizes the 

importance of GLCM texture measures for classification, as shown for ALOS 

PALSAR datasets. While there is a reduction of approximately 60% accuracy 

upon eliminating HV γᵒ, eliminating the most important GLCM measure from 

ALOS PALSAR (figure 4.5) and ALOS-2 PALSAR-2 (figure 6.6) reduces the 

accuracy by 35% in the former case and 70% in the latter case. This suggests that 

GLCM texture measures are more valuable for ALOS-2 PALSAR-2 

classification than for ALOS PALSAR classification. As a caveat however, due 

to the shorter time series in this case, skew in the most important variables is also 

expected. For the more topographically rugged areas, as the plot suggests, slope 

is an important ancilliary data. 

Transferability of the second part of the methodology with the ISODATA 

clustering can be evaluated based on the signature patterns and cluster groups 

formed. Across all the study areas, irrespective of the seasons, the dendrograms 

formed groups representing misclassification/forest edges, mature and young 

forests, clear-felling, possibilities of other disturbances such as storm /fire /plant 

failure /thinning /insect or animal attack /leaf-off conditions /seasonal influences, 
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afforestation /reforestation /tree growth, and small regions of unidentifiable 

behaviour, confirming the success of the transferability process. Some variations 

within the cluster groups were observed which can be attributed to the resolution 

and seasonalities of the ALOS-2 PALSAR-2 images. The algorithm has 

statistically identified similar number of clusters in each region which showed 

comparable behaviour between the two sensors. For both sensors, among the 

disturbance groups, only clear-felling could be validated due to a lack of detailed 

ground information on other disturbances. For both datasets, clear-felling showed 

a clear signature that was evident across all the study sites. The consistency in 

the signature patterns from both the sensors confirmed that this part of the 

algorithm was transferable.  

Some improvements were evident in the ALOS-2 PALSAR-2 results, most 

importantly that due to its higher spatial resolution, more regular, and more stable 

forest boundaries were delineated, and areas as small as 1.1 ha were mapped. 

Nonetheless, it is worth noting that new behaviours can occur between the 

different time periods and therefore clusters from one image cannot necessarily 

be mapped directly onto another image.  

A second issue to be addressed is the selection of SAR images for forest 

monitoring. With the higher spatial and radiometric resolution of ALOS-2 

PALSAR-2 data, higher classification accuracies could be anticipated. However, 

slightly lower classification accuracies than those achieved with the ALOS 

PALSAR data were observed. It is suggested that this is largely due to the 

combination of ALOS-2 PALSAR-2 images being acquired from different 

seasons,  and the full potential of the enhanced sensor could only be explored if 

images from June were available.  Given the number of wet days for the months 

of September and January across all areas, and the mix of leaf-on and leaf-off 

image dates which affect the broadleaved species covering 25% of forests in 

Ireland, the seasonal influences on the SAR images are apparent from the results 

achieved. Due to constraints with the ALOS-2 satellite scheduling, only one 

image per year was available and most of these images were from autumn and 
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winter. Although summer images are the most appropriate for forest monitoring, 

making the best use of available data is important to avoid gaps between the 

ongoing annual updates. If the images are of different dates, it can be very 

challenging to calculate annual disturbance events such as felling. For example, 

January 2015 to June 2016 is an 18 month period that fully captures the 2015 

felling season but almost entirely excludes the 2016 season. This is very difficult 

to compare with October 2015 to September 2015 (Area2) which is less than 12 

months and only really covers the 2016 felling season. Therefore, the minimum 

requirement is to have images that are from the same months for all regions. 

With the clear-felling patterns successfully identified by both the sensors, the 

second key aim of this chapter i.e. identifying forest areas that were removed 

between 2007 and 2010 and not replanted by 2015-2016 indicating permanent 

land-use change, could be addressed. The current system in Ireland does not 

capture deforestation and it is important to track this kind of disturbance from 

forest management and carbon reporting perspective. Given the definition of 

deforestation in Ireland requiring no planting within five years of felling, 

differentiating clear-felling events from deforestation can only be achieved with 

time series in excess of five years. Therefore, annual forest datasets over time are 

essential if longer term, as well as shorter term, changes in land cover are to be 

monitored. In this study, a comparison of ALOS PALSAR and ALOS-2 

PALSAR-2 derived products show areas of permanent loss of forest ranging from 

as large as 121 ha to as small as 1.13 ha. High resolution Google Earth images 

were able to confirm the nature of the change, with the majority involving 

transition from forests to wind turbine complexes.  

From the evidence of this chapter, it can be concluded that ALOS-2 PALSAR-2 

can be used to monitor forest disturbances in Ireland. These forest disturbances  

include clear-felling and deforestation that were identified, quantified, and 

validated with ancillary data.  
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7 Conclusions and Recommendations 

 

 

 

“When you really want something, the whole Universe conspires in helping 

you to achieve it” – Paulo Coelho 
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 Conclusions 

The overall objective of this work was to investigate the capability of  L-band SAR to 

map and monitor forest stands and forest disturbances in Ireland over the period 2007-

2016 to support national forest monitoring operations. The specific objectives were: (i) to 

produce forest maps for three geographically varied regions by using a machine learning 

classifier; (ii) to explore the possibilities of a data-driven unsupervised classifier to 

identify the occurrence of different disturbances and characterize them; and (iii) to transfer 

the approach developed for a historic dataset to a more recent L-band SAR dataset and 

explore the prospects of continuing this monitoring operation in Ireland.   

According to IPCC guidelines, a mix of land use and land cover categories have been used 

(section 4.2.2.1) in this study to develop a classification system representing land area. 

While landcover describes the land in terms of natural surface type present on land, 

information on land use is of particular interest for carbon reporting. Land use change is 

often associated with a change in land cover (for example conversion of forestland to 

agriculture) and associated change in carbon stocks. Forestland is a landcover which is 

being managed according to land use needs. For example, forests have been managed as 

land use by humans from carbon reporting point of view – by planting fast growing, high 

carbon sequestering trees. Depending on the type of land cover associated with the new 

land use, carbon stocks in aboverground biomass varies after a clearing event. Alterations 

in both land cover and land use lead to far-reaching environmental changes impacting 

carbon stocks and reporting. Land use is not always discernible from satellite images and 

therefore, it requires additional ground truth information to fully determine the landuse of 

a particular land area. Therefore, IPCC strongly recommends the use of ground survey 

data or conventional forest inventories while interpreting land use categories and their 

changes.  

Forest monitoring in Ireland is currently carried out systematically every six years as part 

of the National Forestry Inventory process. However, given the mix of public and private 

ownership there are challenges in carrying out the monitoring because of the different 

forest stand characteristics and management practices. More frequent monitoring, for 

example on an annual basis, would permit better quantification of change, allow more 
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timely updates of the forest inventory, provide spatial information on biomass, and better 

inform national carbon budgets through integration with the national carbon reporting 

system, CARBWARE. Disturbances due to more intensive forest management practices, 

weather events, fires, and insect attacks are changing forest resources at an increasing rate. 

Monitoring these changes over time in an effective and transparent way requires timely 

and objective information which can be obtained through remote sensing. In order to be 

efficient and cost-effective, such an approach requires automation. To date, most work on 

forest monitoring using remote sensing in Ireland has relied on optical satellite and 

airborne imagery, and LiDAR, with a growing use of unmanned aerial vehicles at a local 

level in recent years. A few examples of such work include the creation of the FIPS 

datasets which was the largest national remote sensing project when it was carried out in 

1998 using aerial photography and medium resolution optical satellite imagery, forest 

parameter estimation by McInerney and Nieuwenhuis, (2009) using optical imagery, and 

estimating tree height using LiDAR by Clifford et al., (2009). In an operational context, 

the cost per unit area of LiDAR and difficulty of acquiring cloud free optical satellite 

imagery limit their use. The sensitivity of active microwave systems to forest scattering, 

irrespective of cloud cover, has made radar remote sensing an attractive technique to 

address the problem of forest monitoring. One such application of SAR data for Irish 

forests is described in the study conducted by Black et al., (2017) to predict changes in 

biomass and volume due to forest disturbances. Backscatter values from ALOS PALSAR 

datasets for the study areas from this PhD work were used as inputs to the backscatter-

biomass model. Due to the saturation of L-band SAR backscatter at 100Mg ha-1, the 

developed biomass model was limited to immature forest stands. However, for forest 

mapping and monitoring events such as change detection, L-band SAR is suitable as has 

been demonstrated in the present work. 

This chapter summarises the key insights arising from this PhD study, research constraints 

and recommendations for future work and enhancements.  
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7.1.1 Contributions of this work 

 

7.1.1.1 Machine learning classifiers for forest mapping 

After reviewing the various machine learning algorithms, the RF classifier was selected 

for this study because it consistently demonstrated an ability to map tree cover using both 

satellite and ancillary data as shown by authors such as Gislason et al., (2006) and 

Devaney et al., (2015). Because of its ability to handle several input variables of different 

data ranges, it was possible to improve classification accuracies by assessing the influence 

of input bands. The performance of the classifier was strongly impacted by the GLCM 

texture measures – for example with the removal of GLCM variance, which was shown 

to be the most important input variable among the texture measures, the classifier 

performance decreased by up to 35%. Using 10 input variables - HV γᵒ, seven GLCM 

texture measures, slope and aspect, maximum overall accuracies of 97% were achieved 

for forest/non-forest classification. With the ability by ALOS PALSAR to map a 

minimum forest area of 1.8 ha across three study areas, this work has shown an 

improvement from the current NFI mapping system in which each circular plot measures 

a diameter of 25.24m. Thus objective (i) i.e. to produce forest maps for three 

geographically varied regions by using a machine learning classifier, was accomplished. 

 

7.1.1.2 ISODATA clustering and dendrograms for signature definition 

In this study, ISODATA clustering guided by divergence statistics was successfully 

applied to SAR imagery to monitor forest disturbances. The ISODATA approach 

supported by analysis of the divergence statistics has been mainly used on optical 

hypertemporal NDVI datasets such as in the work by Ali et al., (2013) and Bie et al., 

(2012), and there is no evidence in the published literature of it being applied to a multi-

temporal SAR dataset. This work has demonstrated however that it is possible to achieve 

cluster separability within forest areas of SAR imagery above the defined threshold for 

divergence. Describing the ground characteristics that matched the large number of 

clusters with various differing signature patterns was a significant challenge. To resolve 

this, along with manual interpretation and segregation of groups, dendrograms were used 

through which clusters were grouped based on the Euclidean distance between two cluster 
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means. Dendrograms represent a cluster hierarchy as a tree diagram with a threshold set 

to define the grouping levels of the clusters. In this study, a threshold of 2.5 was selected, 

such that clusters below the threshold value were merged into a single group, and the 

clusters above the threshold were grouped at a higher level within the hierarchy. The key 

point here is that the groups are comparable between the different study areas. Issues arise 

when a group is present in one region but not in another. Therefore, at a national scale, it 

is important to identify all groups within the training areas and recognise that some groups 

may not be apparent in some regions. 

From the signatures derived from the ISODATA clustering, disturbance patterns were 

evident. With well-defined signatures common to all three regions, clear-fellings were 

identified and validated using reference data. Additional clusters indicated the occurrence 

of disturbance events such as storms, fire, insect attack and plant failure, however these 

could not be conclusively validated due to the unavailability of reference data. Therefore, 

objective (ii) i.e. to explore the possibilities of a data-driven unsupervised classifier to 

identify the occurrence of different disturbances and characterize them was only partially 

fulfilled.  

7.1.1.3 Transferability of algorithm between ALOS PALSAR and ALOS-2 

PALSAR-2 sensors 

Objective (iii) i.e. to transfer the approach developed for a historic dataset to a recent L-

band SAR dataset and explore the prospects of continuing this monitoring operation in 

Ireland has been achieved by applying the methodology developed for ALOS PALSAR 

to the more recent ALOS-2 PALSAR-2 datasets. Forest/non-forest classification 

accuracies of up to 95% were achieved for summer images. The seasonal effects were 

reflected in the RF classification which resulted in relatively lower accuracies of 92% and 

89% for autumn and winter images of ALOS-2 PALSAR-2 respectively. With its higher 

spatial and radiometric resolution, an improvement in the ability to map small areas of 

forest was achieved, with a minimum mapping unit of 1.1 ha. The transferability of the 

ISODATA algorithm was demonstrated by the similarity in the signature patterns of the 

common groups identified by both the sensors, and, as with the ALOS PALSAR results, 

clear-fells were successfully validated. However, considering the different time periods 
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and seasons of the ALOS-2 PALSAR-2 imagery, new signature patterns in the clusters 

were discovered, and therefore clusters from one image cannot be unequivocally mapped 

directly onto another image.  

This study illustrated the potential for identification of deforestation between two different 

sensors. With the successful transferability of the algorithm between the sensors 

deforested areas as large as 121 ha to as small as 1.13 ha were mapped over the period 

2007-2016.  

7.1.2 Research constraints 

The main constraints encountered in this study were caused by SAR data availability and 

reference data limitations. Because of the ‘systematic observation restrictions’ operated 

by the Japanese Space Agency, JAXA, only 1-2 FBD ALOS PALSAR and ALOS-2 

PALSAR-2 images over Ireland were available over the study areas each year. Although 

summer images were available for ALOS PALSAR, which were ideal for the work, only 

autumn and winter images were available in some years for ALOS-2 PALSAR-2. This 

resulted in two major limitations in this study – (i) non-optimal conditions for forest 

classification due to seasonal influences; and (ii) inaccuracies in quantification of felling 

events.  

This work initially hoped to characterise different disturbance events that can cause forest 

loss such as windthrow, fires, insect attack, plant failure and weather events. Although 

signatures other than those of clear-fells suggested such responses in the time-series, 

defining the nature of that change could not be achieved. One of the reasons for this was 

the lack of reference data with no systematic reporting of events such as forest fires, and 

spatial information only available following occasional large-scale events such as after 

Storm Darwin in February 2014. These signature patterns were observed for all three areas 

indicating significant forest loss of 8%, 7% and 9% over Area1, Area2 and Area3 

respectively between the period 2007-2010 as mapped by ALOS PALSAR. For the period 

2015-2016 as mapped by ALOS-2 PALSAR-2, these clusters represented forest loss of 

10%, 4% and 5% in Area1, Area2 and Area3, respectively. Due to the limitation arising 

from the image acquisition dates, having one image per year precluded precise dating of 

such events. From the viewpoint of forest management, and biomass and carbon 
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estimation, identifying the causes of such forest loss is essential. These clusters exhibited 

the same pattern of a decrease of 2±0.5dB between consecutive years across all the sites 

but further investigation would be required to determine if these changes were caused due 

to a single or multiple forms of disturbance. If multiple events are responsible for such 

cluster behaviour, a more challenging task will be to differentiate those events, which 

requires a much denser time series of imagery.  

Discrepancies in the reference datasets existed, such as inconsistencies between field work 

and digital records, missing entries of planting year of forests, and incorrect entries of the 

actual area felled. Additionally, reference datasets were available only for Coillte owned 

forests, which is 50.8% of the total forest area. However, the approach used in this study 

can potentially help in clarifying some of these discrepancies. For example, the exact area 

felled can be identified by its multi-temporal signature, which can be used to annually 

confirm areas that have been felled. Irrespective of forest ownership, the felling areas can 

be identified through this approach, which can subsequently inform overall tree area and 

carbon potential.  

The single image per year approach precluded species level classification, and mapping 

disturbances below 1ha could not be achieved with this approach. However, by matching 

the available planting year information with the mean backscatter values of the signatures, 

forest age was retrieved and hence clusters were grouped into mature (age:10-30 years) 

and young (age:0-9 years) trees. With the availability of more images at different seasons 

of the year, and also combining information from optical imagery with the SAR dataset, 

more valuable information can be extracted through this approach. 

7.1.3 Recommendations for future work 

This research has identified new possibilities for forest monitoring operations in Ireland. 

A national systematic reporting procedure, which can be a common platform for both field 

measurements and those derived from imagery and other secondary sources, is essential 

for a robust and reliable inventory. For example, PastureBase operated by Teagasc 

(Teagasc, 2020) in Ireland is a tool that enables a subset of farmers to upload data on 

grassland production and utilization, which can be enhanced with imagery and other 

management information. Similarly, establishing a common platform for forests would 
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help bridge the gap between foresters and analysts, allowing some of the discrepancies in 

the reference datasets, as discussed in section 7.1.2, to be reduced. Recording the nature, 

location and extent of disturbances such as clear-felling, deforestation, fire, storms, insect 

attacks and nutrient deficiency in plants will help in maintaining up-to-date records on the 

database, which can be retrieved at any point in time and used to validate national image 

datasets.  

Synergies between multiple SAR, or SAR and optical, datasets to improve the quality of 

disturbance information should be explored. Combining the high temporal resolution of 

freely available satellite data such as C-band Sentinel-1 with L-band SAR systems will 

help to understand better the nature of change. Upcoming satellites such as ALOS-4 with 

PALSAR-3 onboard, Tandem-L and the P-band Biomass satellite to be launched in 2022 

will also provide more research opportunities for forest monitoring with sensors that have 

been developed specifically for such activities. The methods developed in this study can 

be expanded by combining data from the existing and upcoming satellites to enhance the 

clustering process by incorporating additional backscatter information. As discussed in 

McInerney et al., (2011), one of the main limitations of using optical images in operational 

contexts in Ireland is the difficulty in obtaining cloud-free satellite imagery, particularly 

over northern and western parts of the country where it is cloudier. But while SAR data 

can overcome this limitation, as this work has shown it cannot provide a comprehensive 

inventory of, for example, tree species. Sentinel-2 and WorldView imagery, for example, 

can successfully identify tree species in countries such as Poland (Grabska et al., 2019), 

Sweden (Persson et al., 2018) and Austria (Immitzer et al., 2012). So, a similar approach 

in Ireland could provide baseline information that would vary little from one year to the 

next. Disturbance events from SAR data could then be integrated with this baseline 

information to better understand the implications of a change in tree cover.  

To operationalise the algorithm, some factors must be considered. To begin with, a fully 

automated end-to-end programming script to execute the entire processing steps of the 

algorithm would be required. The script would draw on the relevant freely available 

programming and software packages such as the graph processing tool from the SNAP 

software to pre-process SAR images, the R programming language for RF classification 
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or Python for running ISODATA clustering. Other options such as Google Earth Engine 

and the Orfeo toolbox can also be considered for SAR pre-processing and classification 

as these enable faster processing and avoid software licensing issues. Using the RF 

classifier for national forest mapping is feasible given that it was successfully used in 

three different geographical areas in this work. However, the efficiency of the classifier 

lies in the consistency of the images used. Using images from different seasons has 

significant impacts on classification accuracies, and therefore the choice of sensor needs 

to consider the long term continuity and image acquisition plans of the agency managing 

the satellites. Implementing ISODATA clustering nationally presents more of a challenge 

given the different types of forest system, management processes and disturbance events 

across the country. As seen from the results in this study, selection of the optimal number 

of clusters through divergence separability indices varied across the areas and between 

sensors, and although common cluster groups were formed, the cluster numbers within 

each group differed. Adopting a regional approach for disturbance monitoring could be a 

solution to this.  

The approach presented in this work can support the ongoing and envisioned future forest 

monitoring requirements by forest companies and government agencies charged with 

detecting clear-fells, disturbance events and deforestation. While, this work with radar 

remote sensing cannot replace ground-based methods, the advantage lies in its ability to 

monitor forests and their changes over large areas on an annual basis. Its capability in 

adding value to mapping distinct forest areas compensates for some of the discrepancies 

and omissions in the existing datasets such as FIPS and PrivateForests2016. As the 6th 

ALOS-2 Research Announcement by JAXA is open for all the principal investigators (PI) 

until the end of the sensor life, data from 2017 onwards can be acquired to extend the 

existing datasets for the regions studied in this thesis, and also complete the spatial gaps 

for national coverage. Nonetheless, the most important requirement is a commitment to 

long-term operational missions from space agencies, especially in the light of the 

international climate change treaties to which Ireland and other countries subscribe. The 

upcoming ESA BIOMASS mission offers the potential for a step change in forest mapping 

and monitoring globally and should be carefully evaluated by Irish research and 

operational organisations and agencies once its data become available.   
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ALOS PALSAR data characteristics 

Date Orbit Track Frame 
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1050 

1060 

2010-07-01 

2010-07-01 

23629 

23629 

670 

670 

1050 

1060 
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ALOS-2 PALSAR-2 data characteristics 

Date Orbit accumulation 

number 

Path 

Area1 

2015-08-26 

2015-08-26 

06785 

06785 

1030 

1040 

2016-10-05 

2016-10-05 

09062 

09062 

1030 

1040 

Area2 

2015-10-02 

2015-10-02 

07332 

07332 

1080 

1090 

2016-10-30 

2016-10-30 

12714 

12714 

1080 

1090 

Area3 

2015-01-23 

2015-01-23 

03606 

03606 

1050 

1060 

2016-06-10 

2016-06-10 

11058 

11058 

1050 

1060 

 


