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Abstract 
Recent advances in machine learning are finding commercial applications across 

many sectors, not least the financial industry. This thesis explores applications of 

machine learning in quantitative finance through two approaches. 

The current state of the art is evaluated through an extensive review of recent 

quantitative finance literature. Themes and technologies are identified and classified, 

and the key use cases highlighted from the emerging literature. Machine learning is 

found to enable deeper analysis of financial data and the modelling of complex non-

linear relationships within data. The ability to incorporate alternative data in the 

investment process is also enabled. Innovations in backtesting and performance 

metrics are also made possible through the application of machine learning. 

Demonstrating a practical application of machine learning in quantitative finance, 

regime-switching models are applied to analyse and extract information from 

international portfolio flows. Regime-switching models capture properties of 

international portfolio flows previously found in the literature, such as persistence in 

flows compared to returns, and a relationship between flows and returns. Structural 

breaks and persistent regime shifts in investor behaviour are identified by the models. 

Regime-switching models infer regimes in the data which exhibit unique characteristic 

flows and returns. 

 To determine whether the information extracted could aid in the investment process, 

a portfolio of global assets was constructed, with positions determined using a flow-

based regime-switching model. The portfolio outperforms two benchmarks, a buy & 

hold strategy and the MSCI World Index in walk-forward out-of-sample tests using 

daily and weekly data. 
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Chapter 1. Introduction 
The material presented in this thesis is based on twelve months of research conducted 

in the State Street Advanced Technology Centre, an industry-focused academic 

research collaboration between State Street Corporation and University College Cork.  

In recent years, there has been increased interest in the use of machine learning across 

a variety of sectors, with finance being no exception. While machine learning is being 

adopted across the financial industry as a whole, the focus of this research is on 

applications of machine learning within investment management.  

There were two main objectives motivating this research. The first was to explore 

current and potential applications of machine learning to the investment process as the 

field has grown and developed. In particular, this includes the development of machine 

learning applications for return forecasting, portfolio construction and risk modelling. 

The second was to extract investment information from international portfolio flow 

data provided by State Street Global Markets, through the application of machine 

learning. 

To accomplish the first objective, a review was conducted of the growing body of 

academic literature applying machine learning to investment problems. The approach 

taken was to first develop a broad understanding of machine learning by surveying the 

main frameworks, techniques and programming languages used, as well as examining 

historically how investors have adapted to shifts in technology, tools and 

methodologies. After this, an extensive literature review was carried out of the latest 

research papers applying machine learning across the areas of return forecasting, 

portfolio construction and risk modelling. The results of this literature review provided 

key information for a discussion of current trends into the integration and adoption of 

machine learning by investors, as well as providing a good grounding when 

approaching the second research objective. 

International portfolio flows describe the actions of informed investors, shareholders, 

and fund managers who add or remove cash from funds and buy or sell individual 
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securities with fund deposits. Flows have been shown to be stable and persistent in 

nature. They have also been shown to influence equity returns, and can be used to 

measure market sentiment, improve the timing of asset class specific risk, and inform 

asset allocation strategies. The second research objective was to determine if it was 

possible to extract information from portfolio flow data using machine learning, and 

that see if that information could form the basis of a proof-of-concept investment 

strategy, constructed with insight from State Street Global Markets. State Street 

Global Markets conduct research into international portfolio flows constructed using 

proprietary capital allocation data from thousands of institutional investor portfolios 

under custody and administration by State Street Corporation. They also offer 

research, trading and securities lending services across foreign exchange, stocks, fixed 

income and derivatives. As well as providing the portfolio flow data, they also 

provided practical industry insight and feedback throughout the research and when 

developing the proof-of-concept. 

It was decided to analyse the flow data using a regime-switching model. Regimes are 

periods of time with unique characteristic financial variables. Regime-switching 

models make use of Hidden Markov models, an unsupervised machine learning 

technique, to identify regimes in financial data. Regime-switching and Hidden Markov 

models have been successful in finance literature across a number of asset-allocation 

strategies, with the majority of the literature focusing on the analysis of returns. 

Combining regime-switching models and portfolio flow data provided an interesting 

opportunity to apply a machine learning technique with established success in finance 

to a dataset with interesting properties, in a specific combination which had not 

previously occurred in the literature. 

The thesis is structured as follows. Chapter 2 contains a literature review and 

discussion of the trends and applications of machine learning in quantitative finance. 

Chapter 3 introduces the concept of regime-switching models, detailing their 

applications in the literature, and describing their functionality. Chapter 4 discusses 

international portfolio flows, previous research into the properties of flows, as well as 

discussing the specific State Street Corporation dataset used in this research.  The 
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methodology applied when analysing the portfolio flow data using regime-switching 

models is also discussed, as well as the approach taken when constructing a regime-

based asset allocation strategy. Chapter 5 contains the results obtained modelling and 

characterising the portfolio flow data using regime-switching models, as well as the 

performance of a portfolio of global indices managed using a regime-based asset 

allocation strategy. Chapter 6 provides a conclusion and summary of the entire body 

of research, with a discussion of the results achieved towards both research objectives. 

Appendix 1 contains additional figures and discussion relating to the behaviour of 

regime-switching models in Chapter 5. Appendix 2 contains a conference paper 

“Trends and Applications of Machine Learning in Quantitative Finance” presented at 

ICEFR 2019, which formed the basis for Chapter 2. Appendix 3 contains a research 

report summarizing the results of Chapters 3-5, “Dynamic Regime-Based Asset 

Allocation using International Equity Flow Data”. This report achieved 2nd place at 

the CFA European Quant Awards 2019.  

Both research objectives were formed as part of a three-person research team 

(including the author, Sophie Emerson, Luke O’Shea, supervised by Dr. John 

O’Brien) in the State Street Advanced Technology Centre, focusing on applications 

of machine learning in finance.  

When accomplishing the first research objective, covered in Chapter 2 of the thesis, 

the research methodology was devised and agreed upon by the entire research team. 

When reviewing background literature (Section 2.2) it was decided to separately 

discuss the topics of machine learning and finance. The author was responsible for 

conducting a review on the evolution of quantitative finance.  

The task of conducting a review of the latest academic literature was divided equally 

between the researchers. The results of this review (Section 2.4) were compiled by the 

whole research team, working in tandem to create a concept-centric matrix and 

identifying recurring themes in the literature. The research team also worked in tandem 

to summarise a large body of literature across the various areas of finance where 

machine learning is being applied. The author was responsible for the majority of the 
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discussion of the results of the literature review (Section 2.5), and for the editing of 

the introduction and conclusion of Chapter 2. 

The second research objective, determining whether it was possible to extract 

information from portfolio flow data using machine learning, and using that 

information as the basis for a proof-of-concept investment strategy, was decided upon 

by the research team, with input from State Street Global Markets. After this research 

objective was decided upon, each member of the research team conducted individual 

research into potential machine learning approaches for extracting information from 

portfolio flow data. Chapters 3-5 of the thesis contain solely the authors approach to 

this research objective, which utilized regime-switching models. 

The introduction and conclusion of the thesis were written by the author. 
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Chapter 2. Machine Learning in 

Quantitative Finance 

2.1. Introduction 

 

Machine Learning is a subfield of Artificial Intelligence (AI) that uses statistical 

techniques that provide computer models with the ability to learn from a dataset, 

allowing the models to perform specific tasks without explicit programming 

(Domingos 2012). Machine learning is being applied to improve function across the 

finance industry in a wide range of areas including, for example, fraud detection, 

payment processing and regulation. This chapter evaluates current and potential 

applications of machine learning to the investment process. In particular, this includes 

the development of machine learning applications for return forecasting, portfolio 

construction and risk modelling.  

The first widespread commercial use cases of artificial intelligence were “expert 

systems”, originating in Stanford in the 1960s (Lindsay, Buchanan et al. 1993) and 

popularised in the 1980s and 1990s. Expert systems were designed to solve complex 

problems in a specific field, in a manner similar to a subject matter expert. Original 

expert systems were rule-based programs developed in languages such as LISP and 

Prolog. In recent years, there has been a significant drop in interest in classic expert 

systems, as they are superseded by systems incorporating artificial intelligence 

(Wagner 2017). AI systems are systems that replicate human thought processes. 

(Russell and Norvig 2009). Many of these systems are advertised today as cognitive 

computing systems.  

Cognitive computing describes a computer system which mimics human cognitive 

process in some way, cognitive processes are those that allow individuals to 

remember, think, learn and adapt (Modha and Witchalls 2014). The term has gained 
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recognition in the public domain in recent years, due in large to the introduction of 

Watson, IBM’s cognitive computing system. These systems are constructed by 

combining computer science with statistical and machine learning techniques 

developed over the last century (Domingos 2012). Watson, in its original form, was a 

question answering computing system, responding to questions posed in natural 

language. It was introduced on the television quiz show “Jeopardy!” – where it 

defeated two of the show’s most celebrated contestants in the “IBM Challenge” 

(Ferrucci, Brown et al. 2010). Large-scale systems such as Watson combine many 

techniques (Ferrucci, Brown et al. 2010) to provide “augmented human intelligence” 

services to users (Reynolds 2017). However, the use of individual techniques, for 

example deep learning neural networks or reinforcement learning, has found 

significant success across industry and applications (Rana and Oliveira 2015, Liu, 

Wang et al. 2017, Choy, Khalilzadeh et al. 2018). 

Recently, there has been a proliferation of machine learning techniques and growing 

interest in their applications in finance, where they have been applied to sentiment 

analysis of news, trend analysis, portfolio optimization, risk modelling among many 

use cases supporting investment management. This chapter explores the potential of 

machine learning to enhance the investment process. A broad survey of the area was 

first conducted to determine the main programming languages, frameworks and use 

cases for machine learning from the perspective of the financial industry. Focus was 

then shifted to machine learning and its potential applications in quantitative 

investment – examining research that has applied machine learning to the investment 

process, analysing the technologies used, the functions of the applications, and 

evidence of potential to improve investment outcomes. The findings are relevant to 

both academics and practitioners with interest in investment management, and in 

particular quantitative investment, by providing a detailed discussion of the latest 

technologies, their potential uses, and probability of successful application. 

The chapter is organized as follows. Section 2.2, provides an overview of the 

development of the area as a background for the discussion, this includes the 

emergence of machine learning, common algorithms and methodologies, and a review 
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of the evolution and theory of quantitative investing. The research methods applied are 

discussed in Section 2.3. Section 2.4 provides a detailed description of the current state 

of the art in the application of machine learning to investment. Section 2.5 concludes 

with a discussion of the evidence presented. 

 

2.2. Background 

2.2.1. Machine Learning 

Although variations of machine learning have long been around, the discipline has 

developed rapidly in recent years. Many factors have combined to derive this 

development. Increased computer power has made real time processing feasible for 

many complex tasks, increased connectivity has driven innovation and automation in 

the delivery of traditional tasks and services, the potential to extract useful information 

from the vast amounts of data generated via the internet (Big Data) has led to novel 

analytical methods. Alongside this, the development of easy to use programming 

languages, such as Python and R, and machine learning focused frameworks such as 

TensorFlow, has contributed to the wide investigation of machine learning 

applications in industry. It has already found commercial application across multiple 

industries from automated trading systems in the finance industry to the health sector 

where machine learning algorithms assist decision making in fertility treatments 

(Witten, Frank et al. 2016). The success of these applications is driving commercial 

research into further applications. 

2.2.2. Common Machine Learning Approaches and Algorithms 

Three main approaches to training machine learning algorithms are recognised; 

supervised learning, unsupervised learning and reinforcement learning. Supervised 

learning generates a function that maps inputs to outputs based on a set of training 

data. The algorithm infers a function linking each set of inputs with the expected, or 

labelled, output in the training set. Unsupervised learning finds hidden patterns in and 

draws inferences from unlabelled data. Unsupervised learning provides inputs to 

models, but does not specify an expected set of outcomes, the outcomes are unlabelled. 
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Reinforcement learning enables algorithms to learn by trial and error, based on 

feedback from past experiences. Like unsupervised learning, it does not require 

labelled data. A hybrid system, semi-supervised learning, combines supervised and 

unsupervised learning, using both labelled and unlabelled data to train models. This is 

useful where there is limited data or the process of labelling data could introduce 

biases.  

The main research areas in supervised learning are regression and classification 

(specifying the category or class to which something belongs), this approach is often 

used in developing predictive models. Regression techniques predict continuous 

responses using algorithms such as linear regression, decision trees and Artificial 

Neural Networks (ANNs). Classification techniques predict discrete responses using 

algorithms such as logistic regression, Support Vector Machines (SVMs) or K-Nearest 

Neighbors (KNN). The main research area in unsupervised learning is clustering. 

Clustering refers to grouping objects together, such that objects that are put in the same 

group are more similar to each other than objects in other groups.  

Artificial neural networks have become a key technology in the development of 

machine learning. They were first proposed over 75 years ago, inspired by the 

workings of the human brain (McCulloch and Pitts 1943). They are a collection of 

algorithms that replicate the process of a biological brain at the neuron level 

(Domingos 2012). 

There are a number of different classes of artificial neural networks, including 

Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and 

recursive neural networks, among others. CNNs are ideal for things such as image 

classification and video processing because they’re able to identify patterns by 

focusing on fragments of images. RNNs are better for dealing with things like speech 

or text analysis because they use time-series information, such as monthly stock price 

figures to predict next month’s figure. GANs have garnered much interest in recent 

years since they were first introduced in 2014 (Goodfellow, Pouget-Abadie et al. 

2014). GANs are comprised of two neural networks that compete against each other. 
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One neural network generates data similar to the training dataset, and the other tries to 

evaluate whether data is from the training dataset or generated by the generative 

network. 

Aside from neural networks other well-known machine learning algorithms include 

SVMs, KNN and other. SVMs, used for classification and regression analysis, involve 

finding a hyperplane which minimizes the distance between a set of data points in an 

n-dimensional space. Bayesian networks are built from probability distributions and 

use probability laws for prediction and anomaly detection. KNN selects the most 

similar data points in the training data, this allows the algorithm to classify future data 

inputs in the same way. Some techniques are better suited to particular tasks than 

others. This research partly seeks to contribute to this area of knowledge. It is 

important to evaluate the effectiveness of certain algorithms, to assist in choosing 

appropriate algorithms for specific tasks in future applications and studies. 

2.2.3. The Evolution of Quantitative Investing 

Graham and Dodd’s Security Analysis, published in 1934 following the Wall Street 

Crash of 1929 is the seminal work on fundamental investing and remains in 

publication today (Graham and Dodd 2008). It is one of the first books to distinguish 

investing from speculation, advocating the use of a systematic framework for 

analysing securities for stock selection. 

A systematic approach to portfolio construction and risk analysis was presented in 

Portfolio Selection (Markowitz 1952). In this, Markowitz provides a mathematical 

definition of risk as the standard deviation of return. The approach focused on 

maximizing portfolio performance by optimizing the trade-off between risk and 

return. This was the foundation of modern portfolio theory, providing an analytical 

framework for the construction and analysis of investment portfolios (Kahn 2018) 

(Becker and Reinganum 2018). 

A quantitative approach to market analysis gained popularity as advances in 

computing technology made the collection and analysis of large amounts of market 

data possible. This allowed the development and verification of market models on a 
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scale not previously possible, contributing to significant advances in the understanding 

of financial markets, including the Capital Asset Pricing Model (CAPM) (Sharpe 

1964, Mossin 1966, Lintner 1975, French 2003) and Efficient Market Hypothesis 

(EMH) (Malkiel and Fama 1970).  

Fama and MacBeth (1973) used the Center for Research in Security Prices (CRSP) 

financial dataset (one of the first of its kind) to perform an empirical analysis of the 

CAPM. They showed that the CAPM provided a good quantitative approximation of 

the behaviour of security prices while setting a standard for empirical cross-sectional 

analysis of market data. 

The empirical support for the EMH, enhanced by the success of market indices, such 

as the S&P 500, led to the dominant view, particularly in academia, that active 

investing was futile, as it was impossible to beat a passive investment. In 

comprehensive literature reviews, Kahn (2018) and Becker and Reinganum (2018) 

provide evidence that research and empirical evidence that challenged the CAPM and 

EMH was strongly discouraged. At the same time many examples of research that 

argued that although difficult, it is possible for active management to beat passive 

management, by exploiting market inefficiencies not covered by the CAPM and EMH.  

Strategies based on risk factor models, first explored by Rosenberg (1974) and Ross 

Ross (2013) in the 1970s, surged in popularity (Cochrane 2011) after the publication 

of the Fama-French three-factor model (Fama and French 1993). 

From Markowitz portfolio optimization to CAPM, EMH and factor models more 

recently, quantitative investors have shown that they are willing to embrace new 

techniques and strategies. A key argument for applying machine learning techniques 

to financial problems is that machine learning methods capture non-linear 

relationships in the data (Lopez de Prado 2016). Non-linear methods are required to 

model data where outputs are not directly proportional to the inputs (Bianchi, Büchner 

et al. 2018) and many traditional analysis methods assume a linear relationship, or a 

non-linear model that can be simplified to a linear model. Typical examples of well-

established non-linear machine learning methods include KNN, and ANN [20]. 
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Machine learning has been applied with positive results across many areas of 

quantitative investing, including portfolio optimization (Lopez de Prado 2016, Heaton, 

Polson et al. 2017), factor investing (Nakagawa, Uchida et al. 2018), bond risk 

predictability (Bianchi, Büchner et al. 2018), derivative pricing, hedging and fitting 

(De Spiegeleer, Madan et al. 2018), and back-testing (Lopez de Prado and Lewis 

2018). Section 2.4 contains a comprehensive summary of papers where machine 

learning techniques are applied to areas of quantitative finance. 

 

2.3. Methodology 

Initially, a broad search was conducted to identify the major themes related to machine 

learning. This search yielded information on the popular use cases and technologies. 

This information informed a second, more focused investigation of relevant material. 

Here, the aim was to draw connections between popular use cases in finance and 

current machine learning techniques. 

As quality and scope of published research can vary widely, measures were taken to 

reduce the possibility of including unreliable information in the final dataset. Before 

inclusion in the concept matrix, each paper was assessed on quality. This was achieved 

by using a variety of quality indicators including; the citation count, the quality of an 

institute’s research activities associated with the paper, bias created from funding 

sources, and the impact factor of the journal. 

An appropriate search strategy was devised and carried out based on the main topics 

that were identified during the first investigation of the literature. The arXiv and SSRN 

databases were searched to ensure that the most up-to-date research papers were 

included. However, as these are not peer-reviewed papers, extra care was taken to 

ensure that the papers were from reputable authors, focusing on the quality of authors’ 

previous publications. The topic phrases used in search were “portfolio management”, 

“stock market forecasting”, and “risk management”. All of these topic phrases were 

used in conjunction with the key phrase “machine learning” in an attempt to return 
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only relevant research papers. The purpose of searching by topic was to identify which 

technologies are widely and effectively used within each area. As the aim is to evaluate 

the current state of the art, there was a need to ensure that only recent papers were 

included. Thus, only papers that were submitted in 2015 or later were. From the initial 

search a total of 118 papers were collected. After an initial review of abstracts, papers 

that were not relevant to machine learning in finance (specifically investing) were 

removed. Any papers that were duplicates under more than one search topic were kept 

under the topic that appeared most relevant. Papers were then assessed in relation to 

their quality using the quality indicators mentioned above. This reduced the number 

of papers to 55. 

 

2.4. Results 

2.4.1. Popular Machine Learning Use Cases and Algorithms 

A concept-centric matrix was utilised initially to identify which areas commonly use 

machine learning techniques. Recurring concepts and themes were noted and counted 

across a sample of 67 papers identified. An initial list of recurring themes was 

identified and analysed. Some themes, such as ‘Geopolitics' were removed as they 

were deemed irrelevant due to the lack of research on the topic. A list of the most 

recurring themes with relevance to machine learning is presented in Table 2.4.1. 

Table 2.4.1: Recurring themes from the literature review 

Theme      References 
 
Return Forecasting 21 

 

Portfolio Construction 12  
Ethics 8  
Fraud Detection 8  
Decision Making 8  
Language Processing 7  
Sentiment Analysis 7  
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The most common use-cases identified were return forecasting and portfolio 

construction. Quantitative methods were introduced to finance through the equity 

market and it is unsurprising that it should lead the way in incorporating the latest 

advances in its processes. A large number of the papers above also discussed risk 

modelling. This led us to take return forecasting, portfolio construction, and risk 

modelling as our three core topics. The most popular machine learning techniques 

identified in the papers researched are presented in Table 2.4.2, as well as a breakdown 

of the different acronyms used in the table. 

 

Table 2.4.2: Popular techniques featured in machine learning and finance papers 

 M
L

P
 

SV
M

 

L
S

T
M

 

G
R

U
 

R
N

N
 

C
N

N
 

R
F

 

G
P

R
 

L
R

 

          
Return Forecasting 7 5 4 2 - 1 2 - - 

Portfolio Construction 7 2 3 1 1 1 4 2 1 

Risk Modelling 6 2 2 1 1 1 4 3 4 

          
 

MLP Multilayer Perceptron 

SVM Support Vector Machine 

LSTM Long Short-Term Memory 

GRU Gated Recurrent Unit 

RNN Recurrent Neural Network (basic)  

CNN Convolutional Neural Network 

RF Random Forests/Decision Trees 

GPR Gaussian Process Regression 

LR Logistic Regression 
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Many techniques used in the papers only appear once, some twice. Since the purpose 

of this chapter is to identify the most popular machine learning techniques used in 

finance, specifically in the topics above, only techniques which appeared in at least 

three papers were included in Table 2.4.2. It was also decided to include RNN, 

although it is only mentioned explicitly in two papers, it appears implicitly more 

frequently as both LSTM and GRU are subsets of the technology. 

Artificial neural networks are used in all three areas of finance studied, with a standard 

feedforward network (MLP) being the most common. Useful results are found from 

networks that range from small to very large networks (deep neural networks). There 

is also evidence of preferences for some techniques in particular areas. For example, 

Gaussian process regression is used in both portfolio construction and risk modelling 

but has not been applied to return forecasting. 

2.4.2. Summary of Key Insights from Recent Papers 

The paper selection included machine learning papers published in recent years as well 

as papers yet to be published by established authors from reputable institutions. These 

papers have been submitted for publication and are awaiting acceptance. The most 

recent studies in this field were included to help evaluate the cutting edge and state of 

the art of the use of machine learning for financial applications. 

A. Portfolio Construction 

Portfolio construction is the process of combining return forecasts and risk models to 

create an optimum portfolio given an investor’s constraints. A variety of ANN 

methodologies are applied to the portfolio optimisation problem, often outperforming 

traditional optimisation techniques.  Deep learning reappeared a number of times 

during this search in the context of portfolio construction. Deep learning refers to 

models that consist of multiple layers or stages of nonlinear information processing 

(for example, a neural network with many hidden layers) (Deng and Yu 2014). Both 

hierarchical clustering and reinforcement learning were used to improve portfolio 

diversification. Multiple papers discuss the method of applying Markov models to 

predict the performance of stocks. Markov models are a type of machine learning 
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method that model variables that change randomly through time. The complicated 

nature of the global market makes using this type of model a viable option. 

 The authors present a deep learning framework for portfolio design, applying 

their framework to the stocks in the IBB index, demonstrating that their 

portfolio weighted using deep learning outperformed the index (Heaton, 

Polson et al. 2017). 

 The author outlines a reinforcement learning solution for a rational risk-averse 

investor seeking to maximize expected utility of final wealth, giving an 

example of a Q-learning agent exploiting an approximate arbitrage in a 

simulation (Ritter 2017). 

 The authors of both papers make use of hierarchical clustering algorithms for 

constructing diversified portfolios.  The portfolios are constructed using 

variations of risk parity (Lopez de Prado 2016) and equal risk contribution 

methods (Raffinot 2017) which take the hierarchical correlation structure of 

the assets into account.  The portfolios constructed are shown to have superior 

diversification and out-of-sample risk adjusted performance. 

 The authors make use of convex analysis techniques to devise an optimal 

portfolio coupled with a Hidden Markov Model (HMM) used to estimate 

growth rates in the market model, which achieves improved results over a 

simple model using geometric Brownian motions (Al-Aradi and Jaimungal 

2019). 

 The authors provide an overview of the financial applications of Gaussian 

processes and Bayesian optimisation, providing examples for forecasting the 

yield curve with Gaussian processes, and using Bayesian optimisation to build 

an online trend-following portfolio optimisation strategy (Gonzalvez, Lezmi 

et al. 2019). 

 The authors compare the use of Feature Salient Hidden Markov Models 

(FSHMM) and HMM for constructing factor investing portfolios.  The 
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FSHMM selects relevant factors for use from a pool of available factors, while 

the HMM uses the whole pool of factors. Both models outperformed 

benchmark portfolios, with the FSHMM portfolio showing better performance 

(Fons, Dawson et al. 2019) 

 The authors use factors as inputs to deep neural network, SVM and random 

forest models for predicting stock returns. While their research shows the 

effectiveness of a deep learning model, more significantly they used Layer-

wise Relevance Propagation (LRP) to determine individual factor 

contributions to the neural network’s prediction (Nakagawa, Uchida et al. 

2018). 

 The authors create a non-linear multi-factor model using LSTM to estimate the 

non-linear function. As in the previous paper the authors make use of LRP 

to identify which factors contribute to the model.  The performance of the 

LSTM model is compared to the neural network model used in (Nakagawa, 

Uchida et al. 2018) and gives superior returns  (Nakagawa, Ito et al. 2019). 

 The authors examine the use of three deep reinforcement learning algorithms, 

Deep Deterministic Policy Gradient (DDPG), Proximal Policy Optimization 

(PPO) and Policy Gradient (PG), in managing a portfolio of assets in the 

Chinese stock market.  They determine that training conditions used in game 

playing and robot control are unsuitable for use with portfolio management, 

finding that DDPG and PPO gave unsatisfying performance in the training 

process. They propose the use of adversarial training methods and employ a 

revised PG algorithm which outperforms a Uniform Constant Rebalanced 

Portfolio (UCRP) benchmark (Liang, Jiang et al. 2018). 

 The authors employ models constructed using Gaussian processes and Monte 

Carlo Markov Chains which learn optimal strategies from historical data, 

based on user-specified performance metrics (e.g. excess return to the market 

index, Sharpe ratio, etc.). This approach addresses the inverse problem of 

Stochastic Portfolio Theory – devising suitable investment strategies that meet 
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the desired investment objective, when initially given a user-defined portfolio 

selection.  The models outperform the benchmark in-sample and out-of-sample 

for absolute terms (returns) and also after adjusting for risk (Sharpe ratio) 

(Samo and Vervuurt 2016). 

 The author provides an machine learning framework for estimating optimal 

portfolio weights. They apply this framework using three machine learning 

methods – Ridge and Lasso regression, and two newly introduced methods; 

Principal Component regression, Spike and Slab regression. All methods 

outperform the mean-variance, minimum-variance, and equal weight 

portfolios. (Kinn 2018).  

 The authors propose a way to find the risk budgeting portfolio by using 

optimisation algorithms to find a solution to the logarithmic barrier problem. 

They use algorithms such as cyclical coordinate descent, alternating direction 

method of multipliers (ADMM), proximal operators, and Dykstra's algorithm  

(Richard and Roncalli 2019). 

 The authors present a financial-model-free reinforcement learning framework 

as a solution to the portfolio management problem. The study tests the 

proposed framework with the following neural networks: CNN, a basic RNN, 

and LSTM (Jiang, Xu et al. 2017). 

B. Return Forecasting 

Return forecasting, predicting the investment return from an asset or asset class, is 

central to investment management and features highly in the literature. Many types of 

ANN are tested on their ability to forecast returns. Deep neural networks, CNNs, 

LSTMs are all applied to the problem of return forecasting. In one theme, the new 

machine learning technology is applied to improve forecasts made from traditional 

inputs, such as fundamental accounting data or technical indicators. A second 

approach uses machine learning to extract new inputs from alternative data, such as 

sentiment from news data. Finally, authors predict movement at market level rather 

than at the level of individual securities, for example using machine learning to 

identify states. 
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 The authors use a CNN strategy to analyse and detect price movement patterns 

in high-frequency limit order book data.  Multilayer neural network methods 

and SVMs were also considered. However, they conclude the CNNs provide 

better performance for this task (Tsantekidis, Passalis et al. 2017). 

 The authors implement several machine learning algorithms to predict future 

price movements using limit order book data. They employ two feature 

learning methods: Autoencoders, and Bag of Features. They compare three 

different classifiers: SVM, a Single Hidden Layer Feedforward Neural 

Network (SLFNN), and an MLP. They test the performance of the classifiers 

with an anchored walk forward analysis, to determine if the models can capture 

temporal information, as well as a hold-out per stock method, to determine if 

the models can learn features that can be applied to previously unseen stocks. 

The results from the MLP are better than the other classifiers. However, the 

use of the Autoencoder and Bag of Features in combination with the MLP lead 

to fewer correct predictions (Nousi, Tsantekidis et al. 2018).  

 The authors introduce a novel Temporal Logistic Neural Bag-of-Features 

approach, that can be used to tackle the challenges that come with data of a 

high dimensionality, in this case high-frequency limit order book data 

(Passalis, Tefas et al. 2019). 

 The authors train a deep neural network on reported fundamental data from 

publicly traded companies (revenue, operating income, debt etc.).  The model 

forecasts future fundamental data based on a trailing 5-years window.  A value 

investing factor strategy based on forecasted fundamental data outperforms a 

traditional value factor investing approach with a compounded annual return 

of 17.1% vs 14.4% for a standard factor model (Alberg and Lipton 2017). 

 The authors create a simple buy-hold-sell strategy to predict direction of 

movement for 43 CME listed commodities and FX futures based on an ANN 

trained on a multitude of features for each instrument designed to capture co-

movements and historical memory in the data.  An average prediction accuracy 
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of 42% is achieved across all instruments, with higher accuracies achieved for 

certain instruments (Dixon, Klabjan et al. 2017). 

 The authors use a random forest model to predict the direction of stock prices 

based on price information and a number of momentum indicators (Relative 

Strength Index, Moving Average Convergence Divergence, Stochastic 

Oscillator, Williams %R, On Balance Volume, and Price Rate of Change). The 

algorithm is shown to outperform existing algorithms found in the literature 

(Khaidem, Saha et al. 2016). 

 The authors provide a sentiment analysis dictionary which they use to predict 

stock movements in the pharmaceutical market sector. With this model they 

achieve an accuracy of 70.59%. (Shah, Isah et al. 2018) 

 The authors present a methodology to define, identify, classify and forecast 

market states. They use a Triangulated Maximally Filtered Graph network to 

filter information, and simple logistic regression for predicting market states. 

They compare five models, with a Gaussian Mixture Model as their baseline. 

All five models outperform the baseline in terms of risk/return significance 

(Procacci and Aste 2018). 

 The authors compare five ANN models for forecasting stock prices: a standard 

neural network using back propagation, a Radial Basis Function (RBF), a 

General Regression Neural Network (GRNN), SVM Regression (SVMR), and 

Least Squares SVM Regression (LS-SVMR). However, they compare the 

models on just three stocks: Bank of China, Vanke A, and Kweichou Moutai. 

The standard neural network using back propagation outperforms all of the 

other models across all three stocks, in terms of both Mean Squared Error 

(MSE) and Mean Absolute Percentage Error (MAPE). (Song, Zhou et al. 2018) 

 The authors use 25 risk factors as inputs to machine learning stock returns 

prediction models. Results show that deep neural networks generally 
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outperform shallow neural networks, and the best networks also outperform 

representative machine learning models (Abe and Nakayama 2018). 

 The author employs ANNs to predict product demand for weather sensitive 

products in Walmart stores around the time of major weather events 

(Taghizadeh 2017).  

 The authors implement a Gaussian Naïve Bayes Classifier for prediction based 

on sentiment analysis of Twitter data. The data used was obtained from Twitter 

and pertained to the 2014 FIFA world cup. Their framework obtained an 

accuracy and Area Under the curve of the Receiver Operating Characteristic 

(AUROC) of around 80% and an 8% marginal profit when tested (Le, Ferrara 

et al. 2015). 

C. Risk 

Three different themes are identified under the broad heading of risk. The first 

attempts to employ machine learning to improve traditional measures of risk used in 

the mean variance framework. The second theme looks for companies at risk of default 

or bankruptcy. Techniques such as natural language processing are used to identify 

words that indicate higher risk. The final theme uses machine learning to develop 

hedging strategies. Some authors look at identifying what selection of machine 

learning methods is best for risk modelling problems. 

 The authors use k-means clustering to construct risk models by clustering stock 

returns normalized by standard deviation squared and adjusted by mean 

absolute deviation using a method proposed in (Kakushadze and Yu 2016). 

They demonstrate that this machine learning approach outperforms statistical 

risk models (Kakushadze and Yu 2017) in quantitative trading applications 

(Kakushadze and Yu 2019). 

 The authors present a framework for hedging a portfolio of derivatives in the 

presence of market frictions such as transaction costs, market impact, liquidity 

constraints or risk limits (Buehler, Gonon et al. 2019). 
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 The authors show how Gaussian Process Regression can assist in pricing and 

hedging a Guaranteed Minimum Withdrawal Benefit (GMWB) Variable 

Annuity with stochastic volatility and stochastic interest rate (Goudenège, 

Molent et al. 2019). 

 The authors show that machine learning can be as effective as other existing 

algorithms at solving difficult hedging problems in moderate dimension. They 

use techniques such as a modified LSTM neural network to calculate their 

hedging strategies (Fecamp, Mikael et al. 2019). 

 The authors aim to explore the optimal model for business risk prediction. 

They attempt to do this using XGBoost, and by simultaneously examining 

feature selection methods and hyper-parameter optimization in 

the modelling procedure (Wang and Ni 2019). 

 The authors try to predict daily stock volatility using news and price data. Their 

model, which utilizes a Bidirectional Long Short-Term Memory (BiLSTM) 

neural network and stacked LSTM’s, outperforms the well-known Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) model in all 

sectors analysed (financial, health care, etc.) (Sardelich and Manandhar 2018). 

 The authors exploit a heterogeneous information network of 35,657 global 

firms to improve the predictive performance for firms likely to be added to a 

blacklist. Blacklists are used to keep track of entities that have unacceptable 

problems, such as financial or environmental issues. Blacklists help keep 

portfolios profitable and “green”. Their model consists of a simple MLP with 

thirty hidden units (Hisano, Sornette et al. 2018). 

 The authors estimate corporate credibility of Chinese companies using a CNN 

and natural language processing. They use Latent Dirichlet Allocation to 

summarise the text of news articles and use a CNN to extract the most 

important words from each topic. The CNN learns how news articles may 

reflect the credibility of a company though the wording of articles and word 
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occurrence. They verify their model works by building a negative rating 

system and showing a correlation between their model’s results and the 

negative rating (Zhang, Luo et al. 2018). 

 The authors compare different strategies for solving a variation of the multi-

armed bandit problem. In their version of the problem, the learner can pull 

several arms simultaneously, or none at all. This could easily be applied to 

assist in investment decisions. Out of the strategies compared, Bayes-UCB-4P 

and TS-4P perform the best (Achab, Clémençon et al. 2018).  

 The authors compare several machine learning algorithms: Logistic 

Regression, K-Dimensional Tree (K-D Tree), SVM, Decision Trees, 

AdaBoost, ANN, and Gaussian Processes (GP) for forecasting business 

failures (corporate bankruptcy). Models are compared on datasets of 

manufacturing companies in Korea and Poland. All of the models are 

compared on their performance when combined with different dimensionality 

reduction techniques. The techniques used are: Principal Component Analysis 

(PCA), Linear Discriminate Analysis (LDA), Isometric Feature Mapping 

(ISOMAP), and Kernel PCA. On the Korean dataset, all models perform 

similarly. K-D Tree, SVM, and GP perform best over all of the dimensionality 

reduction methods used. On the Polish dataset, the linear regression model 

performs the best. Although having a lower accuracy than some of the other 

models, it is the best performing method when compared over other results 

such as precision, recall, F1 score, and AUC (Area Under Curve) (Chow 2018). 
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2.5. Discussion 

2.5.1. Strategy Development and Analysis 

The results of the literature search demonstrate that there is a wide range of machine 

learning techniques being successfully applied to many areas in the development of 

quantitative investing strategies, outperforming traditional benchmarks, previously 

used techniques and algorithms in many cases. Algorithms that assume a linear 

relationship between data can result in reduced accuracy. (Lopez de Prado 2016) 

highlights this issue in terms of many of the econometric models employed by finance 

academics and investment managers. The author argues for the use of more advanced 

mathematical models and machine learning techniques such as unsupervised learning 

that are capable of modelling complex non-linear relationships in financial systems.  

Taking factor investing as an example of this, (Harvey and Liu 2017) and (Harvey, 

Liu et al. 2016) make use of statistical algorithms to show that many factors discovered 

over the last number of years (particularly those found using empirical evidence) can 

be considered inaccurate or invalid. In the aptly named paper, Taming the Factor Zoo, 

a double selection LASSO machine learning method was used to analyse the 

contribution and usefulness of individual factors amongst the large number available 

today (Feng, Giglio et al. 2017). LASSO (Least Absolute Shrinkage and Selection 

Operator) is a regression analysis method capable of reducing the dimensionality of a 

large sample while selecting variables significant to the final result (Belloni, 

Chernozhukov et al. 2014). In (Abe and Nakayama 2018) the author uses twenty-five 

factors as model inputs, comparing the use of shallow and deep neural networks, as 

well as SVMs and random forests for predicting stock returns, finding the deep neural 

networks (more layers) superior to the other methods. Using a similar approach 

(Nakagawa, Uchida et al. 2018) uses factors as inputs to deep neural network, SVM 

and random forest models for predicting stock returns. While their research again 

showed the effectiveness of a deep learning model, more significantly they used layer-

wise relevance propagation to determine individual factors contributions to the neural 

network’s prediction. In these cases, not only has machine learning been used to 
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develop investment strategies, but also to detect which input features were significant 

and which were not. 

2.5.2. The Use of Alternative Data 

The use of machine learning for the analysis and application of alternative data for 

example, sentiment analysis, supply chain data etc. has opened up opportunities for 

new investment strategies. As seen in Table 2.4.1, sentiment analysis was identified 

as a popular use case for machine learning. (Becker and Reinganum 2018) provides a 

thorough overview of the growth of big data and sentiment analysis research over the 

last 30 years, highlighting the use of techniques such as NLP, SVMs and ANNs for 

the analysis of news, conference calls, reports, and social media activity. They 

concluded that to date, sentiment information has provided short-term, easy to exploit 

insights but long-term persistent insights are hard to achieve (falling in line with 

EMH). (Kahn 2018) acknowledges the effectiveness of big data for the modern 

fundamental investor, as it can provide insights and improve decision making by 

widening their research capabilities. This sentiment is echoed in (Lopez de Prado 

2016) where the author makes reference to the recently emerged term “quantamental" 

– describing a fundamentally leaning investor who manages their portfolio based on 

data-driven insights provided by machine learning algorithms. Examples of machine 

learning and alternative data being applied together in the results section mainly fall 

under return forecasting or risk modelling, where decisions may be made based on 

good or bad news (Shah, Isah et al. 2018), weather (Taghizadeh 2017), or social media 

sentiment (Le, Ferrara et al. 2015). 

2.5.3. Choosing Machine Learning Algorithms 

It is important to understand the relevant factors that contribute to the choice of 

machine learning algorithms, given the wide range available. These factors include 

accuracy, training time, linearity, number of parameters, the number of features and 

the structure of the data (Barga, Fontama et al. 2015). Some systems do not need a 

high level of accuracy. Estimates may be sufficient, for example, when calculating 

different route times for a journey. Model training times can also vary hugely between 

algorithms, making some algorithms more appealing than others when under time 
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constraints. Many algorithms assume a linear relationship between input and output 

(linear regression, logistic regression, SVMs). This can result in reduced accuracy 

when dealing with non-linear problems. The number of parameters an algorithm has 

can indicate its flexibility, but also indicates that more time and effort may be required 

to find optimal values for training the model. The number of features can also be 

overwhelming for some algorithms. This is particularly a problem with textual data, 

where the number of words in the dictionary vastly outweighs the number of words in 

say, a paragraph being used for sentiment analysis. It’s important to consider the 

structure of the data and the specific problem, as some algorithms are better suited for 

certain problems and data structures (Harrington 2012). 

2.5.4. Backtesting and Strategy Verification 

While machine learning techniques can provide superior performance, financial data 

is notorious for having a low signal-to-noise ratio, which can lead to the detection of 

false patterns and results.  Backtesting protocols have been proposed to tackle this 

(Arnott, Harvey et al. 2019).  Machine learning solutions have also been applied to 

this problem. In (Lopez de Prado and Lewis 2018) the authors present an unsupervised 

learning strategy which makes use of a modified k-means clustering algorithm to 

extract the number of uncorrelated trials from a series of backtests, which can be used 

in estimating the probability of false positives and estimating the expected value of 

the maximum Sharpe ratio. While in (Wiecki, Campbell et al. 2016) the authors use a 

machine learning strategy for backtesting and the evaluation of automated trading 

strategies which is trained on a number of performance and risk metrics, demonstrating 

that this strategy outperforms standard metrics such as Sharpe ratio out-of-sample. 

The development of new backtesting strategies and protocols is welcome and 

necessary, especially taking into account recent “black box” criticisms by leading deep 

learning researchers regarding a lack of testing and reproducibility in the field of 

machine learning. In their acceptance speech after winning the “test-of-time” award at 

NIPS, the leading AI conference, the authors of (Recht and Rahimi 2017) compared 

much of recent machine learning research to “alchemy”, highlighting a situation where 

algorithms were being created and trained using trial and error methods, with the 
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researchers unable to explain the fundamental operation. They later published a paper 

highlighting instances of this (Sculley, Snoek et al. 2018). 

 

2.6. Conclusion 

As the previous section discusses, machine learning offers an opportunity for more 

complex financial analysis than was previously possible. The literature shows that 

quantitative investors have embraced new tools and techniques as they have emerged 

(Becker and Reinganum 2018, Kahn 2018). 

There is a growing body of literature applying machine learning techniques to 

investment problems. Varieties of machine learning methods have been applied to 

areas of quantitative finance– the most popular methods are MLPs, followed by 

SVMs, and LSTM. Machine learning has been applied to problems in areas such as 

return forecasting, portfolio construction, and risk modelling. These machine learning 

methods utilize traditional financial data, as well as making use of new types of 

alternative data. Big data is providing new datasets that need to be analysed and 

machine learning techniques are capable of modelling complex (non-linear) 

relationships and analysing new data. 

Lopez de Prado (2016) notes the recent trend of traditional hedge funds hiring an 

increasing proportion of STEM graduates for portfolio construction positions, as they 

possess the required mathematical skillset for performing complex analysis and 

computer modelling. An understanding of machine learning, as well as the languages 

(Python, R, etc.) and frameworks (e.g. TensorFlow) needed to construct complex 

models could certainly be considered advantageous for any quantitative investor 

looking for an edge. 
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Chapter 3. Regime Switching Models 

3.1. Introduction 

Regimes are periods of time with unique characteristic financial variables, such as 

mean returns, correlations and volatilities. A change in regimes implies a change in 

the characteristic behaviour of the financial market which may continue for some time 

if the regime is persistent.  

Regimes are an easy concept to grasp intuitively, a distinction can be made between 

“Bull” and “Bear” markets, periods of high and low volatility returns, as well as 

periods of change in policy or regulation (Ang and Timmermann 2012). Regime 

switching Hidden Markov Models (HMM) have been shown to capture regimes over 

various time horizons and have been successfully implemented across a range of asset 

allocation strategies. 

Regime switching models first gained popularity in quantitative finance when they 

were introduced in Hamilton’s (1989) seminal work which used a HMM to identify 

expansions and recessions in the business cycle. A hidden Markov model is an 

unsupervised machine learning technique is used to infer regimes. Unsupervised 

learning is a type of machine learning algorithm used to draw inferences from datasets 

consisting of input data without labelled responses.  

In this chapter, the properties of regime switching HMMs are discussed, as well as 

their use in asset allocation strategies. The literature shows that regime switching 

HMMs are a useful and powerful tool for analysing financial data. Model selection 

criteria and the implementation of HMMs are also discussed. 

. 
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3.2. Capturing Stylized Facts using HMMs 

Financial returns have been shown to exhibit distributional properties such as 

skewness and leptokurtosis, making the normal distribution unsuitable for their 

description (Cont 2001). HMMs using both normal and other distributions, e.g. 

student-t distributions, have been shown to more effectively model the stylized facts 

of returns by identifying a number of market regimes (Hamilton and Susmel 1994, 

Rydén, Teräsvirta et al. 1998, Bulla and Bulla 2006, Ang and Timmermann 2012).  

The main argument for the use of market regimes and regime-switching in asset-

allocation strategies is that all-weather portfolios and static asset-allocation strategies 

cannot account for the presence of all possible market regimes (De Prado 2019). 

 

3.3. Regime Switching in Asset Allocation 

The ability to infer regime changes has been shown to be profitable across a range of 

asset allocation strategies. Ang and Bekaert (2002) concluded that a high-volatility, 

high-correlation regime is present in a regime-switching model during a bear market. 

Following on from this finding, they demonstrated that a regime-switching based 

dynamic asset-allocation strategy outperforms a static strategy by switching to cash 

during high-volatility regimes (Ang and Bekaert 2004).  

Guidolin and Timmermann (2008) consider an international asset-allocation strategy 

where a regime-switching model is used to capture periods of distinct skewness and 

kurtosis in global equity returns. They identify home bias among US-based investors, 

justifying this bias during certain regimes where the US stocks have high skewness 

and low kurtosis compared to the global market portfolio.  

Bulla, Mergner et al. (2011) demonstrated that a regime-based asset allocation strategy 

under realistic assumptions could outperform a buy and hold strategy after taking 

transaction costs into account.  
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More recent papers have demonstrated similar positive results using dynamic asset 

allocation strategies, using a HMM with time-varying parameters (Nystrup, Hansen et 

al. 2015, Nystrup, Hansen et al. 2017) 

While the strategies above focus on modelling returns, regime switching asset 

allocation strategies have also been developed using other sources of data. Ammann 

and Verhofen (2006) examined a multivariate regime-switching model estimated 

using the Carhart (1997) four-factor model, finding two distinct regimes, a high-

variance regime where value stocks performed well, and a low variance regime where 

momentum stocks were the highest performer. Kritzman, Page et al. (2012) defined a 

regime-switching model based on a number of economic variables; market turbulence, 

inflation, and economic growth. A dynamic asset-allocation strategy based on this 

regime-switching model outperformed static asset allocation. 

 

3.4. Model Selection 

It has been observed in literature reviews that a large proportion of papers relating to 

regime-switching models focus on two regime models, generally thought to represent 

“bull” and “bear” markets, or “good” and “bad” regimes (Ang and Timmermann 

2012). Guidolin (2011) observed that approximately half of the literature refers to two 

regime models. He also noted that the literature was roughly split in half between 

papers taking a statistical approach of “letting the data speak”, and papers where 

regime-switching models were used as a tool to give a plausible explanation based on 

underlying economic theory and reasoning. Papers based on economic reasoning were 

more likely to restrict the scope of the research to a two-regime model than papers 

taking a statistical approach, where selection of a model appropriate for the data was 

prioritised.  

Guidolin and Timmermann (2007) defined a regime-switching model characterized 

by four states; crash, slow growth, bull and recovery. The model was estimated using 

stock and bond returns. Each state had a distinct optimal asset allocation, and an out-
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of-sample test confirmed the effectiveness of the model. Maheu, McCurdy et al. 

(2012) proposed a four-regime model where the regimes could be characterised as 

bull, bull correction, bear, and bear rally, arguing that this provided a richer 

characterization of market cycles. Their model was shown to outperform alternative 

approaches including a two-regime model, showing that the four-regime model was 

less prone to erratic switching, giving more persistent regimes.  

Regime persistence, and the number of state changes has implications for the 

practicality of regime-switching models, as potential excess returns can be reduced by 

rebalancing costs if switching behaviour is too noisy or frequent (Bauer, Haerden et 

al. 2004, Hess 2006). Filtering procedures can be used to smooth the sequence of 

predicted regimes, decreasing transaction costs and increasing regime persistence. 

Bulla, Mergner et al. (2011) applied a median filter to the sequence of predicted 

regimes across a number of major indices, significantly impacting transaction costs as 

the filter reduced the number of regime changes by 50-65%. 

It has been acknowledged that increasing the number of regimes can lead to overfitting 

and a quadratic increase in the number of parameters of the regime-switching model 

which need to be estimated. Penalised likelihood criteria such as the Bayesian 

information criteria (BIC) or Akaike information criteria (AIC) can be used to estimate 

the optimum number of regimes with BIC being considered more reliable (Guidolin 

2011, Gatumel and Ielpo 2014, Nystrup, Madsen et al. 2015).  

Gatumel and Ielpo (2014) modelled the dynamics of stocks, bonds, commodities and 

currencies using regime-switching models and rejected the hypothesis that two 

regimes were enough to model the behaviour of asset returns. The empirical results of 

their testing suggested that to capture the distributional characteristics of the various 

assets required between two and five regimes.  

Nystrup, Madsen et al. (2015) compared standard HMMs, semi-Hidden Markov 

Models (HSMM), and a new method, continuous time HMMs (CTHMMs) for 

describing the stylized facts of daily returns in the S&P 500 index. HSMM were first 

introduced in Bulla and Bulla (2006) and were shown to describe stylized facts well, 



37 
 
 

 

outperforming HMMs in some cases. CTHMMs tackle the issue of parameter growth 

in HMMs, with parameters increasing linearily rather than quadratically as the number 

of regimes increases, which decreases the likelihood of overfitting. BIC and AIC 

indicated that four-regime CTHMMs and HSMMs were best suited to the data. Testing 

demonstrated that CTHMMs better captured the stylised facts of asset returns, with a 

four-regime model outperforming two or three regime models across all three classes 

of model. 

3.5. Hidden Markov Models 

As shown in the discussion above, regime switching HMMs are a useful tool for 

analysing and capturing the properties of financial data. In this section the operation 

of the HMM is defined and explained. 

The main characteristic of a hidden Markov model is a probability distribution of the 

observation 𝑋 , 𝑡 = 1, … , 𝑇 which is dependent on the states 𝑆  of an unobserved first-

order Markov chain. 

A sequence of discrete random variables {𝑆 : 𝑡 ∈ ℕ}   is said to be a first-order Markov 

chain if, for all of 𝑡 ∈ ℕ, it satisfies the Markov property 

P(𝑆 |𝑆 , … , 𝑆 ) = P(𝑆 |𝑆 )    (1) 

A transition probability matrix (TPM) governs the switching behaviour of the model 

between states.  In a two-state model for example, the TPM would be of the form 

Π =
𝑝 𝑝
𝑝 𝑝      (2) 

with 𝑝 , 𝑖, 𝑗 ∈ {1,2} denoting the probability of being in state 𝑗 at time 𝑡 + 1, given a 

sojourn in state 𝑖 at time 𝑡. The observation 𝑋  has a distribution at time 𝑡 specified by 

P(𝑋 = 𝑥 |𝑆 = 𝑠 ), the conditional or component distributions of the model. A two-

state Gaussian component distribution would give  

𝑥 = 𝜇 + 𝜖 , 𝜖 ~𝑁 0, 𝜎     (3) 
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Where 𝜇 ∈ {𝜇 , 𝜇 } and 𝜎 ∈ {𝜎 , 𝜎 }. To estimate the parameters of the HMM an 

expectation-maximization (EM) method such as the Baum-Welch algorithm is 

commonly used (Baum, Petrie et al. 1970). 

Assuming that successive observations are independent, the likelihood function is 

given by: 

𝐿(𝜃) = 𝝅𝑷(𝑥 )Π𝑷(𝑥 )Π … 𝑷(𝑥 )Π𝑷(𝑥 )𝟏  (4) 

where 𝑷(𝑥 ) is a diagonal matrix containing the state-dependent conditional 

distributions as entries and 𝝅 denotes the initial distribution of the Markov chain. After 

parameter estimation of the HMM, the hidden states can be inferred. A common 

technique for determining the most likely sequence of states is the Viterbi algorithm 

(Viterbi 1967). The algorithm calculates the most probable sequence of states using:  

{s , … , s } = argmin
,…,

𝑃(𝑆 = 𝑗 , … , , 𝑆 = 𝑗 |𝑋 = 𝑥 )  (5) 
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Chapter 4. A Flow-based Regime-

Switching Model: Data & Methodology 

4.1. Introduction 

As discussed in the previous chapter, regime-switching models are a useful machine 

learning tool for modelling and analysing financial data. In this chapter, regime-

switching models are applied to analyse international portfolio flow data. 

International portfolio flows describe the actions of informed investors, shareholders, 

and fund managers who add or remove cash from funds and buy or sell individual 

securities with fund deposits. Flows have been shown to be stable and persistent in 

nature. They have also been shown to influence equity returns. Based on the study of 

previous literature relating to regime-switching models, and portfolio flows, several 

methods were used examine the properties of flows using regime-switching models, 

and to examine the behaviour of regime-switching models estimated using flow data. 

To confirm the persistent nature of flows, the transition probability matrices of regime-

switching models estimated using flows were examined and compared with models 

estimated using returns. Examining the switching behaviour of models over time can 

be used to identify interesting features in the data such as structural breaks.  

To examine the relationship between returns and flows, returns data corresponding to 

time periods when certain regimes were present was used to characterise each regime 

based on returns as well as flows. Characteristic returns that are unique for each regime 

and from the overall dataset would indicate that there is a relationship between returns 

and flows. If it is possible to identify characteristic returns using a flow-based regime-

switching model, this information can be used as part of a regime-based asset 

allocation strategy. To test this, a walk-forward out-of-sample test is proposed for a 

portfolio of global equity indices, where long or short positions are taken based on a 

signal from a regime-switching model. 
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4.2. International Portfolio Flows 

International portfolio flows have been shown to affect equity prices in developed and 

emerging markets. Quarterly cross-border equity inflows and outflows were found to 

cause international prices to rise and fall respectively (Tesar and Werner 1994, Tesar 

and Werner 1995, Brennan and Cao 1997). Froot, O’Connell et al. (2001) found that 

flows appear stationary and more persistent than returns, while also finding that flows 

have an influence on returns. Also using daily data, Griffin, Nardari et al. (2004) found 

that equity inflows into a country increase with that country’s stock market returns. 

For small countries, equity flows increase when U.S. and world market returns 

increase, irrespective of local market performance. Froot and Ramadorai (2008) show 

that weekly cross-border equity flows forecast emerging market equity returns as well 

as suggesting that predictions of domestic equity returns using flows are due to 

information rather than price pressure. Froot and Teo (2008) demonstrate that flows 

capture factor investing behaviour among institutional investors across three areas: 

size, value/growth and sector. They also show that factor flows influence and forecast 

returns. Froot, Bhargava et al. (2014) aggregate flows across various asset classes and 

demonstrate that these aggregated flows can be used to measure market sentiment, 

improve the timing of asset class specific risk, and inform asset allocation strategies. 

 

4.3. Flow Data 

The portfolio flows used in this research are provided by State Street Global Markets 

(SSGM). The flows are constructed using proprietary capital allocation data from 

thousands of institutional investor portfolios under custody and administration by 

State Street Corporation (SSC), one of the largest custodian banks in the world with 

US$31.62 trillion assets under custody and US$2.51 trillion assets under management 

(State Street Corporation 10-K, 2019).   

The flow data used is part of a series of Equity Flow Indicators (EFI) developed by 

SSGM, published at daily frequency since March 1998. Flows are available at global 

and regional levels, as well as for countries and industry sectors - regional and country 
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flows were used in this research. Each EFI is comprised of two components, a 

benchmark flow, and an active flow. These two components are summed together to 

give the total flow. The benchmark flow is constructed empirically based on capital 

from fund deposits being allocated to securities according to the weights of existing 

portfolio positions. The active flow is taken as the difference between the total 

observed flow and the benchmark flow. This can be considered as representing actions 

by fund managers that deviate from the benchmark, for example buying or selling 

individual securities with fund deposits.  Therefore, active flows can be considered as 

describing portfolio rebalancing, while benchmark flows describe portfolio resizing. 

Total flows, the sum of the benchmark and active flows is used in this research. Froot, 

O’Connell et al. (2001) contains a detailed analysis and description of the SSC flow 

dataset. 

To measure flows, individual security flows are combined across portfolios and 

measured relative to AUM or market capitalisation. Aggregated flows are created by 

summing the individual security flows across the appropriate country, region or sector.  

The EFI is the ten-day exponentially weighted moving average of these flows. 

The flows used in this research are AUM-weighted, market cap normalized and 

calculated using the following method. 

 

𝑓𝑙𝑜𝑤 , =  ∑ 𝑓𝑙𝑜𝑤 , ,     (6) 

 

𝐹𝑙𝑜𝑤 ,
,

=
,

∑ 𝑓𝑙𝑜𝑤 ,∈ = ,

,
  (7) 

 

Where the AUM-weighted flow for security 𝑠 and fund 𝑓 is calculated at time 𝑡 and 

normalized by the market cap 𝑀𝐶𝑎𝑝 of a given market 𝑚. 
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Cross-border EFI data corresponding to the eight countries and regions shown in Table 

4.3.1 was obtained from SSGM for the time period January 2001 to December 2018 

on a daily frequency. Weekly flows were calculated as the net daily flows for that 

week. Descriptive statistics for daily and weekly flows are shown in Table 4.3.2 and 

Table 4.3.3. 

 

4.4. Price Data 

MSCI Total Return index data was obtained from Thomson Reuters Datastream for 

the corresponding country and regional indices shown in Table 4.3.1 for the time 

period January 2012 to December 2018. Returns were calculated for the indices using: 

𝑟 = log 𝑃 − log 𝑃      (8) 

Descriptive statistics for daily and weekly returns are shown in Table 4.3.2 and Table 

4.3.3. The daily 1-month USD LIBOR was obtained from Thomson Reuters 

Datastream for the time period January 2012 to December 2018. This was used as the 

risk-free rate when calculating the Sharpe ratio for the portfolios in Section 5.2 

 

Table 4.3.1: Investment Universe 

Investment Universe 

 

USA Pacific ex Japan 

UK EM Asia 

Japan EM EMEA 

Europe Ex UK EM Latin America 
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Table 4.3.2: Descriptive statistics of daily returns and daily flow data for the period January 
2012 to December 2018, displaying the mean (𝜇) and standard deviation (𝜎). 

Descriptive statistics of daily returns and flows (Daily Data, 2012-2018) 

     
 Daily Returns (%) Daily Flows 

 𝝁𝒓 𝝈𝒓 𝝁𝒇 𝝈𝒇 

     
Europe ex UK 0.037 0.945 0.015 0.067 
EM Latin America 0.028 0.934 0.018 0.141 
EM EMEA 0.032 0.848 0.029 0.068 
Pacific ex Japan 0.037 0.698 0.005 0.052 
EM Asia 0.030 0.776 0.017 0.059 
USA 0.049 0.798 -0.048 0.078 
UK 0.028 0.836 0.012 0.108 
Japan 0.054 1.221 -0.002 0.059 
     

 

Table 4.3.3: Descriptive statistics of weekly returns and weekly flow data for the period 
January 2012 to December 2018 

Descriptive statistics of weekly returns and flows  
(Weekly Data, 2012-2018) 

     
 Weekly Returns (%) Weekly Flows 

 𝝁𝒓 𝝈𝒓 𝝁𝒇 𝝈𝒇 

     
Europe ex UK 0.162 2.046 0.077 0.314 
EM Latin America 0.109 2.053 0.091 0.673 
EM EMEA 0.132 1.914 0.145 0.310 
Pacific ex Japan 0.157 1.602 0.024 0.245 
EM Asia 0.126 1.904 0.088 0.277 
USA 0.220 1.664 -0.241 0.375 
UK 0.116 1.803 0.059 0.516 
Japan 0.216 2.810 -0.009 0.268 
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4.5. Training & Characterising Regimes using Flow data 

4.5.1. Persistence of Flows vs Log Returns 

Estimating the parameters of a HMM using an EM algorithm gives Π, the transition 

probability matrix (TPM). A TPM with a strong diagonal (Π ≫ 0.5) indicates that 

the regimes will be highly persistent i.e. that the regime inferred by the model at 𝑡 will 

most likely continue at 𝑡 + 1.  

By examining the TPM diagonals of regime-switching models estimated using flow 

data and comparing them to the diagonals for models trained using log returns over 

the same time periods and frequencies we can compare the persistence of flow-based 

and returns-based regimes. Persistent regimes have many practical benefits in terms 

of reducing transaction costs and reducing the need for probability smoothing and 

filtering. 

For example, training a 4-regime HMM over the period January 2012 to December 

2018 using daily cross-border equity flow data, gives a TPM with a very strong 

diagonal (Π > 0.9). 

Π =

0.952 0.000 0.027 0.021
0.002 0.969 0.018 0.012
0.017 0.041 0.919 0.024
0.013 0.023 0.018 0.946

 

When a HMM is trained over the same period January 2012 to December 2018 using 

the daily log returns of the MSCI Total Return indices for the eight regions, the TPM 

has a much weaker diagonal. While Π < 0.5 for three of the regimes, indicating that 

they are persistent, the TPM of the HMM trained on flows is much stronger.   

Π =

0.440 0.075 0.409 0.077
0.088 0.665 0.232 0.015
0.182 0.096 0.0712 0.010
0.124 0.022 0.012 0.842
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TPM diagonal values for regime switching models with k number of regimes were 

estimated using flow data and log returns data on both a daily (Table 5.1.1) and weekly 

(Table 5.1.3) frequency. 

4.5.2. Identifying & Characterising Regimes present in Flow Data 

The Viterbi algorithm was used to infer the most likely sequence of regimes present 

in the flow data. This allowed for the switching behaviour of the models to be analysed 

over time, as well as allowing for the regimes to be characterised based on returns.  

Examining the switching behaviour of the model over time allows us to visually 

inspect the regimes assigned to the data and identify characteristics of the model such 

as structural breaks, where there is a long-term change or permanent change i.e. a 

regime would no longer appear in the model. Initially, the most likely sequence of 

regimes was estimated across the whole dataset, from January 2001 to December 

2018, and there appeared to be a structural break across several models around the end 

of 2011. For the purposes of a regime-based asset allocation strategy, it was decided 

to only train the model on data from January 2012 onwards to avoid scenarios where 

for example, a 4- or 5-regime model would only really have two regimes present after 

2012 to capture the behaviour of the data (discussed further in Section 5.1.2). 

While portfolio flows describe the behaviour of investors, it is their relationship with 

returns that is of most interest. Therefore, based on the periods when a certain regime 

was present, the corresponding returns data for each instrument during those periods 

was used to characterise that regime based on mean returns and standard deviation 

(Section 5.1.3). The presence of unique returns characteristics for each regime would 

allow for an investor to capture excess returns by adjusting their portfolio for the 

presence of that regime. 

4.5.3. Model Selection 

Bayesian information criterion (BIC) and Akaike information criterion (AIC) are both 

model selection criterion based on using the likelihood function to score the model for 

overfitting based on the number of parameters used in the model. 
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Both BIC and AIC penalise the model for increasing the number of parameters in the 

model, as this tends to increase overfitting.  The penalty term is larger with the BIC 

than with the AIC. 

The BIC is defined as: 

𝐵𝐼𝐶 =  −2 log 𝐿 + 𝑝 log 𝑇    (9) 

The AIC is defined as:  

𝐴𝐼𝐶 =  −2 log 𝐿 + 2𝑝          (10) 

Where 𝐿 is the log likelihood for the model, 𝑇 is the number of observations and 𝑝 is 

the number of parameters. 

To test the appropriate number of regimes for use in the regime detection model the 

BIC and AIC were calculated for hidden Markov models as the number of possible 

regimes was increased. The model with the lowest score should be selected.  

 

4.6. A Regime-Based Asset Allocation Strategy 

A HMM was used to infer regimes based on cross-border equity flow data for the eight 

regions in Table 4.3.1. To characterise the regimes based on price movement, mean 

returns were calculated for each regime using MSCI Total Return Index data 

corresponding to the eight regions. To examine the ability of flow-based regimes to 

capture returns, a portfolio was constructed with the eight MSCI indices as assets. A 

long or short position was taken in each asset based on their mean returns for the 

current regime according to the HMM. If flows, and through them, regimes are 

persistent, the positions will capture consistent returns. 

To initially estimate the parameters of the HMM and to characterise the inferred 

regimes based on their mean returns, a training period of January 2012 to December 

2016 was chosen (discussed in Section 4.5.2). The Viterbi algorithm was used to infer 

the most likely sequence of regimes up to the current regime. 
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Beginning with the regimes characterised in the 2012-2016 training period, an out-of-

sample test was implemented from January 2017 to December 2018 using the 

following method which stepped through the data iteratively to exclude future 

information. 

Using flow data from January 2012 up until time 𝑡, calculate the most likely sequence 

of regimes up until the current regime 𝑘. 

The mean return is calculated for every instrument in the portfolio across the time 

periods spent in the current regime: 

 

𝜇 , =
∑ ,,      (11) 

 

Where 𝜇 ,  is the mean return of instrument 𝑖 at time 𝑡 in regime 𝑘,  𝑇  is the time 

spent in regime 𝑘 and 𝑟 ,  is the return of instrument 𝑖 at time 𝑡 in regime 𝑘. 

Based on whether the mean return 𝜇 ,  is positive or negative for the current regime 𝑘 

at time 𝑡, a simple long/short trading signal 𝑀  is assigned to each instrument: 

 

𝑀 = 𝑠𝑖𝑔𝑛 𝜇 ,      (12) 

 

Each instrument in the portfolio is assigned an equal weight. To try and simulate a 

more realistic trading scenario the signal for time 𝑡 is used to determine each weight 

at time 𝑡 + 𝜏, where 𝜏 indicates a time shift. The weights are calculated as follows:  

𝑤 = 𝑀       (13) 
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Where 𝑤  is the weight of instrument 𝑖 held in the portfolio at time 𝑡 + 𝜏, 𝑁 is the 

number of instruments in the asset class and 𝑀  is the regime-based signal from the 

previous time period. 

The return of the portfolio 𝑟  is calculated as: 

𝑟 = ∑ (𝑟 𝑤 )     (14) 

Where 𝑟  is the return of instrument 𝑖 at time 𝑡 + 𝜏. 
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Chapter 5. A Flow-based Regime-

Switching Model: Results 
The results are comprised of two sections. The first section examines the 

characteristics of regime-switching models estimated using flow data. The persistence 

of flow-based regimes is compared to regimes estimated using returns. The switching 

behaviour of flow-based regimes is examined over the period 2001-2018, where the 

existence of persistent regime shifts and structural breaks are noted. Descriptive 

statistics are calculated for individual regimes allowing them to be compared in terms 

of both flows and returns. Model selection criteria and the optimal number of regimes 

are also discussed.  

The second section focuses on the performance of a regime-based asset allocation 

strategy, showing the ability of flow-based regimes to capture excess returns. The 

results of walk-forward out-of-sample tests are given for models estimated using daily 

and weekly flow data. The optimal number of regimes in a model is compared in a 

series of robustness tests. 

 

5.1. Training & Characterising Regimes using Flow Data 

5.1.1. Persistence of Flows vs Returns 

As discussed in section 4.5.1, the diagonal of the transition probability matrix (Π ) 

for a regime-switching model indicates the persistence of the regime i.e. the 

probability of remaining in the same regime at 𝑡 + 1 after being in that regime at 𝑡. 

TPM diagonal values for k-regime models were estimated using flow data and log 

returns data on both a daily (Table 5.1.1) and weekly (Table 5.1.3) frequency. 

Table 5.1.1 and Table 5.1.2 show the TPM diagonals for various regime-switching 

models estimated using daily flow data or daily log returns. The models estimated 

using flow data all showed Π > 0.9, indicating that the flow-based regimes are highly 
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persistent. For the models estimated using log returns, it was observed that as the 

number of regimes increases, the instances where Π <0.5 also increases. While an 

increased number of regimes provide a better fit for the data in terms of capturing 

outliers and heavy-tailed distributions, the transient nature of these regimes are not 

practical in terms of timing and increased transaction costs. Implementing these 

models would most likely require additional filtering and probability smoothing which 

could negate the ability to capture a sudden change in regimes. The persistence of 

flow-based regimes reduces the need for additional filtering and smoothing, 

potentially reducing transaction costs. 

Table 5.1.3 and Table 5.1.4 show the TPM diagonals for regime-switching models 

estimated using weekly data. In general, the values of Π  are lower for the models 

estimated on a weekly frequency compared to those estimated on a daily frequency. 

Intuitively, this makes sense as a change in regimes is more likely to occur between 

time periods on a longer time horizon. However, the observation that flow-based 

regimes are more persistent than regimes estimated using returns still holds true on a 

weekly frequency. 

A. Daily Frequency 

Table 5.1.1: Transition probability matrix diagonals (𝛱 ) for regime switching models with 

k number of regimes. Model parameters estimated using daily flow data for the period January 

2012 to December 2018. 

Transition Probability Matrix Diagonal (𝚷𝐢𝐢) 

Daily Flow Data Models 

 

k-Regime Model Regime (𝒊) 
 1 2 3 4 5 

      

1 1     

2 0.970 0.974    

3 0.966 0.975 0.951   

4 0.952 0.946 0.919 0.969  

5 0.956 0.972 0.922 0.926 0.940 
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Table 5.1.2: Transition probability matrix diagonals (𝛱 ) for regime switching models with 
k number of regimes. Model parameters estimated daily log returns for the period January 
2012 to December 2018. 

Transition Probability Matrix Diagonal (𝚷𝐢𝐢) 

Daily Log Returns Models 

 

k-Regime Model Regime (𝒊) 

 1 2 3 4 5 

      

1 1     

2 0.787 0.918    

3 0.373 0.696 0.815   

4 0.307 0.227 0.699 0.815  

5 0.248 0.812 0.231 0.554 0.199 

      

 

B. Weekly Frequency 

Table 5.1.3: Transition probability matrix diagonals (𝛱 ) for regime switching models with 

k number of regimes. Model parameters estimated using weekly flow data for the period 

January 2012 to December 2018. 

Transition Probability Matrix Diagonal (𝚷𝐢𝐢) 

Weekly Flow Data Models 

 

k-Regime Model Regime (𝐢) 
 1 2 3 4 5 

      

1 1     

2 0.964 0.935    

3 0.968 0.857 0.896   

4 0.762 0.956 0.773 0.876  

5 0.692 0.840 0.931 0.797 0.750 
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Table 5.1.4: Transition probability matrix diagonals (𝛱 ) for regime switching models with 
k number of regimes. Model parameters estimated using weekly log returns for the period 
January 2012 to December 2018. 

Transition Probability Matrix Diagonal (𝚷𝐢𝐢) 

Weekly Log Returns Models 

 

k-Regime Model Regime (𝐢) 

 1 2 3 4 5 

      

1 1     

2 0.599 0.864    

3 0.585 0.329 0.803   

4 0.301 0.652 0.284 0.322  

5 0.241 0.108 0.312 0.527 0.548 

      

 

5.1.2. Model Switching Behaviour & Structural Breaks 

Figures 5.1.1-4 below and Figures A.1.1-6 in Appendix 1, show the posterior 

probabilities over time - the probability that a regime was present at time 𝑡 - for models 

estimated using daily and weekly flow data. During initial analysis of model switching 

behaviour over the period January 2001 to December 2018, a structural break appears 

in the flow data around the end of 2011. After this point certain regimes no longer 

appear to be present and one regime appears to dominate the switching behaviour. 

In the case of a 2-regime model, the model remains in Regime 1 for almost the entire 

period after 2011, rarely switching back to Regime 2, which had been the dominant 

regime from 2008 until 2011 (Figure 5.1.1 & Figure 5.1.2). 

When a 3-regime model is estimated over the same period the model again remains in 

Regime 1 for a long period from late 2011 to 2016, with Regime 2 being the dominant 

period from 2008 to 2011 (Figure  A.1.1 & Figure  A.1.2, Appendix 1). 

The 4-regime and 5-regime models also appear to exhibit similar behaviour, remaining 

in Regime 1 for a long period from late 2011 to 2016. However, the period from 2008 

to 2011 is further decomposed into Regimes 2 and 3 in the 4-regime model (Figure  
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A.1.3 & Figure  A.1.4, Appendix 1), and Regimes 2, 3 and 4 in the 5-regime model 

(Figure A.1.5 & Figure  A.1.6, Appendix 1). 

A possible economic explanation that could be assigned to the persistent presence of 

certain regimes during the period 2008 to 2011, is the Global Financial Crisis. The 

period after this from 2011 to 2016 where there is an apparent structural break, could 

possibly be related to factors such as monetary policy and quantitative easing after the 

Financial Crisis. These, or other possible explanations for regime switching behaviour 

were not verified or explored further but could provide an interesting topic for further 

research. 

Figure 5.1.1: Regime posterior probabilities over time for a 2-regime model estimated using 
daily data. 
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Figure 5.1.2: Regime posterior probabilities over time for a 2-regime model estimated using 
weekly data. 

 

 

As increasing the number of regimes appeared to only decompose the period from 

2008 to 2011 further, with the models remaining in Regime 1 for the majority of the 

period from late 2011 onwards, it was decided to only estimate model parameters 

using flow data from January 2012 onwards. This allowed for greater detail when 

examining the behaviour of portfolio flows from 2012 to 2016, avoiding scenarios 

where for example, a 4- or 5-regime model would only really have two regimes present 

after 2012.  

Figure 5.1.3 and Figure 5.1.4 show 4-regime models estimated using daily and weekly 

flow data from January 2012 to December 2018. Regime switching behaviour, which 

was not observed in the previous models, is observed during the period 2012 to 2016. 

This is a positive result from the perspective of a regime-based asset allocation 

strategy, as being unable to observe any changes in the data for a 4 year period could 
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lead to underperformance if, through inaction, the strategy failed to capture excess 

returns. It was also observed that regime switching was more frequent in the daily 

model compared to the weekly model. The daily model is estimated on a higher 

frequency and has more data available (1825 days vs 364 weeks) than the weekly 

model making it more sensitive to changes. 
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Figure 5.1.3: Regime posterior probabilities over time for a 4-regime model estimated using 
daily data from January 2012 onwards. 
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Figure 5.1.4: Regime posterior probabilities over time for a 4-regime model estimated using 
weekly data from January 2012 onwards. 
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5.1.3. Characteristics of Regimes 

Regime-switching models were estimated using daily and weekly flow data from 

January 2012 to December 2018. The switching behaviour of these models is shown 

in Figure 5.1.3 and Figure 5.1.4.  Descriptive statistics for this data, along with  daily 

and weekly returns for the same period are shown in Table 4.3.2 (daily) and Table 

4.3.3 (weekly). The parameters of the models estimated are shown in Table 5.1.5 and  

Table 5.1.7. The conditional distributions described in these tables show distinct 

values for each regime, separate from each other and from the original flow data. 

Descriptive statistics for daily and weekly returns during the periods when each regime 

was present in the model are shown in Table 5.1.6 and Table 5.1.8, respectively. 

Again, the values measured are distinct for each regime. This indicates that flow-based 

regimes exhibit characteristic returns, which could be used as part of a regime-

switching asset allocation strategy. Results for 4-regime models are shown as they 

were found to be the best performing models in a series of robustness tests (Section 

5.2.3). 

A. Daily Frequency 

Table 5.1.5: Parameters for a 4-regime Markov-switching model with Gaussian component 
distributions estimated using daily flow data from January 2012 – December 2018, where 𝜇  
and 𝜎  parameterize the conditional distributions respectively. 

Parameters for a 4-regime switching model estimated using daily flow data 
(Daily Data, 2012-2018) 

         

 Regime 1 Regime 2 Regime 3 Regime 4 

 𝝁𝒇𝟏 𝝈𝒇𝟏 𝝁𝒇𝟐 𝝈𝒇𝟐 𝝁𝒇𝟑 𝝈𝒇𝟑 𝝁𝒇𝟒 𝝈𝒇𝟒 

         
Europe ex UK 0.019 0.029 -0.026 0.093 0.020 0.062 0.036 0.082 
EM Latin America 0.018 0.071 0.034 0.145 -0.156 0.147 0.105 0.141 
EM EMEA 0.026 0.046 0.008 0.072 0.002 0.078 0.064 0.077 
Pacific ex Japan 0.011 0.029 -0.038 0.067 -0.019 0.042 0.038 0.049 
EM Asia 0.012 0.039 0.017 0.086 0.011 0.075 0.030 0.054 
USA -0.008 0.043 -0.133 0.081 -0.040 0.049 -0.061 0.085 
UK 0.021 0.042 -0.098 0.164 -0.001 0.069 0.081 0.089 
Japan 0.009 0.031 -0.048 0.060 -0.024 0.079 0.026 0.058 
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Table 5.1.6: Descriptive statistics for the daily returns associated with the 4-regime Markov-
switching model with parameters described in Table 5.1.5, where 𝜇  and 𝜎  describe the 
mean returns and standard deviations for the daily returns in each regime respectively. 

Descriptive statistics of daily returns (%) in each regime  
(Daily Data, 2012-2018) 

         
 Regime 1 Regime 2 Regime 3 Regime 4 

 𝝁𝒓𝟏 𝝈𝒓𝟏 𝝁𝒓𝟐 𝝈𝒓𝟐 𝝁𝒓𝟑 𝝈𝒓𝟑 𝝁𝒓𝟒 𝝈𝒓𝟒 
         

Europe ex UK 0.035 0.986 0.028 0.919 -0.059 0.849 0.102 0.933 
EM Latin America -0.023 0.897 0.083 0.936 -0.050 0.873 0.122 1.014 
EM EMEA 0.001 0.830 0.070 0.834 -0.045 0.808 0.099 0.904 
Pacific ex Japan 0.003 0.723 0.064 0.636 -0.020 0.678 0.106 0.702 
EM Asia -0.013 0.760 0.060 0.724 -0.030 0.806 0.116 0.816 
USA 0.027 0.793 0.051 0.773 -0.037 0.814 0.134 0.808 
UK 0.009 0.839 0.063 0.843 -0.071 0.772 0.091 0.854 
Japan 0.046 1.203 0.028 1.326 -0.105 1.099 0.176 1.221 
         

 

 

B. Weekly Frequency 

Table 5.1.7: Parameters for a 4-regime Markov-switching model with Gaussian component 
distributions estimated using weekly flow data from January 2012 – December 2018 

Parameters for a 4-regime switching model estimated using daily flow data 
(Weekly Data, 2012-2018) 

         
 Regime 1 Regime 2 Regime 3 Regime 4 

 𝝁𝒇𝟏 𝝈𝒇𝟏 𝝁𝒇𝟐 𝝈𝒇𝟐 𝝁𝒇𝟑 𝝈𝒇𝟑 𝝁𝒇𝟒 𝝈𝒇𝟒 

         
Europe ex UK 0.117 0.138 -0.171 0.434 0.182 0.236 0.110 0.385 
EM Latin America 0.110 0.371 -0.272 0.893 -0.693 0.477 0.499 0.624 
EM EMEA 0.165 0.234 -0.031 0.373 0.100 0.191 0.222 0.364 
Pacific ex Japan 0.060 0.142 -0.210 0.328 -0.037 0.278 0.108 0.227 
EM Asia 0.077 0.192 0.160 0.473 0.067 0.132 0.075 0.277 
USA -0.018 0.192 -0.525 0.343 -0.154 0.193 -0.459 0.421 
UK 0.115 0.228 -0.597 0.724 0.023 0.275 0.324 0.471 
Japan 0.070 0.148 -0.230 0.271 -0.091 0.303 0.011 0.322 
         

 



60 
 
 

 

Table 5.1.8: Descriptive statistics for the weekly returns associated with the 4-regime Markov-
switching model with parameters described in Table 5.1.7, where 𝜇  and 𝜎  describe the 
mean returns and standard deviations for the weekly returns in each regime respectively 

Descriptive statistics of weekly returns (%) in each regime (Weekly Data, 2012-2018) 

         
 Regime 1 Regime 2 Regime 3 Regime 4 

 𝝁𝒓𝟏 𝝈𝒓𝟏 𝝁𝒓𝟐 𝝈𝒓𝟐 𝝁𝒓𝟑 𝝈𝒓𝟑 𝝁𝒓𝟑 𝝈𝒓𝟑 
         

Europe ex UK 0.350 2.161 0.004 1.997 -0.282 1.876 0.113 1.911 
EM Latin America 0.060 2.197 0.250 2.043 -0.304 1.537 0.251 1.963 
EM EMEA 0.205 1.915 0.162 1.983 -0.372 1.718 0.178 1.915 
Pacific ex Japan 0.209 1.651 0.173 1.315 0.036 1.677 0.111 1.634 
EM Asia 0.097 1.863 0.398 1.788 -0.166 1.830 0.124 2.027 
USA 0.303 1.631 0.095 1.972 -0.056 1.466 0.255 1.582 
UK 0.186 1.862 0.138 1.715 -0.303 1.691 0.143 1.776 
Japan 0.446 2.864 -0.162 2.766 -0.299 2.423 0.245 2.830 
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5.1.4. Model Selection 

Figure 5.1.5 shows the BIC and AIC plotted as the number of regimes increases. As 

the number of possible regimes reaches 15, the BIC begins to increase, showing that 

this is the minimum score.  The AIC continues to decrease as the penalty term used is 

smaller and takes less effect. The minimum score used is only found as the number of 

regimes increases past 30. 

Figure 5.1.5: BIC & AIC calculated for an increasing number of regimes. 

 

In theory, the number of regimes could be increased close to 15 based on the BIC 

without overfitting the model, however this is not practical in terms of the 

“explainability” of the model, also leading to stability issues when attempting to 

characterise the regimes based on returns. 

The descriptive statistics for each regime are quite distinct, showing that an increased 

number of regimes has allowed the model to highlight more differences in the data. 

However, increasing the number of regimes also raises the issue of stability as the 

returns data used to calculate the descriptive statistics is divided into smaller and 

smaller portions for each regime. It was found in a series of robustness tests, that 
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increasing the number of regimes past 4 decreases the stability of the model for 

characterising returns. This agrees with the finding of Gatumel and Ielpo (2014) who 

found that between two and five regimes were needed to model asset returns and 

Nystrup, Madsen et al. (2015) who found that four-regime models outperformed two- 

and three-regime models. 

 

5.2. Testing a Regime-Based Asset Allocation Strategy 

Using a portfolio of eight global indices a regime-based asset allocation strategy was 

tested, as described in Section 4.6. An out-of-sample walk-forward test was performed 

in an iterative fashion to obtain results which were as realistic as possible. Results are 

displayed below for a daily and weekly regime models. The main results displayed 

below are for 4-regime models, as this was deemed the best performing model in terms 

of stability in a series of robustness tests discussed in Section 5.2.3. 

5.2.1. Daily Frequency 

Two versions of the model were trained, with daily data up until time 𝑡 used to 

determine the portfolio positions at time 𝑡 + 𝜏.  The first model has 𝜏 = 1, with the 

predicted regime at time 𝑡 determining portfolio positions 1 day ahead. The second 

model has  𝜏 = 3, with the predicted state at time 𝑡 determining the portfolio positions 

3 days ahead. The performance of the regime-based strategy was compared to a static 

equal weight portfolio containing the same instruments as in the regime-based 

portfolio, as well as the MSCI World Total Return Index. 

Table 5.2.1 shows key performance statistics - annualized return (AR), annualized 

volatility (Vol) and Sharpe Ratio (SR) - generated by the trading strategy in an out-of-

sample test from January 2017 to December 2018.  

The performance statistics are compared to a buy and hold strategy and to the MSCI 

World Total Return Index for the same period.  
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Table 5.2.1: Performances of strategies and indices from Jan 2017 to Dec 2018, daily data.   

Strategy AR (%) Vol (%) SR 

    
 Regime Model (𝜏 = 1)   16.23 7.55 1.84 
 Regime Model (𝜏 = 3)  14.97 7.46 1.69 

Buy & Hold 5.89 8.07 0.45 
MSCI World Index  4.77 9.75 0.25 

    
 

The 1-day lag Regime Model realized the highest AR and SR. The 3-day lag Regime 

model had a slightly lower AR and SR but both strategies outperformed the 

benchmarks used for comparison across all performance indicators.  The strong 

performance of the 3-day lag model demonstrates that returns captured using flow-

based regimes are persistent, even if there is a delay in adjusting portfolio positions 

after the regime change.  

The daily cumulative returns graphs show the ability of the regime models to identify 

periods where there is a change in regimes, and to adjust the long-short portfolio 

positions based on this to capture excess returns. Again, we see that the 1-day lag 

model (Figure 5.2.1) performs better than the 3-day lag model (Figure 5.2.2) as it is 

able to react more quickly to changes in market conditions, however the fact that the 

3-day lag model is still able to capture excess returns shows that the changes in regime 

are relatively persistent. 
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Figure 5.2.1: 1-day lag regime model daily cumulative returns (January 2017 – December 
2018) 
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Figure 5.2.2: 3-day lag regime model daily cumulative returns (January 2017 – December 
2018) 
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5.2.2. Weekly Frequency 

The model was trained with weekly data up until time t used to determine the portfolio 

positions at time 𝑡 + 𝜏.  The model had 𝜏 = 1, with the predicted regime at time 𝑡 

determining portfolio positions 1 week ahead. Models tested with 𝜏 > 1 did not 

perform well. Intuitively, this makes sense as there would be at least a two-week delay 

on any action taken. The performance of the regime-based strategy was compared to 

a static equal weight portfolio containing the same instruments in the regime-based 

portfolio, as well as the MSCI World Total Return Index. 

Table 5.2.2 shows key performance statistics - annualized return (AR), annualized 

volatility (Vol) and Sharpe Ratio (SR) - generated by the trading strategy in an out-of-

sample test from January 2017 to December 2018.  

The performance statistics are compared to a buy and hold strategy and to the MSCI 

World Total Return Index for the same period. 

Table 5.2.2: Performances of strategies and indices from Jan 2017 to Dec 2018, weekly data.   

Strategy AR 
(%) 

Vol 
(%) 

SR 

    
 Regime Model (𝜏 = 1)   10.37 7.88 1.05 

Buy & Hold 3.77 8.35 0.09 
MSCI World Index  3.88 10.41 0.10 

    
 

The weekly model had a lower AR and SR when compared to the daily models but 

still outperformed the benchmarks used for comparison across all performance 

indicators.  This strong performance indicates again that flow-based regimes are 

persistent and can be used to capture excess returns on higher and lower time frames. 

The cumulative returns graph in Figure 5.2.3 shows the ability of the weekly regime 

model to identify changes in regimes and that while the weekly model is slower to 

react to changes compared to the daily models, adjusting positions on a weekly basis 

outperforms a static buy and hold strategy. 
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Figure 5.2.3: 1-week lag regime model weekly cumulative returns (January 2017 – December 
2018) 
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5.2.3. Robustness Tests 

As the estimation of model parameters is an unsupervised process, there can be some 

variation in the regimes assigned to each period. To test the performance and stability 

of the daily and weekly models over a number of regimes, the model testing and 

training was repeated a number of times for each regime to determine the stability of 

the results. The results of these stability tests are given as a 95% confidence interval 

for the annualized return of the model. 

The average annualized returns for the daily and weekly models, and the confidence 

intervals for those figures are shown in Table 5.2.3, Table 5.2.4 and Table 5.2.5.  

LIBOR was used as the risk-free rate when calculating the Sharpe Ratio. The results 

are compared to a Buy & Hold strategy over the same period, as well as the MSCI 

Total Return World Index.  

For both daily and weekly results, each model was re-tested 100 times. The 4-regime 

model was the best performing model, both in terms of returns and standard deviation. 

Both daily and weekly models outperformed the Buy & Hold and MSCI World Index 

in terms of annualized returns and volatility, with the 4-regime model being the highest 

performing in terms of returns and stability on both daily and weekly frequencies. As 

the number of regimes increases, the confidence interval also increases, meaning that 

there is added uncertainty in each model’s predictions.  

Table 5.2.3: Daily model  (𝜏 = 1) performance (January 2017 – December 2018, 100 tests) 

 4 Regime 
Model 

5 Regime 
Model 

6 Regime 
Model 

7 Regime 
Model 

Buy 
 & 

Hold 
 

MSCI 
World 
Index 

Annualized 
Returns (%) 

16.23 
 

15.53 16.88 
 

16.22 5.89 4.77 

95% Confidence 
Interval (±%) 

1.88 1.89 2.41 3.04 - - 

Volatility (%) 7.55 7.12 7.31 7.15 8.07 9.75 

Sharpe Ratio 1.84 1.84 2.00 1.89 - - 
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Table 5.2.4: Daily model (𝜏 = 3) performance (January 2017 – December 2018, 100 tests) 

 4 Regime 
Model 

5 Regime 
Model 

6 Regime 
Model 

7 Regime 
Model 

Buy 
& 

Hold 
 

MSCI 
World 
Index 

Annualized 
Returns (%) 

14.97 
 

10.58 12.39 11.18 5.89 4.77 

95% Confidence 
Interval (±%) 

2.06 2.30 2.12 3.53 - - 

Volatility (%) 7.46 7.46 7.62 7.34 8.07 9.75 

Sharpe Ratio 1.69 1.84 1.37 1.24 0.45 0.25 

 

 

Table 5.2.5: Weekly model (𝜏 = 1) performance (January 2017 – December 2018, 100 tests) 

 4 Regime 
Model 

5 Regime 
Model 

6 Regime 
Model 

7 Regime 
Model 

Buy 
& 

Hold 
 

MSCI 
World 
Index 

Annualized 
Returns (%) 

10.37 
 

9.64 11.40 9.93 3.77 3.88 

95% Confidence 
Interval (±%) 

1.79 2.60 2.84 3.40 - - 

Volatility (%) 7.88 7.93 7.92 7.65 8.35 10.41 

Sharpe Ratio 1.05 0.97 1.20 1.03 0.9 0.10 
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Chapter 6.  Conclusion 
This thesis was focused around two main research objectives. The first objective was 

to explore the growing applications of machine learning in investing, specifically 

within the areas of quantitative finance.  

A review of the academic literature demonstrated that machine learning enables deeper 

financial analysis and research partly by allowing for the modelling of complex non-

linear relationships in financial data. Machine learning also provides a means to 

analyse new forms of alternative data such as news, earnings calls and social media 

activity. There is also potential to innovate backtesting and strategy verification 

methodologies, through the development of new machine learning-based testing 

methods and performance metrics. The development and continuous improvement of 

programming languages and frameworks has allowed a wide range of algorithms and 

approaches to be used when applying machine learning across various areas within 

finance.  

The above findings are valuable as they provide an understanding of how the use of 

machine learning has developed within quantitative finance. This could prove useful 

to both researchers and investors looking to apply machine learning within their own 

work, as well as providing a solid foundation for the second research objective in this 

thesis. 

The second research objective was to demonstrate how machine learning can be used 

in the investment process to extract information from international portfolio flow data. 

The approach chosen was to construct regime-switching models, a machine learning 

method which has been successfully used to model and capture the behaviour of 

returns. The parameters of hidden Markov models were estimated using portfolio flow 

data from eight global regions. Examining the estimated parameters showed that the 

models were able to capture characteristics of the flow data which had previously been 

found in the literature. The values of the transition probability matrix diagonals 

confirmed that the models had captured the persistence of portfolio flows compared 
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to returns. It was possible to characterise each regime based on their returns, by 

examining periods when certain regimes were present over time. Each regime was 

shown to have unique characteristic returns, in line with previous literature which 

found a relationship between flows and equity returns.  

By examining the switching behaviour of the models, certain persistent regime shifts 

and structural breaks were found. Flow data describes the behaviour of informed 

investors, and these structural breaks were consistent across models with varying 

numbers of regimes, and on both daily and weekly frequencies. It could be possible 

that regime-switching models trained using flow data capture fundamental shifts in 

investor behaviour, for example due to the Great Financial Crisis, or quantitative 

easing policies. However, further research would be required to confirm this. 

Based on these findings, a proof-of-concept regime-based asset allocation strategy was 

constructed, with hidden Markov models estimated using flow data being used to 

define regimes, which were then characterised based on their mean returns. In an out-

of-sample walk-forward test, long or short positions were adjusted in eight MSCI 

country and regional indices based on the mean return characteristics of the current 

regime determined by the hidden Markov model. It was found that the regime-based 

asset allocation strategy significantly outperformed a buy and hold strategy as well as 

the MSCI World Index over the test period across all performance metrics used. This 

finding held true on models trained on both daily and weekly frequencies. It was also 

found that 4-regime models gave the most stable performance during the test period 

in a series of robustness tests over daily and weekly frequency. 

By using hidden Markov models, an unsupervised machine learning technique, it was 

possible to extract information from international portfolio flow data, confirming 

certain properties of the data found in the literature. Using this information to construct 

a profitable proof-of-concept machine learning based trading strategy demonstrates 

how this approach can aid and improve the investment process. 

There are several areas where this research could be continued. The appearance of 

structural breaks and persistent regime shifts which occur seemingly in conjunction 
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with periods of notable economic and financial change warrants further research. As 

flows capture the behaviour of informed investors, further research could examine 

whether regime-switching models can capture investor behaviour as during crisis 

situations or during policy changes. While this research focused on equity flows, 

including data from other asset classes could also prove useful in capturing investor 

behaviour. Most dynamic asset-allocation strategies focus on the adjustment of 

allocations between equities, bonds, and cash. A regime-switching model which 

included flows in bonds, currencies and other asset classes would give greater insight 

into investor behaviour and could result in a more accurate model. Similarly, the 

parameters of the hidden Markov models used in this research assumed Gaussian 

distributions. Other distributions such as student-t could potentially provide a better 

fit for the data. 

Both research objectives were achieved in this thesis, the literature review provides an 

overview of the applications of machine learning in finance, while the regime-

switching model demonstrates a practical application of machine learning for 

extracting information from financial data. Taken as a whole, the research explores 

how machine learning has developed as a tool for financial analysis and demonstrates 

its usefulness by capturing key information from a financial dataset and using it to 

improve the investment process. 
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Appendix 1: Model Switching Behaviour  
This appendix contains figures showing the models posterior probabilities over time - 

the probability that a regime was present at time 𝑡 - for models estimated using daily 

and weekly flow data over the period January 2001 to December 2018. 

Section 5.1.2 contains figures describing the switching behaviour of 2-regime models 

from January 2001 to December 2018, where a structural break appears in the flow 

data around the end of 2011. After this point certain regimes no longer appear to be 

present and a certain regime appears to dominate the switching behaviour. This 

appendix contains additional figures for 3-, 4-, and 5-regime models, demonstrating 

similar switching behaviour over the same period 

When a 3-regime model is estimated over the same period the model again remains in 

Regime 1 for a long period from late 2011 to 2016, with Regime 2 being the dominant 

period from 2008 to 2011 (Figure  A.1.1, Figure  A.1.2) 

The 4-regime and 5-regime models also appear to exhibit similar behaviour, remaining 

in Regime 1 for a long period from late 2011 to 2016. However, the period from 2008 

to 2011 is further decomposed into Regimes 2 and 3 in the 4-regime model (Figure  

A.1.3 & Figure  A.1.4), and Regimes 2, 3 and 4 in the 5-regime model (Figure A.1.5 

& Figure  A.1.6). 

As discussed in Section 5.1.2, a possible economic explanation that could be assigned 

to the persistent presence of certain regimes during period 2008 to 2011, is the Global 

Financial Crisis. The period after this from 2011 to 2016 where there is an apparent 

structural break, could possibly be related to factors such as monetary policy and 

quantitative easing after the Financial Crisis. These, or other possible explanations for 

regime switching behaviour were not verified or explored further but could provide an 

interesting topic for further research. 
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Figure A.1.1: Regime posterior probabilities over time for a 3-regime model estimated using 
daily data. 

 



85 
 
 

 

Figure A.1.2: Regime posterior probabilities over time for a 3-regime model estimated using 
weekly data. 
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Figure A.1.3: Regime posterior probabilities over time for a 4-regime model estimated using 
daily data. 
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Figure A.1.4: Regime posterior probabilities over time for a 4-regime model estimated using 
weekly data. 
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Figure A.1.5: Regime posterior probabilities over time for a 5-regime model estimated using 
daily data. 
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Figure A.1.6: Regime posterior probabilities over time for a 5-regime model estimated using 
weekly data. 
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Appendix 2: ICEFR 2019 Conference 

Paper 
This appendix contains a conference paper, presented at the 8th International 

Conference of Economics and Finance Research, held in Lyon, France from June 18th 

to 21st 2019. This research paper was the basis for Chapter 2 of the thesis. This paper 

will also be published in the International Journal of Trade, Economics and Finance.  
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Abstract — Recent advances in machine learning are finding commercial applications across many 

industries, not least the finance industry. This paper focuses on applications in one of the core functions 

of finance, the investment process. This includes return forecasting, risk modelling and portfolio 

construction. The study evaluates the current state of the art through an extensive review of recent 

literature. Themes and technologies are identified and classified, and the key use cases highlighted. 

Quantitative investing, traditionally a leading field in adopting new techniques is found to be the most 

common source of use cases in the emerging literature. 

 
Index Terms—Machine Learning, Quantitative Finance, Portfolio Construction, Return Forecasting  
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INTRODUCTION 

 
Machine Learning (ML) is a subfield of 

Artificial Intelligence (AI) that uses 
statistical techniques that provide computer 
models with the ability to learn from a 
dataset, allowing the models to perform 
specific tasks without explicit programming 
[1]. ML is being applied to improve function 
across the finance industry in a wide range 
of areas including, for example, fraud 
detection, payment processing and 
regulation. This research evaluates current 
and potential applications of machine 
learning to the investment process. In 
particular, this includes the development of 
ML applications for return forecasting, 
portfolio construction and risk modelling. 

 
The first widespread commercial use 

cases of artificial intelligence were “expert 
systems”, originating in Stanford in the 
1960s [2] and popularised in the 1980s and 
1990s. Expert systems were designed to 
solve complex problems in a specific field, 
in a manner similar to a subject matter 
expert. Original expert systems were rule-
based programs developed in languages 
such as LISP and Prolog. In recent years, 
there has been a significant drop in interest 
in classic expert systems, as they are 
superseded by systems incorporating 
artificial intelligence [3]. AI systems are 
systems that replicate human thought 
processes. [4]. Many of these systems are 
advertised today as cognitive computing 
systems. 
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    Cognitive computing describes a 
computer system which mimics human 
cognitive process in some way, cognitive 
processes are those that allow individuals to 
remember, think, learn and adapt [5]. The 
term has gained recognition in the public 
domain in recent years, due in large to the 
introduction of Watson, IBM’s cognitive 
computing system. These systems are 
constructed by combining computer science 
with statistical and ML techniques 
developed over the last century [1]. Watson, 
in its original form, was a question 
answering computing system, responding to 
questions posed in natural language. It was 
introduced on the television quiz show 
“Jeopardy!” – where it defeated two of the 
show’s most celebrated contestants in the 
“IBM Challenge” [6]. Large-scale systems 
such as Watson combine many techniques 
[6] to provide “augmented human 
intelligence” services to users [7]. However, 
the use of individual techniques, for 
example deep learning neural networks or 
reinforcement learning, has found 
significant success across industry and 
applications [8-10]. 

 
Recently, there has been a proliferation of 

ML techniques and growing interest in their 
applications in finance, where they have 
been applied to sentiment analysis of news, 
trend analysis, portfolio optimization, risk 
modelling among many use cases supporting 
investment management. This paper 
explores the potential of ML to enhance the 
investment process. We begin with a broad 
survey of the area to determine the main 
programming languages, frameworks and 
use cases for ML from the perspective of the 
financial industry. We then focus on ML and 
its potential applications to quantitative 
investment. We look at research that has 
applied ML to the investment process, 
analysing the technologies used, the 
functions of the applications, and evidence 
of potential to improve investment 
outcomes. Our findings are relevant to both 
academics and practitioners with interest in 
investment management, and in particular 
quantitative investment, by providing a 
detailed discussion of the latest 
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technologies, their potential uses, and 
probability of successful application. 

 
The paper is organized as follows. In 

Section II, we provide an overview of the 
development of the area as a background for 
the discussion, this includes the emergence 
of ML, common algorithms and 
methodologies, and a review of the 
evolution and theory of quantitative 
investing We then describe the research 
methods in Section III. Section IV provides 
a detailed description of the current state of 
the art in the application of ML to 
investment. We conclude with a discussion 
of the evidence presented in Section V.  

 

BACKGROUND  

Machine Learning 
 
Although variations of ML have long been 
around, the discipline has developed rapidly in 
recent years. Many factors have combined to 
derive this development. Increased computer 
power has made real time processing feasible 
for many complex tasks, increased 
connectivity has driven innovation and 
automation in the delivery of traditional tasks 
and services, the potential to extract useful 
information from the vast amounts of data 
generated via the internet (Big Data) has led to 
novel analytical methods. Alongside this, the 
development of easy to use programming 
languages, such as Python and R, and ML 
focused frameworks such as TensorFlow, has 
contributed to the wide investigation of ML 
applications in industry. It has already found 
commercial application across multiple 
industries from automated trading systems in 
the finance industry to the health sector where 
ML algorithms assist decision making in 
fertility treatments [11]. The success of these 
applications is driving commercial research 
into further applications. 
 

Common ML Approaches and Algorithms 

 
Three main approaches to training ML 
algorithms are recognised; supervised 
learning, unsupervised learning and 
reinforcement learning. Supervised learning 

generates a function that maps inputs to 
outputs based on a set of training data. The 
algorithm infers a function linking each set of 
inputs with the expected, or labelled, output in 
the training set. Unsupervised learning finds 
hidden patterns in and draws inferences from 
unlabelled data. Unsupervised learning 
provides inputs to models, but does not specify 
an expected set of outcomes, the outcomes are 
unlabelled. Reinforcement learning enables 
algorithms to learn by trial and error, based on 
feedback from past experiences. Like 
unsupervised learning, it does not require 
labelled data. A hybrid system, semi-
supervised learning, combines supervised and 
unsupervised learning, using both labelled and 
unlabelled data to train models. This is useful 
where there is limited data or the process of 
labelling data could introduce biases.  
 
The main research areas in supervised learning 
are regression and classification (specifying 
the category or class to which something 
belongs), this approach is often used in 
developing predictive models. Regression 
techniques predict continuous responses using 
algorithms such as linear regression, decision 
trees and Artificial Neural Networks (ANNs). 
Classification techniques predict discrete 
responses using algorithms such as logistic 
regression, Support Vector Machines (SVMs) 
or K-Nearest Neighbors (KNN). The main 
research area in unsupervised learning is 
clustering. Clustering refers to grouping 
objects together, such that objects that are put 
in the same group are more similar to each 
other than objects in other groups.  
 
Artificial neural networks have become a key 
technology in the development of ML. They 
were first proposed over 75 years ago, inspired 
by the workings of the human brain [12]. They 
are a collection of algorithms that replicate the 
process of a biological brain at the neuron level 
[1]. 
 
There are a number of different classes of 
artificial neural networks, including 
Convolutional Neural Networks (CNNs), 
Recurrent Neural Networks (RNNs), and 
recursive neural networks, among others. 
CNNs are ideal for things such as image 
classification and video processing because 
they’re able to identify patterns by focusing on 
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fragments of images. RNNs are better for 
dealing with things like speech or text analysis 
because they use time-series information, such 
as monthly stock price figures to predict next 
month’s figure. GANs have garnered much 
interest in recent years since they were first 
introduced in 2014 [13]. GANs are comprised 
of two neural networks that compete against 
each other. One neural network generates data 
similar to the training dataset, and the other 
tries to evaluate whether data is from the 
training dataset or generated by the generative 
network. 
 
Aside from neural networks other well-known 
ML algorithms include SVMs, KNN and other. 
SVMs, used for classification and regression 
analysis, involve finding a hyperplane which 
minimizes the distance between a set of data 
points in an n-dimensional space. Bayesian 
networks are built from probability 
distributions and use probability laws for 
prediction and anomaly detection. KNN selects 
the most similar data points in the training data, 
this allows the algorithm to classify future data 
inputs in the same way. Some techniques are 
better suited to particular tasks than others. 
This research partly seeks to contribute to this 
area of knowledge. It is important to evaluate 
the effectiveness of certain algorithms, to assist 
in choosing appropriate algorithms for specific 
tasks in future applications and studies. 
 
The Evolution of Quantitative Investing 
 
Graham and Dodd’s Security Analysis, 
published in 1934 following the Wall Street 
Crash of 1929 is the seminal work on 
fundamental investing and remains in 
publication today [14]. It is one of the first 
books to distinguish investing from 
speculation, advocating the use of a systematic 
framework for analysing securities for stock 
selection. 
 
A systematic approach to portfolio 
construction and risk analysis was presented in 
Portfolio Selection [15], published in 1952. In 
this, Markowitz provides a mathematical 
definition of risk as the standard deviation of 
return. The approach focused on maximizing 
portfolio performance by optimizing the trade-
off between risk and return. This was the 

foundation of modern portfolio theory, 
providing an analytical framework for the 
construction and analysis of investment 
portfolios [16], [17]. 
 
A quantitative approach to market analysis 
gained popularity as advances in computing 
technology made the collection and analysis of 
large amounts of market data possible. This 
allowed the development and verification of 
market models on a scale not previously 
possible, contributing to significant advances 
in the understanding of financial markets, 
including the Capital Asset Pricing Model 
(CAPM) [18]-[21] and Efficient Market 
Hypothesis (EMH) [22].  
 
In 1973, Fama and MacBeth used the Center 
for Research in Security Prices (CRSP) 
financial dataset (one of the first of its kind) to 
perform an empirical analysis of the CAPM 
[23]. They showed that the CAPM provided a 
good quantitative approximation of the 
behaviour of security prices while setting a 
standard for empirical cross-sectional analysis 
of market data [23]. 
 
The empirical support for the EMH, enhanced 
by the success of market indices, such as the 
S&P 500, led to the dominant view, 
particularly in academia, that active investing 
was futile, as it was impossible to beat a passive 
investment. In comprehensive literature 
reviews, [16] and [17] provide evidence that 
research and empirical evidence that 
challenged the CAPM and EMH was strongly 
discouraged. At the same time many examples 
of research that argued that although difficult, 
it is possible for active management to beat 
passive management, by exploiting market 
inefficiencies not covered by the CAPM and 
EMH.  Strategies based on risk factor models, 
first explored by Rosenberg [24] and Ross [25] 
in the 1970s, surged in popularity [26] after the 
publication of the Fama-French three-factor 
model [27]. 
 
From Markowitz portfolio optimization to 
CAPM, EMH and factor models more recently, 
quantitative investors have shown that they are 
willing to embrace new techniques and 
strategies. A key argument for applying ML 
techniques to financial problems is that ML 
methods capture non-linear relationships [28] 
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in the data. Non-linear methods are required to 
model data where outputs are not directly 
proportional to the inputs [29] and many 
traditional analysis methods assume a linear 
relationship, or a non-linear model that can be 
simplified to a linear model. Typical examples 
of well-established non-linear ML methods 
include KNN, and ANN [20]. 
 
ML has been applied with positive results 
across many areas of quantitative investing, 
including portfolio optimization [30], [31], 
factor investing [32], bond risk predictability 
[29], derivative pricing, hedging and fitting 
[33], and back-testing [34]. The results section 
contains a comprehensive summary of papers 
where ML techniques are applied to areas of 
quantitative finance. 
 

METHODOLOGY 

 
Initially, a broad search was conducted to 
identify the major themes related to ML. This 
search yielded information on the popular use 
cases and technologies. This information 
informed a second, more focused investigation 
of relevant material. Here, the aim was to draw 
connections between popular use cases in 
finance and current ML techniques. 
 
As quality and scope of published research can 
vary widely, measures were taken to reduce the 
possibility of including unreliable information 
in the final dataset. Before inclusion in the 
concept matrix, each paper was assessed on 
quality. This was achieved by using a variety 
of quality indicators including; the citation 
count, the quality of an institute’s research 
activities associated with the paper, bias 
created from funding sources, and the impact 
factor of the journal. 
 
An appropriate search strategy was devised 
and carried out based on the main topics that 
were identified during the first investigation of 
the literature. The arXiv and SSRN databases 
were searched to ensure that the most up-to-
date research papers were included. However, 
as these are not peer-reviewed papers, extra 
care was taken to ensure that the papers were 
from reputable authors, focusing on the quality 
of authors’ previous publications. The topic 
phrases used in search were “portfolio 
management”, “stock market forecasting”, and 

“risk management”. All of these topic phrases 
were used in conjunction with the key phrase 
“machine learning” in an attempt to return only 
relevant research papers. The purpose of 
searching by topic was to identify which 
technologies are widely and effectively used 
within each area. As we are evaluating the 
current state of the art, we wanted to ensure 
that only recent papers were included. Thus, 
we only included papers that were submitted in 
2015 or later. From the initial search we 
collected a total of 118 papers. After an initial 
review of abstracts, papers that were not 
relevant to machine learning in finance 
(specifically investing) were removed. Any 
papers that were duplicates under more than 
one search topic were kept under the topic that 
appeared most relevant. Papers were then 
assessed in relation to their quality using the 
quality indicators mentioned above. This 
reduced the number of papers to 55. 

RESULTS 

Popular Machine Learning Use Cases and 
Algorithms 

 
A concept-centric matrix was utilised initially 
to identify which areas commonly use machine 
learning techniques. Recurring concepts and 
themes were noted and counted across a 
sample of 67 papers identified. An initial list of 
recurring themes was identified and analysed. 
Some themes, such as ‘Geopolitics' were 
removed as they were deemed irrelevant due to 
the lack of research on the topic. A list of the 
most recurring themes with relevance to ML is 
presented in Table I. 

 

TABLE I: RECURRING THEMES FROM THE 

LITERATURE REVIEW. 
 

Theme      References 
 
Return Forecasting 21 

 

Portfolio Construction 12  
Ethics 8  
Fraud Detection 8  
Decision Making 8  
Language Processing 7  
Sentiment Analysis 7  
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The most common use-cases identified were 
return forecasting and portfolio construction. 
Quantitative methods were introduced to 
finance through the equity market and it is 
unsurprising that it should lead the way in 
incorporating the latest advances in its 
processes. A large number of the papers above 
also discussed risk modelling. This led us to 
take return forecasting, portfolio construction, 
and risk modelling as our three core topics. The 
most popular ML techniques identified in the 
papers researched are presented in Table II, as 
well as a breakdown of the different acronyms 
used in the table. 
 

TABLE II: POPULAR TECHNIQUES FEATURED IN 

MACHINE LEARNING AND FINANCE PAPERS 

 

 M
L

P
 

SV
M

 

L
ST

M
 

G
R

U
 

R
N

N
 

C
N

N
 

R
F

 

G
P

R
 

L
R

 

          
Return 

Forecasti

ng 

7 5 4 2 - 1 2 - - 

Portfolio 

Construc
tion 

7 2 3 1 1 1 4 2 1 

Risk 

Modellin
g 

6 2 2 1 1 1 4 3 4 

          
 
 

MLP Multilayer Perceptron 
SVM Support Vector Machine 
LSTM Long Short-Term Memory 
GRU Gated Recurrent Unit 
RNN Recurrent Neural Network (basic)  
CNN Convolutional Neural Network 
RF Random Forests/Decision Trees 
GPR Gaussian Process Regression 
LR Logistic Regression 
  

 
Many techniques used in the papers only 
appear once, some twice. Since the purpose of 
this paper is to identify the most popular 
machine learning techniques used in finance, 
specifically in the topics above, only 
techniques which appeared in at least three 
papers were included in Table II. We also 
decided to include RNN, although it is only 
mentioned explicitly in two papers, it appears 

implicitly more frequently as both LSTM and 
GRU are subsets of the technology. 
 
Artificial neural networks are used in all three 
areas of finance studied, with a standard 
feedforward network (MLP) being the most 
common. Useful results are found from 
networks that range from small to very large 
networks (deep neural networks). There is also 
evidence of preferences for some techniques in 
particular areas. For example, Gaussian 
process regression is used in both portfolio 
construction and risk modelling but has not 
been applied to return forecasting. 
 

Summary of Key Insights from Recent Papers 

 
The paper selection included ML papers 
published in recent years as well as papers yet 
to be published by established authors from 
reputable institutions. These papers have been 
submitted for publication and are awaiting 
acceptance. The most recent studies in this field 
were included to help evaluate the cutting edge 
and state of the art of the use of ML for 
financial applications. 
 
 
 
 

I. Portfolio Construction 

 
 Portfolio construction is the process of 
combining return forecasts and risk models to 
create an optimum portfolio given an investor’s 
constraints. A variety of ANN methodologies 
are applied to the portfolio optimisation 
problem, often outperforming traditional 
optimisation techniques.  Deep learning 
reappeared a number of times during this 
search in the context of portfolio construction. 
Deep learning refers to models that consist of 
multiple layers or stages of nonlinear 
information processing (for example, a neural 
network with many hidden layers) [35]. Both 
hierarchical clustering and reinforcement 
learning were used to improve portfolio 
diversification. Multiple papers discuss the 
method of applying Markov models to predict 
the performance of stocks. Markov models are 
a type of ML method that model variables that 
change randomly through time. The 
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complicated nature of the global market makes 
using this type of model a viable option. 
 

 The authors present a deep 
learning framework for portfolio 
design, applying their framework to 
the stocks in the IBB index, 
demonstrating that their portfolio 
weighted using deep learning 
outperformed the index [31]. 

 The author outlines a reinforcement 
learning solution for a rational risk-
averse investor seeking to maximize 
expected utility of final wealth, giving 
an example of a Q-learning agent 
exploiting an approximate 
arbitrage in a simulation [36]. 

 The authors of both papers make use 
of hierarchical clustering algorithms 
for constructing diversified 
portfolios.  The portfolios are 
constructed using variations of risk 
parity [30] and equal risk contribution 
methods [37] which take the 
hierarchical correlation structure of 
the assets into account.  The portfolios 
constructed are shown to have 
superior diversification and out-of-
sample risk adjusted performance. 

 The authors make use of convex 
analysis techniques to devise an 
optimal portfolio coupled with a 
Hidden Markov Model (HMM) used 
to estimate growth rates in the market 
model, which achieves improved 
results over a simple model using 
geometric Brownian motions [38]. 

 The authors provide an overview of 
the financial applications of Gaussian 
processes and Bayesian optimisation, 
providing examples for forecasting 
the yield curve with Gaussian 
processes, and using Bayesian 
optimisation to build an online trend-
following portfolio optimisation 
strategy [39]. 

 The authors compare the use of 
Feature Salient Hidden Markov 
Models (FSHMM) and HMM for 
constructing factor investing 
portfolios.  The FSHMM selects 
relevant factors for use from a pool of 
available factors, while the HMM 
uses the whole pool of factors. Both 

models outperformed benchmark 
portfolios, with the FSHMM portfolio 
showing better performance [40] 

 The authors use factors as inputs to 
deep neural network, SVM and 
random forest models for predicting 
stock returns. While their research 
shows the effectiveness of a deep 
learning model, more significantly 
they used Layer-wise Relevance 
Propagation (LRP) to determine 
individual factor contributions to the 
neural network’s prediction [41]. 

 The authors create a non-linear multi-
factor model using LSTM to estimate 
the non-linear function. As in the 
previous paper the authors make use 
of LRP to identify which factors 
contribute to the model.  The 
performance of the LSTM model is 
compared to the neural network 
model used in [32] and gives superior 
returns  [42]. 

 The authors examine the use of three 
deep reinforcement learning 
algorithms, Deep Deterministic 
Policy Gradient (DDPG), Proximal 
Policy Optimization (PPO) and Policy 
Gradient (PG), in managing a 
portfolio of assets in the Chinese stock 
market.  They determine that training 
conditions used in game playing and 
robot control are unsuitable for use 
with portfolio management, finding 
that DDPG and PPO gave 
unsatisfying performance in the 
training process. They propose the use 
of adversarial training methods and 
employ a revised PG algorithm which 
outperforms a Uniform Constant 
Rebalanced Portfolio (UCRP) 
benchmark [43]. 

 The authors employ models 
constructed using Gaussian processes 
and Monte Carlo Markov Chains 
which learn optimal strategies from 
historical data, based on user-
specified performance metrics (e.g. 
excess return to the market index, 
Sharpe ratio, etc.). This approach 
addresses the inverse problem of 
Stochastic Portfolio Theory – 
devising suitable investment 
strategies that meet the desired 
investment objective, when initially 
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given a user-defined portfolio 
selection.  The models outperform the 
benchmark in-sample and out-of-
sample for absolute terms (returns) 
and also after adjusting for risk 
(Sharpe ratio) [44]. 

 The author provides an 
ML framework for estimating 
optimal portfolio weights. They apply 
this framework using three ML 
methods – Ridge and Lasso 
regression, and two newly introduced 
methods; Principal Component 
regression, Spike and Slab regression. 
All methods outperform the mean-
variance, minimum-variance, and 
equal weight portfolios. [45].  

 The authors propose a way to find the 
risk budgeting portfolio by using 
optimisation algorithms to find a 
solution to the logarithmic barrier 
problem. They use algorithms such as 
cyclical coordinate descent, 
alternating direction method of 
multipliers (ADMM), proximal 
operators, and Dykstra's algorithm  
[46]. 

 The authors present a financial-
model-free reinforcement learning 
framework as a solution to the 
portfolio management problem. The 
study tests the proposed framework 
with the following neural networks: 
CNN, a basic RNN, and LSTM [47]. 

 
 
 
 

II. Return Forecasting 
 
Return forecasting, predicting the investment 
return from an asset or asset class, is central 
to investment management and features 
highly in the literature. Many types of ANN 
are tested on their ability to forecast returns. 
Deep neural networks, CNNs, LSTMs are all 
applied to the problem of return forecasting. 
In one theme, the new ML technology is 
applied to improve forecasts made from 
traditional inputs, such as fundamental 
accounting data or technical indicators. A 
second approach uses ML to extract new 

inputs from alternative data, such as 
sentiment from news data. Finally, authors 
predict movement at market level rather than 
at the level of individual securities, for 
example using ML to identify states. 
 

 The authors use a CNN strategy to 
analyse and detect price movement 
patterns in high-frequency limit order 
book data.  Multilayer neural network 
methods and SVMs were also 
considered. However, they conclude 
the CNNs provide better performance 
for this task [48]. 

 The authors implement several ML 
algorithms to predict future price 
movements using limit order book 
data. They employ two feature 
learning methods: Autoencoders, and 
Bag of Features. They compare three 
different classifiers: SVM, a Single 
Hidden Layer Feedforward Neural 
Network (SLFNN), and an MLP. 
They test the performance of the 
classifiers with an anchored walk 
forward analysis, to determine if the 
models can capture temporal 
information, as well as a hold-out per 
stock method, to determine if the 
models can learn features that can be 
applied to previously unseen stocks. 
The results from the MLP are better 
than the other classifiers. However, 
the use of the Autoencoder and Bag of 
Features in combination with the 
MLP lead to fewer correct predictions 
[49].  

 The authors introduce a novel 
Temporal Logistic Neural Bag-of-
Features approach, that can be used to 
tackle the challenges that come with 
data of a high dimensionality, in this 
case high-frequency limit order book 
data [50]. 

 The authors train a deep neural 
network on reported fundamental data 
from publicly traded companies 
(revenue, operating income, debt 
etc.).  The model forecasts future 
fundamental data based on a trailing 
5-years window.  A value investing 
factor strategy based on forecasted 
fundamental data outperforms a 
traditional value factor investing 
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approach with a compounded annual 
return of 17.1% vs 14.4% for a 
standard factor model [51]. 

 The authors create a simple buy-hold-
sell strategy to predict direction of 
movement for 43 CME listed 
commodities and FX futures based on 
an ANN trained on a multitude of 
features for each instrument designed 
to capture co-movements and 
historical memory in the data.  An 
average prediction accuracy of 42% is 
achieved across all instruments, with 
higher accuracies achieved for certain 
instruments [52]. 

 The authors use a random forest 
model to predict the direction of stock 
prices based on price information and 
a number of momentum indicators 
(Relative Strength Index, Moving 
Average Convergence Divergence, 
Stochastic Oscillator, Williams %R, 
On Balance Volume, and Price Rate 
of Change). The algorithm is shown to 
outperform existing algorithms found 
in the literature [53]. 

 The authors provide a sentiment 
analysis dictionary which they use to 
predict stock movements in the 
pharmaceutical market sector. With 
this model they achieve an accuracy 
of 70.59%. [54] 

 The authors present a methodology to 
define, identify, classify and forecast 
market states. They use a 
Triangulated Maximally Filtered 
Graph network to filter information, 
and simple logistic regression for 
predicting market states. They 
compare five models, with a Gaussian 
Mixture Model as their baseline. All 
five models outperform the baseline 
in terms of risk/return significance 
[55]. 

 The authors compare five ANN 
models for forecasting stock prices: a 
standard neural network using back 
propagation, a Radial Basis Function 
(RBF), a General Regression Neural 
Network (GRNN), SVM Regression 
(SVMR), and Least Squares SVM 
Regression (LS-SVMR). However, 
they compare the models on just three 
stocks: Bank of China, Vanke A, and 

Kweichou Moutai. The standard 
neural network using back 
propagation outperforms all of the 
other models across all three stocks, in 
terms of both Mean Squared Error 
(MSE) and Mean Absolute 
Percentage Error (MAPE). [56] 

 The authors use 25 risk factors as 
inputs to ML stock returns prediction 
models. Results show that deep neural 
networks generally outperform 
shallow neural networks, and the best 
networks also outperform 
representative machine learning 
models [57]. 

 The author employs ANNs to predict 
product demand for weather sensitive 
products in Walmart stores around the 
time of major weather events [58].  

 The authors implement a Gaussian 
Naïve Bayes Classifier for prediction 
based on sentiment analysis of Twitter 
data. The data used was obtained from 
Twitter and pertained to the 2014 
FIFA world cup. Their framework 
obtained an accuracy and Area Under 
the curve of the Receiver Operating 
Characteristic (AUROC) of around 
80% and an 8% marginal profit when 
tested [59]. 
 

III. Risk 

 
Three different themes are identified under the 
broad heading of risk. The first attempts to 
employ ML to improve traditional measures of 
risk used in the mean variance framework. The 
second theme looks for companies at risk of 
default or bankruptcy. Techniques such as 
natural language processing are used to 
identify words that indicate higher risk. The 
final theme uses ML to develop hedging 
strategies. Some authors look at identifying 
what selection of ML methods is best for risk 
modelling problems. 
 

 The authors use k-means clustering to 
construct risk models by clustering 
stock returns normalized by standard 
deviation squared and adjusted by 
mean absolute deviation using a 
method proposed in [60]. They 
demonstrate that this ML approach 



100 
 
 

 

outperforms statistical risk models 
[61] in quantitative trading 
applications [62]. 

 The authors present a framework for 
hedging a portfolio of derivatives in 
the presence of market frictions such 
as transaction costs, market impact, 
liquidity constraints or risk limits 
[63]. 

 The authors show how Gaussian 
Process Regression can assist in 
pricing and hedging a Guaranteed 
Minimum Withdrawal Benefit 
(GMWB) Variable Annuity with 
stochastic volatility and stochastic 
interest rate [64]. 

 The authors show that machine 
learning can be as effective as other 
existing algorithms at solving difficult 
hedging problems in moderate 
dimension. They use techniques such 
as a modified LSTM neural network 
to calculate their hedging strategies 
[65]. 

 The authors aim to explore the 
optimal model for business risk 
prediction. They attempt to do this 
using XGBoost, and by 
simultaneously examining feature 
selection methods and hyper-
parameter optimization in 
the modelling procedure [66]. 

 The authors try to predict daily stock 
volatility using news and price data. 
Their model, which utilizes a 
Bidirectional Long Short-Term 
Memory (BiLSTM) neural network 
and stacked LSTM’s, outperforms the 
well-known Generalized 
Autoregressive Conditional 
Heteroskedasticity (GARCH) model 
in all sectors analysed (financial, 
health care, etc.) [67]. 

 The authors exploit a heterogeneous 
information network of 35,657 global 
firms to improve the predictive 
performance for firms likely to be 
added to a blacklist. Blacklists are 
used to keep track of entities that have 
unacceptable problems, such as 
financial or environmental issues. 
Blacklists help keep portfolios 
profitable and “green”. Their model 

consists of a simple MLP with thirty 
hidden units [68]. 

 The authors estimate corporate 
credibility of Chinese companies 
using a CNN and natural language 
processing. They use Latent Dirichlet 
Allocation to summarise the text of 
news articles and use a CNN to extract 
the most important words from each 
topic. The CNN learns how news 
articles may reflect the credibility of a 
company though the wording of 
articles and word occurrence. They 
verify their model works by building 
a negative rating system and showing 
a correlation between their model’s 
results and the negative rating [69]. 

 The authors compare different 
strategies for solving a variation of the 
multi-armed bandit problem. In their 
version of the problem, the learner can 
pull several arms simultaneously, or 
none at all. This could easily be 
applied to assist in investment 
decisions. Out of the 
strategies compared, Bayes-UCB-4P 
and TS-4P perform the best [70].  

 The authors compare several ML 
algorithms: Logistic Regression, K-
Dimensional Tree (K-D Tree), SVM, 
Decision Trees, AdaBoost, ANN, and 
Gaussian Processes (GP) for 
forecasting business failures 
(corporate bankruptcy). Models are 
compared on datasets of 
manufacturing companies in Korea 
and Poland. All of the models are 
compared on their performance when 
combined with different 
dimensionality reduction techniques. 
The techniques used are: Principal 
Component Analysis (PCA), Linear 
Discriminate Analysis (LDA), 
Isometric Feature Mapping 
(ISOMAP), and Kernel PCA. On the 
Korean dataset, all models perform 
similarly. K-D Tree, SVM, and GP 
perform best over all of the 
dimensionality reduction methods 
used. On the Polish dataset, the linear 
regression model performs the best. 
Although having a lower accuracy 
than some of the other models, it is the 
best performing method when 
compared over other results such as 
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precision, recall, F1 score, and AUC 
(Area Under Curve) [71]. 

DISCUSSION 

Strategy Development & Analysis 

 
The results of the literature search demonstrate 
that there is a wide range of ML techniques 
being successfully applied to many areas in the 
development of quantitative investing 
strategies, outperforming traditional 
benchmarks, previously used techniques and 
algorithms in many cases. Algorithms that 
assume a linear relationship between data can 
result in reduced accuracy. [28] highlights this 
issue in terms of many of the econometric 
models employed by finance academics and 
investment managers. The author argues for the 
use of more advanced mathematical models 
and ML techniques such as unsupervised 
learning that are capable of modelling complex 
non-linear relationships in financial systems.  
 
Taking factor investing as an example of this, 
[72] and [73] make use of statistical algorithms 
to show that many factors discovered over the 
last number of years (particularly those found 
using empirical evidence) can be considered 
inaccurate or invalid. In the aptly named paper, 
Taming the Factor Zoo, a double selection 
LASSO ML method was used to analyse the 
contribution and usefulness of individual 
factors amongst the large number available 
today [74]. LASSO (Least Absolute Shrinkage 
and Selection Operator) is a regression analysis 
method capable of reducing the dimensionality 
of a large sample while selecting variables 
significant to the final result [75]. In [57] the 
author uses twenty-five factors as model 
inputs, comparing the use of shallow and deep 
neural networks, as well as SVMs and random 
forests for predicting stock returns, finding the 
deep neural networks (more layers) superior to 
the other methods. Using a similar approach 
[41] uses factors as inputs to deep neural 
network, SVM and random forest models for 
predicting stock returns. While their research 
again showed the effectiveness of a deep 
learning model, more significantly they used 
layer-wise relevance propagation to determine 
individual factors contributions to the neural 
network’s prediction. 
 

In these cases, not only has ML been used to 
develop investment strategies, but also to 
detect which input features were significant 
and which were not. 

The use of Alternative Data 

 
The use of ML for the analysis and application 
of alternative data for example, sentiment 
analysis, supply chain data etc. has opened up 
opportunities for new investment strategies. As 
seen in Table I, sentiment analysis was 
identified as a popular use case for ML. [17] 
provides a thorough overview of the growth of 
big data and sentiment analysis research over 
the last 30 years, highlighting the use of 
techniques such as NLP, SVMs and ANNs for 
the analysis of news, conference calls, reports, 
and social media activity. They concluded that 
to date, sentiment information has provided 
short-term, easy to exploit insights but long-
term persistent insights are hard to achieve 
(falling in line with EMH). [16] acknowledges 
the effectiveness of big data for the modern 
fundamental investor, as it can provide insights 
and improve decision making by widening 
their research capabilities. This sentiment is 
echoed in [28] where the author makes 
reference to the recently emerged term 
“quantamental" – describing a fundamentally 
leaning investor who manages their portfolio 
based on data-driven insights provided by ML 
algorithms. Examples of ML and alternative 
data being applied together in the results 
section mainly fall under return forecasting or 
risk modelling, where decisions may be made  
based on good or bad news [54], weather [58], 
or social media sentiment [59]. 
 
 

Choosing Machine Learning Algorithms 

 
It is important to understand the relevant 
factors that contribute to the choice of ML 
algorithms, given the wide range available. 
These factors include accuracy, training time, 
linearity, number of parameters, the number of 
features and the structure of the data [76]. 
Some systems do not need a high level of 
accuracy. Estimates may be sufficient, for 
example, when calculating different route 
times for a journey. Model training times can 
also vary hugely between algorithms, making 
some algorithms more appealing than others 
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when under time constraints. Many algorithms 
assume a linear relationship between input and 
output (linear regression, logistic regression, 
SVMs). This can result in reduced accuracy 
when dealing with non-linear problems. The 
number of parameters an algorithm has can 
indicate its flexibility, but also indicates that 
more time and effort may be required to find 
optimal values for training the model. The 
number of features can also be overwhelming 
for some algorithms. This is particularly a 
problem with textual data, where the number of 
words in the dictionary vastly outweighs the 
number of words in say, a paragraph being used 
for sentiment analysis. It’s important to 
consider the structure of the data and the 
specific problem, as some algorithms are better 
suited for certain problems and data structures 
[77]. 
 
 

Backtesting & Strategy Verification 

 
While ML techniques can provide superior 
performance, financial data is notorious for 
having a low signal-to-noise ratio, which can 
lead to the detection of false patterns and 
results.  Backtesting protocols have been 
proposed to tackle this [78].  ML solutions have 
also been applied to this problem. In [34] the 
authors present an unsupervised learning 
strategy which makes use of a modified k-
means clustering algorithm to extract the 
number of uncorrelated trials from a series of 
backtests, which can be used in estimating the 
probability of false positives and estimating the 
expected value of the maximum Sharpe ratio. 
While in [79] the authors use a machine 
learning strategy for backtesting and the 
evaluation of automated trading strategies 
which is trained on a number of performance 
and risk metrics, demonstrating that this 
strategy outperforms standard metrics such as 
Sharpe ratio out-of-sample. 
 
The development of new backtesting strategies 
and protocols is welcome and necessary, 
especially taking into account recent “black 
box” criticisms by leading deep learning 
researchers regarding a lack of testing and 
reproducibility in the field of ML. In their 
acceptance speech after winning the “test-of-
time” award at NIPS, the leading AI 

conference, the authors of [80] compared much 
of recent ML research to “alchemy”, 
highlighting a situation where algorithms were 
being created and trained using trial and error 
methods, with the researchers unable to explain 
the fundamental operation. They later 
published a paper highlighting instances of this 
[81]. 
 

CONCLUSION 

 
As the previous section discusses, ML offers 
an opportunity for more complex financial 
analysis than was previously possible. The 
literature shows that quantitative investors 
have embraced new tools and techniques as 
they have emerged [16], [17]. 
 
There is a growing body of literature applying 
ML techniques to investment problems. 
Varieties of ML methods have been applied to 
areas of quantitative finance– the most popular 
methods are MLPs, followed by SVMs, and 
LSTM. ML has been applied to problems in 
areas such as return forecasting, portfolio 
construction, and risk modelling. 
These ML methods utilize traditional financial 
data, as well as making use of new types of 
alternative data. Big data is providing new 
datasets that need to be analysed and ML 
techniques are capable of modelling complex 
(non-linear) relationships and analysing new 
data. 
 
[28] notes the recent trend of traditional hedge 
funds hiring an increasing proportion of STEM 
graduates for portfolio construction positions, 
as they possess the required mathematical 
skillset for performing complex analysis and 
computer modelling. An understanding of 
machine learning, as well as the languages 
(Python, R, etc.) and frameworks (e.g. 
TensorFlow) needed to construct complex 
models could certainly be considered 
advantageous for any quantitative investor 
looking for an edge. 
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Dynamic Regime-Based Asset 
Allocation using International Equity 
Flow Data 
Ruairi Kennedy 
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Abstract 
Regime switching models have been shown to capture changes of behaviour in financial 
markets. Often these changes of behaviour persist for some time, and the underlying regimes 
associated the changes can be used to capture dynamics of asset returns.  Similarly, 
international portfolio flows have been shown to be persistent and to have a relationship with 
equity returns.  

The purpose of this paper is to identify investment regimes based on cross-border and regional 
equity flow data using hidden Markov Models and to test the performance of a regime-based 
asset allocation strategy which aims to capture returns based on the characteristics of flow-
defined regimes. In an out-of-sample test, the strategy shows that it is possible to successfully 
capture returns by applying a regime-switching model to international portfolio flow data. 

Acknowledgment  
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Introduction 
This paper explores the effectiveness of a 
regime switching model constructed using 
international portfolio flow data, 
specifically cross-border equity flows, for 
capturing excess returns through dynamic 
asset allocation based on regimes. 

Regimes are periods of time with unique 
characteristic financial variables, such as 
mean returns, correlations and volatilities. 
A change in regimes implies a change in 
the characteristic behaviour of the 
financial market which may continue for 
some time if the regime is persistent. In 
this case, hidden Markov Models 
(HMMs), an unsupervised machine 

learning technique is used to infer regimes. 
Unsupervised learning is a type of machine 
learning algorithm used to draw inferences 
from datasets consisting of input data 
without labelled responses. 

Cross-border equity flows are composed of 
flows by shareholders, who add or remove 
cash from funds, and flows by managers, 
who buy or sell individual securities with 
fund deposits. Cross-border equity flows 
have been shown to be stable and 
persistent in nature. They have also been 
shown to influence equity returns. 

In this paper regimes are considered as 
periods with a characteristic cross-border 
equity inflows or outflows. Through these 
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regimes, the relationship between flows 
and equity returns is examined. If it is 
possible to infer stable, persistent regimes 
based on flows, it may be possible to 
capture returns based on the relationship 
between flows and returns. 

A number of contributions to the literature 
are made in this paper. Firstly this paper 
shows that a HMM trained using cross-
border equity flow data infers persistent, 
stable regimes. This paper also shows that 
flow-inferred regimes demonstrate 
characteristic mean returns. Combining 
these two findings, a portfolio is 
constructed using a regime switching 
based dynamic asset-allocation strategy. 
This strategy is shown to outperform a 
benchmark static equal weight buy and 
hold portfolio. 

Literature Review 
Regime switching models have gained 
popularity in quantitative finance since 
they were first introduced in Hamilton’s 
(1989) seminal work which used a HMM 
to identify expansions and recessions in the 
business cycle. Regimes are an easy 
concept to grasp intuitively, a distinction 
can be made between “Bull” and “Bear” 
markets, periods of high and low volatility 
returns, as well as periods of change in 
policy or regulation (Ang & Timmermann, 
2012). Regime switching HMMs have 
been shown to capture persistent regimes.  
The ability to infer regime changes has 
been shown to produce profitable dynamic 
asset allocation strategies which utilize 
regime switching. Ang and Bekaert (2002) 
concluded that a high-volatility, high-
correlation regime is present in a regime-
switching model is present during a bear 
market. Following on from this finding, 
they demonstrated that a regime switching 
based dynamic asset allocation strategy 
outperforms a static strategy by switching 

to cash during in high-volatility regimes 
(Ang & Bekaert, 2004). Bulla, Mergner, 
Bulla, Sesboüé, and Chesneau (2011) 
demonstrated that a regime-based asset 
allocation strategy under realistic 
assumptions could outperform a buy and 
hold strategy after taking transaction costs 
into account. More recent papers have 
demonstrated similar positive results using 
dynamic asset allocation strategies, using a 
HMM with time-varying parameters 
(Nystrup, Hansen, Madsen, & Lindström, 
2015), (Nystrup, Hansen, Larsen, Madsen, 
& Lindström, 2017). 

International portfolio flows have been 
shown to affect equity prices in developed 
and emerging markets. Cross-border 
equity inflows and outflows tend to cause 
international prices to rise and fall 
respectively (Tesar & Werner, 1994, 
1995), (Brennan & Cao, 1997). Froot, 
O’Connell, and Seasholes (2001) found 
that flows to appear stationary and more 
persistent than returns, while also finding 
that flows have an influence on returns. 
Froot and Ramadorai (2008) show that 
weekly cross-border equity flows forecast 
emerging market equity returns. 

Hidden Markov Model 
The main characteristic of a hidden 
Markov model is a probability distribution 
of the observation 𝑋 , 𝑡 = 1, … , 𝑇 which 
is dependent on the states 𝑆  of an 
unobserved first-order Markov chain. 
A sequence of discrete random variables 
{𝑆 : 𝑡 ∈ ℕ}  is said to be a first-order 
Markov chain if, for all of 𝑡 ∈ ℕ, it 
satisfies the Markov property 

P(𝑆 |𝑆 , … , 𝑆 ) = P(𝑆 |𝑆 ) 

 (15) 

A transition probability matrix (TPM) 
governs the switching behaviour of the 
model between states.  In a two-state 
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model for example, the TPM would be of 
the form 

Π =
𝑝 𝑝
𝑝 𝑝   (16) 

with 𝑝 , 𝑖, 𝑗 ∈ {1,2} denoting the 
probability of being in state 𝑗 at time 𝑡 + 1, 
given a sojourn in state 𝑖 at time 𝑡. The 
observation 𝑋  has a distribution at time 𝑡 
specified by P(𝑋 = 𝑥 |𝑆 = 𝑠 ), the 
conditional or component distributions of 
the model. A two-state Gaussian 
component distribution would give:  

𝑥 = 𝜇 + 𝜖 , 𝜖 ~𝑁 0, 𝜎  

 (17) 

Where 𝜇 ∈ {𝜇 , 𝜇 } and 𝜎 ∈ {𝜎 , 𝜎 }. 

To estimate the parameters of the HMM an 
expectation-maximization (EM) method 
such as the Baum-Welch algorithm is 
commonly used (Baum, Petrie, Soules, & 
Weiss, 1970). 

Assuming that successive observations are 
independent, the likelihood function is 
given by: 

𝐿(𝜃) = 

𝝅𝑷(𝑥 )Π𝑷(𝑥 )Π … 𝑷(𝑥 )Π𝑷(𝑥 )𝟏

 (18) 

where 𝑷(𝑥 ) is a diagonal matrix 
containing the state-dependent conditional 
distributions as entries and 𝝅 denoting the 
initial distribution of the Markov chain. 
After parameter estimation of the HMM, 
the hidden states can be inferred. A 
common technique for determining the 
most likely sequence of states is the Viterbi 
algorithm (Viterbi, 1967). The algorithm 
calculates the most probable sequence of 
states using:  

{ s , … , s } = argmin
,…,

𝑃(𝑆 = 𝑗 , … , 

, 𝑆 = 𝑗 |𝑋 = 𝑥 )  

 (19) 

Data 
International equity flow 
indicators 
The flow data used in this paper is part of 
a series of Active/Benchmark Equity Flow 
Indicators provided by SSGM, which are 
composed of flows by shareholder, who 
add or remove cash from funds, and flows 
by managers, who buy or sell individual 
securities with fund deposits. 

The indicators are proprietary measures of 
investor behaviour developed by SSGM 
which represent the flows of aggregated 
portfolios. 

The eight countries and regions used in the 
model are shown in Table 1. Cross-border 
equity flow indicator data corresponding to 
the eight countries and regions was 
obtained from SSGM for the time period 
January 2012 to December 2018 on a daily 
frequency. 

Table 1 – Investment Universe 

Investment Universe 
 

Europe ex UK 
EM Latin America 

EM EMEA 
Pacific ex Japan 

EM Asia 
USA 
UK 

Japan  
 

Price data 
MSCI Total Return index data was 
obtained from Thomson Reuters 
Datastream for the corresponding country 
and regional indices shown in Table 1 for 
the time period January 2012 to December 
2018. 
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The daily 1-month USD LIBOR was 
obtained from Thomson Reuters 
Datastream for the time period January 
2012 to December 2018. This was used as 
the risk-free rate when calculating the 
Sharpe ratio for the portfolio. 

Methodology 
A HMM was used to infer regimes based 
on cross-border equity flow data for the 
eight regions in Table 1. To characterise 
the regimes based on price movement, 
mean returns were calculated for each 
regime using MSCI Total Return Index 
data corresponding to the eight regions. To 
examine the ability of flow-based regimes 
to capture returns, a portfolio was 
constructed with the eight MSCI indices as 
assets. A long or short position was taken 
in each asset based on the mean return for 
current regime according to the HMM. If 
flows, and through them, regimes are 
persistent, the positions will capture 
consistent returns. 

To initially estimate the parameters of the 
HMM and to characterise the inferred 
regimes based on their mean returns, a 
training period of January 2012 to 
December 2016 was chosen. The Viterbi 
algorithm was used to infer the most likely 
sequence of regimes up to the current 
regime. 

Beginning with the regimes characterised 
in the 2012-2016 training period, an out-
of-sample test was implemented from 
January 2017 to December 2018 using the 
following method which stepped through 
the data iteratively to exclude future 
information. 

Using flow data from January 2012 up 
until time 𝑡, calculate the most likely 
sequence of regimes up until the current 
regime 𝑘. 

The mean return is calculated for every 
instrument in the portfolio across the time 
periods spent in the current regime: 

𝜇 , =
∑ ,,    (20) 

Where 𝜇 ,  is the mean return of 
instrument 𝑖 at time 𝑡 in regime 𝑘, 𝑇  is the 
time spent in regime 𝑘 and 𝑟 ,  is the return 
of instrument 𝑖 at time 𝑡 in regime 𝑘. 

Based on whether the mean return 𝜇 ,  is 
positive or negative for the current regime 
𝑘 at time 𝑡, a simple long/short trading 
signal 𝑀  is assigned to each instrument: 

𝑀 = 𝑠𝑖𝑔𝑛 𝜇 ,   (21) 

Each instrument in the portfolio is 
assigned an equal weight. To try and 
simulate a more realistic trading scenario 
the signal for time 𝑡 is used to determine 
each weight at time 𝑡 + 𝜏, where 𝜏 
indicates a time shift. The weights are 
calculated as follows:  

𝑤 = 𝑀   (22) 

Where 𝑤  is the weight of instrument 𝑖 
held in the portfolio at time 𝑡 + 𝜏, 𝑁 is the 
number of instruments in the asset class 
and 𝑀  is the regime-based signal from the 
previous time period. 

The return of the portfolio 𝑟  is 
calculated as: 

𝑟 = ∑ (𝑟 𝑤 )  (23) 

Where 𝑟  is the return of instrument 𝑖 at 
time 𝑡 + 𝜏. 

Results for the performance of a 4-regime 
model are included in Table 6. This 
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number of regimes was chosen for stability 
reasons discussed in Appendix 2 

Results 
Estimating the parameters of a HMM using 
an EM algorithm gives the transition 
probability matrix (Equation 2). A TPM 
with a strong diagonal (Π ≫ 0.5) 
indicates that the regimes will be highly 
persistent i.e. that the regime predicted at 𝑡 
will most likely be the regime predicted for 
𝑡 + 1.  

Training a 4 regime HMM over the period 
January 2012 to December 2018 using 
cross-border equity flow data, gives a TPM 
with a very strong diagonal (Π ≫ 0.9). 

Π =

0.952 0.000 0.027 0.021
0.002 0.969 0.018 0.012
0.017 0.041 0.919 0.024
0.013 0.023 0.018 0.946

 

When a HMM is trained over the same 
period January 2012 to December 2018 
using log returns calculated from the MSCI 
Total Return index data for the eight 
regions, gives a TPM with a much weaker 
diagonal. While Π ≫ 0.5 for three of the 

regimes, indicating that they are persistent, 
the TPM of the HMM trained on flows is 
much stronger.   

Π

=

0.440 0.075 0.409 0.077
0.088 0.665 0.232 0.015
0.182 0.096 0.0712 0.010
0.124 0.022 0.012 0.842

 

The descriptive statistics in Appendix 1 for 
both daily returns and flow across the 
instruments in show clear distinctions 
between regimes over the period January 
2012 to December 2018.  

Out-of-sample testing was performed in an 
iterative fashion to obtain results which 
were as realistic as possible. The two 

versions of the model were trained with 
daily data up until time 𝑡 used to determine 
the portfolio positions at time 𝑡 + 𝜏.  The 
first model has 𝜏 = 1, with the predicted 
regime at time 𝑡 determining portfolio 
positions 1 day ahead. The second model 
has  𝜏 = 3, with the predicted state at time 
𝑡 determining the portfolio positions at 3 
days ahead. The performance of the 
regime-based strategy was compared to a 
static equal weight portfolio containing the 
same instruments in the regime-based 
portfolio, as well as the MSCI World 
Index. 

Table 6 shows key performance statistics - 
annualized return (AR), annualized 
volatility (Vol) and Sharpe Ratio (SR) - 
generated by the trading strategy in an out-
of-sample test from January 2017 to 
December 2018.  

The performance statistics are compared to 
a buy and hold strategy and to the MSCI 
World Total Return Index for the same 
period.  

Table 6 – Performances of strategies and indices 
from Jan 2017 to Dec 2018, daily data.  

Strategy AR 
(%) 

Vol 
(%) 

SR 

    
 Regime Model (𝜏 = 1)   16.23 7.55 1.84 
 Regime Model (𝜏 = 3)  14.97 7.46 1.69 

Buy & Hold 5.89 8.07 0.45 
MSCI World Index  4.77 9.75 0.25 

    

 

The 1-day lag Regime Model realized the 
highest AR and SR. The 3-day lag Regime 
model had a slightly lower AR and SR but 
both strategies outperformed the 
benchmarks used for comparison across all 
performance indicators.  The strong 
performance of the 3-day lag model 
demonstrates that returns captured using 
flow-based regimes are persistent, even if 
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there is a delay in adjusting portfolio 
positions after the regime change. 

The daily cumulative returns graph in 
Figure 1 shows the ability of the regime 
model to identify periods where there is a 
switch to a regime with negative mean 

returns and use this information to take a 
short position. 

Appendix C shows the switching 
behaviour of the regimes in the out-of-
sample test.

Conclusions 
Based on the results presented in this 
paper, a number of conclusions can be 
drawn. 

The first finding of this paper is that the 
results indicate that regimes inferred using 
flow data are persistent, and that they are 
more persistent and stable than regimes 
inferred using returns, for the period 
January 2012 to December 2018 in the 
instruments examined (Π ≫ Π ) 

It was also found that each regime inferred 
using flow data exhibited mean returns 
(Appendix A). Using this information 
along with the persistent nature of flow-

based regimes, it was possible to persistent 
returns by adjusting portfolio positions to 
reflect switching regimes, taking 
advantage of the characteristic mean 
returns associated with each regime. 
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Appendix A – Descriptive Statistics (January 2012 – December 
2018) 
Table 3 – Mean daily return for each instrument during the periods spent in each regime 

 Mean Daily Return (%) 
  

 Regime 1 Regime 2 Regime 3 Regime 4 

     

Europe ex UK 0.027 0.031 -0.239 -0.015 

EM Latin America  
0.032 0.040 0.027 0.115 

EM EMEA  
0.016 0.042 -0.093 0.051 

Pacific ex Japan  
0.031 0.049 -0.140 0.034 

EM Asia  
0.038 0.015 -0.164 0.097 

USA  
0.095 -0.035 -0.470 0.072 

UK  
0.008 0.070 -0.252 -0.010 

Japan 0.060 0.003 -0.370 -0.022 

 

Table 4 - Mean annualized volatility for each instrument during the periods spent in each regime 

 Annualized Volatility (%) 
  

 Regime 1 Regime 2 Regime 3 Regime 4 

     

Europe ex UK 9.57 10.58 16.88 12.12 

EM Latin America  
13.26 12.80 13.83 16.32 

EM EMEA  
11.44 12.81 10.39 12.53 

Pacific ex Japan  
7.98 10.49 11.41 9.76 

EM Asia  
10.42 13.96 12.17 12.36 

USA  
10.15 13.88 17.06 14.77 

UK  
9.36 11.01 14.62 11.47 

Japan 13.26 15.07 17.45 14.43 
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Table5 – Mean daily cross-border equity flow for regime during the test period 

 Mean Daily Cross-Border Equity Flow 
  

Country/Region  Regime 1 Regime 2 Regime 3 Regime 4 

     

Europe ex UK 0.037 -0.023 0.021 0.018 

EM Latin America  
0.107 0.037 -0.160 0.018 

EM EMEA  
0.066 0.009 0.002 0.026 

Pacific ex Japan  
0.039 -0.035 -0.019 0.011 

EM Asia  
0.032 0.017 0.012 0.012 

USA  
-0.057 -0.133 -0.040 -0.008 

UK  
0.080 -0.086 0.000 0.021 

Japan 0.027 -0.045 -0.025 0.009 

 

 

Table 6 - Daily cross-border equity flow standard deviation for each regime during the test period 

 
Daily Cross-Border Equity Flow Standard Deviation 
  

Country/Region  Regime 1 Regime 2 Regime 3 Regime 4 

 
    

Europe ex UK 
  

0.082 0.091 0.062 0.029 

EM Latin America 
  

0.141 0.144 0.146 0.070 

EM EMEA 
  

0.077 0.071 0.079 0.046 

Pacific ex Japan 
  

0.049 0.066 0.042 0.029 

EM Asia 
  

0.053 0.084 0.075 0.039 

USA 
  

0.082 0.081 0.049 0.043 

UK 
  

0.087 0.166 0.069 0.043 

Japan 
  

0.058 0.061 0.079 0.031 
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Appendix B – Model Stability  
As the HMM is trained and its parameters estimated in an unsupervised fashion when 
identifying regimes, there can be some variation in the regimes assigned to each day. To test 
the performance and stability of the model over a number of regimes, the model testing and 
training was repeated 50 times for each model to determine the stability of the results. The 
95% confidence interval for the annualized return figure shows that the expected result varies 
as the number of regimes increases. 

 

Table 7 - Daily Model Performance (January 2017 – December 2018) 

 4 Regime 
Model 

5 Regime 
Model 

6 Regime 
Model 

7 Regime 
Model 

Buy 
 & 

Hold 
 

MSCI 
World 
Index 

       

Annualized 
Returns (%) 

16.23 
 

15.53 16.88 
 

16.22 5.89 4.77 

95% Confidence 
Interval (±%) 

1.88 1.89 2.41 3.04 - - 

Volatility (%) 7.55 7.12 7.31 7.15 8.07 9.75 

Sharpe Ratio 1.84 1.84 2.00 1.89 - - 
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Appendix C – Out-of-Sample Test Regime Switching 
 

Figure 2 – The percentage of time spent in each regime during the out-of-sample test. Regime 1 was the most 
persistent regime. 

 

Figure 3 – Switching behaviour between regimes during the out-of-sample test.  

 


