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Abstract
Modern microcontrollers for safety-critical real-time systems use a hierarchical memory system to
increase execution speed and memory capacity. For this purpose, flash memories, which offer high
capacity at low transfer rates, are combined with scratchpad memories, which provide high access
speed at low memory capacities. The main goal is to use both types of memory in such a way that
their advantages are optimally exploited. The target is to allocate runtime-intensive code fragments
with low memory requirements to the fast scratchpad memories. Previous approaches to separate
program code on system memories consider the executed functions as the smallest logical unit. This
is contradicted by the fact that not all parts of a function have the same computing time in relation
to their memory usage. This article introduces a procedure that automatically analyses the compiled
source code and identifies runtime intensive fragments. For this purpose, the translated code is
executed in an offline simulator and the maximum repetition for each instruction is detected. This
information is used to create logical code fragments called basic blocks. This is repeated for all
functions in the overall system. During the analysis of the functions, the dependencies between
them are also extracted and a corresponding call-graph with the call frequencies is generated. By
combining the information from the call graph and the evaluation of the basic blocks, a prognosis of
the computing load of the respective code blocks is created, which serves as base for the distribution
into the fast scratchpad memories. To verify the described procedure, EEMBC’s CoreMark is
executed on an Infineon AURIX TC29x microcontroller, in which different scratchpad sizes are
simulated. It is demonstrated that the allocation of basic blocks scales significantly better with
smaller memory sizes than the previous function-based approach.
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1 Introduction

In modern systems with hard real-time requirements, microcontrollers are increasingly used,
which implement a hierarchical memory layout with different memory technologies. The
reason for this is that memories with a large capacity, such as flash, have a comparatively slow
access time and a significantly reduced bandwidth in contrast to fast scratchpad memories
based on Static Random-Access Memory (SRAM). In comparison, the disadvantage of SRAM
is that it requires a lot of space on the wafer during manufacturing, which significantly
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3:2 Static Allocation of Basic Blocks

increases production costs. For this reason, the manufacturers of such microcontrollers try to
combine these two types of memory efficiently with each other, thus exploiting the advantages
of both technologies and reducing the disadvantages [13] [14].

Table 1 Relation of the memory sizes of microcontrollers for real-time systems [7] [15] [18] .

Microcontroller Flash-
Memory /KB

SRAM-
Memory /KB

Infineon AURIX TC29x
(3 processor cores)

Code: 8192
Data: 1024

Code: 96
Data: 600

Texas Instruments TMS320F2838x
(5 processor cores)

Code: 1536
Data: -

Code: -
Data: -

ST SPC58 family
(3 processor cores)

Code: 6144
Data: 256

Code: 48
Data: 160

As table 1 shows, the storage capacity of SRAM-based memories is significantly smaller
compared to flash memories. It should also be noted that all specifications refer to the
respective overall system. Therefore it is important to note that, for example, the Infineon
AURIX TC29x provides a relatively large SRAM memory of 96KB for code execution, but
this is divided among the three processor cores, so that only 32KB is directly available for
each core [7]. The great potential of these small but powerful memories is that the fast access
times significantly increase the execution speed. In case of the already mentioned Infineon
AURIX TC29x, code from the local SRAM memory of the corresponding processor core
is executed 3.5 times faster than using the flash memory. Furthermore, by allocating local
copies of selected code parts to the respective SRAM memory of the cores, the number of
concurrent accesses can be reduced significantly, which is particularly relevant for real-time
multicore systems [16] [12] [8]. Due to the limited memory capacity it is essential to evaluate
which code fragments should be allocated in these memories. As these code fragments
are needed more frequently, the increased execution speed has a greater influence on the
performance of the overall system. For this reason, this article presents a procedure that
analyzes the code at instruction level and allocates particularly runtime-intensive basic blocks
to the fast scratchpad memories. For this purpose, the call frequency is set in relation to
the memory consumption, with the goal of an optimized usage of the fast memory. The
structure of this article is divided into six chapters. After the introduction, related work as
well as the previous optimization approaches are presented. This is followed by a description
of the developed concept, which is implemented practically in the fourth section. To prove
the functionality, the presented method is applied to the CoreMark of EEMBC in the fifth
chapter. Finally, the results are discussed and an outlook on future extensions is given.

2 Related Work

Previous work on optimizing the use of existing scratchpad memory can be divided funda-
mentally into two categories. In static distribution, the allocation of code and data takes
place during development and is fixed at system runtime. The advantage of this approach
is that a static allocation can more easily be mapped in a timing model. This is necessary
for the calculation of the Worst-Case Execution Time (WCET), which is mandatory for
the certification of a safety-critical real-time system. The disadvantage, in contrast, is the
sometimes suboptimal utilization of the small scratchpad memory, which cannot realize its
speed advantage optimally, depending on the execution path. Dynamic approaches try to
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compensate this by adapting the contents of the scratchpad memory at runtime according to
the program flow. It should be noted, that dynamic approaches cause an overhead due to
copy processes and the associated administration, that should not be underestimated.

2.1 Static Allocation
In [10] a procedure for the static distribution of code and data into the available memory of a
real-time multicore system is shown. For this purpose priorities are calculated for all functions
and variables in the system, which result from the call frequency as well as the number of
concurrent accesses. Depending on the priority, the code and data are distributed to the
memories in the system and local copies are created if necessary. In contrast to this work, in
the article, functions are defined as the smallest allocatable unit, whereby less frequently
executed code paths are also allocated to the scratchpad memory. A further approach of
static separation is discussed in [2]. The article describes a compiler strategy for distributing
the stack and global variables into the Random-Access Memory (RAM) of the microcontroller.
As boundary conditions for the procedure the renouncement of an Memory Management
Unit (MMU) as well as the use of a Non-Uniform Memory Access (NUMA)-based memory
management is demanded. Analogous to the method presented in this article, the execution
speed shall be improved by an optimized memory distribution depending on the call frequency.
In contrast, the analysis is limited to global variables and the separation of the stack. In
the article [9] and [11] approaches for the optimization of explicit intercore communication
in multicore systems are presented. The concepts are based on the assumption that shared
variables should be allocated to the local scratchpad memory of those processor cores that
access it more often. The two methods have a similar approach, but differ in their respective
implementation. In contrast to the procedure described here, the concepts in the two articles
are limited to the allocation of variables for intercore communication.

2.2 Dynamic Allocation
One possibility for the dynamic use of scratchpad memory is described in the approach [13].
For the presented procedure the functions are divided into basic blocks in the first step. In the
second step, the basic blocks are determined, which are called in the Worst-Case Execution
Path (WCEP). Then these basic blocks are allocated to the fast scratchpad memories, which
increases the execution speed. In contrast to the approach in this article, the described
concept uses dynamic memory management, which reloads the basic blocks as required. As a
result, there is no evaluation or prioritisation of functions among themselves, which would be
necessary for static memory management. Instead, an offline evaluation of the basic blocks is
carried out to determine if they are qualified for reloading at runtime, because the copy time
causes a significant overhead, which has to be compensated by the increased execution speed.
In [19] a method is described which optimizes concurrent accesses to shared memory in
real-time capable multicore microcontrollers. For this purpose the scheduling of the operating
system is extended, whereby a task consists of three phases. In the first phase, all required
data is loaded from the shared memory into the local caches of the processor cores before
it is executed in the second phase. In the last phase, the generated results are copied back
into shared memory. Although the procedure in this article focuses on caches, this method
is also possible when using scratchpad memories. In contrast to the concept in this article,
dynamic memory management is implemented here to reduce competing accesses. However,
in order to reduce the number of concurrent accesses, all possible paths of a task must be
completely copied to the local memory. Only in this case copying phases during execution
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can be effectively prevented. However, this also copies paths of a task whose computing time
has no significant influence on the runtime. The method presented in the article [4] describes
a procedure that dynamically allocates basic blocks into scratchpad memory based on their
call frequency. To reduce the overhead of dynamic memory management, basic blocks with
a fixed size are used, which can compensate the problem of fragmentation. The problem
is, fixed-size memory blocks are not always completely filled, which in effect reduces the
efficiency of memory usage.

3 Concept

The concept described here is to identify code fragments within a function that have a high
runtime and low memory requirements. For this purpose, the translated code is analyzed
in an offline simulator and the minimum and maximum execution frequency is determined
for each instruction. In addition, the memory requirements of each instruction and its
execution time in clock cycles are extracted from the processor architecture description. This
information can be used to create a table for each function, which contains all the data
required to evaluate each instruction. The goal is to allocate the particularly computationally
time-intensive areas of a function to the fast scratchpad memories of the microcontroller,
which allows the low capacity of these high-performance memories to be used more efficiently.
The procedure is illustrated using listing 1 as an example.

1 /∗ f unc t i on to copy the message from
2 r e c e i v e bu f f e r in d e s t i n a t i on bu f f e r ∗/
3 uint32 CopyMessage ( u int8 ∗ dest , u int32 l ength )
4 {
5 /∗ re turn value ∗/
6 uint32 errorCode = TRUE; /∗ TRUE = 1 ∗/
7
8 /∗ check the maximum bu f f e r l ength ∗/
9 i f ( l ength <= 32)

10 {
11 f o r ( u int32 i = 0 ; i < length ; i++)
12 {
13 /∗ copy the r e c e i v ed byte from r e c e i v e
14 bu f f e r ( rb ) in to d e s t i n a t i on bu f f e r ∗/
15 ∗ dest++ = rb [ i ] ;
16 }
17 }
18 e l s e
19 {
20 /∗ i n v a l i d l ength ∗/
21 errorCode = FALSE; /∗ FALSE = 0 ∗/
22 }
23 re turn errorCode ;
24 }
25

Listing 1 Example CopyMessage: Source code (ANSI C)

The minimal example in the listing contains a function which copies the data from a
global array rb[] byte by byte into a target memory, whose address is passed to the function
as bytepointer dest. To avoid memory overflow, the requested variable length is checked
for the maximum value of 32 before copying. Depending on the result of the check, the data
is copied to the target memory or a corresponding error message is returned to the calling
function. Using the C code shown here, it can already be estimated that the runtime is
primarily dependent on the length of the data to be copied.
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3.1 Machine Code Analysis
In the first step of the analysis, the source code for the target platform is compiled. The
reason for this procedure is that modern compilers support a variety of optimizations that
take into account architectural characteristics like jump predictions, superscalar architectures
or errors in processor design. Therefore, depending on the configured optimization level, the
translated machine code can differ massively from the original source code. To ensure that
the available scratchpad memory can still be used efficiently, the translated machine code is
therefore used as the basis for optimization.

In the example shown here, this is done for an Infineon AURIX TC29x, using the Tasking
Compiler in version 6.2r2 with the optimization level O0 as compiler. The result can be taken
from the commented listing 2.

1 mov d2,#1 ;Move
2 mov d15 ,#32 ;Move
3 j g e . u d15 , d4 , .L5 ; Jump i f Greater Than or Equal
4 j .L17 ; Jump Uncondit iona l
5 mov d15 ,#0 ;Move
6 j .L14 ; Jump Uncondit iona l
7 movh.a a15 ,#@his ( rb ) ;Move High to Address
8 l e a a15 , [ a15 ] @los ( rb ) ; Load E f f e c t i v e Address
9 addsc .a a15 , a15 , d15 ,#0 ;Add Scaled Index to Address

10 l d .bu d0 , [ a15 ] ; Load Byte Unsigned
11 s t . b [ a4 ] , d0 ; Store Byte
12 add.a a4 ,#1 ;Add Address
13 add d15 ,#1 ;Add
14 j g e . u d15 , d4 , .L16 ; Jump i f Greater Than or Equal
15 j .L7 ; Jump Uncondit iona l
16 j .L18 ; Jump Uncondit iona l
17 mov d2,#0 ;Move
18 j .L19 ; Jump Uncondit iona l
19 r e t ; Return from Cal l
20

Listing 2 Example CopyMessage: Source code (machine code)

With the help of the Infineon TriCore Simulator (TSIM) the translated code is executed
and combined with the information from the processor architecture description. The result
is shown in the table 2.

As it can be seen in the table 2, the offline simulator analyzes all paths of the function and
determines the minimum and maximum call frequency for each instruction. This information
is combined with the memory requirements and the runtime. This combination of parameters
is used to identify fragments that require a lot of computing power. Additionally, the WCEP
is determined for each function. This procedure is particularly interesting for safety-critical
real-time systems, because only the WCET is relevant for the evaluation of such systems.

3.2 Basic Block Prioritisation
After the identification of the relevant blocks, a prioritisation is carried out. In the first
step, all basic blocks along the WCEP are evaluated regarding of their runtime. Due to the
focus on real-time systems, these fragments receive the highest priority within the function.
Subsequently, all other paths are examined for their optimization potential. After completion
of this analysis, all basic blocks of this function have a priority based on their call frequency,
with the WCEP having the highest rating. The formula (1) describes the calculation.

pf (bb) =
imax∑
i=0

(emax(i) · rmax(i)) + pWCEP (1)

NG-RES 2021
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pf (bb) Priority of the basic block bb within the function f

emax(i) Maximum execution freqency of instruction i

rmax(i) Maximum runtime of instruction i

pWCEP Additional priority for the WCEP

As the procedure presented here is a static memory allocation, a dynamic adjustment
of the scratchpad contents at runtime is not possible. In fact of this, it is not sufficient to
prioritise only the basic blocks within a function. It is also necessary to consider the call
frequencies of the individual functions in the overall system in the evaluation. For this reason,
all function jumps and their frequency are logged during the analysis of the functions and
used to construct a call graph. On the basis of this information, the call frequency can be
determined for each function, which is then included in the prioritisation of the basic blocks.
The following formula (2) illustrates the procedure.

ps(bb) = emax(f) · pf (bb) (2)

ps(bb) Priority of the basic block bb within the system s

emax(f) Maximum execution freqency of function f

Table 2 Example CopyMessage: memory usage, runtime and call frequency.

Instruction Memory usage
/Byte

Runtime
/Ticks

Execution
frequency
Min/Max
/Ticks

mov d2,#1 4 1 1/1
mov d15,#32 4 1 1/1
jge.u d15,d4, .L5 4 1 1/1
j .L17 4 1 0/1
mov d15,#0 4 1 0/1
j .L14 4 1 0/1
movh.a a15,#@his(rb) 4 1 0/32
lea a15,[a15]@los(rb) 4 1 0/32
addsc.a a15,a15,d15,#0 4 1 0/32
ld.bu d0,[a15] 4 1 0/32
st.b [a4],d0 4 1 0/32
add.a a4,#1 2 1 0/32
add d15,#1 2 1 0/32
jge.u d15,d4,.L16 4 1 0/33
j .L7 4 1 0/32
j .L18 4 1 0/1
mov d2,#0 4 1 0/1
j .L19 4 1 1/1
ret 4 4 1/1
Total 72 22 10/300
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3.3 Basic Block Separation
The basic blocks are separated by jumps, which are already contained in the machine code.
Only the address have to be manipulated. By this procedure both the runtime and the
memory consumption can be kept constant. Ideally, most compilers generate entry and
exit jumps during the translation of loops, which are suitable for this modification. In the
example from listing 2 used here, the jump instructions in line 6 and line 16 are used for
this purpose. Analogous to the procedure with loops, this is also done with branches, which
are also implemented using conditional jump instructions. Depending on the architecture
used, however, it must be taken into account that often only one branch path is reached by
a jump. This becomes clear in listing 2, where in line 3 the conditional jump is executed. If
the check is unsuccessful, the following line is executed, but without a jump. In fact of this,
care must be taken during compilation that the runtime-intensive path is always reached via
a jump, so that this can be allocated to the fast scratchpad memory if necessary. Applying
the presented concept to the example shown here results in all instructions from line 7 to line
16 inclusive being allocated to the fast scratchpad memory. By this procedure the required
memory can be reduced from 72 bytes, when allocating the complete function, to 36 bytes.
Despite the 50% reduction in memory requirements, 290 of the 300 required instructions are
executed from scratchpad memory in the case of WCEP.

4 Implementation

The offline simulator for the analysis of the translated machine code basically consists of
the components shown in figure 1. As input variables, the simulator receives a description
of the microcontroller, which contains the addresses of the memories, the addressing types
and the instruction set. On the other hand the translated machine code is entered into the
simulator. Both input files are then processed by a parser, which converts the information
into an uniform format. This input parser is intended to enable easy expandability for further
microcontroller architectures or compilers. In the next step, the code is analyzed using the
concept described in chapter 3 and then the priority for each basic block is calculated. Using
the knowledge gained, an optimized memory allocation can be calculated in the next-to-last
step with the help of the allocation block. At last, a modified copy table as well as the
corresponding linker script will be created using two generators.

4.1 Basic Block Separation
After the complete analysis of all functions in the overall system and their prioritisation,
the jump instructions in the compiled machine code are manipulated to separate the basic
blocks. In general, modern microcontrollers use an instruction set that provides a large
number of such instructions. These jump instructions can be divided into two categories.
The first category consists of absolute jumps, which refer directly to an address in memory.
In contrast, the second variant always uses relative jumps in relation to the current address.
For example, a relative jump can refer to an address that is 20 bytes further in memory. The
advantage of these relative jumps is their reduced memory requirement, since no complete
address has to be stored. The disadvantage is their reduced range, since it is only possible to
refer to a much smaller memory area. In order to implement the method presented in this
article, it must be possible to implement a jump to the scratchpad within a function allocated
in the flash memory. Depending on the microcontroller used, absolute jumps are absolutely
necessary for this, since the two types of memory often use different address ranges. For the
Infineon AURIX TC29x used in this article, the absolute addresses for the different memories
are listed in the table 3.

NG-RES 2021
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Microcontroller

Description

Offline Simulator

Machine Code

Instruction Set Parser Machine Code Parser

Machine Code Analysis

(Basic Block / WCEP Identification)

Allocation

Copy Table Generator Linker Script Generator

Copy Table Linker Script

Priority Calculation

Figure 1 Offline Simulator - Detailed Design.

Table 3 Infineon AURIX TC29x - Code Memory Addresses [7].

Memory Address Range Size/KB
Code Scratchpad (CPU0) 0x7010.0000-0x7010.7FFF 32
Code Cache (CPU0) 0x7010.8000-0x7010.FFFF 32
Flash 0x8000.0000-0x807F.FFFF 8192

The relative jumps of the TriCore architecture of the AURIX use one byte for addressing,
which allows a maximum jump width of 512 bytes with an addressing granularity of two
bytes. As a result, it is only possible to switch between the flash memory and the scratchpad
with an absolute jump. Due to the fact that a relative jump requires less memory space
compared to an absolute jump, this creates a problem because the two types of addressing
cannot simply be replaced. There are three different approaches to solve this problem, which
are explained in the following sections [6].

4.1.1 Absolute Jumps
Modern compilers offer the option to avoid relative jumps in memory by various configuration
settings, whereby only absolute addresses are used. The advantage of this variant is that
the used addresses in the memory can be easily replaced. The disadvantage is the increased
memory consumption of this method, which results from the exclusive use of absolute
addresses. One way to reduce this problem is the specific use of compiler commands in the
source code, whereby the use of absolute addresses is only applied at defined positions.

4.1.2 Jump Table
If the compiler that is used, does not provide an option to disable relative jumps, an additional
jump table in memory can be used. For this purpose, a table containing the absolute addresses
is stored in memory near the function to be optimized. The relative jumps within the function
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are manipulated in such a way that they refer to the correct lines within the table where
the absolute address is located. The advantage of this implementation is that no support
from the compiler is required. In contrast, the jump table occupies additional memory and
each jump into the fast scratchpad requires an additional relative jump into the table before
the actual target address is reached. This increases the runtime, which must be taken into
account in the evaluation of the separation.

4.1.3 Memory Reservation
Another possibility is to reserve additional memory space directly next to a relative jump
instruction. This can be achieved by integrating so-called zero-operations already in the
C code. After compiling the source code, the memory space of the relative jump and the
zero-operation is used to integrate an absolute jump. Similar to the jump table, this procedure
does not require any support from the compiler. However, this variant requires a complex
analysis to integrate the required zero-operations at the correct position in the source code.

4.2 Basic Block Allocation
To copy the selected basic blocks into the scratchpad memory of the microcontroller, the copy
table must be extended accordingly. Using the copy table, the microcontroller copies the
required functions and variables into the system’s RAM during the startup code. Since this
table is automatically created by the compiler during the compilation process, this causes
a problem. In general, most compilers only allow complete functions and variables to be
allocated to the scratchpad memory. For this reason the copy table is extended by a script
to include the corresponding entries. In addition, the required memory is reserved in the
linker script by means of a dummy section, with an adjusted size according to the required
memory.

5 Experimental Results

The CoreMark of EEMBC in version 1.0 is used to prove the functionality. The reason for
choosing the CoreMark as benchmark is that it is available in open source and has already
been used in other publications. This circumstance makes it easier to relate the results of
this article to the overall context of previous publications. Furthermore, the CoreMark was
developed with a special focus on the evaluation of embedded microcontrollers and also offers
multicore support.

The microcontroller used is an Infineon AURIX of the first generation, type TC29x with
three processor cores, which is operated with a clock frequency of 200 MHz. The Infineon
AURIX family uses the proprietary TriCore architecture, which is a modified Harvard
architecture. Therefore each processor core has two interfaces, one for data and one for code.
Each of these interfaces has two memories, one is a cache and one is a scratchpad RAM. The
communication between the cores and the connection to the global memories is done via a
crossbar. The basic structure can be seen in the figure 2. The memory sizes are described in
the table 4.

For compiling the source code of the CoreMark, the TASKING compiler in version 6.2r1
for the TriCore architecture is used. The translation process of the this compiler is done
in three steps. In the first step the C code is compiled into the Src format, which is then
translated into the machine code by the assembler in the second step. At last the code is
combined by the linker and allocated to the corresponding memories. The configurations for
all steps used in this article can be taken from the table 5 [17].
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Data Interface

Cache

Scratchpad

Code Interface

Cache

Scratchpad

TriCore

CPU 0

Data Interface

Cache

Scratchpad

Code Interface

Cache

Scratchpad

TriCore

CPU 1

Data Interface

Cache

Scratchpad

Code Interface

Cache

Scratchpad

TriCore

CPU 2

Crossbar

Global 

RAM

RAM 

Bank 0 

Global 

Flash

Flash 

Bank 3 

Flash 

Bank 2

Flash 

Bank 1

Flash 

Bank 0 

Figure 2 Infineon AURIX TC29x - Basic Memory Layout [7].

For the manual validation of the generated results of the offline simulator all optimization
levels of the compiler as well as the linker are deactivated. This configuration generates entry
and exit jumps for loops, which are required for the separation of the basic blocks in this
test series. Another special feature of the assembler configuration is the avoidance of relative
jumps. With the settings made in this experiment, all jumps are implemented absolutely,
which, as already described in chapter 4, is one way to separate the program code [17]. The
previous approach to distributing source code to the available memory in the system is based
on the call frequency and the memory consumption of the respective functions. For this
purpose, the maximum number of times the individual functions are called during a defined
period of time is determined. The call frequency is used to calculate their priority and the
functions with the highest priority are allocated to the fast SRAM memory until it is filled
completely. For this comparison, this method is taken as a reference. Therefore, in the
first step, the maximum call frequency and its memory consumption is determined for each
function of the CoreMark. The table 6 shows the number of calls at 20,000 iterations for each
function, whereby the ordering already corresponds to the priorities calculated. For better
overview, only the functions that are called during the benchmark measurement are listed.

In the table 7, the decomposition into basic blocks is carried out for three functions
as an example. For the purpose of better overview, only those basic blocks are shown
that are relevant for the proposed optimization. The remaining instructions within this

Table 4 Infineon AURIX TC29x - Memory Dimen-
sioning [7].

Category Memory Size/KB
Local Data Scratchpad 240

Data Cache 8
Code Scratchpad 32
Code Cache 32

Global Flash 8192
SRAM 32

Table 5 TASKING Compiler 6.2r1 -
Configuration.

Utility Configuration
C-Compiler -O0
Assembler -OgS
Linker -O0
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Table 6 EEMBC CoreMark 1.0 - Call Frequency and Memory Usage (Functions).

Function Name Call
Frequency

Size
/Byte

ee_isdigit 78400000 44
core_state_transition 20480000 644
crcu8 11680008 92
crcu16 5840004 32
crc16 5240004 16
calc_func 4442360 240
cmp_idx 4161115 76
core_list_find 4120000 106
core_list_reverse 4080000 38
cmp_complex 2221180 44
crcu32 1280000 36
matrix_sum 320000 128
matrix_add_const 160000 74
core_bench_state 80000 422
matrix_test 80000 272
matrix_mul_matrix_bitextract 80000 162
matrix_mul_matrix 80000 146
matrix_mul_vect 80000 112
matrix_mul_const 80000 74
core_bench_matrix 80000 52
core_list_mergesort 60001 290
core_bench_list 40000 440
core_list_remove 40000 46
core_list_undo_remove 40000 40
Total 3626

function are only executed once per function call. In fact of this they cannot be used
for further decomposition. For each of the basic blocks, the repetition during the entire
benchmark execution is specified, which is calculated from the call frequency of the function
and repetitions within the function. In addition, the memory requirements for each basic
block in the scratchpad are also specified.

All basic blocks in the table 7 are loops which, due to their repetitions, cause a high
computing load with low memory consumption. The basic blocks of the matrix_sum function
are special because they are nested loops. However, since the analysis of the machine code
is performed at the instruction level, the oflline simulator detects this structure due to the
different execution frequencies.

In the measurement, which is shown in figure 3, the presented method is set in relation to
the previous approach. To evaluate the two allocation strategies, the CoreMark is executed
with different scratchpad sizes. In the function-based approach, the functions are allocated to
the fast memory in the order of their priority, which is shown in table 6. For a comparison of
the two approaches, the distribution of the basic blocks is done according to a similar scheme.
The advantage of the basic block allocation is the finer granularity. Due to the fact that
functions often contain execution paths that are rarely processed, function-based allocation
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Table 7 EEMBC CoreMark 1.0 - Call Frequency and Memory Usage (Basic Blocks).

Function Name Basic Block Call
Frequency Total

Size
/Byte

crcu8 93440064 72
matrix_sum 2880000 14

25920000 90
core_bench_list 4080000 192

1120000 32
1160000 32

is less efficient when using the small scratchpad memory. The difference is particularly
noticeable at the beginning of the measurement series, where the execution time decreases
significantly faster with the basic block-based method. The disadvantageous course of the
function-based procedure is caused by the fact that the function core_state_transistion is
called frequently, but consumes a lot of memory. As a result, additional functions can only be
allocated to the scratchpad once its size exceeds 800 bytes. Analogous to the staged sequence
of the function-based allocation, a similar paragraph for the basic block-based procedure
can be seen at 1 KB. This is a relatively large basic block that is unsuitable for further
decomposition. By using better distribution algorithms, however, the process could be even
better balanced. This should be evaluated in further investigations. Furthermore, it can be
seen in the course that with increasing size of the scratch pad, the two methods converge,
since all frequently used instructions are available in the fast memory. As the CoreMark with
the current settings requires 3626 bytes of memory, the measurement results are identical
from this scratchpad size on.
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Figure 3 Execution Time of the CoreMark 1.0 with different Scratchpad Allocation Methods.

6 Discussion

The main goal of this work is to use the local scratchpad memory more efficiently for the
program code. Especially in systems with hard real-time requirements these memories provide
a fast and deterministic way to increase the execution speed. However, the table 1 shows that
the size of the flash memory is often larger than the program scratchpad by a factor of 85, as
shown in the Infineon AURIX TC29x. As this relation already illustrates, the optimal use of
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the scratch pads is therefore essential for reaching full performance. The method presented
in this article shows a way how the low capacity of the scratchpad memory can be utilized
better. The results on the AURIX platform in chapter 5 clearly show that, in contrast to the
function-based approach, the use of basic blocks scales better with reduced memory sizes.
However, this is at the cost of a slightly increased memory requirement in flash memory
for all variants of separation. This is due to the fact that for absolute jumps, compared
to the relative jumps, the complete address must be stored in memory. This restriction
only exists for Instruction Set Architecture (ISA) that support relative jumps. A further
problem is currently the analysis of the machine code. Particularly in safety-critical systems,
interrupts and external signals are analyzed and it is necessary to react accordingly. Due to
these unpredictable input variables, a realistic estimation of the maximum call frequency
of functions is almost impossible. Furthermore, there are states in every system which are
mutually exclusive, which effects the call frequency of functions. These complex correlations
are extremely difficult to extract and require further investigations for a better evaluation of
the WCET [5] [1]. In previous studies, the code is translated with the optimization levelO0,
whereby only absolute addresses for the jump instructions are generated. By this procedure
optimizations are deactivated too, which have a significant influence on the execution speed.
Therefore the goal is to consider further optimization levels and compilers in future extensions
to achieve more realistic results. For the measurements performed so far, only the CoreMark
from EEMBC was used, which only represents a small number of use cases. For this reason,
a wide range of benchmarks will be ported in future research so that many different memory
access types and patterns in the allocation can be analyzed and taken into account. In
this context, the previous approaches to an optimized storage strategy will be ported and
compared with the concept presented in this article. The intention is to give an overview
which distribution method achieves the best results with which memory access pattern. A
potential extension is the integration of caches in the distribution of the basic blocks. In
contrast to the dynamic use of scratch pads, the address calculation for caches is done
by the microcontroller. Thus, the overhead that would normally occur when calculating
addresses in software can be avoided. However, the use of caches in real-time systems is
associated with significantly higher effort in timing analysis, which in turn makes allocation
more difficult [3]. Furthermore, support for other microcontroller architectures is planned for
future work. The focus will be on multicore architectures, as these will benefit even more
from local scratch pads due to concurrent access to shared memory. By optimizing the use
of these core-exclusive memories, timing anomalies resulting from concurrent accesses could
be prevented even more effectively. For this purpose, the analysis and prioritisation of the
basic blocks would have to be extended accordingly [14].
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