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Abstract
In categorical realizability, it is common to construct categories of assemblies and modest sets from
applicative structures. In this paper, we introduce several classes of applicative structures and apply
the categorical realizability construction to them. Then we obtain closed multicategories, closed
categories and skew closed categories, which are more general categorical structures than Cartesian
closed categories and symmetric monoidal closed categories. Moreover, we give the necessary and
sufficient conditions for obtaining closed multicategories and closed categories of assemblies.
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1 Introduction

In categorical realizability, we construct categories of assemblies and modest sets from
applicative structures. The best known usage is applying this construction to partial
combinatory algebras (PCAs) which is a class of applicative structures close to the models
of the lambda calculus, as in [12]. From PCAs, we obtain Cartesian closed categories of
assemblies and use these categories for models of various logics and programming languages
like PCF.

The construction of categories of assemblies does not depend on particular structures of
applicative structures. Hence we may apply this construction to other classes of applicative
structures. Indeed, another usage is introduced in [3] [2], where by applying the construction
to BCI-algebras, we can obtain symmetric monoidal closed categories (SMCCs) and use them
for models of linear logics and languages.

In this paper, by applying the categorical realizability construction to more general classes
of applicative structures than PCAs and BCI-algebras, we investigate further correspondences
between categorical structures of assemblies and classes of applicative structures. To make
assemblies on an applicative structure a category, it is sufficient to assume two elements
B (corresponding to the lambda term λxyz.x(yz) expressing the composition of functions)
and I (corresponding to the lambda term λx.x expressing the identity function) in the
applicative structure. (Here we say such an applicative structure is a BI-algebra.) Therefore,
classes between BCI-algebras and BI-algebras may induce some categorical structures more
general than SMCCs. For instance, there may exist some classes which induce non-symmetric
categorical structures. Indeed, in this paper we introduce such classes of applicative structures,
which induce closed multicategories, closed categories and skew closed categories.
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38:2 Realizability Without Symmetry

Table 1 Summary of the correspondences.
(Here (†) means that not only the corresponding applicative structures induce the categorical
structures, but also the converse hold in some natural conditions, like Proposition 19.).

Applicative structures Structure of assemblies and modest sets Section

Known PCA Cartesian closed category (†) 2.2
results BCI-algebra symmetric monoidal closed category (†) 2.3
New BK(−)•-algebra closed category 5.1
results BII×(−)•-algebra closed category (†) 4

BI(−)•-algebra closed multicategory (†) 3
BB′II•-algebra skew closed category 5.3
BII•(−)◦-algebra skew closed category 5.2

Inclusions
PCAs ( BCI-algebras ( BII×(−)•-algebras ( BI(−)•-algebras ( BII•(−)◦-algebras

PCAs ( BK(−)•-algebras ( BII×(−)•-algebras
BCI-algebras ( BB′II•-algebras ( BII•(−)◦-algebras

In category theory, many closed structures without tensor products have been developed.
Closed multicategories, closed categories and skew closed categories are the typical ones.
Each of them gives certain axiomatization of internal function spaces without using tensor
products and does not have symmetries in general unlike SMCCs.

Closed multicategories introduced in [11] are closed categorical structures for multicat-
egories (extensions of categories, whose maps are allowed to have finitely many arguments)
and correspond to planar multiplicative intuitionistic linear logic with only linear implication
( and without tensor product nor unit. Closed categories introduced in [5] are something
like monoidal closed categories without tensor products, which have internal hom objects
defined without using tensor products. In [13], it is shown that closed categories are equival-
ent to closed multicategories with unit objects. Skew closed categories introduced in [17]
are categories with slightly weaker structure than closed categories. There is a categorical
structure called skew monoidal categories [18], which have the same components as monoidal
categories but the invertibility of unitors and associators are not assumed. Skew closed
categories are to skew monoidal categories what closed categories are to monoidal categories.

When we try to obtain these categorical structures by categorical realizability, we face a
subtle problem. To exclude symmetries, we have to remove the element C (corresponding to
the lambda term λxyz.xzy expressing the swap of arguments) from an applicative structure.
However, to obtain closed structures, we need to realize maps sent by internal hom functors
[f, g] : h 7→ (g ◦ h ◦ f), and realizing them needs some exchange operation. We resolve this
problem by introducing restricted exchanges (−)•, (−)◦ and B′.

For an applicative structure (|A|, ·), (−)• is a unary operation on |A| such that x• ·y = y ·x
for any x and y in |A|. Since C · I · x satisfies the axiom of x•, assuming (−)• is a weaker
assumption than assuming C. BI(−)•-algebras, i.e., BI-algebras with (−)•, give rise to
(non-symmetric) closed multicategories. Moreover, we show that being a BI(−)•-algebra is a
necessary condition to give a category of assemblies as a closed multicategory under some
natural assumptions in Proposition 19.

Other than BI(−)•-algebras, we also introduce several classes of applicative structures.
The correspondences are in table 1. In particular, we also show that BII×(−)•-algebras are
necessary to give categories of assemblies as closed categories under some conditions. Table
2 is the summary of elements and constructions assumed in these applicative structures.
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Table 2 Summary of the elements and constructions of applicative structures.

Elements and constructions Axiom Section

element S Sxyz ' xz(yz) 2.2
element K Kxy ' x 2.2
element B Bxyz = x(yz) 2.3
element C Cxyz = xzy 2.3
element I Ix = x 2.3
element B′ B′xyz = y(xz) 5.3
element I× I×xI = x 4

unary operation (−)• x•y = yx 3
unary operation (−)◦ x◦yz = y(xz) 5.2

To the best of our knowledge, this is the first systematic treatment of realizability
semantics for the non-commutative or planar setting. We hope that our analysis brings new
insights on categorical realizability and extends its applications to new areas, most notably
to non-commutative logics and systems such as Lambek calculus.

The rest of this paper is structured as follows. In Section 2, we recall some basic notions
and results in categorical realizability. In Section 3, we introduce BI(−)•-algebras and
describe how they correspond to the planar lambda calculus and closed multicategories.
Section 4 is about BII×(−)•-algebras and closed categories, which has a similar story to
Section 3. In Section 5, we give three other classes of applicative structures and see categorical
structures of assemblies on them. In Section 6, we construct concrete examples of BI(−)•-
algebras other than the planar lambda calculus. As an unexpected one, we show that the
computational lambda calculus [14] is a BII×(−)•-algebra. In Section 7, we discuss related
work. Finally, in Section 8, we summarize contents of this paper and describe future work.

Basic knowledge of category theory and the lambda calculus is assumed.

2 Background

In this section, we recall some basic concepts and results. All the definitions and propositions
in this section are from [12] and [8].

2.1 Applicative structures and categories of assemblies
I Definition 1. A partial applicative structure A is a pair of a set |A| and a partial binary
operation (x, y) 7→ x · y on |A|. Application associates to the left, and we often omit · and
write it as juxtaposition. For instance, xz(yz) denotes (x ·z) · (y ·z). When the binary operation
of A is total, we say A is a total applicative structure.

In the sequel, we use two notations ↓ and '. The down arrow means “defined.” For
instance, for a partial applicative structure (|A|, ·), xy ↓ means that x · y is defined. “'”
denotes the Kleene equality, which means that if the one side of the equation is defined then
the other side is also defined and are equal.

I Definition 2. Let A be a partial applicative structure.
(1) An assembly on A is a pair X := (|X|, ‖-‖X), where |X| is a set and ‖-‖X is a function

sending x ∈ |X| to a non-empty subset ‖x‖X of |A|.

CSL 2021



38:4 Realizability Without Symmetry

(2) A map of assemblies f : X → Y is a function f : |X| → |Y | such that there exists an
element r ∈ |A| realizing f , where “r realizes f” means that

∀x ∈ |X|, ∀a ∈ ‖x‖X , ra ↓ and ra ∈ ‖f(x)‖Y .

We say that r is a realizer of f when r realizes f .

If we assume two extra conditions on a partial applicative structure, we can construct a
category from assemblies and maps of assemblies.

I Definition 3. Let A be a partial applicative structure satisfying that:
(i) |A| has an element I such that for any x ∈ |A|, Ix ↓ and Ix = x;
(ii) for any r1, r2 ∈ |A|, there exists r1,2 ∈ |A| such that for any x ∈ |A|, r1,2x ' r1(r2x).

Then we construct categories as follows:
(1) The category Asm(A) of assemblies on A consists of assemblies on A as its objects and

maps of assemblies as its maps. Identity maps and composition maps are the same as
those of Sets.

(2) The category Mod(A) of modest sets on A is the full subcategory of Asm(A), such that
each object (|X|, ‖-‖X) has the property:

∀x, y ∈ |X|, x 6= y ⇒ ‖x‖X ∩ ‖y‖X = ∅.

Asm(A) and Mod(A) are indeed categories. For any assembly (|X|, ‖-‖) on A, the
identity function on |X| is realized by I. Given two maps of assemblies X f−→ Y

g−→ Z realized
by r2 and r1 respectively, the composition function g ◦ f : |X| → |Z| is realized by r1,2.

In particular, a total applicative structure A which has I and B (such that Bxyz = x(yz)
for all x, y, z ∈ |A|) induces the category of assemblies and the category of modest sets. We
call such a total applicative structure a BI-algebra.

In the following two subsections, we introduce two well-known classes of partial applicative
structures. The categories constructed from partial applicative structures in these classes
have useful categorical structures.

I Remark. In the rest of this paper, we only deal with categories of assemblies and not
with categories of modest sets. However, all propositions hold when we replace the word
“assemblies” by “modest sets.”

2.2 PCAs and Cartesian closed categories
In this subsection, we recall a well-known class of partial applicative structures called partial
combinatory algebras (PCAs). Assemblies on a PCA form a Cartesian closed category.

I Definition 4. A PCA is a partial applicative structure A which contains two elements S
and K satisfying:
(i) ∀x, y ∈ |A|, Kx ↓ and Kxy ' x;
(ii) ∀x, y, z ∈ |A|, Sx ↓, Sxy ↓ and Sxyz ' xz(yz).

I Example 5. Suppose infinite supply of variables x, y, z, . . . . Untyped lambda terms are
terms constructed from the following six rules:

(identity)
x ` x ; Γ `M ∆ ` N (application)

Γ,∆ `MN
where Γ and ∆ are sequences of distinct variables and contain no common variables;
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Γ, x `M
(abstraction)

Γ ` λx.M
; Γ, x, y `M

(exchange)
Γ, y, x `M

; Γ, x, y `M
(contraction)

Γ, x `M [x/y]
where M [x/y] denotes the term obtained by substituting x for all free y in M ;

Γ `M (weakening)
Γ, x `M where x is a variable not contained in Γ.

Note that abstraction rules are only applied to the rightmost variables. In order to apply
the abstraction rule to a variable in a different position, we need to use exchange rules and
move the variable to the rightmost place.

We define an equivalence relation =β on lambda terms as the congruence of the relation
(λx.M)N ∼M [N/x]. Untyped lambda terms form a PCA. The underlying set consists of β-
equivalence classes of untyped closed lambda terms (i.e., lambda terms with no free variables)
and the application is defined as that of lambda terms. In this example, λxyz.xz(yz) is the
representative of S and λxy.x is the representative of K.

PCAs are closely related to the untyped lambda calculus through the property called
combinatory completeness.

I Definition 6. Let A be a partial applicative structure. A polynominal over A is a syntactic
expression generated by variables, elements of |A| and applications. For polynominals M and
N over A, M ' N means that M [a1/x1, ..., an/xn] ' N [a1/x1, ..., an/xn] holds in A for any
a1, ..., an ∈ |A|, where {x1, ..., xn} contains all the variables of M and N .

I Proposition 7. (combinatory completeness of PCAs) Let A be a PCA and M be a
polynominal over |A|. For any variable x, there exists a polynominal M ′ such that the free
variables of M ′ are the free variables of M excluding x and M ′a 'M [a/x] for all a ∈ |A|.
We write λ∗x.M for such M ′.

Proof. We define λ∗x.M by induction on the structure of M as follows: λ∗x.x := SKK;
λ∗x.y := Ky (when x 6= y); λ∗x.MN := S(λ∗x.M)(λ∗x.N). J

For the special case of the above proposition, any closed lambda term is β-equivalent to
some term constructed from λxyz.xz(yz) and λxy.x only using applications.

Although conditions of PCAs are simple, categorical structures induced by these algebras
are quite strong and useful.

I Proposition 8. Let A be a PCA. Then Asm(A) is Cartesian closed and regular.

I Remark. Since all the examples in this paper are total applicative structures, we shall
in future only consider total structures, although the definitions and results do generalize
smoothly to partial ones. A discussion about “partial BCI-algebras” is found in Remark 1
of [8]. From now on, whenever we say “applicative structure”, it means total applicative
structures.

2.3 BCI-algebras and symmetric monoidal closed categories
In this subsection we recall another class of applicative structures called BCI-algebra. BCI-
algebras are related to linear structures whereas PCAs are not.

I Definition 9. A BCI-algebra is an applicative structure A which contains three elements
B, C and I satisfying:
(i) ∀x, y, z ∈ |A|, Bxyz = x(yz);
(ii) ∀x, y, z ∈ |A|, Cxyz = xzy;

CSL 2021
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(iii) ∀x ∈ |A|, Ix = x.

I Example 10. Untyped linear lambda terms are untyped lambda terms constructed without
using weakening and contraction rules.

Untyped linear lambda terms form a BCI-algebra. The underlying set consists of β-
equivalence classes of closed linear lambda terms and the application is defined as that of
the lambda calculus. Here λxyz.x(yz), λxyz.xzy and λx.x are the representatives of B, C
and I respectively.

I Proposition 11. (combinatory completeness of BCI-algebras) Let A be a BCI-algebra and
M be a polynominal over |A| whose variables appear exactly once in M . For any variable x
in M , there exists a polynominal λ∗x.M such that the free variables of λ∗x.M are the free
variables of M excluding x and (λ∗x.M)a = M [a/x] for all a ∈ |A|.

Proof. We define λ∗x.M by induction on the structure of M as follows:
λ∗x.x := I

λ∗x.MN :=
{
C(λ∗x.M)N (x ∈ FV (M))
BM(λ∗x.N) (x ∈ FV (N))

J

For the special case of the above proposition, any closed linear lambda term is β-equivalent
to some term constructed from λxyz.x(yz), λxyz.xzy and λx.x only using applications.

Since BCI-algebras are related to the linear lambda calculus, categorical structures of
assemblies on BCI-algebras are also linear.

I Proposition 12. Let A be a BCI-algebra. Then Asm(A) is a symmetric monoidal closed
category (SMCC).

3 BI(−)•-algebras and closed multicategories

From here, we investigate realizability without symmetry. To obtain Asm(A) with non-
symmetric categorical structures, A needs to be a structure in between BI-algebras and
BCI-algebras. In this section, we introduce such a new class of applicative structures
BI(−)•-algebra, whose assemblies form closed multicategories.

I Definition 13. Let A be an applicative structure. For x in |A|, we write x• for an element of
|A| (whenever it exists) such that x•a = ax for all a ∈ |A|. We say that A is a BI(−)•-algebra
iff it contains B, I and x• for each x ∈ |A|.

A PCA is related to the untyped lambda calculus, which has all term construction
rules. A BCI-algebra is related to the untyped linear lambda calculus, which does not have
weakening nor contraction. Similarly, A BI(−)•-algebra is related to the untyped planar
lambda calculus, which has none of weakening, contraction nor exchange rules.

I Example 14. Untyped planar lambda terms are untyped lambda terms constructed without
using weakening, contraction or exchange rules1. Untyped closed planar lambda terms form a
BI(−)•-algebra. The underlying set consists of β-equivalence classes of closed planar lambda

1 The definition of construction rules of planar lambda terms has two different styles. In our definition,
the abstraction rule is only allowed for the rightmost variable. Such a term construction is seen in [1].
On the other hand, there is also a definition that the abstraction rule is only allowed for the leftmost
variable, as in [20]. Here we choose the former style for preservation the planarity of terms under the
βη-conversions.
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terms and the application is defined as that of lambda terms. Here λxyz.x(yz) and λx.x are
the representatives of B and I. Let M be a representative of x. Then λx.xM is also a closed
planar term and is the representative of x•. We write Lplanar for this applicative structure.
Lplanar does not have a term satisfying the axiom of C. That is intuitively obvious, however,
the rigorous proof is a little bit tricky and omitted.

I Proposition 15. (combinatory completeness of BI(−)•-algebras) Let A be a BI(−)•-
algebra and M be a polynominal over |A| whose variables appear exactly once in M . For the
rightmost variable x of M , there exists λ∗x.M such that the free variables of λ∗x.M are the
free variables of M in the same order excluding x and (λ∗x.M)a = M [a/x] for all a ∈ |A|.

Proof. We define λ∗x.M by induction on the structure of M as follows:
λ∗x.x := I

λ∗x.MN :=
{
BN•(λ∗x.M) (x ∈ FV (M))
BM(λ∗x.N) (x ∈ FV (N))

Note that for λ∗x.MN , x is the rightmost free variable in MN . Therefore, if x is in FV (M),
N has no free variables and N• can be defined. J

For the special case of the above proposition, any closed planar lambda term is β-
equivalent to some term constructed from λxyz.x(yz) and λx.x using applications and the
unary operation (−)• : M 7→ λx.xM .

Since CIx satisfies the axiom of x•, any BCI-algebra is also a BI(−)•-algebra. BI(−)•-
algebras are weaker than BCI-algebra, and thus categories of assemblies on BI(−)•-algebras
have weaker categorical structures than those on BCI-algebras. We show that assemblies
on a BI(−)•-algebra form a closed multicategory, which is more general than symmetric
monoidal closed categories.

Multicategories are extensions of categories, whose maps are allowed to have finitely many
arguments. Closed multicategories are closed categorical structures for multicategories and
correspond to planar multiplicative intuitionistic linear logic with only linear implication (
and without tensor product nor unit. Here the word “planar” means the planarity of the
string diagrams of the modeling categories. The string diagrams do not contain symmetries
or braids.

First, we recall the definition of closed multicategories in [13].

I Definition 16. A multicategory C consists of the following data:
1. a collection Ob(C);
2. for each n ≥ 0 and X1, X2, . . . , Xn, Y ∈ Ob(C), a set C(X1, . . . , Xn;Y );
3. for each X ∈ Ob(C), an element 1X ∈ C(X;X), called the identity map;
4. for each n, k1, k2, . . . , kn ∈ N and Xij , Yi, Z (i ≤ n, j ≤ ki), a function

◦ :
n∏
i

C(Xi1, . . . , Xiki
;Yi)×C(Y1, . . . , Yn;Z)→ C(X11, . . . , X1k1 , X21, . . . , Xnkn

;Z)

called the composition. g ◦ (f1, . . . , fn) denotes the composition of g ∈ C(Y1, . . . , Yn;Z)
and fi ∈ C(Xi1, . . . , Xiki

;Yi). The compositions satisfy associativity and identity axioms.

I Definition 17. A closed multicategory consists of the following data:
1. a multicategory C;
2. for each X1, X2, . . . , Xn, Y ∈ Ob(C), an object C(X1, X2, . . . , Xn;Y ), called the internal

hom object;

CSL 2021
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3. for each X1, . . . , Xn, Y ∈ Ob(C), a map

evX1,...,Xn;Y : X1, . . . , Xn,C(X1, . . . , Xn;Y )→ Y,

called the evaluation map such that ∀Z1, Z2, . . . , Zm ∈ Ob(C), the function
ϕX1,...,Xn;Z1,...,Zm;Y : C(Z1, . . . , Zm; C(X1, . . . , Xn;Y ))→ C(X1, . . . , Xn, Z1, . . . , Zm;Y )
sending f to evX1,...,Xn;Y ◦ (1X1 , . . . , 1Xn

, f) is invertible. We write the inverse function
ΛX1,...,Xn;Z1,...,Zm;Y .

I Proposition 18. Let A be a BI(−)•-algebra. Then Asm(A) is a closed multicategory.

Proof. Let C := Asm(A). It is obvious that C is a category. We define a bifunctor
[−,−] : Cop ×C→ C as follows:

[−,−] sends (|X|, ‖-‖X) and (|Y |, ‖-‖Y ) to (|[X,Y ]|, ‖-‖[X,Y ]), where |[X,Y ]| is the set of
maps from (|X|, ‖-‖X) to (|Y |, ‖-‖Y ) in C and ‖f‖[X,Y ] := {r | r realizes f}.
[−,−] sends f : X ′ → X and g : Y → Y ′ in C to the function [f, g] : [X,Y ] → [X ′, Y ′]
which sends h : X → Y to g ◦ h ◦ f .

We check that [−,−] certainly forms a functor. Let rf and rg be the realizers for f and g,
then B(Brf •B)(Brg) is the realizer for [f, g]. Therefore, for any f : X ′ → X and g : Y → Y ′

in C, [f, g] exists in C. It is easy to see that [−,−] preserves identities and compositions.
Next, we show that C is a multicategory. For X1, . . . , Xn, Y ∈ C (n > 0), the set

C(X1, . . . , Xn;Y ) is defined as the underlying set of the object2 [Xn, [Xn−1, [. . . [X1, Y ] . . . ]]].
In the case n = 0, C(;Y ) is defined as the underlying set |Y |. Identity maps and compositions
are usual ones in Sets.

To check that composition maps have realizers, we use Proposition 15. Given
g ∈ C(Y1, . . . , Ym;Z) and fl ∈ C(X l

1, . . . , X
l
kl

;Yl) (1 ≤ l ≤ m), whose realizers are
u, v1, . . . , vm respectively. Then the composition map g ◦ (f1, . . . , fm) is realized by r such
that for any a1

1, a1
2, . . . , a1

k1
, a2

1, . . . , amkm
in |A|,

ramkm
. . . am1 . . . a1

k1
. . . a1

1 = u(vmamkm
. . . am1 ) . . . (v1a1

k1
. . . a1

1).

The existence of such r follows by the combinatory completeness of BI(−)•-algebras.
Finally, we show that C is a closed multicategory. We take internal hom objects

C(X1, . . . , Xn;Y ) as [Xn, [Xn−1, [. . . [X1, Y ] . . . ]]] and evaluation maps as the obvious ones,
where the evaluation maps are realized by I. ϕ is invertible as a function and for a map
g : X1, . . . , Xn, Z1, . . . , Zm → Y , Λ(g) is indeed realized by a realizer of g. J

The converse of Proposition 18 holds under some natural conditions.

I Proposition 19. Suppose A is an applicative structure and C := Asm(A) happens to be a
closed multicategory of assemblies. A is a BI(−)•-algebra if the following conditions hold:
(i) C(;X) = X and C(;X) is the underlying set |X|;
(ii) f ∈ C(X;Y ) iff f is a function from |X| to |Y | realized by some element of |A|;
(iii) identity maps are obvious ones;
(iv) C(X;Y ) = (C(X;Y ), ‖-‖) where ‖f‖ = {r | r realizes f};

2 Here we reverse the order of arguments due to the difference between closed multicategories and
applicative structures. Internal hom objects of a closed multicategory receive arguments from the left
side, whereas in an applicative structure, elements receive arguments from the right side. If we employ
another definition of closed multicategories with reversing the order of arguments of the compositions
and evaluation maps, then it will be suitable for the order of realizers.
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(v) C(X1, . . . , Xn+1;Y ) = C(Xn+1; C(X1, . . . , Xn;Y )) and C(X1, . . . , Xn+1;Y ) is the un-
derlying set of C(X1, . . . , Xn+1;Y );

(vi) for g : Y1, . . . , Yn → Z and fl : X l
1, . . . , X

l
kl
→ Yl, g ◦ (f1, . . . , fn) sends

x1
1, . . . , x

1
k1
, . . . , xnkn

to g(fn(xnkn
, . . . , xn1 ), . . . , f1(x1

k1
, . . . , x1

1));
(vii) evX1,...,Xn;Y sends x1, . . . , xn, f to f(xn, . . . , x1);
(viii) ΛX1,...,Xn;Z1,...,Zm;Y sends a function (x1, . . . , xn, z1, . . . , zm 7→

f(zm, . . . , z1, xn, . . . , x1)) to a function (z1, . . . , zm 7→ f(zm, . . . , z1,−, . . . ,−)).

Proof. Let X := (|A|, ‖-‖X), where ‖a‖X := {a}. Suppose I0 is a realizer of 1X . Then
I0a ∈ {a} for any a ∈ |A|. Therefore I0 has the property of I.

Let Y := (|A| × |A|, ‖-‖Y ), where ‖(a, a′)‖Y := {aa′}. Given arbitrary two element
r, r′ ∈ |A|, define f : X → Y as a 7→ (r, a) and g : Y → Y as (a, a′) 7→ (r′, aa′). Let
LXY,Y : C(Y ;Y )→ C(C(X;Y ); C(X;Y )) be the map

ΛC(X;Y );C(Y ;Y );C(X;Y )(ΛX;C(X;Y ),C(Y ;Y );Y (evY ;Y ◦ (evX;Y , 1C(Y ;Y )))).

LXY,Y sends g to (f 7→ g ◦ f). Suppose B0 is a realizer of LXY,Y . Then B0r′r realizes g ◦ f and
thus B0r′ra ∈ ‖g(f(a))‖Y = {r′(ra)} for any a ∈ |A|. Therefore B0 has the property of B.

Given arbitrary x ∈ |A|, define Evx : C(X;X) → X as evX;X ◦ (x, 1[X,X]). For any
a ∈ |A|, Evx sends fa : X → X, a′ 7→ aa′ to fa(x). Suppose (x•)0 is a realizer of Evx. Then
(x•)0a ∈ {ax}. Therefore (x•)0 has the property of x•. J

4 BII×(−)•-algebras and closed categories

In the previous section, we saw that BI(−)•-algebras correspond to closed multicategories.
In this section, we show that a slightly stronger class of applicative structures (BII×(−)•-
algebras) corresponds to a slightly stronger categorical structure (closed categories).

Closed categories are something like monoidal closed categories without tensor products,
which have internal hom objects defined without using tensor products. It is shown in [13]
that closed categories are slightly stronger categorical structures than closed multicategories.

First, we recall the definition of closed categories in [13].

I Definition 20. A closed category consists of the following data:
1. a locally small category C;
2. a functor [−,−] : Cop ×C→ C, called the internal hom functor;
3. an object I, called the unit object;
4. a natural isomorphism iX : [I,X]→ X;
5. an extranatural transformation jX : I → [X,X];
6. a transformation LXY,Z : [Y,Z]→ [[X,Y ], [X,Z]] natural in Y,Z and extranatural in X,
such that the following axioms hold:
(i) ∀X,Y ∈ C, LXY,Y ◦ jY = j[X,Y ];
(ii) ∀X,Y ∈ C, i[X,Y ] ◦ [jX , 1[X,Y ]] ◦ LXX,Y = 1[X,Y ];
(iii) ∀X,Y, Z,W ∈ C, the following diagram commutes:

[Z,W ]

LX
Z,W

��

LY
Z,W // [[Y,Z], [Y,W ]]

[1[Y,Z],L
X
Y,W ]

��

[[X,Z], [X,W ]]

L
[X,Y ]
[X,Z],[X,W ]

��
[[[X,Y ], [X,Z]], [[X,Y ], [X,W ]]]

[LX
Y,Z ,1[[X,Y ],[X,W ]]]

// [[Y, Z], [[X,Y ], [X,W ]]]
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(iv) ∀X,Y ∈ C, LIX,Y ◦ [1X , iY ] = [iX , 1[I,Y ]];
(v) ∀X,Y ∈ C, the function γ : C(X,Y ) → C(I, [X,Y ]) which sends f : X → Y to

[1X , f ] ◦ jX is invertible.

When A is a BI(−)•-algebra, the closed multicategory structure of Asm(A) does not
generally extend to a closed category since the natural isomorphism i−1

X is not generally
realized. Next, we give the definition of BII×(−)•-algebras, which we assume an extra element
I× for the realizer of i−1

X .

I Definition 21. Let A be a BI(−)•-algebra. I× is defined as an element of |A| (whenever it
exists) satisfying I×aI = a for all a ∈ |A|. If A has I×, we say that A is a BII×(−)•-algebra.

I Example 22. Any BCI-algebra is a BII×(−)•-algebra, since CI satisfies the axiom of I×.

I Example 23. Lplanar is a BII×(−)•-algebra. For any closed planar term M , M has a
β-normal form since it is a linear lambda term. Let λu.M ′ be the β-normal form of M . Then
(λxyz.x(yz))M(λv.v) =β λz.Mz =β λz.M

′[z/u] =α λu.M
′ =β M . Therefore in this case, B

satisfies the axiom of I×.

I Remark. There exists a BI(−)•-algebra which is not a BII×(−)•-algebra. Add the constant
rule:

(constant)
` c

to the construction of planar lambda terms and add no evaluation rules on these constants.
We write Lcplanar for the applicative structure which consists of closed planar lambda terms
with constants. Lcplanar is a BI(−)•-algebra and does not contains I×.

Note that if we further assume the extensionality (η-equality) on Lcplanar, then λxyz.x(yz)
satisfies the axiom of I× and the applicative structure forms a BII×(−)•-algebra.

I Proposition 24. Let A be a BII×(−)•-algebra. Then Asm(A) is a closed category.

Proof. Since a BII×(−)•-algebra is also a BI(−)•-algebra, a bifunctor [−,−] can be defined
in the same way as in the proof of Proposition 18.

We define the unit object I as ({∗}, ‖-‖I), where ‖∗‖I := {I}. jX is defined as the function
∗ 7→ 1X , which is realized by I. iX is defined as the function sending (f : ∗ 7→ x) to x,
which is realized by I•. The inverse function of iX is realized by I×. LXY,Z is defined as
g 7→ (f 7→ g ◦ f), which is realized by B. It is easy to verify that i,j and L have naturality
and satisfy the axioms of closed category.

Finally, we show that γ is invertible. Let g ∈ C(I, [X,Y ]) then g(∗) is γ−1(g), which is
realized by rgI, where rg is a realizer of g. J

Like Proposition 19, the converse of the above proposition holds under some conditions.

I Proposition 25. Suppose A is an applicative structure and C := Asm(A) happens to be a
closed category. If the following conditions hold, then A is a BII×(−)•-algebra.
(i) [X,Y ] = (C(X,Y ), ‖-‖) where ‖f‖ = {r | r realizes f};
(ii) [f, g] : [X,Y ]→ [X ′, Y ′] is a function which sends h : X → Y to g ◦ h ◦ f ;
(iii) LXY,Z sends g : Y → Z to the function (f : X → Y ) 7→ (g ◦ f : X → Z);
(iv) the underlying set of the unit object I is the singleton {∗};
(v) iX sends a function (f : ∗ 7→ x) to x.
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Proof. Let X := (|A|, ‖-‖X), where ‖a‖X := {a}. Suppose I0 is the realizer of 1X . Then
I0a ∈ {a} for any a ∈ |A|. Therefore I0 has the property of I.

Let Y := (|A| × |A|, ‖-‖Y ), where ‖(a, a′)‖Y := {aa′}. Given arbitrary two element
r, r′ ∈ |A|, define f : X → Y as a 7→ (r, a) and g : Y → Y as (a, a′) 7→ (r′, aa′). LXY,Y sends
g to (f 7→ g ◦ f). Suppose B0 is the realizer of LXY,Y . Then B0r′r realizes g ◦ f and thus
B0r′ra ∈ ‖g(f(a))‖Y = {r′(ra)} for any a ∈ |A|. Therefore B0 has the property of B.

Since I ∼= [I, I] and I ∈ ‖1I‖[I,I], we can assume I ∈ ‖∗‖I with loss of generality. Suppose
I×0 is the realizer of i−1

X . Then I×0 a realizes the map ∗ 7→ a for any a ∈ |A|. Thus (I×0 a)I ∈ {a}
and I×0 has the property of I×.

Given arbitrary x ∈ |A|, define f : I → X as ∗ 7→ x. For any a ∈ |A|, iX ◦ [f, 1X ]
sends fa : X → X, a′ 7→ aa′ to fa(x). Suppose (x•)0 is the realizer of iX ◦ [f, 1X ]. Then
(x•)0a ∈ {ax}. Therefore (x•)0 has the property of x•. J

5 Other cases

In this section, we introduce three classes of applicative structures which are sufficient
for inducing some categorical structures on assemblies. Unlike BI(−)•-algebras for closed
multicategories and BII×(−)•-algebras for closed categories, the classes in this section do
not provide necessary conditions for inducing such structures.

5.1 BK(−)•-algebras and closed categories

I Definition 26. A BK(−)•-algebra is an applicative structure A which contains B, K and
x• for each x ∈ |A|.

I Example 27. Consider untyped lambda terms constructed without using contraction or
exchange rules. Then β-equivalence classes of these closed terms form a BK(−)•-algebra.

I Proposition 28. (combinatory completeness of BK(−)•-algebras) Let A be a BK(−)•-
algebra and M be a polynominal over |A| whose variables appear at most once in M . For
a variable x which is the rightmost variable of M or not in M , there exists a polynominal
λ∗x.M such that the free variables of λ∗x.M are the free variables of M excluding x and
(λ∗x.M)a = M [a/x] for all a ∈ |A|.

Proof. We define λx.M by induction on the structure of M as follows:
λ∗x.x := BB•K
λ∗x.y := Ky (x 6= y)

λ∗x.MN :=


BN•(λ∗x.M) (x ∈ FV (M))
BM(λ∗x.N) (x ∈ FV (N))
K(MN) (otherwise)

J

Since BB•K satisfies the axiom of I and K satisfies the axiom of I×, any BK(−)•-algebra
is also a BII×(−)•-algebra. Therefore the next corollary follows by Proposition 24.

I Corollary 29. Let A be a BK(−)•-algebra. Then Asm(A) is a closed category.
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5.2 BII•(−)◦-algebras and skew closed categories
I Definition 30. Let A be an applicative structure. For x in |A|, we write x◦ as an element
of |A| (whenever it exists) such that x◦aa′ = a(xa′) for all a, a′ ∈ |A|. We say that A is a
BII•(−)◦-algebra iff it contains B, I, I• and x◦ for each x ∈ |A|.

Since Bx•B satisfies the axiom of x◦, any BI(−)•-algebra is also a BII•(−)◦-algebra.
Assemblies on BII•(−)◦-algebras form skew closed categories, which are weaker closed
categorical structure than closed categories.

There is a categorical structure called skew monoidal categories [18], which have the same
components as monoidal categories but the invertibility of unitors and associators are not
assumed. Skew closed categories are to skew monoidal categories what closed categories are
to monoidal categories.

First we recall the definition of skew closed categories in [17].

I Definition 31. A (left) skew closed category C consists of the following data:
1. a locally small category C;
2. a functor [−,−] : Cop ×C→ C, called the internal hom functor;
3. an object I, called the unit object;
4. a natural transformation iX : [I,X]→ X;
5. an extranatural transformation jX : I → [X,X];
6. a transformation LXY,Z : [Y,Z]→ [[X,Y ], [X,Z]] natural in Y,Z and extranatural in X,
such that the following axioms hold:
(i) ∀X,Y ∈ C, LXY,Y ◦ jY = j[X,Y ];
(ii) ∀X,Y ∈ C, i[X,Y ] ◦ [jX , 1[X,Y ]] ◦ LXX,Y = 1[X,Y ];
(iii) ∀X,Y, Z,W ∈ C, the following diagram commutes:

[Z,W ]

LX
Z,W

��

LY
Z,W // [[Y,Z], [Y,W ]]

[1[Y,Z],L
X
Y,W ]

��

[[X,Z], [X,W ]]

L
[X,Y ]
[X,Z],[X,W ]

��
[[[X,Y ], [X,Z]], [[X,Y ], [X,W ]]]

[LX
Y,Z ,1[[X,Y ],[X,W ]]]

// [[Y,Z], [[X,Y ], [X,W ]]]

(iv) ∀X,Y ∈ C, [1[I,X], iY ] ◦ LIX,Y = [iX , 1Y ];
(v) iI ◦ jI = 1I .

A left skew closed category is called left normal when the function γ : C(X,Y )→ C(I, [X,Y ]),
f 7→ [1, f ] ◦ jX is invertible for any X,Y ∈ C.

I Proposition 32. Let A be a BII•(−)◦-algebra. Then Asm(A) is a left normal skew closed
category.

Proof. We define the functor [−,−] as in the proof of Proposition 18, where [f, g] is realized
by Brf ◦(Brg). The rest of the proof is the same as Proposition 24 except for the existence of
i−1
X . J

Since any BI(−)•-algebra is also a BII•(−)◦-algebra, the next corollary follows.

I Corollary 33. Let A be a BI(−)•-algebra. Then Asm(A) is a left normal skew closed
category.
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5.3 BB′II•-algebras and skew closed categories
Unlike PCAs and BCI-algebras, BI(−)•-algebras, BK(−)•-algebras and BII•(−)◦-algebras
need infinitely many assumptions due to (−)• or (−)◦. In this subsection, we introduce a
class of applicative structure BB′II•-algebras, which induces skew closed categories and needs
only four assumptions.

I Definition 34. A BB′II•-algebra is an applicative structure A which contains four elements
B, B′, I and I•, where B′ is a element such that B′xyz = y(xz) for all x, y, z ∈ |A|.

Since B′x satisfies the axiom of x◦, any BB′II•-algebra is also a BII•(−)◦-algebra. There-
fore the next corollary follows by Proposition 32.

I Corollary 35. Let A be a BB′II•-algebra. Then Asm(A) is a left normal skew closed
category.

I Remark. A category of assemblies on a BB′II•-algebra is not a closed category in general
because i−1

X is not realized. If a BB′II•-algebra has I×, then B(B′(B(BI•)(BB′I×)))B′ satisfies
the axiom of C, and thus this BB′II•-algebra becomes a BCI-algebra.

6 Examples

In this section, we introduce three examples of BI(−)•-algebras.

6.1 Propositions derivable in the planar logic
In this subsection, we construct F as a BI(−)•-algebra.

We define the planar logic as a sequent calculus whose formulas are constructed from
propositional variables and an implication symbol (, and whose derivation rules are the
following ones:

(identity)
A `p A where A is a formula; A,Γ `p B

((-introduction)
Γ `p A( B

;

Γ `p A ∆ `p A( B
((-elimination)

Γ,∆ `p B
,

where Γ and ∆ are sequences of distinct formulas.
Let F be the powerset of {A | `p A is derivable in the planar logic}. Then F gives rise

to a BI(−)•-algebra. Indeed, we can define the applicative structure on F as follows:
For M,N ∈ F , the application MN := {A1 | ∃A2 ∈ N, (A2 ( A1) ∈M}.
B := {(A1 ( A2) ( ((A3 ( A1) ( (A3 ( A2)) | A1, A2, A3 are formulas}.
I := {A1 ( A1 | A1 is a formula}.
For M ∈ F , M• := {(A1 ( A2) ( A2 | A2 is a formula and A1 ∈M}.

6.2 Binary trees from ordered groups
In this subsection, we construct T as a BII×(−)•-algebra.

Take an ordered group (G, ·, e,≤). Let T be a set of binary trees whose leaves are labeled
by elements of G:

t ::= g | t( t (g ∈ G).

We define a function |-| : T → G by induction: |g| := g and |t1 ( t2| := |t1|−1 · |t2|.
Let T be the powerset of {t ∈ T | e ≤ |t|}. Then T gives rise to a BII×(−)•-algebra.

Indeed, we can define the applicative structure on T as follows:
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For M,N ∈ T , MN := {t1 | ∃t2 ∈ N, (t2 ( t1) ∈M}.
B := {(t1 ( t2) ( ((t3 ( t1) ( (t3 ( t2)) | t1, t2, t3 ∈ T}.
I := {t1 ( t1 | t1 ∈ T}.
I× := {t1 ( ((t2 ( t2) ( t1) | t1, t2 ∈ T}
For M ∈ T , M• := {(t1 ( t2) ( t2 | t2 ∈ T, t1 ∈M}.

I Remark. Whether T includes C or not depends on G. For instance, when G is Abelian, T
has C as {(t1 ( (t2 ( t3)) ( (t2 ( (t1 ( t3)) | t1, t2, t3 ∈ T}.

The example in this subsection is based on Comod(G) introduced in [6]. Comod(G) is
a category constructed from a group G, whose objects are sets equipped with G valued
functions and whose maps are relations between the objects compatible to the valuations. For
any (not necessarily ordered) group G, Comod(G) is a pivotal category. T is a set of maps
from the unit object to a reflexive object of Comod(G) with alteration for order structures.

6.3 Computational lambda calculus and its models
In this subsection, we show the untyped computational lambda calculus [14] is a BII×(−)•-
algebra. The following axiomatization is from [15].

Suppose infinite supply of variables x, y, z, . . . . The values, terms and evaluation contexts
are defined as follows:

V ∈ Values ::= x | (λx.M);
M ∈ Terms ::= V |M(M ′);
E ∈ EvalCtx ::= [−] | EM | V E.

An equivalence relation =R on Terms is defined as the congruence of the following
equations:
1. βv : (λx.M)V = M [V/x];
2. ηv : λx.V x = V (x /∈ FV (V ));
3. βΩ : (λx.E[x])M = E[M ] (x /∈ FV (E)),

where E[N ] denotes the term obtained by substituting N for [−] in E.

Then, (Terms/=R) forms a BII×(−)•-algebra. Here the application is that of the compu-
tational lambda calculus. λxyz.x(yz), λx.x, λxy.yx and λx.xM are representatives of B, I,
I× and M• respectively.

Although the computational lambda calculus consists of the same terms as the ordinary
lambda calculus, this example is not a PCA nor a BCI-algebra. Intuitively, the computational
lambda calculus is sound for reasoning about effectful programs, which cannot be discarded,
duplicated nor exchanged in general; hence it cannot have S, K nor C.

The syntactical proof is as follows. Assume that the computational lambda calculus is a
BCI-algebra. Then there exists a term C′ such that C′MN =R NM in the computational
lambda calculus for any term M and N . Take two different variables u and v which are not
free in C′. Then C′(uu)(vv) =R (vv)(uu) holds in the computational lambda calculus. Since
the CPS-translation [[−]] is sound [16], [[−]] sends C′(uu)(vv) and (vv)(uu) to the βη-equal
terms.

[[C′(uu)(vv)]] =βη λk.[[C′]](λz.uu(λw.zw(λx.vv(λy.xyk))))
[[(vv)(uu)]] =βη λk.vv(λx.uu(λy.xyk))

The former contains a subterm uu(...vv...), whereas the latter contains a subterm vv(...uu...).
Therefore, these two terms are not βη-equal, and it yields a contradiction.
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We can also obtain BII×(−)•-algebras from models of the computational lambda calculus.
Take a Cartesian closed category C and a strong monad T on C with an object X such
that X ∼= (X → TX). Then C(1, TX) is a model of the computational lambda calculus and
forms a BII×(−)•-algebra.

7 Related work

In [19], Zeilberger showed certain kind of planar maps with orientations are generated by
combining several “imploid moves” including those corresponding to B and I. In particular for
an untyped case, his work gives the combinatory completeness of BI(−)•-algebras. Moreover,
this paper suggests that we can obtain models of BI(−)•-algebras from reflexive objects of
skew closed categories.

In this paper, we deal with several classes of applicative structures other than PCAs nor
BCI-algebras. [7] is a textbook covering basic facts about combinatory algebras. In [10],
Komori investigated BB′I logic, one of combinatory logics with restricted exchanges. Our
BB′II•-algebra is inspired by it and assemblies on BB′II•-algebras are models of BB′I logics
with an extra axiom ` ((φ→ φ)→ ψ)→ ψ. Futhermore, using “guarded merge” introduced
in that paper, we can construct lambda terms which form a BB′II•-algebra.

BI(−)•-algebras give rise to models of certain fragments of the Lambek calculus. Corres-
pondences about Lambek calulus and closed multicategories are in [11]. A basic Lambek
calculus is L(•, I, \, /) which has products, a unit and implications for both sides, whose
models are monoidal biclosed category. Closed multicategories are models of L(\) or L(/).
Closed categories are models of L(I, \) or L(I, /).

Realizability models for exponential modalities ! are introduced in [3] [2] as “linear
combinatory algebras (LCAs).” In [8], linear/non-linear realizability models are constructed
from adjoint pairs between BCI-algebras and PCAs. We are currently developing the
construction of realizability models for exchange modalities in the same way as exponential
modalities. Exchange modalities are modalities associating the Lambek calculus to the
commutative linear logic. The characterization of an exchange modality on the Lambek
calculus is in [4] and categorical models of exchange modalities are introduced in [9]. A
categorical model of exchange modality on L(•, I, \, /) is given as a monoidal adjunction
between a monoidal biclosed category and an SMCC. With some appropriate conditions,
adjoint pairs between BI(−)•-algebras and BCI-algebras may give rise to realizability models
of exchange modalities on L(\) or L(/).

8 Conclusion

In this paper, we have presented several classes of applicative structures and identified
categorical structures of assemblies on them. In particular, we have shown that BI(−)•-
algebras are the necessary and sufficient conditions for obtaining closed multicategories under
some conditions, and that BII×(−)•-algebras are those for closed categories.

There are several directions for further investigation of this paper. We conclude this
paper by describing three of future tasks.

First, we may investigate more correspondences between applicative structures and
categorical structures of assemblies. We have not given appropriate classes of applicative
structures inducing other important categorical structures such as non-symmetric monoidal
closed categories nor monoidal biclosed categories.
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Second, as mentioned in Section 7, we may characterize realizability models of exchange
modalities. Furthermore, if we obtain a class of applicative structures for monoidal biclosed
categories, adjoint pairs between such applicative structures and BCI-algebras could give
rise to categorical models of exchange modalities on L(•, I, \, /).

Third, more examples of BI(−)•-algebras are desired. Finding interesting examples, we
may get new perspectives for analyzing non-commutative logical systems.
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