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Abstract
In this paper, we introduce a family of topological spaces that captures the existence of preservation
theorems. The structure of those spaces allows us to study the relativisation of preservation theorems
under suitable definitions of surjective morphisms, subclasses, sums, products, topological closures,
and projective limits. Throughout the paper, we also integrate already known results into this new
framework and show how it captures the essence of their proofs.
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1 Introduction

In classical model theory, preservation theorems characterise first-order definable sets enjoying
some semantic property as those definable in a suitable syntactic fragment [6, Section 5.2]. A
well-known instance is the Łoś-Tarski Theorem [37, 28]: a first-order sentence ϕ is preserved
under extensions on all structures – i.e., A |= ϕ and A is an induced substructure of B imply
B |= ϕ – if and only if it is equivalent to an existential sentence.

A major roadblock for applying these results in computer science is that preservation
theorems generally do not relativise to classes of structures, and in particular to the class of
all finite structures (see the discussions in [31, Section 2] and [25, Section 3.4]). In fact, the
only case where a classical preservation theorem was shown to hold on all finite structures is
Rossman’s Theorem [32]: a first-order sentence is preserved under homomorphisms on all finite
structures if and only if it is equivalent to an existential positive sentence. This long-sought
result has applications in database theory, where existential positive formulæ correspond to
unions of conjunctive queries (also known as select-project-join-union queries and arguably
the most common database queries in practice [1]). For instance, it is related in [12,
Theorem 17] to the existence of homomorphism-universal models (as constructed by chase
algorithms) for databases with integrity constraints, in [38, Theorem 3.4] to a characterisation
of schema mappings definable via source-to-target tuple-generating dependencies, and in [18,
Corollary 4.14] to the naïve evaluation of queries over incomplete databases under open-world
semantics. These applications would benefit directly from preservation theorems for more
restricted classes of finite structures or for other semantic properties – corresponding to other
classes of queries and other semantics of incompleteness – and this has been an active area
of research [5, 4, 9, 22, 17]. Like Rossman’s result, these proofs typically rely on careful
model-theoretic arguments – typically using Ehrenfeucht-Fraïsse games and locality – and
each new attempt at proving a preservation theorem seemingly needs to restart from scratch.
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32:2 Preservation Theorems Through the Lens of Topology

In this paper, we develop a general topological framework for investigating preservation
theorems, where preservation theorems, both old and new, can be obtained as byproducts of
topological constructions.

As pointed out in the literature, the classical proofs of preservation theorems fail in the
finite because the Compactness Theorem does not apply. As we will see in Section 2, one
can reinterpret in topological terms the two applications of the Compactness Theorem in the
classical proofs of preservation theorems like the Łoś-Tarski Theorem. Here, the topology of
interest has the sets of structures closed under extension as its open sets, and one application
of the Compactness Theorem shows that the definable open sets are compact (Claim 2.2)
while the other shows that the sets definable by existential sentences form a base for the
definable open sets (Claim 2.1). In Section 3, we capture these two ingredients in general
through the definitions of logically presented pre-spectral spaces and diagram bases which lead
to a generic preservation theorem (Theorem 3.4): under mild hypotheses – which are met in
all the preservation results over classes of finite structures in the literature – preservation
holds if and only if the space under consideration is logically presented pre-spectral.

The benefit of this abstract, topological viewpoint, is that preservation results can now
be proven by constructing new logically presented pre-spectral spaces from known ones.

Here, the topological core of our definition is the one of pre-spectral spaces, which
generalise both Noetherian spaces and spectral spaces [19, 13]; see Section 4. From this point
onwards the use of the word stability will always be used to describe closure under some
operations and will never be used as the Model Theoretic notion of stability, this choice is
motivated by the fact that in topology closure has a specific meaning, and we already are
using the word preservation to describe preservation theorems. To some extent, we can rely
on the stability of spectral spaces under various topological constructions to investigate the
same constructions for pre-spectral spaces. We focus however in the paper on the logically
presented pre-spectral spaces, which is where the main difficulty lies when attempting to
prove preservation over classes of finite structures, and for which stability must take the
logical aspect into account. Accordingly, Section 5 shows the stability of logically presented
pre-spectral spaces under typical constructions: under a carefully chosen notion of morphisms,
under subclasses provided a sufficient condition is met, and under finite sums and finite
products.

Where the topological viewpoint really shines is when it comes to stability for various
kinds of “limits” of classes of structures enjoying a preservation property. We show in
Section 6 that the limit of a single class of structures, when it can be construed as the
closure in a suitable topology of a logically presented pre-spectral space, is also logically
presented pre-spectral. This allows us to show that Rossman’s Theorem – i.e., homomorphism
preservation in the finite – extends to the class of structures with the finite model property,
and also extends to countable unions of finite structures (the latter was also shown in [30,
Chapter 10]). In Section 7, we show that the limit of a family of pre-spectral spaces, when
built as a projective limit, is also pre-spectral. We use this to show that Rossman’s proof of
homomorphism preservation in the finite can be re-cast in our framework as building exactly
such a projective limit.

Due to space constraints, detailed proofs and additional examples will be found in the
full paper.
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2 Preservation Theorems

In this section, we revisit classical preservation theorems, whose proofs can be found in
many books such as [6, Section 5.2]. We will recall the needed definitions, and illustrate the
proof techniques in order to highlight the two ingredients that motivate our definitions of
pre-spectral spaces and diagram bases later in Section 3.

2.1 Classical Preservation Theorems
Notations. A σ-structure A over a finite relational signature σ (without constants) is given
by a domain |A| and, for each symbol R ∈ σ of arity n, a relation RA ⊆ |A|n; A is finite if
|A| is finite. The binary symbol “=” will always be interpreted as equality, and will not be
explicitly listed in our signatures. We write Struct(σ) for the set1 of all the σ-structures and
Fin(σ) for the finite ones. We assume the reader is familiar with the syntax and semantics
of first-order logic over σ. We write FO[σ] for the set of first-order sentences over σ. For
such a sentence ϕ, we write JϕKX , {A ∈ X | A |= ϕ} for its set of models over a class of
structures X ⊆ Struct(σ); by extension, we let JFKX , {JϕKX | ϕ ∈ F} denote the collection
of F-definable subsets of X for a fragment F of FO[σ].

Abstract Preservation. A preservation theorem over a class of structures X ⊆ Struct(σ)
shows that first-order sentences enjoying some semantic property are equivalent to sentences
from a suitable a syntactic fragment. More precisely, one can model a semantic property as
a collection O ⊆ ℘(X) of “semantic observations” and consider a fragment F ⊆ FO[σ]: we
will say that X has the (O,F) preservation property if
1. for all ψ ∈ F, JψKX ∈ O, and,
2. for all ϕ ∈ FO[σ] such that JϕKX ∈ O, there exists ψ ∈ F such that JϕKX = JψKX .
In this definition, item 1 is usually proven by a straightforward induction on the formulæ in F,
and the challenge is to establish item 2. Item 2 is also where relativisation to a subset Y ⊆ X
might fail, because a set U 6∈ O might still be such that U ∩ Y ∈ {V ∩ Y | V ∈ O}, and thus
there might be new first-order sentences enjoying the semantic property and requiring an
equivalent sentence in F.

Put more succinctly, X has the (O,F) preservation property if

O ∩ JFO[σ]KX = JFKX . (1)

This formulation explicitly shows how a semantic condition (the left-hand side in (1)) is
matched with a syntactic one (the right-hand side). As preservation is of interest beyond
first-order logic [20, 15, 10, 17], we will say in full generality that a set X equipped with a
lattice L of sets definable in the logic of interest has the (O,L′) preservation property if

O ∩ L = L′ (2)

In the rest of this paper we will assume that O contains ∅, contains X, is closed under
finite intersections and arbitrary unions. This is equivalent to O being a collection of open
sets and defining a topology on X.

1 In order to work over sets instead of proper classes and thereby avoid delicate but out-of-topic foundational
issues, every σ-structure in this paper will be assumed to be of cardinality bounded by some suitable
infinite cardinal. In particular, the Löwenheim-Skolem Theorem justifies that this is at no loss of
generality when working with first-order logic.

CSL 2021



32:4 Preservation Theorems Through the Lens of Topology

Table 1 Classical preservation theorems and their relativisations to the finite case.

preservation theorem quasi-ordering ≤ fragment F holds in Fin(σ)

homomorphism → EPFO yes [32]
Tarski-Lyndon ⊆ EPFO 6= no [3]
Łoś-Tarski ⊆i EFO no [36, 21, 11]
dual Lyndon � NFO no [2, 34]

Monotone Preservation. In a number of cases, which are especially relevant in the ap-
plications to database theory mentioned in the introduction [12, 18], the semantic property
of interest is a form of monotonicity for some quasi-ordering ≤ of Struct(σ). We say that
a sentence ϕ is monotone in X ⊆ Struct(σ) if JϕKX is upwards-closed, meaning that if
A ∈ JϕKX and B is a σ-structure in X such that A ≤ B, then B ∈ JϕKX . In terms of abstract
preservation, this corresponds to choosing O as the collection of upwards-closed subsets of X,
which is also known as the Alexandroff topology and is denoted by τ≤.

The quasi-ordering≤ in question is typically defined through some class of homomorphisms.
Recall that there is a homomorphism between two σ-structures A and B, noted A → B,
if there exists f : |A| → |B| such that, for all relation symbols R of σ and all tuples
(a1, . . . , an) ∈ RA, (f(a1), . . . , f(an)) ∈ RB. When f is injective, this entails that A is
(isomorphic to) a (not necessarily induced) substructure of B and we write A ⊆ B; when f is
furthermore strong – meaning that for all R and (a1, . . . , an) ∈ |A|n, (f(a1), . . . , f(an)) ∈ RB

implies (a1, . . . , an) ∈ RA – , this entails that A is (isomorphic to) an induced substructure
of B and we write A ⊆i B; finally, we write A� B when f is surjective.

Table 1 summarises what is known about monotone preservation theorems. In this table,
EFO denotes the set of existential first-order sentences, NFO the set of negative ones (namely
negative atoms closed under ∨, ∧, ∃, and ∀), EPFO the set of existential positive ones, and
EPFO 6= the set of existential positive ones extended with atoms of the form x 6= y (interpreted
as inequality). Note that Lydon’s Theorem, which states that a first-order sentence closed
under surjective homomorphisms on all structures is equivalent to a positive one, is presented
in Table 1 in its dual form with inverse surjective homomorphisms and negative sentences.
For all these fragments F and associated quasi-orderings ≤, the fact that JFKX ⊆ τ≤ is mostly
straightforward.

2.2 The Łoś-Tarski Theorem in Topological Terms

We propose now to inspect the proof of the Łoś-Tarski Theorem on a finite relational
signature σ, as found for instance in [6, Theorem 3.2.2] or [24, Section 5.4]. We work here
with the collection O , τ⊆i

of upwards-closed subsets of X , Struct(σ) for ⊆i (this is the
Alexandroff topology of the quasi-order ⊆i) and the fragment F , EFO[σ]. The Łoś-Tarski
Theorem corresponds to the following instantiation of (1):

τ⊆i
∩ JFO[σ]KStruct(σ) = JEFO[σ]KStruct(σ) . (3)

The proof of the Łoś-Tarski Theorem can be decomposed into two steps, here corresponding
to the upcoming claims 2.1 and 2.2, and each invoking the Compactness Theorem. When
translated in topological terms, the first shows that EFO defines a base for the definable open
sets, while the second shows that definable open sets are compact.
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“Syntactic” Base. Recall that a base B of a topology τ is a collection of open sets such
that every open set of τ is a (possibly infinite) union of elements from B. Equivalently, B
is a base of a topology τ whenever ∀U ∈ τ,∀A ∈ U,∃V ∈ B, A ∈ V ⊆ U . A subbase is a
collection of open sets such that every open set of τ is a (possibly infinite) union of finite
intersections of elements of the subbase. The topology 〈O〉 generated by a collection O of
sets is the smallest topology containing those sets; O is then a subbase of 〈O〉.

We first prove a weaker version of Equation (3) by proving the equality on the gener-
ated topologies. Because JFO[σ]KStruct(σ) and JEFO[σ]KStruct(σ) are lattices, those generated
topologies can be seen as generated by infinite disjunctions of sentences in FO[σ] (resp.
EFO[σ]).

B Claim 2.1. The topologies generated by τ⊆i ∩ JFO[σ]KStruct(σ) and JEFO[σ]KStruct(σ) are
the same, i.e.,

〈
τ⊆i
∩ JFO[σ]KStruct(σ)

〉
=
〈
JEFO[σ]KStruct(σ)

〉
.

Proof. First of all, any sentence in EFO[σ] defines an upwards-closed set for ⊆i, and moreover
EFO[σ] ⊆ FO[σ], hence

〈
JEFO[σ]KStruct(σ)

〉
⊆
〈
τ⊆i
∩ JFO[σ]KStruct(σ)

〉
.

For the converse inclusion, it suffices to show that EFO[σ] defines a base of the topology
〈τ⊆i ∩ JFO[σ]KStruct(σ)〉. Consider for this a monotone sentence ϕ ∈ FO[σ] and a structure A
such that A |= ϕ. Following the classical proofs (e.g., [6, Theorem 3.2.2] or [24, Corol-
lary 5.4.3]), define Â as the expansion of A with one additional constant ca for each a ∈ |A|,
interpreted by cÂa , a. The diagram Diag(A) of A is the set of all quantifier-free sentences
over this extended signature that hold in Â. For a structure B̂ ∈ Struct(σ ∪ {ca}a∈A), we
write B for its reduct in Struct(σ) obtained by removing the constants {ca}a∈A.

Let T , Diag(A) ∪ {¬ϕ}, and consider B̂ ∈ Struct(σ ∪ {ca}a∈A) such that B̂ |= T .
Because B̂ |= Diag(A), by construction A ⊆i B (in particular, the sentence ¬(ca = cb)
belongs to Diag(A) for all a 6= b in |A|), and thus B |= ϕ because ϕ is monotone, and finally
B̂ |= ϕ because the constants ca do not occur in ϕ. Therefore, B̂ |= ϕ ∧ ¬ϕ, which is absurd:
the theory T is inconsistent, and by the Compactness Theorem for first-order logic, there
exists a finite conjunction ψ0 of sentences in Diag(A), which is already inconsistent with ¬ϕ.

Let ψA be the existential closure of the formula obtained by replacing each symbol ca
with a variable xa in ψ0; note that ψA is an existential sentence. By construction, A |= ψA,
and if B |= ψA, there exists an interpretation of the constants {ca}a∈A allowing to build an
expansion B̂ such that B̂ |= ψ0. As we just saw that the implication ψ0 =⇒ ϕ is valid,
B̂ |= ϕ, and since no constant symbol occurs in ϕ, B |= ϕ.

To conclude, for any open set U ∈ 〈τ⊆i
∩ JFO[σ]KStruct(σ)〉 and for any A ∈ U , there exists

a monotone sentence ϕ such that A ∈ JϕKStruct(σ), and we have proven that there exists
JψAKStruct(σ) ∈ JEFO[σ]KStruct(σ) such that A ∈ JψAKStruct(σ) ⊆ JϕKStruct(σ) ⊆ U . Therefore,
JEFO[σ]KStruct(σ) is a base of 〈τ⊆i ∩ JFO[σ]KStruct(σ)〉. C

Compactness. The second step relies on the compactness of the sets JϕKStruct(σ) for mono-
tone sentences ϕ. Recall that a subset K is compact in a topological space τ if, for any open
cover (Ui)i∈I of K – i.e., a collection of open sets such that K ⊆

⋃
i∈I Ui – , there exists

a finite subset I0 ⊆ I, such that K ⊆
⋃
i∈I0

Ui (beware that this definition is also called
quasi-compact in the literature, because we do not require any separation property here). If
τ = 〈O〉, by Alexander’s Subbase Lemma, K is compact if and only if, from every open cover of
K using only sets from O, we can extract a finite open cover of K. As open compact sets play
a key role in this paper, we introduce here the notation K◦(X) , {U ∈ τ | U is compact}.
When the topology τ is not clear from the context, we shall write K◦(X, τ).

CSL 2021



32:6 Preservation Theorems Through the Lens of Topology

B Claim 2.2. Every monotone sentence defines a compact open subset in the topology
〈τ⊆i

∩ JFO[σ]KStruct(σ)〉, i.e., τ⊆i
∩ JFO[σ]KStruct(σ) ⊆ K◦

(
Struct(σ), 〈τ⊆i

∩ JFO[σ]KStruct(σ)〉
)
.

Proof. Consider a monotone sentence ϕ ∈ FO[σ]Struct(σ). Let (Ui)i∈I be an open cover of
JϕKStruct(σ). By Alexander’s Subbase Lemma, we can assume that for each i ∈ I, Ui =
JϕiKStruct(σ) for some monotone sentence ϕi. Consider the theory T , {¬ϕi | i ∈ I} ∪ {ϕ}.
Because (Ui)i∈I is an open cover, this theory has no models. By the Compactness Theorem
for first order logic, there exists a finite set I0 such that T0 , {¬ϕi | i ∈ I0} ∪ {ϕ} is not
satisfiable, proving that (Ui)i∈I0 is an open cover of JϕKStruct(σ). C

I Remark 2.3 (Compact sets in τ≤). As we will often deal with the Alexandroff topology τ≤
of a quasi-order (X,≤), it is worth noting that U ∈ τ≤ is compact if and only if it is the
upward closure U = ↑F of some finite subset F ⊆fin X; this is equivalent to saying that U
has finitely many minimal elements up to ≤-equivalence [19, Exercise 4.4.22]. Thus Claim 2.2
states that any monotone sentence has finitely many ⊆i-minimal models in Struct(σ).

Proof of the Łoś-Tarski Theorem. A simple structural induction on the formulæ shows that
JEFO[σ]KStruct(σ) ⊆ τ⊆i

∩ JFO[σ]KStruct(σ). Regarding the converse inclusion in Equation (3),
consider a sentence ϕ ∈ FO[σ] defining an open set in τ⊆i . By Claim 2.1, there exists a family
(ψi)i∈I of existential sentences such that JϕKStruct(σ) =

⋃
i∈IJψiKStruct(σ). By Claim 2.2, there

is a finite set I0 ⊆fin I for which the equality still holds. Because EFO[σ] is a lattice, this proves
the existence of an existential sentence ψ ,

∨
i∈I0

ψi such that JϕKStruct(σ) = JψKStruct(σ). J

The two properties singled out in claims 2.1 and 2.2 are of different nature. Claim 2.2
really holds for any topology τ and not only for the Alexandroff topology τ⊆i

, as opposed
to Claim 2.1. Moreover, Claim 2.1 appears to be the most involved one here, but is often
easily proven on classes of finite structures.

3 Pre-spectral Spaces and Diagram Bases

Following the two-step decomposition of the proof of the Łoś-Tarski Theorem given in
Section 2.2, we define in this section logically presented pre-spectral spaces and diagram bases,
before showing in Theorem 3.4 how they characterise when a preservation theorem holds.

3.1 Pre-spectral Spaces
As a preliminary step toward our main definition, let us first propose a definition of topological
spaces (X, τ) where the compact open sets form a bounded sublattice of ℘(X) (by which we
mean that ∅ and X belong to the lattice) that generates the topology.

I Definition 3.1 (Pre-spectral space). A topological space (X, τ) is a pre-spectral space
whenever K◦(X) is a bounded sublattice of ℘(X) that generates τ, i.e., 〈K◦(X)〉 = τ.

The name “pre-spectral” comes from the theory of spectral spaces [13], for which the definition
is almost identical (see Section 4.2). Pre-spectral spaces will allow us to tap into the rich
topological toolset that has been developed for spectral spaces.

Logical presentations. As seen in Claim 2.2, the topology of interest in a preservation
theorem is generated by combining a topological space (X, τ) with a bounded sublattice L of
subsets of X, which will be called the definable subsets of X. Let us write 〈X, τ,L〉 for the
topological space (X, 〈τ ∩ L〉). The following definition is then a direct generalisation of the
statement of Claim 2.2.
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I Definition 3.2 (Logically presented pre-spectral space). Let (X, τ) be a topological space and
L be a bounded sublattice of ℘(X). Then 〈X, τ,L〉 is a logically presented pre-spectral space
(a lpps) if its definable open subsets are compact, i.e., if τ ∩ L ⊆ K◦(X).

Whenever σ is a finite relational signature, X ⊆ Struct(σ) for a topological space (X, τ) and
L = JFO[σ]KX , we denote it by 〈X, τ,FO[σ]〉 for simplicity; e.g., 〈Struct(σ), τ⊆i ,FO[σ]〉 is a
lpps by Claim 2.2.

As τ ∩ L is closed under finite intersection, any open set in 〈τ ∩ L〉 is a union of sets
from τ ∩ L, thus any compact open set in K◦(X) is a finite union of sets from τ ∩ L. As
τ ∩ L is also closed under finite unions, this shows the inclusion K◦(X) ⊆ τ ∩ L. Thus, in
a lpps, K◦(X) = τ ∩ L is a bounded lattice and any lpps is indeed a pre-spectral space.
Conversely, 〈X, τ,K◦(X)〉 is well-defined whenever (X, τ) is a pre-spectral space; in this case
〈X, τ,K◦(X)〉 is a lpps and it equals (X, τ) (they have the same points and opens).

Beware however that (X, 〈τ ∩ L〉) = 〈X, τ,L〉 being pre-spectral does not entail that it
is a lpps; see Remark 3.6 at the end of the section. While pre-spectral spaces capture the
topological core behind Claim 2.2 with a simple definition, the logically presented ones are
the real objects of interest as far as preservation theorems are concerned, and most of the
technical difficulties arising in the remainder of the paper will be concerned with those.

3.2 Diagram Bases
Regarding Claim 2.1, we simply turn the statement of the claim into a definition, which is
typically instantiated with L = JFO[σ]KX and L′ = JFKX for a fragment F of FO[σ].

I Definition 3.3 (Diagram base). Let (X, τ) be a topological space, and L be a bounded
sublattice of ℘(X). Then L′ ⊆ L is a diagram base of 〈X, τ,L〉 if 〈τ ∩ L〉 = 〈L′〉.

In particular, if F ⊆ FO[σ] is stable under finite conjunction, this means that any definable
open set in X can be written as an infinite disjunction of F-definable sets. Over Struct(σ),
this was the “difficult” step in the classical proof of the Łoś-Tarski Theorem. When X ⊆
Fin(σ), this becomes considerably simpler: for every fragment F in Table 1 and any finite
structure A, there exists a diagram sentence ψF

A in F such that A ≤ B if and only if B |= ψF
A

for the corresponding quasi-ordering. Therefore, if ϕ is monotone and A ∈ JϕKX , then
A ∈ JψF

AKX ⊆ JϕKX , showing that JFKX is a base of 〈τ≤ ∩ JFO[σ]KX〉.

3.3 A Generic Preservation Theorem
We have already seen in the proof of the Łoś-Tarski Theorem why logically presented pre-
spectral spaces with a diagram base yield preservation. The following theorem also proves
the converse direction, under mild hypotheses on L′: L′ must be a lattice and must define
compact sets in X for the topology generated by L′. We usually instantiate the theorem
with X ⊆ Struct(σ), L = JFO[σ]KX , and L′ = JFKX where F is a fragment of FO[σ].

I Theorem 3.4 (Generic preservation). Let τ be a topology on X, L a bounded sublattice of
℘(X), and L′ a sublattice of L. The following are equivalent:
1. X has the (τ,L′) preservation property and L′ defines only compact sets for the topo-

logy 〈L′〉.
2. 〈X, τ,L〉 is a lpps and L′ defines a diagram base of it.

Proof. We prove the two implications separately.
1 =⇒ 2 Assume that X has the (τ,L′) preservation property. Consider a set U ∈ L ∩ τ:

by the preservation property, U ∈ L′. This already shows that L′ defines a diagram base
of 〈X, τ,L〉. Hence 〈L′〉 = 〈τ∩L〉. Since U ∈ L′, U is compact in 〈L′〉, which means that
U is compact in X. Therefore X is a lpps.

CSL 2021



32:8 Preservation Theorems Through the Lens of Topology

2 =⇒ 1 Assume that L′ defines a diagram base of 〈X, τ,L〉. If U ∈ τ ∩ L, then it can be
written as a possibly infinite union of elements in L′. Also assume that 〈X, τ,L〉 is a lpps:
then by compactness, U can be written as a finite union of elements in L′, hence as a
single element in L′ since L′ is a lattice. This proves that X has the (τ,L′) preservation
property. Finally, sets in L′ define compact sets in 〈L′〉 because it is precisely the topology
of 〈X, τ,L〉. J

The additional hypotheses on L′ in items 1 and 2 above are somewhat at odds. Asking
for L′ to define a diagram base is asking for 〈L′〉 to have enough sets, but asking for L′ to
only define compact sets is asking for 〈L′〉 not to contain too many sets.

I Remark 3.5 (Generic monotone preservation). The condition that F must define compact
sets in X in Theorem 3.4.1 is actually mild. Consider the preservation results from Table 1
for a fragment F and τ = τ≤ the Alexandroff topology of the associated quasi-ordering ≤.
Assume that X is a ≤-downwards-closed subset of Struct(σ) – this is the setting of the known
preservation results for classes of finite structures [5, 4, 32, 9, 22].

Observe that, in each case, JψKStruct(σ) for a sentence ψ ∈ F has finitely many ≤-minimal
models up to ≤-equivalence. Because X is downwards-closed, JψKX has the same finitely
many ≤-minimal models. Thus, by Remark 2.3, JψKX is compact in τ≤, and since JFKX ⊆ τ≤,
it is also compact in the topology generated by JFKX .

In the case of X = Fin(σ), this downward closure condition is fulfilled and F defines a
base, thus (τ≤,F) preservation holds if and only if 〈Fin(σ), τ≤,FO[σ]〉 is a lpps.

Theorem 3.4 is a generic relationship between pre-spectral spaces and preservation
theorems. The downward closure hypothesis in Remark 3.5 is necessary for the equivalence
between the preservation property and pre-spectral spaces to hold, as will be shown later
in Example 4.2.

I Remark 3.6. For each of the fragments F and associated quasi-orderings ≤ of Table 1,
〈Fin(σ), τ≤,FO[σ]〉 = (Fin(σ), 〈τ≤ ∩ JFO[σ]KFin(σ)〉) is a pre-spectral space. Indeed, by
Remark 2.3, any compact open K from K◦(Fin(σ)) is the upward closure K = ↑F of a finite
set F ⊆fin Fin(σ), thus K = J

∨
A∈F ψ

F
AKFin(σ), which shows that K◦(Fin(σ)) ⊆ JFKFin(σ).

As any ψ ∈ F has finitely many ≤-minimal models in Fin(σ), K◦(Fin(σ)) ⊇ JFKFin(σ), and
since F defines a base, 〈Fin(σ), τ≤,FO[σ]〉 is pre-spectral. However, by Remark 3.5 and the
non-preservation results of [36, 21, 3, 2, 34], 〈Fin(σ), τ⊆i ,FO[σ]〉, 〈Fin(σ), τ⊆,FO[σ]〉, and
〈Fin(σ), τ�,FO[σ]〉 are not lpps: the condition τ ∩ L ⊆ K◦(X) is crucial in order to derive
preservation results.

Another way of reaching the topological definitions of this section is to consider a folklore
result employed in several proofs of preservation theorems over classes of finite structures for
fragments F of EFO [32, 4, 5, 7]: if X is downwards-closed for ≤, a monotone sentence ϕ is
equivalent to a sentence from F if and only if it has finitely many ≤-minimal models in X
(up to ≤-equivalence). By Remark 2.3, this says that JϕKX is compact, while the folklore
result itself is essentially using the fact that F defines a base.

4 Related Notions

Pre-spectral spaces generalise two notions arising from order theory, topology, and logics:
Noetherian spaces and spectral spaces.
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4.1 Well-Quasi-Orderings and Noetherian Spaces

A topological space in which all subsets are compact, or, equivalently, all open subsets are
compact, is called Noetherian [19, Section 9.7]. A Noetherian space (X, τ) and a bounded
sublattice L of ℘(X) always define a lpps 〈X, τ,L〉. A related notion, considering a quasi-
order instead of a topology, leads to the well-known notion of well-quasi-orders [26]: a
quasi-order is a well-quasi-order if and only if its Alexandroff topology is Noetherian [19,
Proposition 9.7.17]. Thus, if (X,≤) is a well-quasi-order and L is a bounded sublattice of
℘(X), then 〈X, τ≤,L〉 is a lpps.

Applications of Noetherian Spaces to Preservation. Let us denote by G the class of finite
simple undirected graphs and by σG the signature with a single binary edge relation E; then
the induced substructure ordering ⊆i coincides with the induced subgraph ordering over G.

I Example 4.1 (Finite graphs of bounded tree-depth). Recall that the tree-depth td(G) of a
graph G is the minimum height of the comparability graphs F of partial orders such that G
is a subgraph of F [30, Chapter 6]. Let T≤n be the set of finite graphs of tree-depth at
most n ordered by the induced substructure relation ⊆i. This is a well-quasi-order [14],
thus 〈T≤n, τ⊆i

,FO[σG ]〉 is a lpps, and therefore T≤n enjoys the (τ⊆i
,EFO[σG ])-preservation

property by Theorem 3.4.

I Example 4.2 (Finite cycles). Consider the class C ⊆ G of all finite simple cycles. As is well
known, (C,⊆i) is not a well-quasi-order because any two different cycles are incomparable for
the induced substructure ordering [14]. In particular, every singleton is an open set: (C, τ⊆i)
is actually a topological space with the discrete topology, and its only compact sets are the
finite sets: 〈C, τ⊆i

,FO[σG ]〉 is not a lpps.
By standard locality arguments, for any sentence ϕ, there exists a finite threshold n0

on the size of cycles, above which ϕ is either always true or always false (see the full paper
for details). Let τn be the topology over C generated by the definable co-finite sets and the
definable sets containing only cycles of size at most n. This is a variation of the co-finite
topology, and is also Noetherian. Hence, 〈T≤n, τ⊆i

,FO[σG ]〉 is a lpps, and as EFO[σG ] defines
a diagram base of it, we can apply Theorem 3.4 to deduce preservation. Now, given a
monotone sentence ϕ, either ϕ has finitely many models or it has co-finitely many. In both
cases, this sentence defines an open set in τn for some n that is definable in EFO[σG ]. Thus
the set of finite cycles has the (τ⊆i

,EFO[σG ]) preservation property.

The previous example shows that the closure condition of Remark 3.5 was necessary, by
proving that a space of structures can enjoy a preservation theorem while not defining a lpps.

Relativisation. The following proposition shows that, if we are looking for classes of
structures where preservation theorems always relativise, then we should endow them with a
Noetherian topology.

I Proposition 4.3. Let (X, τ) be a pre-spectral space such that for all Y ⊆ X, Y with the
induced topology is pre-spectral. Then X is Noetherian.

Proof. Consider any subset Y of X: by assumption, Y is pre-spectral, hence compact in the
induced topology, hence compact in (X, τ). J
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4.2 Spectral Spaces
Spectral spaces are a class of topological spaces appearing naturally in the study of logics
and algebra as a generalisation of the Stone Duality theory. Throughout this section we refer
to two books and keep the notations consistent with them [19, 13]. A closed subset F of a
topological space X is irreducible whenever F is non-empty and is not the disjoint union of
two non-empty closed sets. The closure of a set Y in a space X is the smallest closed set
containing Y and is denoted by Y X or Y when X is clear from the context. A topological
space X is sober whenever any irreducible closed subset F is the closure of exactly one
point x ∈ X, which translates formally to ∃x ∈ X, {x} = F and ∀y ∈ X, {y} = F ⇒ y = x.
A spectral space is a pre-spectral space that is sober [13, Definition 1.1.5].

When a space (X, τ) is not sober, it is possible to build a sobrified version of this space
as follows [19, Definition 8.2.17]: S (X) is the set of irreducible closed sets of X, and the
topology is generated by the sets ♦U , {F ∈ S (X) | F ∩ U 6= ∅} where U is an open set
of X. It can be shown that this construction leads to a sober space, is idempotent up to
homeomorphism, and constructs the free sober space over X [19, Theorem 8.2.44]. This
leads to the following correspondence between pre-spectral spaces and spectral spaces.

I Fact 4.4 (Spectral versus pre-spectral). A space X is pre-spectral if and only if S (X) is
spectral.

The connection with spectral spaces is of particular interest, because the sobrification
functor gives a tool to translate result from the rich theory of spectral spaces to pre-spectral
spaces which will be extensively used in Section 5.

5 Basic Closure Properties

To study preservation theorems, we not only want to ensure that the space is pre-spectral,
but also to see that the lattice of compact open sets is obtained through a restriction of
the logic. Therefore, one of our main concerns with closure properties is to characterise the
lattice of compact sets, which must use properties of the definable sets and cannot rely solely
on topological constructions.

5.1 Morphisms
Spectral Maps. Let us first introduce the notion of morphism between pre-spectral spaces,
inherited from the case of spectral spaces [13, Definition 1.2.2]. A map f : (X, τ)→ (Y,θ) is
a spectral map whenever it is continuous and the pre-image of a compact-open set of Y is a
compact-open set of X. We will write PreSpec for the category of pre-spectral spaces and
spectral maps.

I Fact 5.1. The image of a pre-spectral space through a spectral map is pre-spectral.

A crucial role of spectral maps is to guard the definition of pre-spectral subspaces, mimicking
the one of spectral subspaces [13, Section 2.1]. A pre-spectral subspace is not only a subset
where the induced topology happens to be pre-spectral, but has the additional property that
the inclusion map is a spectral map.

Logical Maps. In the case of a lpps, a map f : 〈X, τ,L〉 → 〈Y,θ,L′〉 is a logical map
whenever it is continuous and the pre-image of a definable open set of Y is a definable open
set of X. A map between logically defined pre-spectral spaces is logical if and only if it
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is spectral, since compact open subsets and definable open subsets coincide in that case.
However, the use of logical maps is to prove that some spaces are pre-spectral by transferring
logical properties rather than topological ones.

I Fact 5.2. The image of a lpps 〈X, τ,L〉 through a logical map is a lpps.

Of particular interest are the logical maps obtained through syntactic constructions.
Let us define an FO-interpretation f : X → Y where X ⊆ Struct(σ1) and Y ⊆ Struct(σ2)
through “relation” formulæ ρR for all R ∈ σ2, where ρR has as many free variables as the
arity of R, and an additional “domain” formula δ ∈ FO[σ1] with one free variable. The image
of a σ1-structure A ∈ X is the σ2-structure f(A) with domain |f(A)| , {a ∈ |A| | A |= δ(a)}
and such that (a1, . . . , an) ∈ Rf(A) if and only if A |= ρR(a1, . . . , an). This is a simple model
of logical interpretations: many different notions can be found in the literature [8].

An FO-interpretation f : X → Y allows to transfer logical properties from one class of
structures to another: if ϕ ∈ FO[σ2] is a formula on the structures of Y , then there exists
a formula f−1(ϕ) ∈ FO[σ1] such that A |= f−1(ϕ)(~a) if and only if f(A) |= ϕ(f(~a)) [24,
Section 4.3]; thus, the pre-image of a definable set is definable.

I Fact 5.3. An FO-interpretation is a logical map if and only if it is continuous.

This provides us with a proof scheme to show that a space 〈Y, τ2,FO[σ2]〉 is a lpps: first,
build a lpps 〈X, τ1,FO[σ1]〉, then build a FO-interpetation that is surjective and continuous
from X to Y , and conclude that Y is a lpps. This is used for instance by [30, Corollary 10.7]
to show that the class of all p subdivisions of finite graphs enjoys homomorphism preservation
(using a slightly more general notion of FO-interpretations).

5.2 Relativisation
Preservation theorems do not relativise in general, but the stronger notion of being pre-
spectral shows that non-trivial sufficient conditions for relativisation exists. However, unlike
the theory of spectral spaces, there is not yet a full characterisation of the pre-spectral
subsets of a pre-spectral space; see the full paper for a discussion.

I Proposition 5.4 (Sufficient condition for relativisation). Let 〈X, τ,FO[σ]〉 be a lpps, Y be a
Boolean combination of compact-open subsets of X, and θ be the topology induced by τ on Y .
Then 〈Y, θ,FO[σ]〉 is a lpps.

Proof. It suffices to prove that any definable open set U of Y is the restriction to Y of some
definable open set of X. This stronger hypothesis is stable under finite unions and finite
intersections, thus we only need to deal with the cases where Y is a definable open of X or
the complement of one.

Let us first consider the case where Y is a definable open set of X. Then U = U ∩ Y is
the restriction to Y of an open definable set of X. Let us next consider the case where Y is
a definable closed set of X. Remark that V , U ∪ (X \ Y ) is an open set of X, and is still
definable. Therefore U = V ∩ Y with V a definable open set of X. J

5.3 Disjoint Unions and Products
Rather than using an already existing pre-spectral space and considering sub-spaces to build
new smaller ones, it can be a rather efficient method to combine existing spaces to build
bigger spaces. However, to build preservation theorems out of these constructions, it is
necessary to represent those them as spaces of structures over some relational signature,
which will be the role of definitions 5.5 and 5.7.
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I Definition 5.5 (Logical sum). Let (〈Xi, τi,FO[σi]〉)i∈I be a family of spaces. The logical
sum 〈X, τ,FO[σ]〉 is defined as follows:
1. The signature σ is the disjoint union of the signatures (σi)i∈I .
2. The set X is the union (disjoint by construction)

⋃
i∈I fi(Xi) where, for all i ∈ I,

fi : Xi → Struct(σ) is defined by |fi(A)| , |A| and (a1, . . . , an) ∈ Rfi(A) if and only if
R ∈ σi and (a1, . . . , an) ∈ RA.

3. The topology τ is generated by the sets fi(U) where U ∈ τi and i ∈ I.

The logical sum space is a simple translation of the topological sum space, which leads to
the following result (see the full paper for a proof).

I Proposition 5.6 (Stability under finite logical sum). Let (〈Xi, τi,FO[σi]〉)i∈I be a finite
family of lpps. The logical sum of those spaces is a lpps homeomorphic to the sum of those
spaces in PreSpec.

In the case of products, a sentence over a product is not simply obtained by projecting
on each component. This is handled in our proof of Proposition 5.8 in the full paper by
reducing the first-order theory of the product to the first-order theories of its components
thanks to Feferman-Vaught decompositions [16, 29].

I Definition 5.7 (Logical product). Let (〈Xi, τi,FO[σi]〉)i∈I be a family of spaces. The logical
product 〈X, τ,FO[σ]〉 is defined as follows:
1. The signature σ is the disjoint union of the signatures (σi)i∈I with additional unary

predicates εi for each i ∈ I.
2. The set X is the image of

∏
i∈I Xi through the map f :

∏
i∈I Xi → Struct(σ) that

associates to each (Ai)i∈I the disjoint union of the structures Ai with εi true on the
structure Ai for i ∈ I.

3. The topology τ generated by the sets U such that f−1(U) is an open set of
∏
i∈I(Xi, τi).

I Proposition 5.8 (Stability under finite logical product). Let (〈Xi, τi,FO[σi]〉)i∈I be a finite
family of lpps. The logical product of those spaces is a lpps homeomorphic to the product of
the spaces Xi in PreSpec.

6 Logical Closure

Consider a set Z equipped with a bounded sublattice L of ℘(Z). In this section, we provide
a way to consider the closure of a space X ⊆ Z in a suitable topology so that if X is a lpps,
then its closure also is. Let us write τL , 〈L ∪ {U c | U ∈ L}〉 for the topology generated by
the sets of L and their complements. We call the closure X of X in (Z, τL) its logical closure.

We show in the full paper that lpps are stable under logical closures. For X ⊆ Z and a
sublattice L of ℘(Z), we write LX , {U ∩X | U ∈ L} for the lattice induced by X.

I Proposition 6.1 (Stability under logical closure). Let X ⊆ Y ⊆ X and τ be a topology on Y .
If 〈X, τX ,LX〉 is a lpps for the topology τX induced by τ on X, then so is 〈Y, τ,LY 〉. If L′
is a sublattice of L and L′X is a diagram base of X then L′Y is a diagram base of Y .

Applications of logical closures. We now show that Proposition 6.1 allows to restate known
preservation theorems and derive new ones. We consider the case where Z = Struct(σ) and
L = JFO[σ]KStruct(σ), and we write τFO for the topology τL.
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gj

Figure 1 The commutative diagram of a projective system.

Let us define FMP(σ) ⊆ Struct(σ) as the set of structures whose first-order theory satisfies
the finite model property: any definable subset of FMP(σ) has a finite model. We prove
that homomorphism preservation can be lifted from Fin(σ) (where it holds by Rossman’s
Theorem) to FMP(σ) in Corollary 6.2. To our knowledge this is a new result. This follows
from Proposition 6.1 and the fact that FMP(σ) is the closure of Fin(σ) in the topology τFO
(see the full paper for the proof).

I Corollary 6.2 (Homomorphism preservation for structures with the finite model property).
FMP(σ) has the (τ→,EPFO[σ]) preservation property.

Let Fin](σ) be the set of countable disjoint unions of finite structures over a finite
relational signature σ. We state in Corollary 6.3 another consequence of Rossman’s Theorem
and Proposition 6.1, using the fact Fin(σ) ( Fin](σ) ( FMP(σ) = Fin(σ); the same result
was first shown by Nešetřil and Ossona de Mendez in [30, Theorem 10.6].

I Corollary 6.3 (Homomorphism preservation for countable unions of finite structures). Fin](σ)
has the (τ→,EPFO[σ]) preservation property.

7 Limits of Projective Systems

A natural construction in the category of topological spaces is the projective limit, and the
category Spec of spectral spaces and spectral maps is closed under this construction [13,
Corollary 2.3.8]. As an illustration, we show in Section 7.2 that 〈Fin(σ), τ→,FO[σ]〉 is the
projective limit of a system of Noetherian spaces, which provides an alternative understanding
of Rossman’s Theorem [32]. In fact, as we show in Section 7.3, any pre-spectral space is the
limit of a projective system of Noetherian spaces.

7.1 Projective Systems
A projective system F in a category C assigns to each element i of a directed partially ordered
set I an object Xi and to each ordered pair i ≤ j a so-called bonding map fi,j : Xi → Xj so
that, for all i, j, k ∈ I with k ≤ j ≤ i, we have fi,i = idXi

and fj,k ◦fi,j = fi,k. The projective
limit of a projective system F is an object X with maps fi : X → Xi compatible with the
system F , which means that, for all i ≥ j, fi,j ◦ fi = fj . Moreover, X satisfies a universal
property: whenever {gi : Y → Xi}i∈I is a family of maps compatible with F , there exists a
unique map g : Y → X such that gi = fi ◦ g for all i ∈ I.

Unfortunately, there exists projective systems in PreSpec that do not have limits, as can
be witnessed by a slight adaptation of [35, Example 3]. Let us introduce here the category of
topological spaces and continuous maps, denoted by Top. A projective system in PreSpec
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is a projective system of topological spaces in Top. A projective system in PreSpec always
has a limit when considered as a projective system in Top; we give a sufficient condition for
this space to be the limit in PreSpec (see the full paper for the proof).

I Lemma 7.1 (Transfer of projective limits). Let F be a projective system of pre-spectral
spaces in PreSpec. If {fi : X → Xi}i∈I is the limit of F in Top where the maps
fi : X → Xi are spectral, then it is the limit of F in PreSpec. Moreover, K◦(X) =⋃
i∈I
{
f−1
i (V ) | V ∈ K◦(Xi)

}
.

7.2 Application to the Homomorphism Preservation Theorem
Throughout this section, we fix a finite relational signature σ and a downwards-closed subset
X of Fin(σ) for the homomorphism ordering →, i.e., X is co-homomorphism closed. We will
see how Rossman’s Theorem can be explained as the existence of a projective limit.

n-Homomorphisms. Let us define the tree-depth td(A) of a finite structure A as the tree-
depth td(G(A)) of its associated Gaifman graph G(A) [27, Definition 4.1]. Following the idea
of the original proof in [32, Section 3.2], we are going to use quasi-orders that are coarser
than the homomorphism quasi-order, and refine those progressively. For every n ∈ N, we
define A →n B if for every structure C of tree-depth at most n, C → A implies C → B.
Note that on finite structures, A → B if and only if A →td(A) B. Then the intersection
of all the →n relations is →. Let us consider the corresponding Alexandroff topologies:
X , 〈X, τ→,FO[σ]〉 and for n ∈ N, let Xn , 〈X, τ→n ,FO[σ]〉.

Rossman’s Lemma. In his paper [32], Rossman provides a function ρ : N→ N and relates
indistinguishability in the fragment FOn[σ] of first-order logic with quantifier rank at most n to
ρ(n)-homomorphism equivalence [32, Corollary 5.14]. We state this result in a self-contained
manner below (see also [30, Theorem 10.5]).

I Lemma 7.2 (Rossman’s Lemma [32]). There exists ρ : N→ N such that, for all n ∈ N, if
ϕ ∈ FOn[σ] is closed under homomorphisms, then it is closed under ρ(n)-homomorphisms.

Rossman’s Lemma is the combinatorial heart of Rossman’s Theorem, so the developments
in this section are only meant to show how the pre-spectral framework can capture his
arguments translating the technical statement from Lemma 7.2 into a proof of homomorphism
preservation in the finite.

Projective System. We are now ready obtainX as a limit of a projective system in PreSpec.
We are going to exploit Lemma 7.2 through the definition of the topological spaces Yn ,
〈X, τ→,FOn[σ]〉 for all n. We will use the following consequence of Rossman’s Lemma (see
the full paper for a proof).

B Claim 7.3. ∀n ≥ 1,K◦(Yn) ⊆ K◦
(
Xρ(n)

)
⊆ K◦(X).

The following theorem was famously first shown by Rossman in [32, Corollary 7.1]. A
more recent proof in [33] uses lower bounds from circuit complexity. Similar results were
shown in [30, Section 10.7] when assuming essentially the same statement as Lemma 7.2;
in fact, carefully unwrapping the hypotheses of the topological preservation theorem of [30,
Theorem 10.3] leads to the very definition of a projective system.

I Theorem 7.4. Let σ be a finite relational signature and X be a non-empty downwards-closed
subset of Fin(σ) for →. Then X has the (τ→,EPFO[σ]) preservation property.
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Proof. Consider the projective system F , {idi,j : Yi → Yj}i≤j∈I indexed by I , N \ {0}.
Each space Yi is Noetherian for all i ∈ I because FOi[σ] contains finitely many non-equivalent
sentences, hence Yi contains finitely many open sets. Hence K◦(Yi) = τ→ ∩ JFOi[σ]KX . Also,
the maps idi,j are spectral and F is a projective system in PreSpec. Claim 7.3 shows that
the identity map idi : X → Yi is a spectral map for all i ∈ I.

Assume that {gi : Z → Yi}i∈I is a collection of morphisms in Top such that ∀i ≥ j ∈
I, gj = idi,j ◦ gi. Since idi,j is the identity map, all the maps (gi)i∈I are equal. In particular,
one can build g : Z → X defined by any one of them. Let us show that g is a continuous
map. If U is a definable open set of X, then U is a definable open set in Yn for some n, hence
g−1(U) = g−1

n (U) is open. Since X has a base of definable open sets, this proves that g is
continuous.

Assume that g′ is an other continuous map making the diagram commute. As I is non
empty, consider some i ∈ I, we have gi = idi ◦ g = idi ◦ g′. Since fi is the identity map we
conclude g = g′.

We have shown that X is the limit of F in Top. Since the maps idi : X → Xi are
spectral, Lemma 7.1 shows that X is a pre-spectral space such that K◦(X) =

⋃
i∈I K◦(Yi) =

τ→ ∩ JFO[σ]KX . In particular, X is a lpps. As X is downwards-closed, by Remark 3.5 it has
the (τ→,EPFO[σ])-preservation property. J

7.3 Completeness
We are now going to prove that any pre-spectral space can be obtained as a solution to
a projective system of pre-spectral spaces, showing that the proof method of the previous
sub-section is in some sense complete. In fact, this system is going to contain only Noetherian
spaces (see the full paper). It is analoguous to the fact that any spectral space is a projective
limit of finite T0 spaces [23, Proposition 10].

I Proposition 7.5 (Pre-spectral spaces are limits of Noetherian spaces). Let (X, τ) be a pre-
spectral space, there exists a projective system of Noetherian spaces in PreSpec such that X
is the limit of this projective system.

8 Concluding Remarks

In this paper, we have introduced a general framework for preservation results, mixing
topological and model-theoretic notions. The key notion here is the one of logically presented
pre-spectral spaces, which requires the (topological) compactness of the definable sets of
interest. This definition captures simultaneously the classical proofs of preservation theorems
over the class of all structures (we detailed the case of the Łoś-Tarski Theorem in Section 2.2)
and all the known preservation results over classes of finite structures in the literature (see
Remark 3.5). Our approach is comparable to the one adopted in the topological preservation
theorem of [30, Theorem 10.3], in that we employ topological concepts to present a generic
preservation theorem; however we believe our formulation to be considerably simpler and
more flexible.

We have developed a mathematical toolbox for working with logically presented pre-
spectral spaces, allowing to build new spaces from known ones. Besides relatively mundane
stability properties under suitable notions of morphisms, subspaces, finite sums, and finite
products – which still required quite some care in order to account for first-order definability – ,
we have shown that more exotic constructions through topological closures or projective
limits of topological spaces could also be employed. Those last two constructions give an
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alternative viewpoint on Rossman’s proof of homomorphism preservation over the class of
finite structures (Theorem 7.4), and a new homomorphism preservation result over the class
of structures with the finite model property (Corollary 6.2).

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,

1995.
2 Miklós Ajtai and Yuri Gurevich. Monotone versus positive. Journal of the ACM, 34(4):1004–

1015, 1987. doi:10.1145/31846.31852.
3 Miklós Ajtai and Yuri Gurevich. Datalog vs first-order logic. Journal of Computer and System

Sciences, 49(3):562–588, 1994. doi:10.1016/S0022-0000(05)80071-6.
4 Albert Atserias, Anuj Dawar, and Martin Grohe. Preservation under extensions on well-

behaved finite structures. SIAM Journal on Computing, 38(4):1364–1381, 2008. doi:10.1137/
060658709.

5 Albert Atserias, Anuj Dawar, and Phokion G. Kolaitis. On preservation under homomorphisms
and unions of conjunctive queries. Journal of the ACM, 53(2):208–237, 2006. doi:10.1145/
1131342.1131344.

6 Chen Chung Chang and H. Jerome Keisler. Model Theory, volume 73 of Studies in Logic and
the Foundations of Mathematics. Elsevier, 1990.

7 Yijia Chen and Jörg Flum. Forbidden induced subgraphs and the Łoś-Tarski Theorem.
Preprint, 2020. URL: https://arxiv.org/abs/2008.00420.

8 Bruno Courcelle. Monadic second-order definable graph transductions: a survey. Theoretical
Computer Science, 126(1):53–75, 1994. doi:10.1016/0304-3975(94)90268-2.

9 Anuj Dawar. Homomorphism preservation on quasi-wide classes. Journal of Computer and
System Sciences, 76(5):324–332, 2010. doi:10.1016/j.jcss.2009.10.005.

10 Anuj Dawar and Stephan Kreutzer. On Datalog vs. LFP. In Proceedings of ICALP’08,
volume 5126 of Lecture Notes in Computer Science, pages 160–171, 2008. doi:10.1007/
978-3-540-70583-3_14.

11 Anuj Dawar and Abhisekh Sankaran. Extension preservation in the finite and prefix classes of
first order logic. Preprint, 2020. URL: https://arxiv.org/abs/2007.05459.

12 Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. The chase revisited. In Proceedings of
PODS’08, pages 149–158, 2008. doi:10.1145/1376916.1376938.

13 Max Dickmann, Niels Schwartz, and Marcus Tressl. Spectral Spaces, volume 35 of New
Mathematical Monographs. Cambridge University Press, 2019.

14 Guoli Ding. Subgraphs and well-quasi-ordering. Journal of Graph Theory, 16:489–502, 1992.
doi:10.1002/jgt.3190160509.

15 Tomás Feder and Moshe Y. Vardi. Homomorphism closed vs. existential positive. In Proceedings
of LICS’03, pages 311–320, 2003. doi:10.1109/LICS.2003.1210071.

16 Solomon Feferman and Robert Vaught. The first order properties of products of algebraic
systems. Fundamenta Mathematicae, 47(1):57–103, 1959. doi:10.4064/fm-47-1-57-103.

17 Diego Figueira and Leonid Libkin. Pattern logics and auxiliary relations. In Proceedings of
CSL-LICS’14, pages 40:1–40:10, 2014. doi:10.1145/2603088.2603136.

18 Amélie Gheerbrant, Leonid Libkin, and Cristina Sirangelo. Naïve evaluation of queries over
incomplete databases. ACM Transactions on Database Systems, 39(4):1–42, 2014. doi:
10.1145/2691190.2691194.

19 Jean Goubault-Larrecq. Non-Hausdorff Topology and Domain Theory, volume 22 of New
Mathematical Monographs. Cambridge University Press, 2013.

20 Martin Grohe. Existential least fixed-point logic and its relatives. Journal of Logic and
Computation, 7(2):205–228, 1997. doi:10.1093/logcom/7.2.205.

https://doi.org/10.1145/31846.31852
https://doi.org/10.1016/S0022-0000(05)80071-6
https://doi.org/10.1137/060658709
https://doi.org/10.1137/060658709
https://doi.org/10.1145/1131342.1131344
https://doi.org/10.1145/1131342.1131344
https://arxiv.org/abs/2008.00420
https://doi.org/10.1016/0304-3975(94)90268-2
https://doi.org/10.1016/j.jcss.2009.10.005
https://doi.org/10.1007/978-3-540-70583-3_14
https://doi.org/10.1007/978-3-540-70583-3_14
https://arxiv.org/abs/2007.05459
https://doi.org/10.1145/1376916.1376938
https://doi.org/10.1002/jgt.3190160509
https://doi.org/10.1109/LICS.2003.1210071
https://doi.org/10.4064/fm-47-1-57-103
https://doi.org/10.1145/2603088.2603136
https://doi.org/10.1145/2691190.2691194
https://doi.org/10.1145/2691190.2691194
https://doi.org/10.1093/logcom/7.2.205


A. Lopez 32:17

21 Yuri Gurevich. Toward logic tailored for computational complexity. In Computation and Proof
Theory, Proceedings of LC’84, volume 1104 of Lecture Notes in Mathematics, pages 175–216.
Springer, 1984. doi:10.1007/BFb0099486.

22 Frederik Harwath, Lucas Heimberg, and Nicole Schweikardt. Preservation and decomposition
theorems for bounded degree structures. In Proceedings of CSL-LICS’14, pages 49:1–49:10,
2014. doi:10.1145/2603088.2603130.

23 Melvin Hochster. Prime ideal structure in commutative rings. Transactions of the American
Mathematical Society, 142:43–60, 1969. doi:10.1090/S0002-9947-1969-0251026-X.

24 Wilfrid Hodges. A shorter model theory. Cambridge University Press, 1997.
25 Phokion G. Kolaitis. Reflections on finite model theory. In Proceedings of LICS’07, pages

257–269, 2007. doi:10.1109/LICS.2007.39.
26 Joseph B. Kruskal. The theory of well-quasi-ordering: A frequently discovered concept.

Journal of Combinatorial Theory, Series A, 13(3):297–305, 1972. doi:10.1016/0097-3165(72)
90063-5.

27 Leonid Libkin. Elements of finite model theory. Springer, 2012.
28 Jerzy Łoś. On the extending of models (I). Fundamenta Mathematicae, 42(1):38–54, 1955.

doi:10.4064/fm-42-1-38-54.
29 Johann A. Makowsky. Algorithmic uses of the Feferman–Vaught Theorem. Annals of Pure

and Applied Logic, 126(1–3):159–213, 2004. doi:10.1016/j.apal.2003.11.002.
30 Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity: Graphs, Structures, and Algorithms.

Springer, 2012.
31 Eric Rosen. Some aspects of model theory and finite structures. Bulletin of Symbolic Logic,

8(3):380–403, 2002. doi:10.2178/bsl/1182353894.
32 Benjamin Rossman. Homomorphism preservation theorems. Journal of the ACM, 55(3):15:1–

15:53, 2008. doi:10.1145/1379759.1379763.
33 Benjamin Rossman. An improved homomorphism preservation theorem from lower bounds in

circuit complexity. ACM SIGLOG News, 3(4):33–46, 2016. doi:10.1145/3026744.3026746.
34 Alexei P. Stolboushkin. Finitely monotone properties. In Proceedings of LICS’95, pages

324–330, 1995. doi:10.1109/LICS.1995.523267.
35 Arthur H. Stone. Inverse limits of compact spaces. General Topology and its Applications,

10(2):203–211, 1979. doi:10.1016/0016-660X(79)90008-4.
36 William W. Tait. A counterexample to a conjecture of Scott and Suppes. Journal of Symbolic

Logic, 24(1):15–16, 1959. doi:10.2307/2964569.
37 Alfred Tarski. Contributions to the theory of models. I. Indagationes Mathematicae (Proceed-

ings), 57:572–581, 1954. doi:10.1016/S1385-7258(54)50074-0.
38 Balder ten Cate and Phokion G. Kolaitis. Structural characterizations of schema-mapping

languages. In Proceedings of ICDT’09, pages 63–72, 2009. doi:10.1145/1514894.1514903.

CSL 2021

https://doi.org/10.1007/BFb0099486
https://doi.org/10.1145/2603088.2603130
https://doi.org/10.1090/S0002-9947-1969-0251026-X
https://doi.org/10.1109/LICS.2007.39
https://doi.org/10.1016/0097-3165(72)90063-5
https://doi.org/10.1016/0097-3165(72)90063-5
https://doi.org/10.4064/fm-42-1-38-54
https://doi.org/10.1016/j.apal.2003.11.002
https://doi.org/10.2178/bsl/1182353894
https://doi.org/10.1145/1379759.1379763
https://doi.org/10.1145/3026744.3026746
https://doi.org/10.1109/LICS.1995.523267
https://doi.org/10.1016/0016-660X(79)90008-4
https://doi.org/10.2307/2964569
https://doi.org/10.1016/S1385-7258(54)50074-0
https://doi.org/10.1145/1514894.1514903

	Introduction
	Preservation Theorems
	Classical Preservation Theorems
	The Łos-Tarski Theorem in Topological Terms

	Pre-spectral Spaces and Diagram Bases
	Pre-spectral Spaces
	Diagram Bases
	A Generic Preservation Theorem

	Related Notions
	Well-Quasi-Orderings and Noetherian Spaces
	Spectral Spaces

	Basic Closure Properties
	Morphisms
	Relativisation
	Disjoint Unions and Products

	Logical Closure
	Limits of Projective Systems
	Projective Systems
	Application to the Homomorphism Preservation Theorem
	Completeness

	Concluding Remarks

