
Computing Measure as a Primitive Operation in
Real Number Computation
Christine Gaßner
Universität Greifswald, Germany
gassnerc@uni-greifswald.de

Arno Pauly
Department of Computer Science, Swansea University, UK
https://www.cs.swan.ac.uk/~cspauly/
arno.m.pauly@gmail.com

Florian Steinberg
INRIA, Sophia Antipolis, France
fsteinberg@gmail.com

Abstract
We study the power of BSS-machines enhanced with abilities such as computing the measure of a
BSS-decidable set or computing limits of BSS-computable converging sequences. Our variations
coalesce into just two equivalence classes, each of which also can be described as a lower cone in the
Weihrauch degrees.

We then classify computational tasks such as computing the measure of ∆0
2-set of reals, integrating

piece-wise continuous functions and recovering a continuous function from an L1([0, 1])-description.
All these share the Weihrauch degree lim.

2012 ACM Subject Classification Theory of computation → Abstract machines; Theory of com-
putation → Turing machines; Mathematics of computing → Point-set topology; Mathematics of
computing → Integral calculus

Keywords and phrases BSS-machine, Weihrauch reducibility, integrable function, Lebesgue measure,
computable analysis

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.22

1 Introduction

Computing over abstract data types using register machines makes the fully realistic notion
of computability that computable analysis uses more approachable and easier to use in
applications. This is well known and the central topic of work such as [9, 38]. While the
models we consider in this paper can compute non-computable functions, they still allow us
to discuss algorithms in a general sense as they are used e.g. in numerical analysis/scientific
computing (cf. [30, 25]). We report on two separate but related investigations.

In the first, we consider extensions of the Blum-Shub-Smale (BSS) machines [1] for
computing functions of type f : R∗ → R∗. We explore the strength of a machine that can
compute the measure of a BSS-decidable set in a single step. A concrete inspiration for our
operations is found in the ν-operator studied by Moschovakis [29]. The ability to compute
the measure of a decidable set can also be seen as an analogue to counting classes such as
]P in the context of BSS-computation – except that here, we gain computability-theoretic
strength, rather than just efficiency1.

We also consider adding a command that returns the limit of a BSS-computable converging
sequence as a primitive. It turns out that all our enhanced BSS-machines can already compute
all real functions computable in the sense of computable analysis. We can therefore use the

1 This is a different approach to the one taken by Bürgisser and Cucker [13], though.
© Christine Gaßner, Arno Pauly, and Florian Steinberg;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 22; pp. 22:1–22:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/373012101?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:gassnerc@uni-greifswald.de
https://orcid.org/0000-0002-0173-3295
https://www.cs.swan.ac.uk/~cspauly/
mailto:arno.m.pauly@gmail.com
mailto:fsteinberg@gmail.com
https://doi.org/10.4230/LIPIcs.CSL.2021.22
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Computing Measure as a Primitive Operation

framework of Weihrauch reducibility [8] to describe the resulting computational strength.
The usefulness of Weihrauch reducibility to study algebraic computation models had already
been observed in [30]. More generally, the use of topological concepts in this context was
pioneered in [18].

Our second line of investigation looks into representations (in the sense of computable
analysis) of real function classes, continuing a programme initiated in [35]. For example, if we
merely have the information on a function f : R→ R befitting an integrable function, but we
know f to actually be continuous, how complicated is it to obtain the information about f as
a continuous function? Classically, we know that any measurable function f : [0, 1]→ [0, 1]
is already integrable, but already for ∆0

2-measurable functions this implication no longer
holds computably. This is a connecting point to our exploration of BSS-machines, as BSS-
computable functions are ∆0

2-measurable, and the representation of integrable functions
essentially allows us to compute all integrals of this function. Again, Weihrauch reducibility
will be the framework we use to describe the complexity of these translations.

Overview of the paper

Our results are collated in three theorems that can be found in Section 3.1 and in the
introduction of Section 4 respectively. The paper is structured such that either of the
Sections 3 and 4 can be read independently by a reader familiar with the content of Section 2.

The general outline of the paper is as follows: In Section 2 we provide the necessary
background on computable analysis and Weihrauch reducibility. A reader already familiar
with these topics may skip this part.

Section 3 starts off by recollecting the model of computing with generalized register
machines whose registers can hold properly infinite objects. Section 3.1 states our two main
theorems about such algebraic models of computation: Each of Theorem 15 and Theorem
16 describes an equivalence class of computational models. The remainder of the section is
devoted to their proofs.

Section 4 is about measurability and integrability and states our main result Theorem
24 right away. The theorem says that the Weihrauch degree of various operations that
correspond to finding the measure of a set or the integral of a function is lim. The rest of
the section explains and proves the individual parts of theorem.

2 Background from computable analysis

Let us start with some computable analysis as its viewpoint is important throughout the
paper. Introductionary sources on computable analysis that go way beyond what is the scope
of this paper include the seminal textbook [40]. A briefer introduction can be found in [10],
an approach in a language close to that of this paper in [31].

In computable analysis computations on abstract structures like the real numbers R, are
carried out by means of representations. A representation of a set X is a partial surjective
mapping δ : ⊆ NN → X from Baire space to that set. A representation may be understood to
assign to each element x of the mathematical structure X a set δ−1(x) ⊆ NN of names. Each
name of an abstract object x ∈ X encodes this object by providing on demand information
about it. A represented space is a pair X = (X, δX) of a set X and a representation
δX : ⊆ NN → X of that set. For convenience we often replace the two copies of natural
numbers in Baire space with countable sets that come with canonical enumerations.

C. Gaßner, A. Pauly, and F. Steinberg 22:3

I Example 1 (The Cauchy representation). Let (M,d) be a separable metric space with a
distinguished countable dense subset D. The Cauchy representation assigns a mapping
p : Q+ → D as name to x ∈M if each p(ε) is an ε-approximation to x in that d(x, p(ε)) ≤ ε.

The most important instance of this construction is R with the standard enumeration of
the rationals. Other metric spaces in Cauchy representation that we encounter are the
continuous functions on the unit interval C([0, 1]) and the space L1([0, 1]) of equivalence
classes of integrable functions.

Baire space comes with a natural topology and any represented space can be equipped
with the final topology of its representation. The notion of admissibility of a representation,
informally spoken, states that we can identify the represented space with the induced
topological space.

Let us consider two examples of represented spaces whose induced topology is not
metrizable and that can therefore not be constructed using a Cauchy representation. The
first example is a finite non-discrete space that we heavily use:

I Example 2 (Sierpiński space). Sierpiński space S is the set {>,⊥} equipped with the total
representation δS that assigns some p : N→ B (where B is the discrete two point space) as
name to > if and only if ∃n, p(n) = 1.

The representation of Sierpiński space is admissible and induces the topology where
{>} is open but {⊥} is not. Thus, the continuous functions from any topological space to
Sierpiński space are exactly the characteristic functions of the open sets.

The other example is a representation of the real numbers that provides strictly less informa-
tion than the Cauchy representation we usually use.

I Example 3 (The lower reals). The lower reals R< is the set of real numbers equipped
with the representation where a bounded sequence p : N→ Q of rationals is a name of its
supremum x := sup{p(n) | n ∈ N}. Access to a pair of a name of x ∈ R< and one of −x ∈ R<
is the same as having access to a name of x in the space R with the Cauchy representation.

We consider multifunctions between represented spaces as abstractions of computational
tasks. A multifunction f : X⇒ Y assigns to each x ∈ X a set f(x) ⊆ Y of eligible return
values. The domain of f is the set of those x for which f(x) is non-empty and the associated
task is to produce from an x and provided that x ∈ dom(f) some y ∈ f(x).

Computability and continuity of multivalued functions between represented spaces is
defined via realizers: Some F : ⊆ NN → NN is a realizer of a multi-valued function f : X⇒ Y
if it carries names of the input to names of eligible return values, i.e. δX(p) = x implies
F (p) is defined and δY(F (p)) ∈ f(x). A multivalued function is called computable if it
has a computable realizer and continuously realizable if it has a continuous realizer.
Admissibility of the target space implies that a function is topologically continuous if and
only if it is continuously realizable. Computability on Baire space is defined as existence of
an oracle machine that computes the return-value whenever the input is taken as oracle.

A representation δ is called computably translatable to another representation δ′ of
the same set X, if the identity function is computable as a function from (X, δ) to (X, δ′).
Unfolded this means that there exists a translation, i.e. a computable T : ⊆ NN → NN

such that whenever p is a name of x in the first representation, T (p) is a name of x in the
second representation. Intuitively, existence of a computable translation means that a name
in the input representation provides at least as much information about the object as a
name in the output representation. If computable translations in both directions exist the

CSL 2021

22:4 Computing Measure as a Primitive Operation

representations are called equivalent and the identity function is an isomorphism between
the spaces. Moreover we say that a representation is minimal with some property if any
other representation with this property can be computably translated to it.

Finally, a metric space with a distinguished dense sequence is called a computable
metric space if the metric is computable with respect to the Cauchy representation on itself
and on the reals. All metric spaces we encounter in this paper are computable metric spaces.

2.1 Products and exponentials of represented spaces
Given represented spaces X and Y there are standard ways to construct new represented
spaces. To equip the Cartesian product of the underlying spaces with a representation fix a
standard pairing function 〈·, ·〉 of the natural numbers and lift this pairing function to Baire
space by 〈p, q〉(n) := 〈p(n), q(n)〉. A name of (x, y) ∈ X×Y is a pair of names of x and y
respectively. To each A ⊆ X we assign a represented space AX by equipping A with the
corestriction of the representation of X to A.

Finally, we use the function space construction of computable analysis. Namely for
represented spaces X and Y the space C(X,Y) of continuously realizable functions.

If Y is admissible, the continuously realizable functions are exactly the continuous
functions. The computable elements of C(X,Y) are exactly the computable functions. The
function space representation is minimal with the property that evaluation is computable.

The representation is not easy to work with but there often exist simpler equivalent
representations.

I Example 4 (Concrete representations for spaces of functions). The computable Weierstraß
approximation theorem can be understood to say that C([0, 1]) ' C([0, 1],R). Here, C([0, 1],R)
is the space of continuous functions with the function space representation while C([0, 1])
has the same underlying set but in Cauchy representation with respect to the supremum
norm and the rational polynomials as dense subset. More specifically the metric is given by
d(f, g) := ‖f − g‖∞, where ‖f‖∞ := sup{|f(x)| | x ∈ [0, 1]} is the supremum norm.

Finally, for a represented space X we use the space X∗ of finite lists over X. A name of
such a finite word takes the same kind of questions that one can ask about elements of X
but returns a finite list of answers for each of the elements of the list.

2.2 Weihrauch reducibility and Weihrauch degrees
A reasonable notion of comparison of computational tasks f and g is to ask whether a solution
to f can be specified if – in addition to computable operations – an arbitrary solution to g
may be involved once. Weihrauch reductions make this idea formal. Recall that 〈p, q〉 is the
pairing of elements p and q of Baire space.

I Definition 5. Let f and g be multivalued functions between represented spaces. A
Weihrauch reduction of f to g is a pair of computable functions H,K : NN → NN called
pre- and post-processor such that for any realizer G of g the function p 7→ K(〈G(H(p)), p〉)
is a realizer of f .

We write f ≤W g if there exists a Weihrauch reduction and use f ≡W g as abbreviation
for f ≤W g∧ g ≤W f . The Weihrauch degree of f is its equivalence class under Weihrauch
reductions.

For additional information on the theory of Weihrauch degrees we refer the reader to [8].

C. Gaßner, A. Pauly, and F. Steinberg 22:5

name of some y ∈ f(x)

H

name p of x ∈ dom(f)

name H(p)
of z ∈ dom(g)

G

name of g(z)

K F

Figure 1 f ≤W g.

I Example 6 (Weihrauch degrees). The following Weihrauch degrees are important to us:
LPO: By LPO : NN → B we denote the characteristic map of the singleton set containing the

constant zero function and its Weihrauch degree. The name is short for ‘lesser principle
of omniscience’ and originates from constructive mathematics, where this principle often
serves as a Brouwerian counterexample to show that statements are not constructively
provable. Other representatives of LPO include the mapping from S to B that sends >
to 1 and ⊥ to 0 and checking equality of real numbers.

lim and CN: For a represented space X consider the multivalued function limX : XN ⇒ X
that sends a sequence (xn)n∈N to the set {x | limn→∞ xn = x} of its limit points. It holds
that limR ≡W limNN ≡W lim[0,1], and we just write lim for this Weihrauch degree. We
also use the degree of limN, which is equivalent to closed choice on the natural numbers,
CN, to be discussed in Section 2.3.

There are several ways to construct new Weihrauch degrees from known ones, let us go
through some that particularly important for our causes. First consider the parallelization,
where the new task is to solve the original task a countable number of times in parallel. For
a given multivalued function f : X ⇒ Y let f̂ : XN ⇒ YN be the operation of applying f
pointwise, i.e. f̂((xn)n∈N) := {(yn)n∈N | ∀n ∈ N : yn ∈ f(xn)}. One verifies that f ≤W g

implies f̂ ≤W ĝ, and hence the operation lifts to Weihrauch degrees.

I Lemma 7 (Parallelization of Weihrauch degrees [6]). The following equivalences hold:

L̂PO ≡W ĈN ≡W l̂im ≡W lim .

There are some more complicated constructions that we also need, namely the sequential
composition and most prominently the diamond operator where a task can be used sequentially
as many times as needed. However, for a proper discussion of this operator we need register
machines and we thus postpone it to Section 3. An additional operations is the finite parallel
execution f∗ where the task is given any integer n to solve the task corresponding to f in
parallel n-times.

CSL 2021

22:6 Computing Measure as a Primitive Operation

2.3 Spaces of sets and choice principles
Closed choice on the natural numbers, denoted by CN, is the task of selecting an element
of a closed set of natural numbers. To make this formal let us first recall how to introduce
spaces of open and closed subsets of represented spaces.

Recall from Example 2 that the functions from a topological space to Sierpiński space S
are exactly the characteristic functions of the open sets. In analogy to this one may generalize
from topological spaces to an arbitrary represented space X and consider O(X) := C(X,S)
the space of open subsets of X. This means that for an arbitrary represented space X we
consider a subset A ⊆ X to be open if its characteristic function χA : X→ S is continuously
realizable. Similarly, the represented space A(X) of closed sets consists of the complements
of open sets and names them accordingly.

I Lemma 8 ([12]). If X is a metric space in the Cauchy representation, then the information
that a name of A ∈ O(X) provides is exactly a sequence of balls of rational radius around
elements of the dense sequence that exhausts A.

In particular, for a computable metric space the computable elements of O(X) are exactly
those open sets that are computably enumerable in the usual sense. As an example and for
later use recall that R< denotes the lower reals from Example 3.

I Example 9 (Lower approximations to the volume of open sets). The Lebesgue measure is
computable as function λ : O([0, 1])→ R<. This is because according to the previous lemma
a name of an open set is a sequence of rational intervals that exhaust the set.

Closed choice for a space X is the multivalued function CX : A(X)⇒ X where the eligible
return values are the elements of the closed set provided as input. The domain of CX consists
of the non-empty closed sets. Closed sets are encoded as positive information about their
complement, thus CX is usually discontinuous and in particular incomputable. For instance
CN can be reformulated as finding a number not occurring in an enumeration.

We also need the next higher level of complexity, namely the spaces of Σ0
2 and Π0

2 sets. The
jump in complexity can be done using limNN as a jump operator [15] respectively computable
endofunctor [34, 32]. Namely, given a represented space X = (X, δX) define the lim-jump of
X to be the represented space that has the same underlying set but with the representation
δ′X := δ ◦ limNN ◦δ(NN)N . A function f : X→ Y is called lim-computable resp. lim-continuous
if it is computable resp. continuous as a function from X to the lim-jump of Y. If Y is R or
R∗, this is the same as being (effectively) Baire class 1. The notion of lim-computability can
also be expressed through Weihrauch degrees: A function f : X→ Y is lim-computable if
and only if f ≤W lim.

We plan on replacing Sierpiński space S in the definitions of open and closed sets above
by its lim-jump. Before we state these definitions let us specify a space S′ that is isomorphic
to the lim-jump of S but has a more approachable representation and convenient naming of
its elements. Equip the set {>′,⊥′} with the total representation δS′ that assigns p : N→ B
as name to >′ if p(n) = 0 only for finitely many n.

Now that we have fixed S′ we can set Σ0
2(X) := C(X,S′) and let the names of an element

of Π0
2(X) be the Σ0

2(X) names of its complement. As S′ is isomorphic to the lim-jump of
S this means that for an arbitrary represented space X we consider a subset A ⊆ X to
be a Σ0

2-set if its characteristic function χA : X→ S is lim-continuous. Here we follow the
approach of synthetic descriptive set theory suggested in [34]. These definitions recreate more
familiar ones that are only available in special cases. For instance: recall that the Π0

2-subsets
of a metric space are the countable intersections of open subsets. Following Brattka [5]
one would define the names of a Π0

2-set A to be the union of all name sets of sequences
(Un)n∈N ∈ O(X)N such that A =

⋂
n∈N Un.

C. Gaßner, A. Pauly, and F. Steinberg 22:7

I Lemma 10 (proven in [24]). The representation of the Π0
2-sets in the sense of Brattka

as presented above can be computably translated to the representation of Π0
2(X). If X is a

computable metric space, then a translation in the inverse direction is also possible.

Using Π0
2(X) we can introduce another important Weihrauch degree:

I Definition 11 (Π0
2-choice). Let Π0

2CX : Π0
2(X)⇒ X return the elements of A on input A.

The domain of the multifunction Π0
2CX are the non-empty Π0

2-subsets of X. Some other
representatives of the Weihrauch degree Π0

2CN can for instance be found in [7].

3 Algebraic models of computation and the diamond operator

Computation on algebraic structures has been studied in various ways, e.g. [26, 39]. The
most influential approach is by Blum, Shub and Smale [2] introducing the algebraic model
of computation on the reals that came to be named BSS-machines after the authors. We
particularly wish to highlight Moschovakis’ [29] as initial inspiration for our considerations.
We use the notion of a register machine over some algebraic structure, as defined in [30] by
following Gaßner [19, 20, 21] and Tavana and Weihrauch [38].

For us, an algebraic structure is a tuple A = (A, f1, f2, . . . , T1, T2, . . .), where A is a set,
each fi is a (partial) function of type fi : ⊆ Aki → A, and each Ti is a relation of type Ti ⊆ Ali .
A A-register machine computes functions of type g : ⊆ A∗ → A∗. It has registers (Zi)i∈N
holding elements of A, and index registers (In)n∈N holding natural numbers. Programs are
finite lists of commands, consisting of:

standard register machine operations on the index registers
copying the value of the register ZI1 indexed by I1 into ZI0

applying some fi to the values contained in Z1, . . . , Zki
and writing the result into Z0

jumping to a line in the program if the content of Z0, . . . , Zli−1 is an element of Ti
HALT, in which case the values in the registers Z0, . . . , ZI0 constitute the return value

At the start of the computation the register I0 contains the length of the input, all other
Ii start at 0. The input is in Z1, . . . , ZI0 , all other Zi contain some fixed value a0 ∈ A. If
the program either fails to halt on some input – which in particular happens if it invokes a
partial function on some values outside its domain – the computed function is undefined on
these values.

I Definition 12. A BSS-machine is a (R; 0, 1, (q)q∈Q,+,×, <)-register machine.

We can add any constant function c : R0 → R taking a computable value without it making a
difference anywhere in our paper, although this obviously increases the computational power
whenever we add irrational constants. For a more detailed introduction, see [22].

As long as our signatures are finite, with the potential exception of constants, we can
code A-register machine programs as inputs for an A-register machine using the length of the
input for the discrete part, and elements of A for the constants. This in particular ensures
the existence of universal machines, as these codes can be effectively decoded.

In computable analysis register machines whose signature only contains computable
operations are a popular tool for making proofs more accessible [38]. Weihrauch reducibility
has lead to a widespread use of register machines with incomputable signature:

CSL 2021

22:8 Computing Measure as a Primitive Operation

I Example 13 (The diamond operator). The Weihrauch degree f� captures all tasks that we
can solve in a finite computation with oracle access to f . A representative of f� can then be
given as a multifunction that takes as input an index of a register machine M together with
an input x for M , and outputs whatever M would output on x. An equivalent definition in
terms of reduction games was given by Jockusch and Hirschfeldt [27].

A proof that CN ≡W LPO� was given in [30]. Recall that LPO is the Weihrauch degree of
deciding equality of real numbers. As BSS-machines are register machines with the capability
to do branching over equalities of reals this equivalence provides a close link between closed
choice on the natural numbers to the power of BSS-machines.

The composition of Weihrauch degrees is an operation related to the diamond operator
that we need only in the passing. The Weihrauch degree f ? g essentially means “do
something computable, then invoke g, do some more computation, invoke f and after some
more computation return an answer”. We have f ?g ≡W max≤W{F ◦G | F ≤W f ∧G ≤W g},
where the maximum is only taken over f and g that are composable. It is not obvious
that the maximum exists, but a concrete construction of a representative can be found in
[11]. The diamond operation corresponds to the closure under composition in the sense that
idNN ≤W f = f ? f is equivalent to f = f� as proven by Westrick [41].

3.1 Enhancing BSS-machines and statement of our results
In this section we consider functions f : R∗ → R∗, where R∗ is the space of finite sequences
of real numbers as introduced at the very end of Section 2.1. We compare several models of
computation by register machines that may produce incomputable functions. The models
we consider fall into two classes: One adapts BSS-machines with primitive operations for
computing measures and the other adds capabilities of computing limits.

Starting from a BSS-machine, we add the ability to compute the Lebesgue measure of a
given BSS-decidable subset of [0, 1]d to obtain BSS+λ-machines. More specifically the run
of a BSS-machine proceed as follows in evaluating the Lebesgue measure (for more details
see the appendix):

IDefinition 14. If a BSS+λ-machine reaches a λ-command, the content of I0 is interpreted as
a Gödel-number of a BSS-machineM using k constants. The contents a1, . . . , ak of Z1, . . . , Zk
are used as the values for the k constants and the content of I1 as the dimension n of the input.
If M(a1, . . . , ak) halts for every input x ∈ [0, 1]n and outputs either 0 or 1, then we replace
the content of Z0 with the Lebesgue measure of the set {x ∈ [0, 1]n |M(a1, . . . , ak)(x) = 1}
and let the computation continue. If M is not as desired we do not modify the state so that
the computation loops on this command.

As it is also meaningful to talk about indices of BSS+λ-machines, we may iterate this process
once. That is, we use BSS+λ+λ-machines that have an additional primitive operator for
computing the Lebesgue measure of a set decidable by a BSS+λ-machine. One may produce
a more formal definition by replacement of the type of index used in the previous definition.

Motivated by our proofs we also consider machines with access to arbitrary (partial)
computable functions. We call such machines BSS+Comp-machines and as most of the
signature of BSS-machines is computable these machines can just use tests for strict inequality
of real numbers in addition to the computable functions on the reals. We add to these
machines the capability of computing measure very similar to how this was done for BSS-
and BSS+λ-machines. There is a small issue to address here as the infinite signature of
BSS+Comp-machines makes talking about programs slightly more complicated. However,

C. Gaßner, A. Pauly, and F. Steinberg 22:9

we may replace the infinite signature with a finite one by use of a universal computable
function u : ⊆ R→ R. This accounts for all unary computable functions and by the effective
Kolmogorov superposition theorem [4], together with addition this already suffices to construct
all computable functions of arbitrary finite arity. By adding a primitive for the measure of a
set decidable in this setting (which is just a ∆0

2-set), we obtain the BSS+Comp+λ-machines.
Our second class of models adds abilities to compute certain limits. The operator c-lim

(for controlled limit) maps a program for a BSS-machine that computes a sequence of real
numbers xi with |xi − xj | < 2−min{i,j} to the limit of this sequence. The operator u-lim
(uncontrolled limit) accepts a program computing an arbitrary converging sequence of real
numbers, and also outputs the limit. These operators correspond to the strongly and weakly
analytic machines going back to Chadzelek and Hotz [14]. However, in our model the c-lim-
and u-lim-commands can be used multiple times throughout the computation. Analytic
machines only allow one application at the end of the computation. Thus, we consider the
closure of what strongly/weakly analytic machines compute under composition here. We
denote the respective machine models BSS+c-lim and BSS+u-lim and the details of what
the commands do are similar to what was laid out in Definition 14.

In [30] it was shown that BSS-machines and strongly analytic machines can be character-
ized by a complete Weihrauch degree: every function computable in that model is Weihrauch
reducible to the complete degree and the complete degree has a representative computable
in the model. For the models we consider here we obtain the stronger characterization that
the computed functions are exactly those functions from a lower cone in the Weihrauch
degrees that are of suitable type. All of the models mentioned above coalesce into just two
equivalence classes:

I Theorem 15. For a function f : ⊆ R∗ → R∗ the following are equivalent:
1. f ≤W Π0

2CN

2. f is computable by a BSS+λ-machine.
3. f is computable by a BSS+c-lim-machine.
4. f is computable by a BSS+Comp-machine with oracle access to the BSS-Halting problem2.
5. There is a uniform sequence of Π0

2-sets (An)n∈N such that dom(f) =
⋃
n∈NAn and each

f |An
is computable.

Anticipating the notion of being piece-wise continuous as introduced in Section 4.3 the last
item may be reformulated as f being a computable element of the Π0

2-piece-wise continuous
functions. Another equivalent model that we omit here is to be computable by a weakly
non-deterministic Type-2 machine with advice space N as introduced by Ziegler [42].

I Theorem 16. For a function f : ⊆ R∗ → R∗ the following are equivalent:
1. f ≤W lim�

2. f is computable by a BSS+λ+λ-machine.
3. f is computable by a BSS+u-lim-machine.
4. f is computable by a BSS+Comp+λ-machine.
5. There is a uniform cover

⋃
n∈NAn = dom(f) where An is Π0

n, and f |An is of effective
Baire class n.

From known properties of the Weihrauch degrees we can now for instance draw conclusions
about how far computability is preserved point-wise by functions computed in these models:

2 Note that it does not matter whether we use the Halting problem for additive machines or the full
strength, or even just Q as an oracle.

CSL 2021

22:10 Computing Measure as a Primitive Operation

I Corollary 17. A BSS+λ-machine with computable constants on computable input either
diverges or produces a computable value. A BSS+λ+λ-machine with computable constants
can, on computable input, produce outputs in any finite level of the arithmetical hierarchy.

Proof. To see the first claim, we observe that Π0
2CN returns natural numbers. Thus f ≤W

Π0
2CN implies that f can only take computable values on computable inputs. For the second

claim, observe that one the one hand if p ∈ BN is arithmetical, then the constant function
x 7→ p : R∗ → R∗ (where we identify Cantor space BN and the Cantor middle third set) is
Weihrauch reducible to lim�. Conversely, since every computation of lim�-machine involves
only finitely many limits, its output on a computable input is always arithmetical. J

3.2 Measure, controlled limits and the Weihrauch degree of sorting
First, we show how a controlled limit can be reduced to the measure of a decidable set. Note
that strongly analytic machines can compute all computable functions f : R∗ → R∗, so the
following in particular implies that BSS+λ-machines can do the same.

I Lemma 18. From a strongly analytic machine with parameters (a1, . . . , ad) that computes a
function f : Rd → [0, 1] we can compute a BSS-machine (also using (a1, . . . , ad)) that decides
some subset Aa1,...,ad

⊆ [0, 1] such that f(a1, . . . , ad) = λ(Aa1,...,ad
).

Proof. We partition the unit interval into {0} and
(
(2/3)i+1, (2/3)i

]
for i ∈ N. The set

Aa1,...,ad
will be of the form Aa1,...,ad

=
⋃
i∈Ba1,...,ad

(
(2/3)i+1, (2/3)i

]
for some Ba1,...,ad

⊆ N.
A BSS-machine can decide Aa1,...,ad

if and only if it can decide Ba1,...,ad
.

A BSS-machine can simulate the strongly analytic machine for any finite amount of time.
At some point, it can pick a true case out of f(a1, . . . , ad) < 2/3 and 1/3 < f(a1, . . . , ad), and
decides 0 /∈ Ba1,...,ad

and c0 = 0 in the former, and 0 ∈ Ba1,...,ad
and c0 = 1/3 in the latter

case.
In the next step, f(a1, . . . , ad) − c0 ∈ [0, 2/3], and the BSS-machine can simulate the

strongly analytic machine until it determines a true case amongst f(a1, . . . , ad)− c0 < (2/3)2

and 2
32 < f(a1, . . . , ad)− c0, and then sets 1 /∈ Ba1,...,ad

and c1 = c0 in the former, and 1 ∈
Ba1,...,ad

and c1 = c0 + 2/9. The BSS-machine keeps iterating this process until it determines
whether or not i ∈ Ba1,...,ad

for the i it needs to know about to decide membership of the
input in Aa1,...,ad

. It is straight-forward calculation that f(a1, . . . , ad) = λ(Aa1,...,ad
). J

In the next step, we obtain a Weihrauch upper bound for computing measures of BSS-
decidable sets. This involves the Weihrauch degree Sort of the task of sorting infinite binary
sequences. Here, sorting means to return the infinite binary sequence 0n1ω if the input
sequence has exactly n zeros and 0ω if it has infinitely many zeros. It was shown in [30] that
Sort∗ characterizes the strength of strongly analytic machines.

I Lemma 19. The task given a BSS-machine M with constants (a1, . . . , an) that
decides a set A ⊆ [0, 1]d, compute λ(A) is Weihrauch-reducible to LPO ? Sortn.

Proof. Using LPO ? Sortn we can decide whether or not the (a1, . . . , an) are algebraically
independent, and if they are dependent, compute their minimal polynomial (as shown in
[30]). Any test M makes on input (x1, . . . , xd) can be seen as asking whether a polynomial
P (a1, . . . , an, x1, . . . , xd) is negative, positive, or 0. Knowing the minimal polynomial of
(a1, . . . , an) (or that they are algebraically independent) lets us decide whether P is 0
independent of the values of the xi. If yes, we can eliminate the test for P from M . If no,
then the set of (x1, . . . , xd) causing P to be 0 is of measure 0, hence can be safely ignored
for determining λ(A).

C. Gaßner, A. Pauly, and F. Steinberg 22:11

Once we do this procedure for all tests in M , we obtain two open sets U1, U2 (each as
union of the open sets linked to a computation path where tests are yielding positive or
negative answers) such that U1 ⊆ A, U2 ⊆ [0, 1]d \A and λ([0, 1]d \ (U1 ∪ U2)) = 0. As the
measure of open sets is lower-semicomputable, this allows us to compute λ(A). J

The two preceding lemmas, together with the classification of strongly analytic ma-
chines from [30] already tell us that when allowing arbitrary use of the principle in a finite
computation, then computing measures of BSS-computable sets, limits of fast converging
BSS-computable sequences or solving Sort all yields the computational strength of Sort�.

I Proposition 20. Sort� ≡W Π0
2CN.

Proof. We find that isInfinite ≤W Sort ?Sort ≤W Sort�, and by results from [7], also
isInfinite� ≡W Π0

2CN ≡W Π0
2C�N. This shows that Π0

2CN ≤W Sort�. For the other direction,
we just point out that Sort ≤W Π0

2CN is immediate. J

We have now gathered all auxiliary results we need for proving the first of our theorems.

Proof of Theorem 15. 1. ⇒ 3. It was shown in [30] that a strongly analytic machine can
compute a representative of the Weihrauch degree Sort. It follows that a BSS+c-lim-
machine can simulate a Sort�-computation on any valid types. Now, Sort� ≡W Π0

2CN by
Proposition 20, so that our claim follows.

3. ⇒ 2. By Lemma 18, we can replace each c-lim-command by a λ-command.
2. ⇒ 1. By Lemma 19 a Sort�-machine can simulate a BSS+λ-machine. Proposition 20

tells us that Sort� ≡W Π0
2CN.

1. ⇔ 4. This follows from [30, Theorem 21] and Π0
2CN ≡W isInfinite�.

1. ⇔ 5. It was observed by Nobrega [17] that being Weihrauch reducible to Π0
2CN corres-

pondents to a Π0
2-cover of the domain such that all restrictions of the function to a piece

are computable. Essentially, the pieces just are the inputs that lead to some number
n ∈ N being a valid output of Π0

2CN on the instance it is queried on. There is a minor
issue here regarding whether we have a cover of the set of names of inputs, or directly of
the inputs. For R∗ as domain this makes no difference, as explained in [33]. J

3.3 Iterating measure and computable functions as supplement
We can now ask what happens if we allow to nest the λ-operator once.

I Proposition 21. A function f : R∗ → R∗ is computable by a BSS+λ+λ-machine if and
only if f ≤W lim�.

Proof. A representative of the degree of lim is id : [0, 1]< → [0, 1], the identity from the
lower reals in the unit interval to the unit interval. From b ∈ [0, 1]< we can compute
[0, b) ∈ O([0, 1]), and the characteristic function of an open set is computable relative to
LPO, hence in particular relative to Π0

2CN. This establishes together with Theorem 15 that
a BSS+λ+λ-machine can compute everything Weihrauch-reducible to lim, and subsequently
lim�.

For the other direction, assume that the characteristic function χA of A ⊆ [0, 1]d is
computable by a BSS+λ-machine. By Theorem 15 it follows that χA ≤W Π0

2CN. This
in turn tells us that there are Π0

2-sets (Bn)n∈N and (Cn)n∈N such that A =
⋃
n∈NBn and

[0, 1]d \A =
⋃
n∈N Cn. In particular, A is a ∆0

3-set. Using lim ? lim ? lim we can compute the
measure of a Σ0

3-set as a real number, and thus the claim follows. J

CSL 2021

22:12 Computing Measure as a Primitive Operation

Note that for the first direction in the theorem above we only used that BSS+λ-machines
can compute all computable functions, and can decide all computable open sets. This can
already be facilitated by BSS+Comp-machines that can be simulated by BSS+λ-machines:

I Corollary 22. BSS+Comp+λ- and BSS+λ+λ-machines can compute the same functions.

The following is somewhat more general than we need for our theorem.

I Proposition 23. The following are equivalent for f : X ⇒ Y, where X is a effectively
countably based space:
1. f ≤W lim�.
2. There is a uniform cover

⋃
n∈NAn of X where An is Π0

n, and f |An
is of effective Baire

class n.

Proof. Let f ≤W lim�. We point out that using lim, we can chose a canonic name for each
point in an effectively countably-based space. Thus, in the lim�-computation, we can assume
that all names of the same point proceed in the same way through the computation tree
generated by the generalized register machine in the definition of �. The computation tree
has countably many leaves where the computation can terminate and provide an output.
If the path to a particular leaf is using n invocations of lim, then the set of inputs leading
to that leaf is a Π0

n+1-set, and we can obtain this uniformly. Every content of a register at
that moment (thus in particular the output) can be obtained as an effectively Baire class n
function. By padding with empty sets if necessary, we obtain the desired sequence from an
enumeration of the leaves.

Conversely, if we have a uniform cover
⋃
n∈NAn of X where An is Π0

n, then a lim�-
computation can on input x ∈ X find some n such that x ∈ An. Subsequently, a lim�-
computation can simulate any effective Baire class n function. J

Note that in particular the pre-computable Quasi-Polish space from [16] are effectively
countably-based. Finally, we prove our second theorem.

Proof of Theorem 16.
1. ⇔ 2., 2. ⇔ 4. and 1. ⇔ 5. These follow from the Propositions 21 and 23 and Corollary

22 respectively.
1. ⇔ 3. As a BSS+u-lim-machine can compute all computable partial functions on R∗, the

only difference between a BSS+u-lim and a lim�-machine is what are appropriate input
and output types. J

4 Measurability, Integrability and Weihrauch degrees

Classically, any measurable function f : [0, 1]→ [0, 1] is integrable. Computably, this fails to
be true. Rather than dealing with all Borel measurable functions, we restrict our attention to
the lowest non-trivial complexity and explore the ∆0

2-measurable functions. For metric spaces
X and Y, the Jayne-Rogers Theorem gives an alternate description of the ∆0

2-measurable
functions as piece-wise continuous functions [33]. In our setting the piece-wise continuous
functions can be identified with the space C(X,Y∇) of lim∆-continuous functions. Below,
we go into more detail about these spaces and also about the space L1([0, 1]) of integrable
functions. Before we do this recall that R< is the space of real numbers represented as
suprema of sequences of rationals and let us state the main results that we prove.

C. Gaßner, A. Pauly, and F. Steinberg 22:13

I Theorem 24. The following maps are Weihrauch equivalent to lim:
1. Evaluating a continuous function from its description as an integrable function. That is,

the inverse of the inclusion of C([0, 1], [0, 1]) into L1([0, 1]).
2. The Lebesgue measure as function on ∆0

2([0, 1]) with values either in R or in R<, i.e.

λ : ∆0
2([0, 1])→ R and λ : ∆0

2([0, 1])→ R<.

3. Integration taking a piece-wise continuous function on the unit interval and returning an
element of either R or R<, namely the functions∫

: C([0, 1], [0, 1]∇)→ R and
∫

: C([0, 1], [0, 1]∇)→ R<.

4. Translating from piece-wise continuous functions to integrable functions, i.e. the inclusion
of C([0, 1], [0, 1]∇) into L1([0, 1]).

4.1 Integrable functions, L1([0, 1]) and continuous functions
Let us first discuss what the represented space of integrable functions looks like. Recall that
strictly speaking L1([0, 1]) is not a space of functions but instead its elements are equivalence
classes of such. For f : [0, 1]→ R integrable in the sense that

∫ 1
0 |f |dλ <∞, the collection

[f] :=
{
g : [0, 1]→ R |

∫ 1

0
|f − g|dλ = 0

}
of functions that coincide with f almost everywhere is an element of L1([0, 1]). The vector-
space operations factor through the equivalence class and ‖[f]‖1 :=

∫ 1
0 |f |dλ defines a Norm

on L1([0, 1]). For this paper equip L1([0, 1]) with the Cauchy representation with respect to
the metric induced by this norm and choose as dense set the equivalence classes of piece-wise
constant functions with a finite number of rational values and breakpoints.

For more on representing spaces of integrable functions, see [36] and [37]. Integration is
computable as a mapping that takes endpoints of an interval and a function and integrates
it over the interval.

Let us give a name to the restriction of the assignment f 7→ [f] to continuous functions:

ι : C([0, 1], [0, 1])→ L1([0, 1]), f 7→ [f].

As continuous functions that are equal almost everywhere are already equal, ι is an injection.
However, a name of ι(f) provides strictly less information than one of f . Our first lemma
follows from results by Brattka [3] but we provide an elementary direct proof in the appendix.

I Lemma 25 (lim ≤W ι−1). Evaluating an integrable function that happens to be continuous
is enough to compute the limit of a sequence in Baire space.

I Lemma 26 (ι−1 ≤W lim). The inverse of the inclusion of C([0, 1], [0, 1]) into L1([0, 1]) is
Weihrauch reducible to lim.

Proof. 3 Recall that lim ≡W limN
[0,1], so it suffices to produce a Weihrauch reduction of ι−1

to limN
[0,1]. Let us assume we are given ι(f) ∈ L1([0, 1]). Fix some enumeration (Ik)k∈N of

the rational intervals with endpoints in [0, 1]. Assume we are given ε ∈ Q+ and we want to

3 We are grateful to a referee for sketching this simplified proof for us.

CSL 2021

22:14 Computing Measure as a Primitive Operation

produce some rational polynomial p such that ‖f−p‖∞ ≤ ε. Let (pm)m∈N be an enumeration
of the rational polynomials. Note that one easily obtains [pm] as an integrable function and
as we can compute integrals of integrable functions, for each m the sequence (xn)n∈N

xn := 1
λ(In)

∣∣ ∫
In

f − pmdλ
∣∣

is computable. Note that xn ≤ ‖f − pm‖∞ and that we can get xn arbitrary close to
‖f − pm‖∞: As f is continuous there exists an interval where f is almost constantly almost
the value whose absolute value is maximal. Thus, one instance of lim[0,1] can compute
‖f − pm‖∞ = sup{xn | n ∈ N} = lim[0,1]

(
(max{xk | k ≤ n})n∈N

)
. Moreover, using limN

[0,1]
produces (‖f − pm‖∞)m∈N as a sequence. Since f is continuous, we know that there exists
some pm such that ‖f − pm‖∞ < ε. As a test for strict inequality is computable when its
values are taken to be from S, we may find such pm by dovetailing and return it. J

4.2 The Lebesgue measure on the ∆0
2-subsets of the unit interval

Let us now introduce the space ∆0
2(X) of ∆0

2-subsets of a represented space X. First recall
that ∆0

1(X) := C(X,B) is the space of clopen subsets and can alternatively be represented a
pair of names of the characteristic function of both a set and its complement as continuous
functions to Sierpiński space. The space ∆0

2(X) can be introduced the same way but with
Sierpiński space replaced by its lim-jump as introduced in Section 2.3. As the product of
lim-jumps of two spaces is isomorphic to the lim-jump of the product, from ∆0

1(X) = C(X,B)
we get ∆0

2(X) ' C(X,B′), where B′ is the lim-jump of B. As every convergent sequence
in B is already eventually constant, B′ allows for a simpler description using another jump
operator. Let lim∆(pn) := {p ∈ NN | ∃N, ∀n ≥ N, pn = p} be the limit operator with respect
to the discrete topology on Baire space.

I Definition 27 (The lim∆-jump X∇ of a space X). Define the lim∆-jump of a represented
space X = (X, δX) as X∇ := (X, δX ◦ lim∆ ◦δ(NN)N).

Note that the definition of the lim-jump of in Section 2.3 is identical, except that lim∆
replaces limNN . Now, B∇ is isomorphic to the lim-jump of B and ∆0

2(X) ' C(X,B∇).

I Lemma 28. There exists a computable function D : dom(lim[0,1])→ ∆0
2([0, 1]) that maps

each converging x ∈ [0, 1]N to a set D(x) with Lebesgue measure λ(D(x)) = lim[0,1](x).

Proof. Our construction here has some similarities to the proof of Lemma 18. To argue
that we can compute a ∆0

2-set A from the sequence (ai)i∈N means that we can compute its
characteristic function as χA : [0, 1]→ B∆ with access to (ai)i∈N, which in turn is equivalent
to a LPO�-machine being able to compute χA : [0, 1] → B. We give the algorithm for the
latter as Algorithm 1 in the appendix. J

From this Lemma we can draw the conclusion that we need.

I Corollary 29 (
(
λ : ∆0

2([0, 1])→ R
)
≡W lim). The Lebesgue measure as a function from

∆0
2([0, 1]) to R is a representative of the Weihrauch degree lim.

Proof. It suffices to prove λ ≤W limNN and lim[0,1] ≤W λ. The latter of these follows directly
from the previous Lemma 28.

To see that also λ ≤W limNN assume that we are given A ∈ ∆0
2([0, 1]) as input. Recall

that a ∆0
2-set is specified as a pair names of itself and its complement as Π0

2-subsets of
[0, 1]. Now [0, 1] is a computable metric space and according to Lemma 10 we can thus

C. Gaßner, A. Pauly, and F. Steinberg 22:15

computably obtain names of sequences (Un)n∈N, (Vn)n∈N ∈ O([0, 1])N so that
⋂
n∈N Un = A

and
⋂
n∈N Vn = Ac. Thus the sequences xn := λ(

⋂
k≤n Uk) converges to λ(A) from above

and the sequence yn := 1 − λ(
⋂
k≤n Vk) from below. Note that the Lebesgue measure is

computable from open sets to R<. However, it is known that (id : R< → R) ≡W lim and
we know that l̂im ≡W lim from Lemma 7. Therefore, limNN is sufficient to lift both of the
sequences (xn) and (yn) from sequences in R< to sequences of real numbers. These sequences
approximate λ(A) from above and below so that we can compute λ(A) ∈ R. J

4.3 Piece-wise continuous functions and ∆0
2-measurable functions

Before we talk about ∆0
2-measurable functions let us get back to admissibility and continuous

functions for illustration. For any f ∈ C(X,Y) we may consider the pre-image function
f−1 : O(Y)→ O(X) defined by f−1(χ) := χ ◦ f . The above says that continuously realizable
functions between represented spaces are such that the preimage of an open set is not only
open but can continuously be obtained from it. Now, admissibility of the representation of Y
guarantees that the notions coincide in that it assures that the assignment f 7→ f−1 can be
inverted and in particular C(X,Y) is isomorphic to its image in C(O(Y),O(X)) under moving
to the pre-image function. A function is called ∆0

2-measurable if its preimages of open sets
are ∆0

2-sets. We may thus ask whether there is an assumption that allows reconstruction of a
∆0

2-measurable function from its preimage function O(Y)→ ∆0
2(X) just like admissibility did

this for continuity. Indeed, there exists such a condition and it is called lim∆-admissibility.
It implies that C(X,Y∇) is isomorphic to the corresponding subspace of C(O(Y),∆0

2(X)).
Here Y∇ is the lim∆-jump of Y from Definition 27 and as its underlying set is identical to
that of Y, measurable functions are indeed functions from X to Y. We point to [33, 32] for
proofs that all spaces that appear as Y in this paper are lim∆-admissible.

The space C(X,Y∇) can often be understood as the space of piece-wise continuous
functions via the Jayne-Rogers theorem. A function f : X → Y is piece-wise continuous
if there is a sequence (An)n∈N ∈ A(X)N that covers X and such that for each n ∈ N the
function f |An is continuous from An as a subspace of X to Y. Let Cpw(X,Y) be the space
of piece-wise continuous functions represented as expected.

I Lemma 30 (C(X,Y∇) ' Cpw(X,Y), proven in [33]). Let X and Y be a computable metric
spaces such that Y is complete. Then C(X,Y∇) is isomorphic to the space of piece-wise
continuous functions Cpw(X,Y) as introduced above.

Let us give a name to another restriction of the assignment f 7→ [f], namely set

ι∆ : C([0, 1], [0, 1]∇)→ L1([0, 1]), f 7→ [f].

This map is not injective: as piece-wise continuous functions characteristic functions of
singletons are distinct from zero but they produce the same equivalence class in L1([0, 1]).

I Lemma 31 (
(∫

: C([0, 1], [0, 1]∇)→ R
)
≤W lim). Integrating a piece-wise continuous

function over the unit interval is Weihrauch reducible to limR.

Proof. According to Lemma 30, the information that we get about f is a sequence An of
closed sets together with the restrictions f |An

. By Lemma 8, the information contained in a
name of An ∈ A([0, 1]) is an increasing sequence (U in)i∈N of finite unions of rational intervals
such that

⋃
i∈N U

i
n = Acn. Construct a sequence rn ∈ [0, 1] as follows: For each i ≤ 2n set

xi := i · 2−n and pick some canonical name of xi ∈ [0, 1]. For each k ≤ n check whether
xi ∈ Ukn , and if this is not the case evaluate the universal used for function spaces for n steps

CSL 2021

22:16 Computing Measure as a Primitive Operation

in attempt to obtain a 2−n approximation to f |Ak
(xi). Let g(xi) be the first value for which

this succeeds and returns something in [−2−n, 1 + 2−n] and let g(xi) be zero if this never
happens. Set rn :=

∑
i≤2n g(xi) · 2−n and note that our description of this sequence provides

a way to compute it from the input information. To see that the sequence rn converges to
the integral of f one uses the sigma-additivity of the Lebesgue measure and that, as the An
cover [0, 1], it holds that limR(λ(An))n∈N = 1 and also limR(λ(U in))i∈N = 1− λ(An). J

I Corollary 32 (ι∆ ≡W lim). The Weihrauch degree of the mapping from C([0, 1], [0, 1]∇) to
L1([0, 1]) that takes f to its equivalence class is lim.

Proof. Let us first argue that ι∆ ≤W lim and thus assume that we are given an input for
ι∆, i.e. some f ∈ C([0, 1], [0, 1]∇). Let (pk)k∈N be an enumeration of rational piece-wise
constant functions similar to the one we use for defining the Cauchy representation of
L1([0, 1]) but who map to [0, 1]. Note that the sequence (pk)k∈N is computable as sequence in
C([0, 1], [0, 1]∇) and that taking differences and the absolute value are computable operations
on the piece-wise continuous functions as they can be lifted in a pointwise manner from the
continuous functions. Thus, for each fixed k we can compute ‖[f]− [pk]‖1 =

∫ 1
0 |f − pk|dλ

using an invocation of lim by the previous Lemma. As l̂im ≡W lim this means that we can
also compute (‖[f] − [pk]‖1)k∈N as a sequence by one application of lim. Now given some
ε ∈ Q+ we know that there exists some pk such that ‖[f]− [pk]‖1 < ε and may thus search
for it and return it.

To see that also lim ≤W ι∆ note that B∇ is isomorphic to {0, 1} as subspace of [0, 1]∇.
Thus we can computably obtain the characteristic function χA ∈ C([0, 1], [0, 1]∇) from a
A ∈ ∆0

2([0, 1]). As
∫ 1

0 χAdλ = λ(A) we can thus use ι∆ to compute the Lebesgue measure as
function from ∆0

2([0, 1]) to R and get the desired reduction from Lemma 29. J

References
1 Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and Real Computation.

Springer, 1998.
2 Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and complexity over

the real numbers: NP-completeness, recursive functions and universal machines. Bulletin
of the American Mathematical Society, 21(1):1–46, 1989. URL: http://projecteuclid.org/
euclid.bams/1183555121.

3 Vasco Brattka. Computable invariance. Theoretical Computer Science, 210:3–20, 1999.
doi:10.1016/S0304-3975(98)00095-4.

4 Vasco Brattka. A computable Kolmogorov superposition theorem. Informatik Berichte 272,
FernUniversität Hagen, 2000.

5 Vasco Brattka. Effective Borel measurability and reducibility of functions. Mathematical Logic
Quarterly, 51(1):19–44, 2005. doi:10.1002/malq.200310125.

6 Vasco Brattka, Matthew de Brecht, and Arno Pauly. Closed choice and a uniform low basis
theorem. Annals of Pure and Applied Logic, 163(8):968–1008, 2012. doi:10.1016/j.apal.
2011.12.020.

7 Vasco Brattka, Guido Gherardi, Rupert Hölzl, Hugo Nobrega, and Arno Pauly. Borel choice.
in preparation.

8 Vasco Brattka, Guido Gherardi, and Arno Pauly. Weihrauch complexity in computable
analysis, 2017. URL: https://arxiv.org/abs/1707.03202.

9 Vasco Brattka and Peter Hertling. Feasible real random acess machines. Journal of Complexity,
14:490–526, 1998. doi:10.1006/jcom.1998.0488.

10 Vasco Brattka, Peter Hertling, and Klaus Weihrauch. A tutorial on computable analysis. In
Barry Cooper, Benedikt Löwe, and Andrea Sorbi, editors, New Computational Paradigms:

http://projecteuclid.org/euclid.bams/1183555121
http://projecteuclid.org/euclid.bams/1183555121
https://doi.org/10.1016/S0304-3975(98)00095-4
https://doi.org/10.1002/malq.200310125
https://doi.org/10.1016/j.apal.2011.12.020
https://doi.org/10.1016/j.apal.2011.12.020
https://arxiv.org/abs/1707.03202
https://doi.org/10.1006/jcom.1998.0488

C. Gaßner, A. Pauly, and F. Steinberg 22:17

Changing Conceptions of What is Computable, pages 425–491. Springer, 2008. URL: https:
//link.springer.com/chapter/10.1007/978-0-387-68546-5_18.

11 Vasco Brattka and Arno Pauly. On the algebraic structure of Weihrauch degrees. Logical
Methods in Computer Science, 14(4):1–36, 2018. doi:10.23638/LMCS-14(4:4)2018.

12 Vasco Brattka and Gero Presser. Computability on subsets of metric spaces. Theoretical
Computer Science, 305(1-3):43–76, 2003. doi:10.1016/S0304-3975(02)00693-X.

13 Peter Bürgisser and Felipe Cucker. Counting complexity classes for numeric computations
ii: Algebraic and semialgebraic sets. Journal of Complexity, 22(2):147–191, 2006. doi:
10.1016/j.jco.2005.11.001.

14 Thomas Chadzelek and Günter Hotz. Analytic machines. Theoretical Computer Science,
219:151–167, 1999. doi:10.1016/S0304-3975(98)00287-4.

15 Matthew de Brecht. Levels of discontinuity, limit-computability, and jump operators. In Vasco
Brattka, Hannes Diener, and Dieter Spreen, editors, Logic, Computation, Hierarchies, pages
79–108. de Gruyter, 2014. doi:10.1515/9781614518044.79.

16 Matthew de Brecht, Arno Pauly, and Matthias Schröder. Overt choice. Computability, 2020.
available at https://arxiv.org/abs/1902.05926. doi:10.3233/COM-190253.

17 Hugo de Holanda Cunha Nobrega. Game characterizations of function classes and Weihrauch
degrees. M.Sc. thesis, University of Amsterdam, 2013. URL: https://eprints.illc.uva.nl/
905/1/MoL-2013-16.text.pdf.

18 Tobias Gärtner and Martin Ziegler. Real analytic machines and degrees. Logical Methods in
Computer Science, 7:1–20, 2011. doi:10.2168/LMCS-7(3:11)2011.

19 Christine Gaßner. On NP-completeness for linear machines. Journal of Complexity, 13:259–271,
1997. doi:10.1006/jcom.1997.0444.

20 Christine Gaßner. The P-DNP problem for infinite abelian groups. Journal of Complexity,
17:574–583, 2001. doi:10.1006/jcom.2001.0583.

21 Christine Gaßner. A hierarchy below the halting problem for additive machines. Theory
Computing Systems, 17:574–583, 2008. doi:10.1007/s00224-007-9020-y.

22 Christine Gaßner. An introduction to a model of abstract computation: the BSS-RAM model.
In Adrian Rezus, editor, Contemporary Logic and Computing, volume 1 of Landscapes in Logic,
pages 574–603. College Publications, 2020.

23 Christine Gaßner and Pedro F. Valencia Vizcaíno. Operators for BSS RAM’s. In Martin Ziegler
and Akitoshi Kawamura, editors, The Twelfth International Conference on Computability and
Complexity in Analysis, pages 24–26, 2015.

24 Vassilios Gregoriades, Tamás Kispéter, and Arno Pauly. A comparison of concepts from
computable analysis and effective descriptive set theory. Mathematical Structures in Computer
Science, 27(8):1414–1436, 2017. 2015. doi:10.1017/S0960129516000128.

25 Anders C. Hansen. On the solvability complexity index, the n-pseudospectrum and approxim-
ations of spectra of operators. Journal of the AMS, 24:81–124, 2011.

26 Armin Hemmerling. Computability of string functions over algebraic structures. Mathematical
Logic Quarterly, 44(1):1–44, 1998. doi:10.1002/malq.19980440102.

27 Denis R. Hirschfeldt and Carl G. Jockusch. On notions of computability-theoretic reduction
between Π1

2-principles. Journal of Mathematical Logic, 16(1), 2016. 1650002:1-1650002:59.
doi:10.1142/S0219061316500021.

28 Klaus Meer. Counting problems over the reals. Theoretical Computer Science, 242:41–58, 2000.
doi:10.1016/S0304-3975(98)00190-X.

29 Yiannis N. Moschovakis. Abstract first order computability. I. Transactions of the American
Mathematical Society, 138:427–464, 1969. doi:10.2307/1994926.

30 Eike Neumann and Arno Pauly. A topological view on algebraic computations models. Journal
of Complexity, 44:1–22, 2018. doi:10.1016/j.jco.2017.08.003.

31 Arno Pauly. On the topological aspects of the theory of represented spaces. Computability,
5(2):159–180, 2016. doi:10.3233/COM-150049.

CSL 2021

https://link.springer.com/chapter/10.1007/978-0-387-68546-5_18
https://link.springer.com/chapter/10.1007/978-0-387-68546-5_18
https://doi.org/10.23638/LMCS-14(4:4)2018
https://doi.org/10.1016/S0304-3975(02)00693-X
https://doi.org/10.1016/j.jco.2005.11.001
https://doi.org/10.1016/j.jco.2005.11.001
https://doi.org/10.1016/S0304-3975(98)00287-4
https://doi.org/10.1515/9781614518044.79
https://doi.org/10.3233/COM-190253
https://eprints.illc.uva.nl/905/1/MoL-2013-16.text.pdf
https://eprints.illc.uva.nl/905/1/MoL-2013-16.text.pdf
https://doi.org/10.2168/LMCS-7(3:11)2011
https://doi.org/10.1006/jcom.1997.0444
https://doi.org/10.1006/jcom.2001.0583
https://doi.org/10.1007/s00224-007-9020-y
https://doi.org/10.1017/S0960129516000128
https://doi.org/10.1002/malq.19980440102
https://doi.org/10.1142/S0219061316500021
https://doi.org/10.1016/S0304-3975(98)00190-X
https://doi.org/10.2307/1994926
https://doi.org/10.1016/j.jco.2017.08.003
https://doi.org/10.3233/COM-150049

22:18 Computing Measure as a Primitive Operation

32 Arno Pauly and Matthew de Brecht. Towards synthetic descriptive set theory: An instantiation
with represented spaces. http://arxiv.org/abs/1307.1850, 2013.

33 Arno Pauly and Matthew de Brecht. Non-deterministic computation and the Jayne Rogers
theorem. Electronic Proceedings in Theoretical Computer Science, 143:87–96, 2014. DCM
2012. doi:10.4204/EPTCS.143.8.

34 Arno Pauly and Matthew de Brecht. Descriptive set theory in the category of represented
spaces. In 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages
438–449, 2015. doi:10.1109/LICS.2015.48.

35 Arno Pauly and Florian Steinberg. Comparing representations for function spaces in
computable analysis. Theory of Computing Systems, 62(3):557–582, 2018. doi:10.1007/
s00224-016-9745-6.

36 Marian Pour-El and Ian Richards. Computability in analysis and physics. Perspectives in
Mathematical Logic. Springer, 1989.

37 Florian Steinberg. Complexity theory for spaces of integrable functions. Logical Methods in
Computer Science, 13(3):1–39, 2017. doi:10.23638/LMCS-13(3:21)2017.

38 Nazanin Tavana and Klaus Weihrauch. Turing machines on represented sets, a model of
computation for analysis. Logical Methods in Computer Science, 7:1–21, 2011. doi:10.2168/
LMCS-7(2:19)2011.

39 John V. Tucker and Jeffrey I. Zucker. Computable functions and semicomputable sets on
many-sorted algebras. In T.S.E. Maybaum S. Abramsky, D.M. Gabbay, editor, Handbook of
Logic in Computer Science, volume 5 of Oxford Science Publications, pages 317–523, 2000.

40 Klaus Weihrauch. Computable Analysis. Springer-Verlag, 2000.
41 Linda Westrick. A note on the diamond operator. Computability, 202X. to appear. doi:

10.3233/COM-200295.
42 Martin Ziegler. Computability and continuity on the real arithmetic hierarchy and the power

of type-2 nondeterminism. In Barry S. Cooper, Benedikt Löwe, and Leen Torenvliet, editors,
Proceedings of CiE 2005, volume 3526 of Lecture Notes in Computer Science, pages 562–571.
Springer, 2005. URL: https://link.springer.com/chapter/10.1007/11494645_68.

A Proof of Lemma 28

That we have access to LPO is relevant in Lines 5 and 7, where LPO lets us resolve the
if-statements. As we can use arbitrary computable functions, the universal quantifiers ∀i ≥ n
are unproblematic here. Since the sequence (ai)i∈N is guaranteed to converge, the while-loop
will terminate. If b = 0, then for sure limi→∞ ai ∈ [0, 2/3], if b = 1 then limi→∞ ai ∈ [1/3, 1]. In
the latter case, Line 15 adds 1/3 to the measure of A. By moving to the sequence (ai− b/3)i∈N
we then get a sequence guaranteed to have a limit in [0, 2/3], and still have to determine
membership in A for x ∈ (1/3, 1). We rescale this interval up to (0, 1) again, and iterate the
process.

B Proof of Lemma 25

Proof. As lim ≡W L̂PO by Lemma 7 we may solve a countable number of instances of
LPO = χ{k 7→0} instead of one of lim. Thus, our input is a sequence (pn) of elements of Baire
space. Let mn be the least natural number such that pn(mn) 6= 0 if such a number exists
and ∞ otherwise. Define a sequence of functions fn ∈ C([0, 1]) by

fn(x) :=
{

0 if mn =∞
max{0, 1− 2mn+2|x− 3

4 |} otherwise,

https://doi.org/10.4204/EPTCS.143.8
https://doi.org/10.1109/LICS.2015.48
https://doi.org/10.1007/s00224-016-9745-6
https://doi.org/10.1007/s00224-016-9745-6
https://doi.org/10.23638/LMCS-13(3:21)2017
https://doi.org/10.2168/LMCS-7(2:19)2011
https://doi.org/10.2168/LMCS-7(2:19)2011
https://doi.org/10.3233/COM-200295
https://doi.org/10.3233/COM-200295
https://link.springer.com/chapter/10.1007/11494645_68

C. Gaßner, A. Pauly, and F. Steinberg 22:19

Algorithm 1 Computing the characteristic function of A.
1 Function Charac is

input : x ∈ [0, 1], converging sequence (ai)i∈N
output :Boolean indicating whether x ∈ A

2 if x = 0 then return "no";
3 b := −1; n = 0; while b = −1 do
4 if ∀i ≥ n ai ≤ 2

3 then
5 b := 0;
6 else if ∀i ≥ n ai ≥ 1

3 then
7 b := 1;
8 else
9 n := n + 1;

10 end if
11 end while
12 if x ≥ 2

3 then
13 if b = 0 then return "no";
14 if b = 1 then return "yes";
15 else
16 return Charac (3

2x, (3
2ai −

1
2b)i∈N)

17 end if
18 end

and let f be defined by an infinite sum:

f(x) :=
∑
n∈N

2−nfn(2nx).

This sum converges in supremum norm and f is a continuous function. To see that a sequence
of piece-wise linear approximations to f in L1-norm can be computed from p note that∫

2−nfn(2nx)dx = 2−2n
∫
fn(x)dx = 2−2(n+1)−mn .

Thus, the infinite sum may be approximated by the finite sums∑
n s.t. max{n,mn}≤k

2−nfn(2nx)

up to any desired precision ε by choosing an appropriate k. Furthermore, these finite sums
are computable from the input sequence pn. An application of a solution of ι−1 provides
with this function as a continuous function. In particular we may evaluate the values of the
function in the peaks and can read the value of χ{k 7→0}(pn) from these. J

C The BSS RAM model – some details

In the following, an algebraic structure A is a tuple (U ; c1, c2, . . . ; f1, f2, . . . ; r1, r2, . . .) with
universe UA = U , where U is any nonempty set, each ci is an element in U , each fi is
a (partial) function of type fi :⊆ Umi → U (mi ≥ 1), and each ri is a relation of type
ri ⊆ Uki . Here, any A-machine M computes a function of type g :⊆ U∗ → U∗. It has

CSL 2021

22:20 Computing Measure as a Primitive Operation

0 1

1

0 1

1

Figure 2 fn for mn = 1 and f for mn = (0, 3,∞, 1, 6,∞, . . .).

registers (Zi)i≥1 and index registers (Ij)j∈{1,...,kM} and, at any time, the content c(Zi) of
any Zi is an element of U and any Ij holds a natural number c(Ij). Each program PM of any
M is a finite list of labeled commands of the following forms: computation instructions
` : Zj := fmi

i (Zj1 , . . . , Zjmi
) and ` : Zj := c0i , copy instructions ` : ZIj

:= ZIk
, branching

instructions ` : if rki
i (Zj1 , . . . , Zjki

) then goto `1 else goto `2, index instructions ` : if
Ij = Ik then goto `1 else goto `2, ` : Ij := 1, and ` : Ij := Ij + 1, a stop instruction l : stop.

For explaining some details, let (~x . ~y) = (x1, . . . , xn, y1, . . . , ym) ∈ Un+m and (~x . z̄) =
(x1, . . . , xn, z1, z2, . . .) ∈ Uω for n,m ≥ 0 and ~x = (x1, . . . , xn) ∈ Un, ~y = (y1, . . . , ym) ∈
Um, and z̄ = (z1, z2, . . .) ∈ Uω. For any A-machine M, let {(` .~ι . z̄) | ` ∈ LM & ~ι ∈
NkM

+ & z̄ ∈ Uω} be the space of all possible configurations of M with the list LM =df
{1, . . . , `M} of labels. For computing partial functions of the form f :⊆ U∗ → U∗, we use
A-machineM – so-called BSS RAM’s over A – with at least one constant c1 and kM ≥ 2
and an input and an output procedure. Let the input procedure of M be determined
by InputM(x1, . . . , xn) = (1 .~ι . (x1, . . . , xn, xn, xn, . . .)) with ~ι = (n, 1, . . . , 1) ∈ NkM

+ and
InputM(()) = (1 .~ι . (c1, c1, . . .)) with ~ι = (1, 2, 1, . . . , 1) ∈ NkM

+ . Let the output procedure be
given by OutputM(` .~ι . z̄) = (z1, . . . , zι1) if (ι1, ι2) 6= (1, 2) and OutputM(` .~ι . z̄) = () for
(ι1, ι2) = (1, 2). This means, at the start of the computation, the register I1 contains the
length of the input, all other Ij start at 1. The input is in Z1, . . . , Zn, all other Zi contain
the constant c1 ∈ UA. If the program fails to halt on some input, the computed function is
undefined on these values.

For R0 = (R; 0, 1, q1, q2, . . . ;−,+,×;<,=) with {q1, q2, . . .} = Q, let MR0 be the class of
all BSS machines without irrational constants which can be considered to be a BSS RAM
over R0. For a universal register machine, as inputs we use the first part of the code for
encoding the program by means of Gödel numberings gn as given in [22] and the second part
for the constants. For any R0-machineM with the constants in ~c (M) = (cj1 , . . . , cjn1

), let
code(M) = (code(PM) .~a (M,1)) where code(PM) ∈ {1}gn(PM) and ~a (M,a) = (a1, . . . , a`M)
is defined as follows. For any ` ≤ `M, let a` be the ith component cji

in ~c (M) if the `th
instruction of PM is the instruction Zj := c0i for some j and otherwise let a` = a. We know
that there is a universal BSS RAMM0 ∈ MA over R0 satisfyingM0(code(M) . ~x) =M(~x)
for all ~x ∈ U∞A and any BSS RAM M over R0 (U∞A contains all tuples/strings in U∗A

C. Gaßner, A. Pauly, and F. Steinberg 22:21

without the empty string). Any simple 1-tape Turing machine M computing a function
f :⊆ {0, 1}∗ → {0, 1}∗ or f :⊆ N → N can be simulated by A0-machines MT(M) and
MT

N(M), respectively, for A0 = ({0, 1}; 0, 1; ; =) with suitable input and output procedures
(for details see [22]) and thus be encoded by the Gödel number code(M) = gn(PMT(M)).
By analogy, for computing a function f :⊆ R→ R by a type-2 machine M , we can take an
A0-machine with modified input and output for simulating M . A BSS+Comp machine
M is a generalization of a BSS machine that can additionally execute instructions of the
form

Zj := Comp(I1, Z1). (1)

If c(I1) is the code of some type-2 machine M and M computes, on input c(Z1), the name
of a real value, then, by (1), this value is assigned to Zj and, otherwise, (1) causes thatM
does not halt.

Now, we define oracle instructions similar to instructions in Moschovakis’ model using
the ν-oparator (cf. [29]) and use an operator ~ν in order to introduce the deterministic
measure operator λ and other operators (cf. [23]). A consequence is that we can get –
in the same way – a precise definition of oracle instructions that can be considered as a
generalization of instructions introduced in [13, p. 156] for characterizing counting complexity
classes for numeric computations by using classes such as]PR introduced in [28, p. 44]. For
f :⊆ R∞ → R∗, let the ~ν-operator here provide a total function ~ν[f] from R∗ into the power
set P(R∞) of R∞. For ~x ∈ R∗, let ~ν[f](~x) = {~y ∈ R∞ | f(~x . ~y) = 0}. We are interested in
measures of such sets for a universal function fBSS−uni : R∞ → R∗ with fBSS−uni(~z) =M(~y) if
if there are anM∈ MR0 , a k ≥ 1 and a ~y ∈ Rk with ~z = (code(M) . k . ~y) and fBSS−uni(~z) = 0
otherwise. Let λ(A) be the Lebesgue measure of a set A ⊆ Rk if A is in the considered
σ-algebra, and undefined otherwise. The measure operator λ[fBSS−uni] provides, for any
k, a partial function from R∗ into the interval [0,∞]. Let

` : Zj := λ[fBSS−uni](I1, Z1, . . . , ZI2 , I3). (2)

If there is anM∈ MR0 with Gödel number gn(PM) stored in I1 and the constants stored
in Z1, . . . , Zc(I2) that decides, for k = c(I3), A =df ~ν[fBSS−uni](code(M) . k) ∩ [0, 1]k on the
interval [0, 1]k and λ(A) is defined and finite (and, thus, in [0,∞[), then by (2) λ(A) is
assigned to the register Zj . Otherwise, an instruction of the form (2) causes that a machine
trying to execute the instruction and to compute the corresponding measure does not halt.

For determining the limits of sequences (yi)i∈N with elements in R, two further determin-
istic operators, the limit operator lim (resp. the u-limit operator u-lim for uncontrolled
limits) and the c-limit operator c-lim (for controlled limits), are available and they can be
used in executing instructions of the form

` : Zj := [c-] lim[f](I1, Z1, . . . , ZI2), (3)

These operators correspond to the strongly analytic and to the weakly analytic machines
going back to Hotz [14]. The differences between both instructions are partially comparable
to those of weakly analytic and strongly analytic machines over (R;R; +,−, · , /; =, <) that
compute the limits by producing sequences y0, y1, . . . weakly analytically and strongly
analytically, respectively; for details see the paper [18, p. 4] on relationships between the BSS
machines over real numbers (cf. [1]) and the analytic machines (cf. [14]).

For any permitted function f :⊆ R∞ → R∗, [c-] lim[f] is a function of the form g :⊆
R∗ → [−∞,+∞]. For f :⊆ R∞ → R∗ and ~x ∈ R∗, lim[f](~x) is defined if and only if there
are a convergent sequence y0, y1, . . . ∈ R and an M ∈ MR0 whose Gödel number gn(PM)

CSL 2021

22:22 Computing Measure as a Primitive Operation

is stored in I1 and whose constants are stored in Z1, . . . , Zc(I2) that computes yi on i for
all i ∈ N and then lim[f](~x) is the limit of this sequence; c-lim[f](~x) is equal to the limit
if, moreover, |yi − yj | < 2−min{i,j} is satisfied for all i, j ∈ N, and undefined otherwise.
Let fBSS−enu be the function f satisfying f(~z) = 0 if there is a BSS machineM satisfying
(∀i ∈ N)(∃yi ∈ R)(~z = (code(M) . yi) & M(i) = yi) and f(~z) = 1 otherwise. This implies
that {yi | i ∈ N} = ν[fBSS−enu](code(M)) for any BSS machineM. Then, the instructions
(3) with f = fBSS−enu allow to compute the corresponding finite limit if the limit of the
sequence enumerating byM exists and is in R and, otherwise, a machine trying to execute
such an instruction does not halt.

A BSS+λ[fBSS−uni] machine is a generalization of a BSS machine which can additionally
execute instructions of the form (2). A function g is BSS+λ-computable if g is computable
by a BSS+λ[fBSS−uni] machine. A function g is BSS+λ+λ-computable if g is computable
by a BSS+λ[fBSS+λ−uni] machine. In a similar way, we can define the computability by means
of other generalizations of BSS machines as follows. A BSS+[c-] lim[fBSS−enu] machine
is a generalization of a BSS machine which can additionally execute the corresponding
instructions of the form (3). A function g is a BSS+[c-] lim-computable if g is computable
by a BSS+[c-] lim[fBSS−enu] machine. A function g is BSS+lim+c-lim-computable if g is
computable by a BSS+c-lim[f(BSS+lim)−enu] machine.

	Introduction
	Background from computable analysis
	Products and exponentials of represented spaces
	Weihrauch reducibility and Weihrauch degrees
	Spaces of sets and choice principles

	Algebraic models of computation and the diamond operator
	Enhancing BSS-machines and statement of our results
	Measure, controlled limits and the Weihrauch degree of sorting
	Iterating measure and computable functions as supplement

	Measurability, Integrability and Weihrauch degrees
	Integrable functions, L_1({[0, 1]}) and continuous functions
	The Lebesgue measure on the Delta_2^0-subsets of the unit interval
	Piece-wise continuous functions and Delta_2^0-measurable functions

	Proof of Lemma 28
	Proof of Lemma 25
	The BSS RAM model – some details

