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Abstract
It is well known that the classic Łoś-Tarski preservation theorem fails in the finite: there are
first-order definable classes of finite structures closed under extensions which are not definable (in the
finite) in the existential fragment of first-order logic. We strengthen this by constructing for every n,
first-order definable classes of finite structures closed under extensions which are not definable with
n quantifier alternations. The classes we construct are definable in the extension of Datalog with
negation and indeed in the existential fragment of transitive-closure logic. This answers negatively
an open question posed by Rosen and Weinstein.
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1 Introduction

The failure of classical preservation theorems of model theory has been a topic of persistent
interest in finite model theory. In the classical setting, preservation theorems provide a
tight link between the syntax and semantics of first-order logic (FO). For instance, the
Łoś-Tarski preservation theorem (see [8]) implies that any sentence of first-order logic whose
models are closed under extensions is equivalent to an existential sentence. This, like many
other classical preservation theorems, is false when we retrict ourselves to finite structures.
Tait [17] and Gurevich [7] provide examples of sentences whose finite models are closed under
extensions, but which are not equivalent, over finite structures, to any existential sentence.
Many other classical preservation theorems have been studied in the context of finite model
theory (e.g. [12, 14]), but our focus in this paper is on extension-closed properties.

The failure of the Łoś-Tarski theorem in the finite opens a number of different avenues of
research. One line of work has sought to investigate restricted classes of structures on which
a version of the preservation theorem holds (see [2, 4]). Another direction is prompted by
the question of whether we can identify some proper syntactic fragment of FO, beyond the
existential, which contains definitions of all extension-closed FO-definable properties. For
instance, the examples from Tait and Gurevich are both Σ3 sentences. Could it be that every
FO sentence whose finite models are closed under extensions is equivalent to a Σ3 sentence?
Or, indeed, a Σn sentence for some constant n? We answer these questions negatively in this
paper. That is, we show that we can construct, for each n, a sentence ϕ whose finite models
are extension closed but which is not equivalent in the finite to a Σn sentence.
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18:2 Extension Preservation and Prefix Classes of FO

A related question is posed by Rosen and Weinstein [13]. They observe that the con-
structions due to Tait and Gurevich both yield classes of finite structures that are definable
in Datalog(¬), the existential fragment of fixed-point logic in which only extension-closed
properties can be expressed. They ask if it might be the case that FO ∩ Datalog(¬) is
contained in some level of the first-order quantifier alternation hierarchy, be it not the lowest
level. That is, could it be that every property that is first-order definable and also definable
in Datalog(¬) is definable by a Σn sentence for some constant n? Our construction answers
this question negatively as we show that the sentences we construct are all equivalent to
formulas of Datalog(¬).

Our result also greatly strengthens a previous result by Sankaran [15] which showed that
for each k there is an extension-closed property of finite structures definable in FO but not
in Π2 with k leading universal quantifiers. Indeed, our result answers (negatively) Problem 2
in [15].

In Section 2 we give the necessary background definitions. We construct the sentences in
Section 3 and show that they can all be expressed in Datalog(¬). Section 4 contains the
proof that the sequence of sentences contains, for each n, a sentence that is not equivalent to
any Σn sentence. We conclude with some suggestions for further investigation.

2 Preliminaries

We work with logics: first-order logic (FO) and extensions of Datalog over finite relational
vocabularies. We assume the reader is familiar with the basic definitions of first-order logic
(see, for instance [10]). A vocabulary τ is a set of predicate and constant symbols. In the
vocabularies we use, all predicate symbols are either unary or binary. We denote by FO(τ)
the set of all FO formulas over the vocabulary τ . A sequence (x1, . . . , xk) of variables is
denoted by x̄. We use ψ(x̄) to denote a formula ψ whose free variables are among x̄. A
formula without free variables is called a sentence. A formula which begins with a string
of quantifiers that is followed by a quantifier-free formula, is said to be in prenex normal
form (PNF). The string of quantifiers in a PNF formula is called the quantifier prefix of
the formula. It is well known that every formula is equivalent to a formula in PNF. We
denote by Σn, the collection of all formulas in PNF whose quantifier prefix contains at most
n blocks of quantifiers beginning with a block of existential quantifiers. Equivalently, a PNF
formula is in Σn if it starts with a block of existential quantifiers and contains at most n− 1
alternations in its quantifier prefix. Similarly, a formula is Πn if it begins with a block of
universal quantifiers and contains at most n− 1 alternations in its quantifier prefix. We write
Σn,k for the subclass of Σn consisting of those formulas in which every quantifier block has
at most k quantifiers. Similarly, Πn,k is the subclass of Πn where each block has at most k
quantifiers. Thus Σn =

⋃
k≥1 Σn,k and Πn =

⋃
k≥1 Πn,k.

We use standard notions concerning τ -structures as defined in [3]. We denote τ -structures
as A,B etc., and refer to them simply as structures when τ is clear from the context. We
denote by A ⊆ B that A is a substructure of B, and by A ∼= B that A is isomorphic to B.

We now introduce some notation with respect to the classes of formulas Σn,k and Πn,k.

I Definition 1. We say A Vn,k B if every Σn,k sentence true in A is also true in B.
We say A and B are ≡n,k-equivalent, and write A ≡n,k B, if A Vn,k B and B Vn,k A.

By extension, for tuples ā and b̄ of elements of A and B respectively, we also write (A, ā) Vn,k

(B, b̄) to indicate that every formula ϕ which is satisfied in A when its free variables are
instantiated with ā is also satisfied in B when they are instantiated by b̄, and similarly for
≡n,k. Note that A Vn,k B holds if every Πn,k sentence true in B is also true in A. The
following useful fact is now immediate from the definition.
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I Lemma 2. A Vn+1,k B if, and only if, for every k-tuple ā of elements of A, there is a
k-tuple b̄ of elements of B such that (B, b̄) Vn,k (A, ā).

We assume the reader is familiar with the standard Ehrenfeucht-Fraïssé game charac-
terizing the equivalence of two structures with respect to sentences of a given quantifier
nesting depth (see for example [10, Chapter 3]). In this paper, we use a “prefix” variant of
this Ehrenfeucht-Fraïssé game. For n, k ≥ 1, the (n, k)-prefix Ehrenfeucht-Fraïssé game on a
pair (A,B) of structures, is the usual Ehrenfeucht-Fraïssé game on A and B but with two
restrictions: (i) In every odd round, the Spoiler plays on A and in every even round, on B,
and (ii) in each round the Spoiler chooses a k-tuple of elements from the relevant structure (as
opposed to a single element in the usual Ehrenfeucht-Fraïssé game). The winning condition
for the Duplicator is the same as that in the usual Ehrenfeucht-Fraïssé game: Duplicator
wins at the end of n rounds, if when ā1, . . . , ān are the k-tuples picked in A and b̄1, . . . , b̄n are
the k-tuples picked in B, then the map taking the nk-tuple (ā1 · · · ān) to (b̄1 · · · b̄n) pointwise
is a partial isomorphism from A to B. Entirely analogously to the usual Ehrenfeucht-Fraïssé
game theorem (see [10, Theorem 3.18]), we have the following.

I Theorem 3. Duplicator has a winning strategy in the (n, k)-prefix Ehrenfeucht-Fraïssé
game on a pair (A,B) of structures if, and only if, A Vn,k B

Note in particular that, given the fact that any two linear orders of length ≥ 2n are equivalent
with respect to all sentences of quantifier nesting depth n [10, Theorem 3.6], it follows
that there is a winning strategy for the Duplicator in the (n, k)-prefix Ehrenfeucht-Fraïssé
game on any pair of linear orders, each of length ≥ 2n·k and any two such linear orders are
≡n,k-equivalent.

Where it causes no confusion, we still use ≡m to denote the usual equivalence up to
quantifier rank m. Note that A ≡m B implies A ≡n,k B whenever m ≥ nk.

Formulas in Σ1 are said to be existential. A Σ1 formula that also contains no occurrences
of the negation symbol is said to be existential positive. It is easy to see that the class of
models of any Σ1 sentence ϕ is closed under extensions: if A |= ϕ and A ⊆ B, then B |= ϕ.
Dually, the class of models of any Π1 sentence is closed under taking substructures. Similarly,
the class of models of any existential positive sentence is closed under homomorphisms.

Datalog is a database query language which can be seen as an extension of existential
positive first-order logic with a recursion mechanism. Equivalently, it can be seen as the
existential positive fragment of the logic of least fixed points LFP (see [10, Chapter 10]). We
briefly review the definitions of this language, along with its extension Datalog(¬).

A Datalog program is a finite set of rules of the form T0 ← T1, . . . , Tm, where each Ti is an
atomic formula. T0 is called the head of the rule, while the right-hand side is called the body.
These atomic formulas use relational symbols from a vocabulary σ ∪ τ , where the symbols in
σ are called extensional predicates and those in τ are intensional predicates. Every symbol
that occurs in the head of a rule is an intensional predicate, while both intensional and
extensional predicates can occur in the body of a rule. The semantics of such a program
is defined with respect to a σ-structure A. Say that a rule T0 ← T1, . . . , Tm is satisfied
in a σ ∪ τ expansion A′ of A if A′ |= ∀x̄

(
(
∧

1≤i≤m Ti) → T0
)
, where x̄ enumerates all the

variables occurring in the rule. The interpretation of a Datalog program in A is the smallest
expansion of A (when ordered by pointwise inclusion of the relations interpreting τ) satisfying
all the rules in the program. This is uniquely defined as it is obtained as the simultaneous
least fixed-point of the existential closure of the right-hand side of the rules. We distinguish
one intensional predicate G and call it the goal predicate. Then, the query computed by a
program π is the interpretation of G in the interpretation of π in A. In particular, if G is a
0-ary predicate symbol (i.e. a Boolean variable), π defines a Boolean query, i.e. a class of
structures.

CSL 2021



18:4 Extension Preservation and Prefix Classes of FO

Since the interpretation of π is obtained as the least fixed-point of an existential positive
formula, it is easily seen that the query defined is closed under homomorphisms and hence
also under extensions. We can understand Datalog as the existential positive fragment of
the least-fixed point logic LFP, though it is known that there are homomorphism-closed
properties definable in LFP that are not expressible in Datalog (see [5]).

We get more general queries by allowing limited forms of negation. Specifically, in
Datalog(¬), in a rule T0 ← T1, . . . , Tm, each Ti on the right-hand side is either an atom or
a negated atom involving an extensional predicate symbol or equality. In short, we allow
negation on the predicate symbols in σ and on equalities but the fixed-point variables (i.e.
the predicate symbols in τ) still only appear positively, so the least fixed-point is still well
defined. As it is still the least-fixed point of existential formulas, the formula still defines
a property closed under extensions. For more on the extensions of Datalog with negation,
see [1, 9].

3 The Extension-Closed Properties

We now construct a family of properties, each of which is definable in first-order logic
and closed under extensions. Indeed, we show that each of the properties is definable in
Datalog(¬).

3.1 First-Order Definitions

To begin, we define, for each n ∈ N, a vocabulary σn. These are defined by induction on
n. The vocabulary σ1 consists of three binary relation symbols ≤, S,R. For all n > 1,
σn = σn−1 ∪ {Sn, Rn, Pn} where Sn and Rn are binary relation symbols and Pn is a unary
relation symbol.

Consider first the sentence NLO of FO which asserts that ≤ is not a linear order. This is
easily seen to be an existential sentence and so also definable in Datalog(¬). Suppose now
that ϕ is any sentence whose models, restricted to ordered structures (i.e. those structures
which interpret ≤ as a linear order), are extension closed. Then, it follows that NLO ∨ ϕ
defines an extension-closed class of structures. Moreover, this class is FO or Datalog(¬)
definable if ϕ is in the respective logic. Also, if ϕ is a Σn sentence, then so is NLO ∨ ϕ, and
if n > 1 and ϕ is a Πn sentence then so is NLO ∨ ϕ. Thus, in what follows, we restrict our
attention to the class of ordered structures. We construct our sentences on the assumption
that structures are ordered, and show that they define extension-closed classes on ordered
structures.

With this in mind, we use some convenient notational abbreviations. We write x < y as
short-hand for x ≤ y ∧ x 6= y. We also write “y is the successor of x”, “x is the minimum
element”, etc. with their obvious meanings. Also, let ϕ be any formula of FO, and x and y
be variables not occuring in ϕ. We write ϕ[x,y] for the formula x ≤ y ∧ ϕ? where ϕ? is the
formula obtained by relativizing every quantifier in ϕ to the interval [x, y]. That is to say,
inductively, every subformula ∃zθ is replaced by ∃z(x ≤ z ∧ z ≤ y)∧ θ? and every subformula
∀zθ by ∀z(x ≤ z ∧ z ≤ y)→ θ?. Where the variables x and y do appear in ϕ, the formula
ϕ[x,y] is defined by first renaming variables in ϕ to avoid clashes and then applying the
relativization.

Next, consider the sentence PartialSucc defined as follows.

PartialSucc := ∀x∀y S(x, y)→ “y is the successor of x”.
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This is a Π1 sentence, asserting that the relation S is a “partial successor” relation. Its
negation is an existential sentence and hence closed under extensions. Thus, if ϕ defines an
extension-closed class of structures when restricted to ordered structures in which S is a
partial successor relation, then NLO ∨ ¬PartialSucc ∨ ϕ defines an extension-closed class.

We write Total(x, y) for the formula that asserts, on structures in which PartialSucc is
true, that in the interval [x, y], S is, in fact, total. That is:

Total(x, y) := x < y ∧ ∀z
(
x ≤ z ∧ z < y

)
→ ∃w

(
z < w ∧ w ≤ y ∧ S(z, w)

)
.

Now, we can define the sentence SomeTotalR1.

SomeTotalR1 := ¬PartialSucc ∨ ∃x∃y
(
R(x, y) ∧ Total(x, y)

)
.

Note that Total(x, y) is a Π2 formula, and SomeTotalR1 is a Σ3 sentence. The latter is
the first in our family of sentences. To see why this sentence is closed under extensions on
ordered structures, suppose A is an ordered model of SomeTotalR1 on which S is a partial
successor. Thus, there is an interval [x, y] in A on which S is total. Let B be an extension of
A. If B contains no additional elements in the interval [x, y], then Total(x, y) still holds in
B and therefore B is a model of SomeTotalR1. On the other hand, suppose B contains an
additional element w in the interval [x, y]. Let a and b be the two successive elements of A
between which w appears. Since S is total in the interval [x, y] in A, we know that S(a, b)
holds in A and, by extension, in B. Since b is not the successor of a in B, we conclude that
¬PartialSucc is true in B and therefore the structure is a model of SomeTotalR1.

The sentence SomeTotalR1 is essentially the example constructed by Tait that exhibits
an existential-closed first-order property that is not expressible by an existential sentence.
We now define σn-sentences SomeTotalRn, for n > 0 by induction.

First, we define a formula Succn(x, y) as follows.

Succn(x, y) := Pn(x) ∧ Pn(y) ∧ Sn(x, y) ∧ SomeTotalR[x,y]
n−1 .

We further define the formula PartialSuccn which asserts that Succn is a partial successor
relation when restricted to the elements in the relation Pn. That is,

PartialSuccn := ∀x∀y Succn(x, y)→ ∀z(Pn(z)→ z ≤ x ∨ y ≤ z).

We can now define the formula Totaln(x, y) which defines, in those structures in which
PartialSuccn is true, those intervals [x, y] where the successor defined by Succn is total. That
is,

Totaln(x, y) := x < y ∧ ∀z
(
Pn(z)∧ x ≤ z ∧ z < y

)
→ ∃w

(
z < w ∧w ≤ y ∧ Succn(z, w)

)
.

Finally, we define the sentence

SomeTotalRn := ¬PartialSuccn ∨ ∃x∃y
(
Rn(x, y) ∧ Totaln(x, y)

)
.

Note that, SomeTotalRn is a Σ2n+1 sentence. This can be established by induction on
n. Indeed, as we noted, SomeTotalR1 is a Σ3 sentence. Assuming SomeTotalRn is a Σ2n+1
sentence for some n, we note that Succn+1 is a Σ2n+1 formula, and so is ¬PartialSuccn+1.
Then Totaln+1 is a Π2n+2 formula and SomeTotalRn+1 is Σ2n+3.

CSL 2021



18:6 Extension Preservation and Prefix Classes of FO

3.2 Datalog Definitions
Next, we show that these formulas also admit a definition in Datalog(¬), which establishes,
in particular, that they define extension-closed classes. We use the same names for formulas
in Datalog(¬) as we used for FO formulas above, when they define the same property. As we
noted, the sentences NLO and ¬PartialSucc are both Σ1 sentences and we therefore assume
they are available as Datalog(¬) predicates. We now define Total by the following rules.

Total(x, y) ←− S(x, y)
Total(x, y) ←− S(x, z),Total(z, y)

This just defines Total as the transitive closure of S. It is clear that, in ordered structures
where S is a partial successor relation, the pair (x, y) is in the transtive closure of S precisely
when x < y and S is total in the interval [x, y). Thus, we can now define:

RTotal1(x, y) ←− x ≤ u, v ≤ y,R(u, v),Total(u, v)

This defines those pairs (x, y) such that for some u, v in the interval [x, y], R(u, v) holds and
the successor relation is total. In other words, it defines SomeTotalR[x,y]

1 . We can obtain
SomeTotalR1 as the existential closure of this. For the inductive definition, the predicate
RTotaln is useful.

Inductively, we define the relation, Succn as follows.

Succn(x, y) ←− Pn(x), Pn(y), Sn(x, y),RTotaln−1(x, y)

The negation of PartialSuccn is now defined by the following

NotPartialSuccn ←− Succn(x, y), Pn(z), x ≤ z, z ≤ y, x 6= z, y 6= z

Now, entirely analogously to Total above, we can give a definition of Totaln as the
transitive closure of Succn and this is equivalent to the FO definition given above on ordered
structures on which PartialSuccn is true.

Totaln(x, y) ←− Succn(x, y)
Totaln(x, y) ←− Succn(x, z),Totaln(z, y)

Inductively we define the relation RTotaln, and its existential closure, giving the sentence
SomeTotalRn.

RTotaln(x, y) ←− x ≤ u, v ≤ y,Rn(u, v),Totaln(u, v)

It should be noted that the only use of the recursive features of Datalog(¬) that we
made use in writing the formulas above was to define the transitive closure of the relations
Total and Totaln. Thus, the definitions could equally well be formalized in the existential
fragment of transitive closure logic.

4 Proof of the Main Result

In this section, we establish our main result. We establish that SomeTotalRn, which we
noted is a Σ2n+1 sentence, is not equivalent to a Π2n+1 sentence. To do this, we construct
ordered structures Mn,k and Nn,k for every k such that Mn,k is a model of SomeTotalRn,
Nn,k is not a model of SomeTotalRn but Nn,k V2n+1,k Mn,k. The main lemma establishing
this is Lemma 5 below. Here we state the theorem that is a consequence.
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I Theorem 4. For every n, there is a Σ2n+1 sentence whose finite models are closed under
extensions and which is equivalent to a Datalog(¬) program, but which is not equivalent over
finite structures to any Π2n+1 sentence.

Proof. The sentence is NLO∨SomeTotalRn which we have already noted is a Σ2n+1 sentence,
expressible as a Datalog(¬) program and its models are extension-closed. Suppose it were
expressible as a Π2n+1 sentence. Then, since it is satisfied in Mn,k as we show in Section 4.1
and since Nn,k V2n+1,k Mn,k by Lemma 5 we have that the sentence is true in Nn,k. But,
as we show in Section 4.1, Nn,k is not a model of SomeTotalRn, yielding a contradiction. J

4.1 Construction of the Structures
We describe the construction of structures Mn,k and Nn,k for each n and k. The construction
is by induction on n, simultaneously for all k. In the course of the construction we also
define, for all n and k structures Totn,k and Gapn,k which we use as auxilliary structures.
For all n and k, Mn,k,Nn,k,Totn,k and Gapn,k are structures over the vocabulary σn.

All structures we consider interpret the relation symbol ≤ as a linear order of the universe
and S as a partial successor relation. It is useful to formally define the notion of an ordered
sum of structures. For a pair A and B of ordered structures the ordered sum A ⊕ B is
a structure whose universe is the disjoint union of the universes of A and B except that
the maximum element of A is identified with the minimum element of B. The relation ≤
is interpreted in A ⊕B by taking the union of its interpretations in A and B and letting
a ≤ b for all a in A and b in B. All other relation symbols are interpreted in A⊕B by the
union of their interpretations in the two structures. The operation of ordered sum is clearly
associative and we can thus write

⊕
i∈I Ai for the ordered sum of a sequence of structures

indexed by an ordered set I. Note that our use of the term “ordered sum” differs somewhat
from its use, say by Ebbinghaus and Flum [6, Sec. 1.A.3]. The key difference is that in their
definition we do not identify the maximum element of A with the minimum element of B
but rather simply take the disjoint union of the two universes.

The structure Tot1,k has m = 6(k + 2)2 elements which we identify with the initial
segment of the positive integers [1, . . . ,m] with ≤ the natural linear order on these, S the
successor relation and the relation R containing just the pair (1,m). The structure Gap1,k

is obtained from Tot1,k by removing from the relation S the central pair of elements, i.e.
(m/2,m/2 + 1).

We now obtain N1,k as the ordered sum of 4(k + 3)3 + 2k + 1 copies of Gap1,k. That
is N1,k =

⊕
i∈[4(k+3)3+2k+1] Gi where each Gi is isomorphic to Gap1,k. We also let M1,k =⊕

i∈[2(k+3)3+k] Gi ⊕ Tot1,k ⊕
⊕

i∈[2(k+3)3+k] Gi. In short, M1,k is obtained from N1,k by
replacing the central copy of Gap1,k with a copy of Tot1,k.

Let now n ≥ 2 and suppose we have defined the σn−1-structures Nn−1,k,Mn−1,k,Totn−1,k

and Gapn−1,k. Write N+
n−1,k and M+

n−1,k for the σn-structures that are obtained from Nn−1,k

and Mn−1,k respectively by interpreting Pn as the two element set {min,max} containing
the minimum and maximum elements of the structure and Sn as the relation containing the
single pair (min,max) (Rn is empty in both these structures). Now, Totn,k is the structure
obtained from

⊕
i∈[4(k+3)2n+2k+1] M

+
n−1,k (i.e. the ordered sum of 4(k + 3)2n + 2k + 1 copies

of M+
n−1,k) by adding to the relation Rn the pair relating the minimum and maximum

elements of the linear order. Similarly Gapn,k is obtained from
⊕

i∈[2(k+3)2n+k] M
+
n−1,k ⊕

N+
n−1,k⊕

⊕
i∈[2(k+3)2n+k] M

+
n−1,k by adding to the relation Rn the pair relating the minimum

and maximum elements of the linear order. Equivalently, Gapn,k is obtained from Totn,k by
replacing the central copy of Mn−1,k by a copy of Nn−1,k.

CSL 2021



18:8 Extension Preservation and Prefix Classes of FO

Finally, we can define Nn,k as the ordered sum of 4(k + 3)2n+1 + 2k + 1 copies of Gapn,k

and Mn,k as the structure obtained from Nn,k by replacing the central copy of Gapn,k by a
copy of Totn,k. This completes the definition of the structures.

We now argue that for all values of n and k, Mn,k is a model of SomeTotalRn and Nn,k is
not. This is an easy induction on n. For n = 1, every interval [x, y] of N1,k for which R(x, y)
holds induces a copy of Gap1,k. By construction S is not a complete successor relation in
Gap1,k, and so N1,k does not satisfiy SomeTotalR1. On the other hand, M1,k contains an
interval [x, y] with R(x, y) that induces a copy of Tot1,k and so M1,k |= SomeTotalR1.

Inductively, assume that Mn−1,k |= SomeTotalRn−1 and Nn−1,k 6|= SomeTotalRn−1.
Now, in both Totn,k and Gapn,k, the relation Sn relates successive elements that are in Pn.
If x, y is a pair of such successive elements then in Totn,k the interval [x, y] always induces
a structure whose σn−1-reduct is a copy of Mn−1,k and therefore satisfies SomeTotalRn−1.
Hence Succn(x, y) is satisfied in Totn,k for all such pairs. On the other hand, in Gapn,k there
is an interval [x, y] with Sn(x, y) which induces a structure whose σn−1-reduct is a copy of
Nn−1,k and therefore fails to satisfy SomeTotalRn−1. Hence Totaln(x0, y0) is true in Totn,k

and false in Gapn,k when x0 and y0 are interpreted as the minimum and maximum elements
in the structure respectively. Since in Nn,k all intervals [x, y] for which Rn(x, y) holds induce
a copy of Gapn,k and in Mn,k there is such an interval which induces a copy of Totn,k, we
conclude that Mn,k |= SomeTotalRn and Nn,k 6|= SomeTotalRn.

4.2 The Game Argument
Our aim in this section is to establish the following lemma using an Ehrenfeucht-Fraïssé
game argument:

I Lemma 5. For each n, k, Nn,k V2n+1,k Mn,k.

Our development of the Duplicator winning strategy in the game follows the inductive
construction of the structures themselves. For this, we first develop some tools for constructing
strategies on ordered sums and expansions of structures from strategies on their component
parts. First, we introduce some useful notation.

For any ordered structure A, write A∗ for the expansion of A with constants min and
max interpreted by the minimum and maximum elements of the structure. The main reason
for introducing these is that we generally want to restrict attention to Duplicator strategies
that respect the minimum and maximum elements and a notationally convenient way to do
this is to have constants for these elements.

It is a standard fact that the equivalence relation ≡m is a congruence with respect to
various ways of combining structures. In particular, it is so with respect to the notion
of ordered sum defined by Ebbinghaus and Flum [6, Prop. 2.3.10]. The same method of
composition of strategies can be used to show the following.

I Lemma 6. If A1,A2,B1,B2 are ordered structures and ā1, ā2, b̄1, b̄2 tuples of elements
from A1,A2,B1 and B2 respectively, such that (A1, ā1)∗ Vn,k (B1, b̄1)∗ and (A2, ā2)∗ Vn,k

(B2, b̄2)∗, then

(A1 ⊕ A2, ā1ā2)∗ Vn,k (B1 ⊕B2, b̄1b̄2)∗.

Note that it is an immediate consequence that the same is true with ≡n,k in place of Vn,k.
Furthermore, this also extends to ordered sums of sequences. Moreover, we do not have to

match the lengths of the sequences as long as they are long enough. Again, this is standard
for the equivalence relation ≡m [6, Ex. 2.3.13], for sequences of length at least 2m and a
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slightly different notion of ordered sum. For our relations we obtain a tighter bound, so we
prove this explicitly as the proof is instructive.

Define the following function ρ on pairs of natural numbers by recursion.

ρ(1, k) = 2k + 2
ρ(n+ 1, k) = (k + 2)(ρ(n, k) + 1).

A simple induction on n shows that 2(k + 3)n > ρ(n, k) for all k, n ≥ 1.

I Lemma 7. If A and B are ordered structures, A∗ Vn,k B∗ and s, t ≥ ρ(n, k), then(⊕
1≤i≤s Ai

)∗
Vn,k

(⊕
1≤j≤t Bi

)∗, where Ai ≡n,k A and Bi ≡n,k B for all i.

Proof. The proof is by induction on n. Suppose n = 1 and Spoiler plays a move choosing k
elements from

⊕
1≤i≤s Ai. Suppose these are chosen from Ai1 , . . . ,Ail

with 1 ≤ i1 < · · · <
il ≤ s for some l ≤ k. Further, let i0 = 0 and il+1 = t. Since l+2 ≤ k+2 < 2k+2 = ρ(1, k) ≤ s,
there is some p such that ip+1 > ip+1. Duplicator must choose structures (Bjq

)1≤q≤l in which
to respond. Moreover, since Ai and Ai+1 share an element for all i, whenever iq+1 = iq + 1,
we must choose jq+1 = jq + 1.

Duplicator chooses values 0 = j0 < j1 < · · · < jl ≤ jl+1 = t as follows. For all values of q
from 0 to p − 1, choose jq+1 = jq + 1 if iq+1 = iq + 1 and choose jq+1 = jq + 2 otherwise.
For all values of q from l down to p + 1, choose jq = jq+1 − 1 if iq = iq+1 − 1 and choose
jq = jq+1 − 2 otherwise. Because t ≥ 2k + 2, this guarantees that jp+1 > jp + 1. Thus,
Duplicator can respond to the elements picked in Aip

with elements in Bjp
by composing the

winning strategies for Aip ≡1,k A V1,k B ≡1,k Bjp and this is a winning response. Moreover,
by construction, this strategy maps the minimum and maximum elements of

⊕
1≤i≤s Ai to

the corresponding elements of
⊕

1≤i≤t Bj .
Now suppose n ≥ 2 and the statement has been proved for n− 1. Let Spoiler play a move

choosing k elements from
⊕

1≤i≤s Ai, and again say these are chosen from Ai1 , . . . ,Ail
with

1 ≤ i1 < · · · < il ≤ s for some l ≤ k. Further, define i0 = 0 and il+1 = s. Since l + 2 ≤ k + 2
and t ≥ ρ(n, k) = (k+2)(ρ(n−1, k)+1), Duplicator can choose indices 0 = j0 < j1 · · · < jl <

jl+1 = t so that for all p either jp+1−jp = ip+1− ip or (jp+1−jp), (ip+1− ip) ≥ ρ(n−1, k)+1.
Now choose, for each p with 1 ≤ p ≤ l a response b̄p for Duplicator in Bjp

to the elements
āp chosen by Spoiler in Aip . We claim that( ⊕

1≤j≤t

Bj , (b̄p)1≤p≤l

)∗
Vn−1,k

( ⊕
1≤i≤s

Ai, (āp)1≤p≤l

)∗
.

To prove this, it suffices to show for each p with 0 ≤ p ≤ l that

B Claim 8.( ⊕
jp<j≤jp+1

(Bj , b̄p)
)∗

Vn−1,k

( ⊕
ip<i≤ip+1

(Ai, āp)
)∗
,

for then the claim follows by l applications of Lemma 6. Note that we have,
1. for all i, j that Bj Vn−1,k Ai by the assumption that A Vn,k B; and
2. for all p we have (Bjp , b̄p) Vn−1,k (Aip , āp) by the choice of b̄p as Duplicator’s winning

response to Spoiler’s choice of āp.
Now, for each value of p there are two possibilities:
case (i): jp+1 − jp = ip+1 − ip. In this case, the two sides of Claim 8 are the ordered sums

of sequences of equal length. The corresponding pieces are all related by Vn−1,k, either
by 1. above for all except the last piece or by 2. for the last piece. Thus, Claim 8 is
established by application of Lemma 6;
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case (ii): (jp+1−jp), (ip+1−ip) ≥ ρ(n−1, k)+1. In this case, the structures on the two sides of
Claim 8 can be expressed as

(⊕
jp<j≤jp+1−1 Bj

)
⊕(Bjp+1 , b̄p+1) and

(⊕
ip<i≤ip+1−1 Ai

)
⊕

(Aip+1 , āp+1), respectively. Since (jp+1 − jp − 1), (ip+1 − ip − 1) ≥ ρ(n− 1, k), we have by
the induction hypothesis and 1. that

(⊕
jp<j≤jp+1−1 Bj

)∗
Vn−1,k

(⊕
ip<i≤ip+1−1 Ai

)∗.
This, together with 2. and Lemma 6 establishes Claim 8, and hence the inductive step of
the proof.

J

Besides ordered sums, another key step in the inductive constructions of our structures is
adding unary relations which include the minimum and maximum elements of a structure and
adding binary relations which relate the minimum and maximum elements. These operations
also behave well with respect to games. To be precise, suppose U is a unary relation symbol
and T a binary relation symbol. Let A be an ordered structure with minimum and maximum
elements min and max respectively. Write AU for the structure obtained from A by including
min and max in the interpretation of U . Similarly, write AT for the structure obtained from
A by adding the pair (min,max) to the interpretation of T . Note that we do not assume
that U or T are in the vocabulary of A. If they are not, then their interpretations in AU and
AT respectively contain nothing other than the elements added.

I Lemma 9. Let n, k ≥ q. If A and B are ordered structures for which A∗ Vn,k B∗ then
AU Vn,k BU and AT Vn,k BT .

Proof. This is immediate from the fact that a Duplicator winning strategy between A∗ and
B∗ must map the minimum elements of the two structures to each other, and similarly for
the maximum. J

We are now ready to start inductively constructing the Duplicator winning strategy that
establishes Lemma 5. We begin with games on some simple structures. For any m ≥ 1 write
Lm for the structure with exactly m elements and two binary relations ≤ and S where ≤ is
a linear order and S the corresponding successor relation.

I Lemma 10. If m1,m2 > ρ(n, k) then L∗m1
Vn,k L

∗
m2

.

Proof. Note that Lm is the ordered sum of a sequence of m− 1 copies of L2, so the result
follows immediately from Lemma 7. J

Without loss of generality, assume that the universe of Lm is {1, . . . ,m} and write Gm for
the structure obtained from Lm+1 by deleting the element dm

2 e. Note that Gm is isomorphic
to the structure obtained from Lm by removing from the relation S the pair (dm

2 e − 1, dm
2 e).

I Lemma 11. If m1,m2 ≥ 2k + 2 then G∗m1
V1,k L

∗
m2

.

Proof. Since G∗m1
is a substructure of L∗m1+1, every existential sentence true in the former is

also satisfied in the latter. Now, since L∗m1+1 V1,k L
∗
m2

by Lemma 10, the result follows. J

The next two lemmas give us the base case of the inductive proof of Lemma 5.

I Lemma 12. Tot1,k V2,k Gap1,k

Proof. Recall that the {≤, S}-reduct of Tot1,k is the structure Lm for m = 6(k + 2)2. Note
that m > 2ρ(2, k) + (k+ 2)(2k+ 4). We think of this as composed of three segments: the first
ρ(2, k) elements; the last ρ(2, k) elements and a middle segment containing the remainder.
Suppose now that Spoiler chooses k elements a1 < · · · < ak from Tot1,k in the first round of
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the game. Since the middle segment contains more than (k + 2)(2k + 4) elements, it must
contain an interval [x, y] of 2k + 2 consecutive elements which are not chosen. Let us say
that ai < x and y < ai+1. Thus, we can write the {≤, S}-reduct of Tot1,k with the chosen
elements as

(Lm1 , a1, . . . , ai)⊕ Lm2 ⊕ (Lm3 , ai+1, . . . , ak),

where m1,m3 ≥ ρ(2, k) and m2 ≥ 2k + 2.
Consider now Gap1,k. The {≤, S}-reduct of this structure is Gm, which can also

be written as Lm
2 −k−1 ⊕ G2k+2 ⊕ Lm

2 −k−1. Since m
2 − k − 1 > ρ(2, k), we have by

Lemma 10 that L∗m1
V2,k L

∗
m
2 −k−1 and hence there is a choice of elements b1, . . . , bi such

that (Lm
2 −k−1, b1, . . . , bi)∗ V1,k (Lm1 , a1, . . . , ai)∗. Similarly, there is a choice of elements

bi+1, . . . , bk such that (Lm
2 −k−1, bi+1, . . . , bk)∗ V1,k (Lm3 , ai+1, . . . , ak)∗. Further, we know

that G∗2k+2 V1,k L∗m3
by Lemma 11. Hence, by Lemma 6 we have that L∗m V2,k G∗m.

The result now follows by Lemma 9 as Tot1,k and Gap1,k are obtained from Lm and Gm

respectively by relating the minimum and maximum elements with the relation R. J

A similar pattern of argument is repeated in the second base case, and we will be less
detailed in spelling it out.

I Lemma 13. N∗1,k V3,k M∗1,k.

Proof. Recall that N1,k is the ordered sum of m = 4(k + 3)3 + 2k + 1 copies of Gap1,k. So
N1,k =

⊕
i∈[m] Gi. Note that m > 2ρ(3, k) + k + 1. Suppose now that Spoiler chooses k

elements a1 < · · · < ak in the first round of the game. Thus, there is an index i in the middle
segment of [m] of length k+1 such that Gi does not contain a chosen element and we can write
N1,k with the chosen elements as (

⊕
i∈[m1] Gi, a1, . . . , aj)⊕Gap1,k⊕(

⊕
i∈[m2] Gi, aj+1, . . . , ak),

where m1,m2 > ρ(3, k).
On the other side, M1,k =

⊕
i∈[(m−1)/2] Gi ⊕ Tot1,k ⊕

⊕
i∈[(m−1)/2] Gi. Since

(m − 1)/2 > ρ(3, k), by Lemma 7 we have
(⊕

i∈[m1] Gi

)∗
V3,k

(⊕
i∈[(m−1)/2] Gi

)∗ and(⊕
i∈[m2] Gi

)∗
V3,k

(⊕
i∈[(m−1)/2] Gi

)∗. Thus, we can find elements b1, . . . , bk such that

( ⊕
i∈[ m−1

2 ]

Gi, b1, . . . , bj

)∗
V2,k (

⊕
i∈[m1]

Gi, a1, . . . , aj)∗

and( ⊕
i∈[ m−1

2 ]

Gi, bj+1, . . . , bk

)∗
V2,k (

⊕
i∈[m2]

Gi, aj+1, . . . , ak)∗.

Combining this with the fact that Tot1,k V2,k Gap1,k by Lemma 12, we get by Lemma 6
that (M1,k, b1, . . . , bk)∗ V2,k (N1,k, a1, . . . , ak)∗ and the result follows. J

These last two lemmas form the base case of the induction that establishes the main
result. Where the argument is analogous to the previous ones, we skim over the details.

Proof of Lemma 5. We prove the following two statements by induction for all n, k ≥ 1.
1. Totn,k V2n,k Gapn,k

2. N∗n,k V2n+1,k M∗n,k
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The case of n = 1 is established in Lemmas 12 and 13 respectively. Suppose now n ≥ 2 and
we have established both statements for n− 1.

First, recall that M+
n−1,k and N+

n−1,k are obtained from Mn−1,k and Nn−1,k respectively
by including their minimum and maximum elements in the unary relation Pn and the binary
relation Sn. Thus, by the induction hypothesis and Lemma 9, we have N+

n−1,k V2n−1,k

M+
n−1,k.
Totn,k consists of the ordered sum of a sequence ofm = 4(k+3)2n+2k+1 > 2ρ(2n, k)+k+1

copies of M+
n−1,k, along with a relation Rn containing just the pair with the minumum and

maximum elements. When Spoiler chooses k elements from this structure, we can find a copy
of M+

n−1,k in the middle k+ 1 copies that has no element chosen and there are m1 > ρ(2n, k)
copies before it and m2 > ρ(2n, k) copies after it. We can similarly express Gapn,k as the
ordered sum of a sequence of (m− 1)/2 > ρ(2n, k) copies of M+

n−1,k, followed by a copy of
N+

n−1,k and a further (m− 1)/2 > ρ(2n, k) copies of M+
n−1,k. Lemma 7 tells us that we can

find a response to the chosen elements in the first and third parts. This combined with the
fact that N+

n−1,k V2n−1,k M+
n−1,k and using Lemma 9 to expand to the relation Rn gives us

the desired result.
The argument for the second statement is entirely analogous. Nn,k is the ordered sum of

a sequence of m = 4(k + 3)2n+1 + 2k + 1 > 2ρ(2n + 1, k) + k + 1 copies of Gapn,k. When
Spoiler chooses k elements from this structure, we can find a copy of Gapn,k in the middle
k + 1 copies that has no element chosen and there are m1 > ρ(2n+ 1, k) copies before it and
m2 > ρ(2n+ 1, k) copies after it. Since Mn,k has (m− 1)/2 > ρ(2n+ 1, k) copies of Gapn,k

followed by a copy of Totn,k and a further (m − 1)/2 > ρ(2n + 1, k) copies of Gapn,k, by
Lemma 7 we can find responses to the chosen elements in the first and third parts. We have
already proved that Totn,k V2n,k Gapn,k. We can combine these to complete the proof. J

5 Concluding Remarks

We have established in this paper that the extension-closed properties of finite structures
that are definable in first-order logic are not contained in any fixed quantifier-alternation
fragment of the logic. The construction of the sentences demonstrating this is recursive. It
builds on a base of known counter-examples for the Łoś-Tarski theorem in the finite and lifts
them up inductively. Also, the argument for showing inexpressibility in fixed levels of the
quantifier-alternation hierarchy builds on the game arguments used with previously known
examples and builds on them systematically using a form of Feferman-Vaught decomposition
(see [11]) for ordered sums of structures.

Our result actually establishes that for all odd n > 1, there is a Σn-definable property
that is closed under extensions but not definable by a Πn sentence. Interestingly, this is not
true for even values of n. In particular, it is known that every Σ2-definable extension-closed
property is already definable in Σ1. This observation is credited to Compton in [7] and may
also be found in [16]. We do not know, however, whether for even n > 2, the extension closed
properties in Σn can all be expressed in Πn or even Σn−1. On the other hand, we are able
to observe that for all even n > 1, there is a Πn-definable extension-closed property that
is not in Σn. This is a direct consequence of our proof. Indeed, consider the sentence ϕn

obtained from SomeTotalRn by removing the two outer existential quantifiers and replacing
the resulting free variables with new constants a and b. This is a Π2n sentence and is easily
seen to define an extension-closed class. By our construction, ϕn is satisfied in the expansion
of Totn,k where a and b are the minimum and maximum elements respectively. At the same
time ϕn is false in the similar expansion of Gapn,k. Since we showed that Tot∗n,k V2n,k Gap∗n,k,
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it follows that ϕn is not equivalent to a Σ2n sentence. It would be interesting to complete
the picture of extension-closed properties in the remaining quantifier-alternation fragments,
specifically Σn for even values of n and Πn for odd values of n.

It is a feature of our construction that the vocabulary σn in which we construct the
sentences which separate extension-closed Σ2n+1 from Π2n+1 grows with n. Could our results
be established in a fixed vocabulary? Indeed, does something like Theorem 4 hold for finite
graphs?

Another interesting direction left open from our work is the relation with Datalog(¬). All
the extension-closed FO-definable properties we construct are also definable in Datalog(¬).
Rosen and Weinstein [13] ask whether this is true for all FO-definable extension-closed
properties, and this remains open. Indeed, it is conceivable that we have an extension-
preservation theorem for least fixed-point logic in the finite, so that even all LFP-definable
extension-closed properties are in Datalog(¬).
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