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Abstract
A representation of intersection types in terms of pregrammars is presented. Pregrammar based
rewriting relations, corresponding respectively to type checking and inhabitation are defined and
the latter is used to implement a Wajsberg/Ben-Yelles style alternating semi-decision algorithm for
inhabitation. The usefulness of the framework is illustrated by revisiting and partially extending
standard inhabitation related results for intersection types, as well as establishing new ones. It is
shown how the notion of bounded multiset dimension emerges naturally and the relation between
the two settings is clarified. A meaningful rank independent superset of the set of rank 2 types
is identified for which EXPSPACE-completeness for inhabitation as well as for counting is proved.
Finally, a standard result on negatively non-duplicated simple types is extended to intersection
types.
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1 Introduction

1.1 Contribution and Related Work
Intersection type systems [12, 13] play an important role in the theory of typed λ-calculus [5].
They characterise exactly the set of strongly normalising terms and are closely related to the
model theory of λ-calculus [33, 25, 14]. Applications in programming language theory cover a
variety of diverse topics including the design of programming languages [36], program analysis
and model checking [30, 31, 34], synthesis [15, 21], and related systems such as refinement
and union types [22, 19, 20]. But the enormous expressive power of intersection types also
comes with a major drawback. Standard type theoretic problems such as type checking and
inhabitation are undecidable in general [5]. For inhabitation, undecidability is known for
about twenty years [42]. More recently [37, 38] the problem was shown to be equivalent to
the undecidable problem of λ-definability [32, 29]. Over the years attempts have been made
in various directions with the purpose of identifying and studying the complexity of decidable
fragments or variants of the system. Those include restrictions by rank [28, 27, 43], restrictions
of admissible type inference rules [26, 35, 11], calculi of bounded dimension [16, 18], as well
as systems of non-idempotent intersection types [10, 9]. In terms of rank the dividing line
between decidable and undecidable cases was established in [27, 43] and complexity results
were given for the decidable cases. As such, inhabitation was shown to be PSPACE-complete
for rank 1, EXPSPACE-complete for rank 2, and undecidable for types of rank ≥ 3. Recently,
the notion of dimension was introduced [16, 17] measuring intersection introduction as a
resource. The inhabitation problem was shown to be decidable and EXPSPACE-complete in
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14:2 Pregrammars and Intersection Types

bounded multiset dimension, exposing thereby a rank independent calculus with a decidable
inhabitation problem. In particular, it was shown to subsume the same result for rank 2
inhabitation.

The present work borrows some inspiration from [40] and aims to contribute to this line of
research providing a simple tool for addressing inhabitation related problems. Lower bounds
of specific problems are typically established using reductions from problems for which a
bound (resp. undecidability) is already known. For upper bounds the standard procedure is
based on the implementation of a Wajsberg/Ben-Yelles style search algorithm [6, 23, 11, 43].
The algorithm looks for inhabitants in β-normal form and operates on a set of pairs, each
consisting of a context and a type. Depending on the rule used in each step the algorithm
manipulates the set of pairs accordingly. The present work was motivated by the desire to
provide a simple formalisation of this transformation process, expounding changes in each
execution step in a clear and organised manner. The primary goal was to facilitate reasoning
about inhabitation problems for intersection types, as well as to provide a clean framework
in which proofs can be presented. Additionally, a graphical representation of intersection
types exposes their fine underlying structure contributing to the end of clarification. That
insight enables us to add further to the knowledge on decidable fragments of the intersection
type system. From a practical point of view, we believe this work, and in particular
pregrammar based implementations of a Wajsberg/Ben-Yelles search algorithm, to be of
importance for applications in proof/inhabitant search based program synthesis in systems
with intersection [21].

Picking up on work in [1, 2, 3] we here extend the notion of pregrammar to the entire
system of intersection types. In [1] pregrammars were introduced in the context of (principal)
inhabitation of simple types. Later [2] PSPACE upper bounds were (re-)proved for different
inhabitation related problems for simple types in the framework of pregrammars. A first
attempt to generalise those concepts to apply to intersection types was made in [3] and
covered a restricted fragment of rank 2 types, therein denoted by T −2 . Additionally, the
notion of pregrammar was extended to apply to the set of finite intersections of T −2 -types,
which properly contains the set of strict intersection types [44] of rank 2 (but not all rank
2 types). For T −2 -types it is sufficient to consider a type inference system without the
intersection introduction rule (∩I), which was the approach taken in [3]. Intersections of
T −2 -types introduce new intersections at the top level only and could therefore be handled by
considering products of pregrammars. Neither considering a system without rule (∩I), nor
using products of pregrammars, works if one wants to cover the entire system, for which a
different approach has to be taken. In the present work we consider a type inference system
for terms in β-normal form, equivalent to that in [43], with rule (∩I) but without an explicit
intersection elimination rule (∩E). This enables us to avoid the restriction to strict types,
which was the approach taken in [18], and still handle the case of application in our search
algorithm strictly syntax driven, contrasting with the `-based condition in [43].

1.2 Outline
The paper is organised as follows. Section 2 contains the necessary definitions and results
on the system of intersection types and sets the ground for subsequent developments. The
definition of pregrammars for intersection types is in Section 3. In Sections 4 and 5 we define
sound and complete rewriting relations based on pregrammars, corresponding respectively
to type checking and inhabitation. Transformation in contexts during proof search are
therein captured in terms of operations (update and replication) on tuples of integers. A
Wajsberg/Ben-Yelles style alternating semi-decision algorithm for inhabitation is defined in
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Section 6. In the remaining of that section the usefulness of our framework is demonstrated by
revisiting and partially extending standard inhabitation related results, as well as establishing
new ones. It is shown how the notion of bounded multiset dimension emerges naturally in
this setting and the relation between the two is clarified. A meaningful rank independent
superset of the set of rank 2 types is identified for which EXPSPACE-completeness is proved.
Making use of the aforementioned operations on tuples, EXPSPACE-completess of counting
in this fragment is also shown. Finally, a standard result on negatively non-duplicated simple
types is extended to intersection types. A compilation of complexity results for different
families of types can be found in the conclusions.

It is important to note that the majority of the discussed results can be obtained by
the classical method. Nonetheless, it is our belief that the work in this paper constitutes
further a step towards a better understanding of inhabitation in the intersection type system
by highlighting how intersections at different depth and of different polarity contribute
differently to the complexity of the inhabitation problem.

2 Preliminaries

We consider the basic system of intersection types, with no constants nor subtyping, cf. [43].
Type variables are ranged over by a, b, c, . . . and arbitrary types by lower-case Greek letters.
The set of simple types. i.e. types without occurrences of the intersection operator, is denoted
by T .

I Definition 1 (Intersection Types). T∩ 3 σ, τ ::= a | σ → τ | σ1 ∩ · · · ∩ σn (n ≥ 2).

We write σ ∈ τ , if σ is an occurrence of a subtype of τ , where the notion of occurrence
is the usual one, cf. [23, Definition 9A2]. For instance, type α = (a → a) → a → a has
three different subtypes α, a→ a and a, which have respectively 1, 2 and 4 occurrences in α.
We assume that the intersection operator is associative, and that it binds stronger than →.
Furthermore, we always identify maximal subtypes containing intersections, that is, when
we write τ1 ∩ · · · ∩ τn, then none of the τi is itself an intersection. The notion of rank stems
from [28] and is defined by rank(τ) = 0 if τ ∈ T , by rank(σ → τ) = max(1 + rank(σ), rank(τ))
if rank(σ)+ rank(τ) > 0, and by rank(τ1∩· · ·∩τn) = max(1, rank(τ1), . . . , rank(τn)) for n ≥ 2.
Considering the syntactic tree of a type θ, its rank equals the maximal number of implications,
to which an intersection occurs to the left, plus one. In general, given a particular occurrence
of a subtype τ ∈ θ we denote by depth(τ, θ) the number of implications in θ to which τ occurs
to the left and call it the depth of τ in θ. Then, we have that rank(θ) ≥ r ≥ 1 if and only
if there exists an intersection at depth ≥ r − 1. Formally, depth can be defined (top-down)
by depth(θ, θ) = 0, by depth(σ, θ) = depth(σ → τ, θ) + 1 and depth(τ, θ) = depth(σ → τ, θ),
and by depth(τi, θ) = depth(τ1 ∩ · · · ∩ τn, θ) for 1 ≤ i ≤ n and n ≥ 2. Another meaningful
notion is the degree of an occurrence τ ∈ θ, which measures the number of consecutive
implications, ignoring intersections in that counting, to which τ occurs to the right. Formally,
we have deg(θ, θ) = 0, if deg(σ → τ, θ) = n then deg(σ, θ) = 0 and deg(τ, θ) = n + 1, and
finally deg(τi, θ) = deg(τ1 ∩ · · · ∩ τn, θ) for 1 ≤ i ≤ n and n ≥ 2. In particular, θ is a strict
intersection type [44] if and only if all intersections in θ occur at degree 0.

The notion of polarity of an occurrence τ ∈ θ is defined as usual by: τ occurs positively
in τ ; if τ occurs positively (resp. negatively) in θ then it occurs positively (resp. negatively)
in σ → θ and in τ1 ∩ · · · ∩ θ ∩ · · · ∩ τn, and negatively (resp. positively) in θ → σ. As an
alternative, one can define that τ occurs positively in θ if depth(τ, θ) is even, and negatively
otherwise.

CSL 2021



14:4 Pregrammars and Intersection Types

Γ ∪ {x :σ} `∩ N : τ
(I→)

Γ `∩ λx.N :σ → τ

Γ `∩ xN1 · · ·Ns :σ → τ Γ `∩ Ns+1 :σ
(E→)

Γ `∩ xN1 · · ·NsNs+1 : τ

(var)
Γ ∪ {x : τ} `∩ x : τ

Γ `∩ M : τ1 · · · Γ `∩ M : τn (I∩)
Γ `∩ M : τ1 ∩ · · · ∩ τn

Γ `∩ M : τ1 ∩ · · · ∩ τn (E∩)
Γ `∩ M : τi (1 ≤ i ≤ n)

Figure 1 Intersection Type Assignment for Terms in Normal Form.

Every type τ can be uniquely written as τ = τ1 → · · · → τn → θ (n ≥ 0), where θ is a
type variable or an intersection θ1 ∩ · · · ∩ θm (m ≥ 2). If n ≥ 1, then τ1, . . . , τn are called
the arguments of τ . An occurrence of σ in τ is called a negative subpremise of τ iff it is the
argument of a positive occurrence of a subtype in τ . We write σ �∩ β and say that σ is a
component of β if and only if β = β1 ∩ · · · ∩ βn and σ = βi, for some i ∈ [1..n] and n ≥ 1. By
our convention on intersections this implies that a component is never an intersection itself.

I Example 2. Let α = α1 ∩ α2, where α1 = 1 → (0 → 0) ∩ (1 → 1) → (1 → 0) → 0
and α2 = 1 → (1 → 0) → (0 → 1) → 0, and 0 and 1 denote type variables. This type
belongs to the family used in the reduction of the halting problem for bus machines to rank
2 inhabitation in [43], showing thereby EXPSPACE-hardness of the problem. Furthermore,
consider β = o ∩ β1 → o, where β1 = ((o→ (o→ o) ∩ (o→ o))→ o)→ (o→ o) ∩ (o→ o).
We have rank(α) = 2 and rank(β) = 4. Moreover, α is strict, while β is not, since both
intersections in β1 occur at degree 1 in β. Types α and β will be our running examples
throughout the paper.

We denote λ-terms by M,N, . . ., which are built from an infinite countable set of term
variables V. We identify terms modulo α-equivalence. For type assignment we consider a
system equivalent to the one presented in [27, 43], but restricted to β-normal forms, which is
the usual choice when addressing inhabitation related problems. Unless stated otherwise, all
λ-terms considered in the remainder of this paper are supposed to be in β-normal form.

A (consistent) context is a finite set Γ of declarations of the form x :σ, where x ∈ V
and σ ∈ T∩, such that all term variables occurring in Γ are distinct from each other. The
domain of Γ, denoted by dom(Γ), is the set of term variables occurring in Γ. For (x :σ) ∈ Γ,
let Γ(x) = σ. Furthermore, Types(Γ) = { σ | x :σ ∈ Γ }. The rules of the type assignment
system are given in Figure 1. Formulas (judgements) in derivations are of the form Γ `∩ M : θ.
Symbol ` will be used for the inference of formulas in a second equivalent system without
explicit ∩-elimination, whose rules are given in Figure 2. We say that type θ ∈ T∩ can
be assigned to a normal form M in context Γ, and write Γ `∩ M : θ, if and only if this
formula can be obtained by applying the rules in Figure 1 a finite number of times. For
the parameters in these rules we suppose that s ≥ 0, n ≥ 2 and i ∈ [1..n]. Similarly, we
write Γ `M : θ if that formula can be derived by the inference rules in Figure 2. We draw
attention to the fact that for `, dropping the ∩-elimination rule was achieved by, in some
sense, incorporating quasi-order v in [35, Lemma 20] directly into rules (var) and (E→), and
facilitates handling types with intersections at degree ≥ 1, i.e. non-strict types.

For . ∈ {`∩,`}, it is easy to verify that Γ .M : θ implies that the set of term variables in
Γ contains the set of free variables in M , i.e. dom(Γ) ⊇ FV(M). A derivation of a formula
Γ.M : θ can be represented as a derivation tree Π, in which all nodes are labelled by formulas,
such that Γ . M : θ is the root of Π, every internal node is obtained from its children by one
of the type assignment rules different from (var), and every leaf is labelled with an instance
of (var).
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(var)
Γ ∪ {x : τ} ` x : τi (τi �∩ τ)

Γ ∪ {x :σ} ` N : τ
(I→)

Γ ` λx.N :σ → τ

Γ ` xN1 · · ·Ns :σ → τ Γ ` Ns+1 :σ
(E→)

Γ ` xN1 · · ·NsNs+1 : τi (τi �∩ τ)
Γ `M : τ1 · · · Γ `M : τn (I∩)

Γ `M : τ1 ∩ · · · ∩ τn

Figure 2 Type Assignment without an explicit ∩-elimination rule.

I Lemma 3. We have Γ `∩ M : θ if and only if there is a derivation of Γ `M : θ, such that
for every formula Γ′` N : τ in that derivation, either

τ is an intersection and Γ′ ` N : τ1∩· · ·∩τn (n ≥ 2) was derived from Γ′ ` N : τ1, . . . ,Γ′ `
N : τn by one application of rule (I∩);
or Γ′ ` N : τ was derived using one of the rules (var), (I→), or(E→).

From now on we will only consider `-derivations satisfying the conditions in Lemma 3.
The set of β-normal terms M such that Γ `M : τ is denoted by Nhabs(Γ, τ). If Γ = ∅, then
we also write `M : τ instead of Γ `M : τ and say that M is an inhabitant of type τ . The
set of all β-normal inhabitants of τ is denoted by Nhabs(τ) = Nhabs(∅, τ). The inhabitation
problem for intersection types is the problem of deciding if, for a given type τ ∈ T∩ (input)
one has Nhabs(τ) 6= ∅, and denoted by INH.

3 Pregrammars for Intersection Types

Given τ ∈ T∩, let occT(τ) denote the set of all occurrences of subtypes of τ , i.e. occT(τ) =
{ σ | σ ∈ τ }. Consider N(τ) = [0..(|occT(τ)| − 1)] as well as an (arbitrary) bijection
n : occT(τ) −→ N(τ). We call n(σ) the identifier of σ ∈ τ . The type of identifier k ∈ N(τ)
is t(k) = n−1(k) ∈ occT(τ). Relation �∩ transfers to elements in N(τ) in the obvious way,
by n �∩ m iff t(n) �∩ t(m). In order to deal correctly with the correspondence between
occurrences of subtypes and occurrences of subterms, polarities have to be taken into account.
With this purpose, and whenever convenient, we might superscript an integer n with ’+’ if n
corresponds to a positive occurrence of a subtype and with ’−’ if it corresponds to a negative
subpremise. Integers that correspond to a negative occurrence, which is no subpremise, will
not be superscripted. We write m ≡occT n if and only if the type occurrences corresponding
to m and n, i.e. t(m) and t(n), are identical1, i.e. are (not necessarily different) occurrences
of the same subtype. The relation T (τ) ⊆ N(τ)3 is defined by (n, k,m) ∈ T (τ), abbreviated
by n�k m, iff t(m) = t(k)→ t(n) for m,n, k ∈ N(τ). We will display relevant information
about relations T and �∩ in the dependency graph G(τ), whose set of vertices is N(τ) and
that consists of trees such that:

If t(m) = t(n1) ∩ · · · ∩ t(nk), then node m has children n1, . . . , nk, connected by dotted
edges.
If n�k m, then node m has one child n and a firm edge between them labelled with k.

In light of this last observation we define lab(n,m) = k whenever n�k m, meaning that the
edge between n and m is labelled by k.

I Example 4. Consider α from Example 2, let n(α) = 26, n(α1) = 24, n(α2) = 25 and
the remaining identifiers of subformulas of α1 and α2 respectively assigned as follows:
10 → [((01 → 02)14 ∩ (13 → 14)15)19 → ((15 → 06)16 → 07)20]22, and 18 → [(19 → 010)17 →
((011 → 112)18 → 013)21]23. The dependency graph of α is the following.

1 Abusing on the notation, we will occasionally abbreviate this and simply write t(m) = t(n).

CSL 2021
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Depth 0:

26+

24+ 25+

22+

20+

7+

23+

21+

13+

Depth 1:

19−

14 15

2 4

0− 16−

6

8− 17−

10

18−

12

Depth 2:

3+1+ 5+ 9+ 11+

0− 8−

19− 17−

16− 18−

1+ 3+

5+ 9+ 11+

Degrees of occurrences of subtypes are clearly visible in the dependency graph, since they
coincide with the number of firm edges between their identifier and the top node in the sub-
graph of G in which they occur. As such, the occurrences corresponding to 22, 23, 2, 4, 6, 10, 12
have degree 1 (their distance to the top node in the corresponding subgraph is by one firm
edge), those corresponding to 20 and 21 are of degree 2 (distance by two firm edges), and
those to 7 and 13 are of degree 3. All other occurrences are of degree 0, including the
intersections (which correspond respectively to 26 and 19). We conclude that α is strict. On
the other hand, its rank is 2 since there is an intersection at depth 1.

For β consider an attribution of identifiers to occurrences of type variable o suggested by
β = o0∩β1 → o11, where β1 = ((o1 → (o2 → o3)∩(o4 → o5))→ o6)→ (o7 → o8)∩(o9 → o10).
Furthermore, n(β) = 22, n(o0 ∩ β1) = 21, and n(β1) = 20. The remaining of this attribution
n should be clear from G(β) depicted below. The graph shows clearly that β is not a strict
intersection type, since both intersections t(17) = t(14)∩ t(15), as well as t(16) = t(12)∩ t(13)
occur at degree 1. Since the depth of t(16) is 3, we have that β is of rank 4.

Depth 1:Depth 0: Depth 2: Depth 3:

9+7+ 19+

6+

22+

11+

21−

0 20

17

14 15

8 10

Depth 4:

18−

16

12 13

2+1+ 4+

3 5

19+

7+

18−

9+

21− 1+

2+ 4+

Positive and negative identifiers play opposite roles during the process of inhabitant
search. A positive identifier m+ represents a goal of constructing a term of type t(m),
while a negative identifier m− represents a (possibly available) variable of type t(m). As
such, if one has t(m+) = t(m1) ∩ t(m2), then in order to construct a term of type t(m) one
has to find an inhabitant that has simultaneously types t(m1) and t(m2). On the other
hand, t(m−) = t(m1) ∩ t(m2) represents an alternative (the variable can be used either with
type t(m1) or t(m2)). Similarly, if one has t(m+) = t(k−) → t(n+), i.e. n �k m, then
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one possibility (other than to construct an applicational term using one of the available
variables) is to add a variable of type t(k−) to the context and search for a term of type
t(n+). Conversely, an available variable of type t(m−) = t(k+)→ t(n), i.e. n�k m−, allows
to transform the goal of finding a term of type t(n) into a new goal of finding a term of type
t(k). These concepts are captured in the definition of pregrammars.

I Definition 5 (Pregrammar). The pregrammar pre(τ) of τ is the smallest set of rules
satisfying the following conditions.

m := (n1, . . . , ns) ∈ pre(τ), if t(m+) = t(n1) ∩ · · · ∩ t(ns), (s ≥ 2).
m := λk.n ∈ pre(τ), if n�k m+.
m := p0 n1 · · ·ns ∈ pre(τ), if m+ ≡occT cs for s ≥ 0 and there exists an ascending path
from node cs to node p−0 in G(τ), satisfying

cs �∩ ps�
ns cs−1 �∩ . . . �∩ p1 �

n1 c0 �∩ p−0 .

The size of a type τ , denoted by |τ |, is the total number of occurrences of variables and of
symbols → and ∩ in τ . Then, the number (of occurrences) of subformulas is |N(τ)| ≤ |τ | and
consequently the size of G(τ), i.e. the total number of nodes and edges, is at most 2|τ | − 1.
Let |τ |→ and |τ |∩ denote respectively the number of occurrences of → and of ∩ in τ . Then,
the number of rules in pre(τ) is at most |τ |∩ + |τ |→ + |τ | · |τ | < 3|τ |2. Each of the rules
contains at most |τ | identifiers. Hence, the size of pre(τ), i.e. the total number of occurrences
of identifiers in pre(τ), is |pre(τ)| < 3|τ |3.

I Example 6. Consider α and β from Example 2. Equivalence classes in N(α)/≡occT that
are not singletons are {0−, 3+, 4, 5+, 8−, 9+, 12}, {1+, 2, 6, 7+, 10, 11+, 13+}, and {16−, 17−}.
The pregrammar of α has size |pre(α)| = 87 (|α| = 27) and contains thirty-one rules:

26 := (24, 25)
24 := λ0.22
22 := λ19.20

20 := λ16.7
25 := λ8.23
23 := λ17.21

21 := λ18.13
1, 7, 11, 13 := 19 1 | 16 5 | 17 9

3, 5, 9 := 19 3 | 18 11 | 0 | 8

Moreover, the equivalence relation ≡occT partitions N(β) into eight classes {12, 13, 14, 15},
{0, 1+, 2+, 3, 4+, 5, 6+, 7+, 8, 9+, 10, 11+}, {16, 17}, {18−}, {19+}, {20}, {21−}, and {22+}.
Pregrammar pre(β) contains the following rules.

22 := λ21.11 1, 2, 4, 6, 7, 9, 11 := 21 | 21 19 7 | 21 19 9 | 18 1 2 | 18 1 4
19 := λ18.6

For instance, we have rule 6 := 21 19 9 in pre(β), because a) 6+ ≡occT 10, i.e. identifiers
6 and 10 represent the same type, and b) in G(β) there is an ascending path from node
(component) 10 to node 21− whose nodes satisfy 10 �∩ 10�9 15 �∩ 17�19 20 �∩ 21−,
i.e. a variable of type t(21) applied successively to a term of type t(19) and to a term of type
t(9) has type t(10) (which equals t(6)).

4 Type Checking

In the following we describe a rewriting algorithm that, given a type τ and a term M , verifies
if `M : τ , i.e. checks if M ∈ Nhabs(τ). During the rewriting process we use objects with the
structure of λ-terms, but such that tuples of integers can figure as variable names and are
also referred to as placeholders. We refer to these objects as extended terms. We denote by
N [~k/x] the (extended) term obtained from N by replacing all free occurrences of variable x
in N by placeholder ~k.

CSL 2021



14:8 Pregrammars and Intersection Types

I Definition 7 (Update, Replication). The update of ~m = (m1, . . . ,mt) with ~n = (n1, . . . , nk)
at position i, where i ∈ [1..t] and t ≥ 1, is defined by

~m[~n/i] = (m1, . . . ,mi−1, n1, . . . , nk,mi+1, . . . ,mt).

Replicating a value k ≥ 2 times at position i in ~m is denoted by ~m[i, k] and defined by

~m[i, k] = (m1, . . . ,mi−1,mi, . . . ,mi︸ ︷︷ ︸
k

,mi+1, . . . ,mt).

Given an object E, possibly containing placeholders, let E[~n/i] (resp. E[i, k]) denote the
result of applying operation [~n/i] (resp. [i, k]) to all placeholders in E. Given an extended
term N , a tuple ~k, i ∈ N and x ∈ V , let N [~k/x] be the result of replacing all free occurrences
of x in N by placeholder ~k, while N [~k/i] is obtained by updating all placeholders in N at
position i with ~k.

I Definition 8 (Type Checking Relation). Given a type τ , an extended term M , ~m =
(m1, . . . ,mt) ∈ Nt, t ≥ 1, and s ≥ 0, we write (M : ~m) ↪→ (N1 : ~n1), . . . , (Ns : ~ns), if one of
the following applies.

If mi := ~n ∈ pre(τ), for some i ∈ [1..t], ~n = (n1, . . . , nk), and k ≥ 2, then
(M : ~m) ↪→ (M [i, k] : ~m[~n/i]).
If mi := λki.ni ∈ pre(τ), for all i ∈ [1..t], ~k = (k1, . . . , kt), and ~n = (n1, . . . , nt), then
(λx.N : ~m) ↪→ (N [~k/x] :~n).
If mi := ki n

i
1 · · ·nis ∈ pre(τ), for all i ∈ [1..t], ~nj = (n1

j , . . . , n
t
j), for j ∈ [1 . . . s], and

~k = (k1, . . . , kt), then (~k N1 · · ·Ns : ~m) ↪→ (N1 : ~n1), . . . , (Ns : ~ns).
The definition of ↪→ extends, in the usual way, to rewriting of sequences. Then, ↪→∗ denotes
the reflexive, transitive closure of ↪→.

I Example 9. Consider α from Example 2 and M = λxyz.y(z(yx)). Then,

(M : 26) ↪→ (λxyz.y(z(yx)) : (24, 25)) ↪→ (λyz.y(z(y(0, 8))) : (22, 23))
↪→ (λz.(19, 17)(z((19, 17)(0, 8))) : (20, 21)) ↪→ ((19, 17)((16, 18)((19, 17)(0, 8))) : (7, 13))
↪→ ((16, 18)((19, 17)(0, 8)) : (1, 9)) ↪→ ((19, 17)(0, 8) : (5, 11)) ↪→ ((0, 8) : (3, 9)) ↪→ ε.

The proof of the following theorem, stating correctness of ↪→, is mainly technical and can
be found in the appendix.

I Theorem 10. Nhabs(τ) = {M | (M : n(τ)) ↪→∗ ε }.

5 Inhabitation

In this section we define a rewriting relation for type inhabitation.

I Definition 11 (Inhabitation Relation). Let τ ∈ T∩, ~m = (m1, . . . ,mt) ∈ Nt, t ≥ 1, ~V ⊆ Nt,
and s ≥ 0. We write

(~V : ~m) ( ~V ′ : ~n1), . . . , ( ~V ′ : ~ns),

if one of the following applies.
1. If mi := ~n ∈ pre(τ), for some i ∈ [1..t], where ~n = (n1, . . . , nk) and k ≥ 2, then

(~V : ~m) (~V [i, k] : ~m[~n/i]).
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2. If mi := λki.ni ∈ pre(τ), for all i ∈ [1..t], where ~k = (k1, . . . , kt) and ~n = (n1, . . . , nt),
then

(~V : ~m) (~V ∪ {~k} :~n).

3. If mi := ki n
i
1 · · ·nis ∈ pre(τ), for all i ∈ [1..t], and ~k = (k1, . . . , kt) ∈ ~V , where

~nj = (n1
j , . . . , n

t
j), (1 ≤ j ≤ s), then

(~V : ~m) (~V : ~n1), . . . , (~V : ~ns).

The definition of  extends, in the usual way, to rewriting of sequences. Then,  ∗ denotes
the reflexive, transitive closure of  .

I Example 12. For α from Example 2 we have the following, where ~V =
{(0, 8), (19, 17), (16, 18)}.

(∅ : 26)  (∅ : (24, 25)) ({(0, 8)} : (22, 23)) ({(0, 8), (19, 17)} : (20, 21))
 (~V : (7, 13)) (~V : (1, 9)) (~V : (5, 11)) (~V : (3, 9)) ε,

The following theorem, stating correctness of  , is proved in the appendix.

I Theorem 13. Nhabs(τ) 6= ∅ if and only if (∅ : n(τ)) ∗ ε.

5.1 Intersections at different depth or degree
We want to examine more closely how intersections at different depth or degree in a type
contribute differently to the complexity of type checking and inhabitation. To that end we
analyse, where in a grammar rule, their identifiers can occur and what consequences that
might have in terms of applications of ↪→ and  . Let r(i) stand for an arbitrary identifier of
a subtype at depth i. Then each rule in a pregrammar respects one of the following patterns,
where i, j ≥ 0.

(1) r(i) := (r(i), . . . , r(i)) (2) r(i) := λr(i+ 1).r(i) (3) r(i) := r(j) r(j + 1) · · · r(j + 1)
We observe the following:
if m is the identifier of a positive intersection, then there is exactly one rule for m in
pre(τ) and that rule respects pattern (1); consequently rule 1 is incompatible with the
other two rules in Definition 11;
if m occurs at depth 0, then M cannot occur on the right side of a rule of pattern (3)
in pre(τ); consequently a pair (~V , ~m), such that m is one of the coordinates of vector ~m
(possibly ~m itself), occurs at most once in a rewriting sequence starting with (∅ : n(τ)); in
particular intersections at depth 0 may contribute to the growth of tuples at most once;
there can be two different rules m := k n1 · · ·ns and m′ := k n′1 · · ·n′s′ in pre(τ) such
that m = m′ or (m 6= m′ ∧ s = s′), only if k is the identifier of a negative subtype and
there is at least one (at any degree) intersection in the tree in G(τ) that is rooted in
k; consequently type checking is deterministic if there are no negative intersections in
τ ; in terms of inhabitation negative intersections may increase the combinatorics of the
problem, but don’t seem to cause undecidability on their own2;

2 This is in accordance with the fact that there is no gap between ranks 3 and 4, which differ by negative
intersections at depth 3 only. Both have undecidable inhabitation problems, shown by Urzyczyn in 1999
for rank 3 and in 2009 for rank 4 [42, 43].
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in principle, there is no relation between depths i and j in a rule of pattern (3); consequently
it seems as if negative intersections at different depth contribute to the same extent to
the complexity of inhabitation;
the degree at which an intersection occurs seems to have no particular influence on the
problem and similar results should be expected regardless of considering strict intersection
types or not.

6 Algorithm I

A Wajsberg/Ben-Yelles style alternating semi-decision algorithm I for inhabitation of in-
tersection types, following [43], can be implemented based on relation  . Every rewriting
sequence starting in (∅ : n(τ)) corresponds to a unique computation tree Π, whose nodes are
labelled with occurrences of pairs (~V : ~m) in the rewriting sequence. The root of Π is (∅ : n(τ))
and each node (~V : ~m), that was rewritten by (~V : ~m) ( ~V ′ : ~n1), . . . , ( ~V ′ : ~ns), has s children,
respectively labelled with ( ~V ′ : ~n1), . . . , ( ~V ′ : ~ns). The rewriting sequence terminates with the
empty sequence, i.e. (∅ : n(τ)) ∗ ε, if and only if in Π all leafs are labelled with (~V : ~m) such
that (~V : ~m) ε. In this case the computation tree is called an accepting computation tree
for τ .

I Definition 14 (Algorithm I). Algorithm I, starting with (∅ : n(τ)), aims to construct an
accepting computation tree for τ , operating in each step on a pair (~V : ~m). The proced-
ure non-deterministically chooses a combination of rules in pre(τ), such that (~V : ~m)  
( ~V ′ : ~n1), . . . , ( ~V ′ : ~ns). If s = 0, then the algorithm accepts, otherwise it universally applies
to ( ~V ′ : ~n1), . . . , ( ~V ′ : ~ns). It rejects, if there is no such combination of rules in pre(τ).

Note that rules 1, 2, and 3 in Definition 11 correspond respectively to rules 1, 2, and 3 in
the definition of Urzyczyn’s algorithm in [43]. While rule 1 is not compatible with the other
two, rules 2 and 3 may both apply at some point. If one gives priority to rule 2 whenever
possible, then the algorithm is customised to find only long solutions/inhabitants in the sense
of Definition 8 in [27]. We denote this variant by I long.

In order to guarantee termination, i.e. convert I into a decision algorithm, we need to
restrict the search space, for instance by limiting the maximal height of computation trees.
A tree is called non-repeating if it has no branch containing two different nodes with the
same label. Clearly, there is an accepting computation tree with root (∅ : n(τ)) iff there
is a non-repeating accepting computation tree with root (∅ : n(τ)). This fact can be used
to establish upper bounds for the complexity of inhabitation for different subfamilies of
intersection types. Whenever there is a function D : N −→ N such that any branch in a
computation tree of length ≥ D(n) has a repetition, where n = |τ | is the size of the input,
then I can be transformed into a decision algorithm ID, which rejects when operating on
nodes of depth ≥ D(|τ |). In that case we have an upper bound (alternating O(D(n))-time) for
deciding the inhabitation problem. This is the usual approach for obtaining upper bounds,
cf. [6, 16, 27, 43].

The existence of a measure D as above depends on the maximal number of distinct nodes
in a path. Such a value does not exist in general for types of rank ≥ 3 because of the
possibility of having continuously growing dimension of nodes in a path. Here the dimension
of a node labelled with (~V : ~m) is a synonym for the arity of ~m (or of tuples in (~V : ~m)) and
denoted by dim(~V : ~m) = dim(~V ). The dimension of a tree, dim(Π), is the maximal dimension
of its nodes. We write (~V : ~m)� (~V ′ :~n) if (~V ′ :~n) is a descendant of (~V : ~m) in Π. In that
case, it follows directly from Definition 11, that either dim(~V : ~m) < dim(~V ′ :~n) or ~V ⊆ ~V ′.
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If dim(~V : ~m) = p then ~V ∪ {~m} ⊆ N(τ)p and the number of tuples of arity ≤ p is less than
(|N(τ)|+ 1)p. Since |N(τ)| = |τ |, we conclude that the length of a non-repeating branch with
a leaf of dimension p ≥ 1 is < (|τ |+ 1)2p. In light of the above we consider the problem of
deciding, if for a given type τ ∈ T∩ (input) there exists an accepting computation tree of
dimension ≤ p, and denote this decision problem by INHp.

I Proposition 15. For each p ≥ 1 the problem INHp is PSPACE-complete.

Proof. PSPACE-hardness is a consequence of that result for simple types, whose computation
trees have dimension 1. For the upper bound one may consider decision procedure ID, where
D(n) = (n+ 1)2p. J

As foreseeable, the dimension of a computation tree relates to the notion of dimension,
considered in [16, 18] for strict types. More precisely, to the multiset setting for which we
have the following result. The proof of this result relies heavily on notions defined in [16]
and is therefore included in the appendix.

I Proposition 16. Let τ be a strict intersection type. Then, there exists M such that M can
be typed with τ at bounded multiset dimension ≤ p if and only if τ ∈ INHp.

On account of this result, Proposition 15 is in fact a reformulation of Proposition 32
in [16], here extended to the entire set of intersection types.

We want to identify causes for the existing gap between the complexity of the inhabitation
problem for different families of intersection types in terms of structural properties of their
dependency graphs. The first observation is that the growing of dimension along a path is
exclusively due to positive subtypes of the form τ1 ∩ · · · ∩ τk with k ≥ 2. Let T −∩ denote the
set of intersection types without positive occurrences of intersections, i.e. all intersections
occur at an odd depth. Computation trees for types in T −∩ have always dimension 1. Since
this fragment falls within the scope of Proposition 15 for p = 1, and since T ⊆ T −∩ , we
obtain PSPACE-completeness for T −∩ , which is a generalisation of the same result for simple
types [39, 41] and includes T −2 -types considered in [3], i.e. intersection types where all
intersections occur at depth 1. More generally we have the following.

I Corollary 17. For each p ≥ 1 the inhabitation problem for types of the form τ = ∩pi=1τi,
where τi ∈ T −∩ for i ∈ [1..p], is PSPACE-complete.

Proof. PSPACE-hardness follows from the same result for T ⊆ T −∩ . Just consider for
σ ∈ T the intersection type ∩pi=1σi, where each σi is a fresh copy of σ (obtained for
instance by indexing all variables in σ with i). On the other hand, for τ = ∩pi=1τi, we have
n(τ) := (n(τ1), . . . , n(τp)), but no other rule of that form in pre(τ). So rule 1 will be applied
exactly once, producing pair (∅ : (n(τ1), . . . , n(τp)). Hence, any accepting computation tree is
of dimension p and it suffices to apply decision procedure ID, where D(n) = n2p. J

Urzyczyn’s proof for rank 2 inhabitation in [43] also shows EXPSPACE-completeness for
finite intersections of T −∩ -types. We denote the rank independent set of these types by⋂

T −∩ = { ∩pi=1τi | p ≥ 1 ∧ ∀i ∈ [1..p] τi ∈ T −∩ }.

This set properly contains the set of strict rank 2 types.

I Proposition 18. The inhabitation problem for
⋂
T −∩ is EXPSPACE-complete.

CSL 2021
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Proof (from Urzyczyn [43]). The set of strict rank 2 types is a proper subset of
⋂
T −∩ and

EXPSPACE-hardness for rank 2 was shown by reduction from the halting problem for bus
machines to strict rank 2 types. For the upper bound one may consider decision procedure
ID, where D(n) = n+ nn · nn. This stems from the fact that for a

⋂
T −∩ -type τ algorithm I

starting with (∅ : n(τ)) will initially apply rule 1 at most n times, expanding the dimension
of nodes up to at most n, where n = |τ |. After that phase rule 1 will no longer apply. Given
two nodes of dimension n such that (~V : ~m)� (~V ′ : ~m′) we have necessarily ~V ⊆ ~V ′. Thus,
there are at most nn different sets of dimension n in a path of a computation tree, as well as
at most nn different tuples ~m of dimension n. Finally, n+ nn · nn = n+ 22n logn ≤ n+ 2n2 ,
for n ≥ 4. J

In [16, Proposition 24] a not rank-bounded family of types, ranged over by T and U ,
where

T ::= a | U → T and U ::= A | (∩ni=1Ti)→ U

was considered. More precisely it was shown that every normal inhabitant of an intersection
of the form ∩ni=1Ui can be typed at multiset dimension n. Note that the set of types ranged
over by U is a proper subset of T −∩ . On the other hand, the set of types of the form ∩ni=1Ui
properly includes the family of types used to show EXPSPACE-hardness for rank 2 [43].
Consequently, the proof of Proposition 18 still works and we have EXPSPACE-hardness also
for this proper subclass. We apply this line of reasoning to another rank independent set of
types, which is a superset of

⋂
T −∩ and contains types with positive intersections at depth

≥ 2.

I Definition 19. For m,n ∈ N(τ) we define m � n iff one of the following holds:
m := (n1, . . . , ns) ∈ pre(τ) and n = ni for some i ∈ [1..s];
m := λk.n ∈ pre(τ);
m := k n1 · · ·ns ∈ pre(τ) and n = ni for some i ∈ [1..s].

Then, �+ denotes the transitive closure of �. A type τ ∈ T∩ is called growth restrained if
there is no identifier m with m := (n1, . . . , ns) ∈ pre(τ) and such that m�+m.

I Proposition 20. Inhabitation for growth restrained types is EXPSPACE-complete.

Proof. If τ has rank 2, then m := (n1, . . . , ns) ∈ pre(τ) implies that t(m) occurs at depth
0 in τ and consequently m appears nowhere else in pre(τ). Hence, τ is growth restrained
and EXPSPACE-hardness follows from that result for rank 2. If τ is growth restrained then
any rule m := (n1, . . . , ns) ∈ pre(τ) applies at most once in a path of a computation tree
for τ , whose dimension can for that reason not exceed n, where n = |τ |. Again, there are
at most (n+ 1)n tuples of dimension ≤ n. We conclude that the length of a non-repeating
branch with a leaf of dimension ≤ n is < (n+ 1)2n and consider decision procedure ID, where
D(n) = (n+ 1)2n. But (n+ 1)2n = 22n log(n+1) < 2n2 , for n ≥ 6. J

The set of growth restrained types contains properly the set of types in which positive
occurrences of intersections are only allowed at depth 0. This set, on the other hand contains
properly the set of rank 2 types, as well as

⋂
T −∩ . Since all the aforementioned type classes

contain the set of strict rank 2 types, for which Urzyczyn showed EXPSPACE-hardness, one
obtains as a corollary EXPSPACE-completeness for all these classes.

Wajsberg/Ben-Yelles style search algorithms are the established vehicle to implement
counting algorithms [6, 23, 24, 8]. We follow that direction and use algorithm I to show
that the problem of counting for growth restrained types is EXPSPACE-complete. Counting
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means to decide, if for a given type τ , the set of normal inhabitants Nhabs(τ) is empty, finite
or infinite. Following the usual approach we provide limits d(|τ |) and D(|τ |), such that: (i)
|Nhabs(τ)| 6= 0 iff there is an accepting computation tree of height lower than D(|τ |); (ii)
|Nhabs(τ)| =∞ iff there is an accepting computation tree of height between d(|τ |) and D(|τ |).
Condition (i) is decided by ID(|τ |). For (ii) we use a customised version of ID(|τ |), that in
each step remembers the highest depth the algorithm operated on so far and accepts the
whole computation only if that value is ≥ d(|τ |).

I Proposition 21. Counting for growth restrained types is EXPSPACE-complete.

Proof. EXPSPACE-hardness follows from Proposition 20. To show that the problem can be
solved in exponential space we consider d(n) = (n+ 1)n and D(n) = (n+ 1)3n. Let τ be a
growth restrained type with |τ | = n. The proof of Proposition 20 shows that Nhabs(τ) 6= ∅
iff there is an accepting computation tree for τ of height ≤ (n + 1)2n < D(n). It remains
to show that |Nhabs(τ)| =∞ iff there is an accepting computation tree of height between
d(n) and D(n). Consider an accepting computation tree Π for τ , which we know to have
dimension ≤ n. Given two nodes ι� ι′, labelled respectively with (~V : ~m) and (~V ′ :~n), there
is a possibly empty sequence ζι,ι′ of replications that have been applied on the path from
ι to ι′ (corresponding to applications of rule 1, Definition 11). Let ~V ζι,ι′ denote the result
of applying the replications in ζι,ι′ successively to ~V . Then, ~V ζι,ι′ ⊆ ~V ′. Now, suppose
that Π has a branch of length ≥ d(n) = (n+ 1)n, which is the maximal number of tuples
of dimension ≤ n. Thus, there must be two distinct nodes (of equal dimension) such that
(~V1 : ~m)� (~V2 : ~m) and ~V1 ⊆ ~V2. Let Π1 be the subtree of Π rooted in node ι labelled with
(~V1 : ~m). For each other node ι′ in Π1 consider the corresponding sequence ζι,ι′ of replications
from ι to ι′. We denote by Π1ζ the tree obtained from Π1 by replacing the label of each node
ι′ = (~V ′ :~n) by (~V ′ ∪ ~V2 ζι,ι′ :~n). An accepting tree of bigger height can now be obtained
replacing in Π the subtree rooted in (~V2 : ~m) by Π1ζ. |Nhabs(τ)| =∞ follows by repetition.
This part of the proof corresponds to the Stretching Lemma in [23]. It remains to show
that the existence of a tree Π of height ≥ D(n) = (n + 1)3n implies that there is a tree
of height in [d(n),D(n)[. This last part corresponds to the Shrinking Lemma [23] and is
achieved by successively shortening subtrees in Π by a controlled amount, such that the
final result is an accepting tree of height < D(n), but still ≥ d(n). Consider a branch in
Π of length > D(n) > d(n). There must be two distinct nodes (a repetition) such that
ι = (~V : ~m) � (~V : ~m) = ι′ and such that the path from ι to ι′ has length l ≤ (n + 1)2n.
Now, consider the tree Π′ obtained by replacing in Π the subtree rooted in ι by the subtree
rooted in ι′. All paths starting in ι are now shortened by length l ≥ (n + 1)2n. However,
(n+ 1)3n − l ≥ (n+ 1)n and the result is a tree of height ≥ d(n). It remains to repeat this
process as long as there are paths of length > D(n). J

Changing the limits in the previous proof to d(n) = (n+ 1)p and D(n) = (n+ 1)3p suffices to
show a similar result for counting in bounded dimensions.

I Corollary 22. For each p ≥ 1, counting the number of accepting computation trees of
dimension ≤ p is PSPACE-complete.

Some studies consider fragments where the amount of positive and/or negative occurrences of
subtypes is constrained. In [4] it was proved that in the simple type system all inhabitants of
a given negatively non-duplicated type τ are βη-equivalent. Here, negatively non-duplicated
means that every type variable occurs at most once negatively in τ . Bourreaux and Salvati
adapted this correspondence to the case of λ-terms containing occurrences of constants in [7].
The following result shows that the same is true for the intersection type system.
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Figure 3 Intersection Type Families.

I Proposition 23. Deciding inhabitation for negatively non-duplicated intersection types is
in PSPACE. Furthermore, if M,N ∈ Nhabs(τ), then M =βη N .

Proof. We know that τ has a normal inhabitant if and only if it has a long one. Suppose
that Π is an accepting non-repeating computation tree for τ obtained by algorithm I long.
We show that Π has height ≤ |τ |2, i.e. Π can be obtained by I long

D , where D(n) = n2.
If τ is negatively non-duplicating, then for every m+

i ∈ N(τ) there is at most one rule
of the form mi := ki n

i
1 · · ·nis ∈ pre(τ). Given a pair (~V : ~m), such that neither rule 1

nor rule 2 in Definition 11 apply, there is at most one ~k = (k1, . . . , kt) ∈ ~V such that
mi := ki n

i
1 · · ·nis ∈ pre(τ), for all i ∈ [1..|~m|]. We conclude that any run of I long on (∅, n(τ))

is deterministic (up to the order in which identifiers in a tuple, to which rule 1 applies, are
chosen) and that there is at most one accepting computation tree (up to that order), implying
that the number of long inhabitants is finite. Consider any branch (~V1 : ~m1), . . . , (~Vs : ~ms) in
Π, where (~V1 : ~m1) = (∅, n(τ)). We associate a tree π to this branch whose root is labelled by
n(τ) and such that at depth i−1 nodes are labelled by mi

1, . . . ,m
i
ti , where ~mi = (mi

1, . . . ,m
i
ti)

and have children defined by the following. If (~Vi+1 : ~mi+1) was obtained by rule 1, because
mi
j := (n1, . . . , nk) ∈ pre(τ), for some j ∈ [1..ti], ~n = and k ≥ 2, then mi

j has k children
labelled respectively with n1, . . . , nk. Every other node mi

l at depth i − 1 has one child
labelled with mi

l. If (~Vi+1 : ~mi+1) was obtained by rule 2 or by rule 3, then each node has
one child labelled respectively with k1, . . . , kti , for ~k = (k1, . . . , kti) as in Definition 11 (rules
2 and 3). Consider two nodes at different depth in a branch of π, which are labelled with the
same identifier m. Since Π is accepting and the rewriting process deterministic (up to order
of application of rule 1) all nodes between them are also labelled by m, corresponding to
successive applications of rule 1. Otherwise, the algorithm would have entered an infinite
loop. But rule 1 can be applied successively at most |τ | times. On the other hand, there are
at most |τ | different identifiers in N(τ). We conclude that s ≤ |τ |2. On the other hand, this
means that whenever (~Vi : ~mi) (~Vi ∪ {~k} : ~mi+1) by rule 2, then ~k 6∈ ~Vi. Consequently, an
accepting tree Π corresponds to exactly one long normal inhabitant M and any other normal
inhabitant can be obtained from M by η-expansion, cf. proof of Lemma 9 in [27]. J

7 Conclusions

We presented a pregrammar based framework for addressing inhabitation related problems
in the intersection type system. In that setting types are first represented by dependency
graphs, which expose their underlying structure and thereby reveal properties related to
(the complexity of) intersection type inhabitation. Rewriting relations corresponding to type
checking and inhabitation for normal forms were given. These operate solely on sets of tuples
in terms of simple operations, update and replication. After proving the correctness of those
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relations, which involves some bureaucracy, the method became available to be implemented
in a Wajsberg/Ben-Yelles style search algorithm and any forthcoming reasoning could be
expressed in terms of rewriting of pairs (consisting of a set of tuples and a tuple). That was
illustrated by revisiting and partially extending some well-known problems. An overview of
results is given in Table 1. The relation between the different sets of type families, regarding
inclusion, is displayed in an Hasse diagram in Figure 3. There T denotes the set of simple
types, R≤n the set of types of rank at most n,

⋂p T −∩ the set of types of the form ∩pi=1τi for
some fixed p, GR the set of groth restrained bypes, and finally NND the set of negatively
non-duplicated intersection types. The set of types inhabited in (some) bounded multiset
dimension is orthogonal to the remaining families, c.f. [16], and therefore not included in the
diagram.

Studying further applications of the method is left for future work. For instance, the
amount of complexity caused by negative intersections should be placed under more careful
observation. As such, one could wonder about strictly positive fragments.

Table 1 Complexity Results for Inhabitation and Counting.

Problem Complexity

Inhabitation of Simple Types PSPACE-complete [39, 41]

Counting of Simple Types PSPACE-complete [24]

Rank 1 Inhabitation PSPACE-complete [43]

Rank 2 Inhabitation EXPSPACE-complete [27, 43]

Rank ≥ 3 Inhabitation undecidable [43, 42]

Inhabitation in Bounded Multiset Dimension EXPSPACE-complete [16]

Inhabitation in Fixed Bounded Multiset Dimension PSPACE-complete [16]

INHp for fixed p PSPACE-complete3 [Proposition 15]

Counting in Fixed Bounded Multiset Dimension PSPACE-complete [Corollary 22]

Inhabitation of τ = ∩p
i=1τi (τi ∈ T −∩ , fixed p) PSPACE-complete [Corollary 17]⋂

T −∩ Inhabitation EXPSPACE-complete [43, Proposition 18]

Inhabitation for growth restrained types EXPSPACE-complete [Proposition 20]

Counting for growth restrained types EXPSPACE-complete [Proposition 21]

Inhabitation for negatively non-duplicated intersection types PSPACE [Proposition 23]
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A Appendix

Proof of Lemma 3
Lemma 3. We have Γ |= M : θ if and only if there is a derivation of Γ `M : θ, such that
for every formula Γ′` N : τ in that derivation, either

τ is an intersection and Γ′ ` N : τ1∩· · ·∩τn (n ≥ 2) was derived from Γ′ ` N : τ1, . . . ,Γ′ `
N : τn by one application of rule (I∩);
or Γ′ ` N : τ was derived using one of the rules (var), (I→), or(E→).

Proof. For the if -part of the proof note that the resulting formula of an application of rule
(var) (resp. (E→)) in a `-derivation can be obtained by one derivation step with rule (var)
(resp. (E→)), followed by zero or one application of rule (E∩) in a |=-derivation. On the
other hand, rules (I→) and (I∩) are identical in both systems.

For the only if -part of the proof we proceed by induction on the length of the |=-derivation.
Suppose that Γ′ |= N : τ1 ∩ · · · ∩ τn was obtained by rule (var) because (x : τ1 ∩ · · · ∩ τn) ∈ Γ′.
If n = 1, then Γ′ ` N : τ1 can also be obtained by rule (var). Otherwise, Γ′ ` N : τ1 ∩ · · · ∩ τn
can be obtained by n applications of rule (var) followed by one application of (I∩). Since rules
(I→) and (I∩) are identical in both systems, it remains to consider a formula of the form
Γ′ |= xN1 · · ·NsNs+1 : ρ1 ∩ · · · ∩ ρn obtained from Γ′ |= xN1 · · ·Ns :σ → ρ1 ∩ · · · ∩ ρn and
Γ′ |= Ns+1 :σ by rule (E→). The corresponding formula Γ′ ` xN1 · · ·NsNs+1 : ρ1∩· · ·∩ρn can
be obtained by considering n copies of the derivations for Γ′ ` xN1 · · ·Ns :σ → ρ1 ∩ · · · ∩ ρn
and for Γ′ ` Ns+1 :σ. To each pair rule (E→) is applied, leading to derivations of Γ′ `
xN1 · · ·NsNs+1 : ρ1, . . . ,Γ′ ` xN1 · · ·NsNs+1 : ρn. Finally, Γ′ ` xN1 · · ·NsNs+1 : ρ1∩· · ·∩ρn
follows in one step using (I∩) for n > 1. J

In order to prove correctness of our method we first need to establish the precise cor-
respondence that exists between occurrences of subtypes and of variables and subterms in
inhabitants.

Variables, Subterms and Occurrences of Subtypes
Consider a term M , a type τ , and a derivation of ` M : τ . In the following we assign
occurrences of subtypes of τ to variables and terms in formulas Γ ` N :σ in that derivation.
This assignment will be used to establish the correctness of the pregrammars, that are defined
in the next section. Every x ∈ dom(Γ) is assigned a negative subpremise nsp(x) of τ . Term
N is assigned a positive subtype pst(N) of τ . Additionally, if Γ ` N :σ was derived by rule
(var) or (E→), then N is also assigned a negative subtype nst(N) of τ . The assignment is
such that pst(N) and nst(N) are occurrences of σ and for x ∈ dom(Γ) we have nsp(x) = Γ(x).

I Definition 24 (pst, nst, nsp). Consider a term M , a type τ ∈ T∩, and a derivation of
`M : τ with derivation tree Π. The assignment of nsp, nst and pst to occurrences of variables
and terms in the formulas, that appear in Π, is bottom-up, starting with `M : τ .

For the root `M : τ of Π, let pst(M) = τ3.
Consider Γ ` x : τi obtained by (var), where τ1 ∩ · · · ∩ τn = Γ(x), n ≥ 1 and i ∈ [1..n],
with nsp(x) = τ1 ∩ · · · ∩ τn and pst(x) = τi. We assign nst(x) to x on the right side of `,
choosing the negative occurrence of τi in nsp(x).

3 M is necessarily of the form λx.N , thus nst(M) is not defined.
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Next, consider a formula Γ ` xN1 · · ·Nk : τi derived by (I→), with k > 0. Let Π′ be
the subtree of Π that derives that formula, pst(xN1 · · ·Nk) = τi and suppose that nsp(y)
is defined for all y ∈ dom(Γ). Consider the declaration x : ρ0 ∈ Γ. Then, there are
subtypes σ1, . . . , σk, ρ1, . . . , ρk, such that σj → ρj �∩ ρj−1 for j ∈ [1..k] and τi �∩ ρk.
Furthermore, formula Γ ` x :σ1 → ρ1 is first combined with a derived formula Γ ` N1 :σ1
(by some subtree Π1 of Π′). The resulting formula Γ ` xN1 :σ2 → ρ2 is then combined
with a derived formula Γ ` N2 :σ2 (by some subtree Π2 of Π′), etc. Contexts of formulas
in Π′ always contain Γ and the negative subpremises to variables in Γ in these formulas
will be those assigned to variables in the root of Π′, which is Γ ` xN1 · · ·Nk : τi. We now
successively assign, operating top down, negative subtypes to terms x, xN1, . . . , xN1 · · ·Nk,
as well as positive subtypes to terms N1, . . . , Nk, in the formulas in this part of the
tree. For x on the right side of Γ ` x :σ1 → ρ1 let nst(x) be the occurrence of σ1 → ρ1
in nsp(x) = ρ0. Now, suppose that formula Γ ` xN1 · · ·Nj−1 :σj → ρj is combined
with Γ ` Nj :σj, deriving Γ ` xN1 · · ·Nj : ρ′j, where ρ′j �∩ ρj and j ∈ [1..k]. Consider
nst(xN1 · · ·Nj−1) = σj → ρj (which is already assigned). Then, let pst(Nj) be the
occurrence of σj in nst(xN1 · · ·Nj−1) and let nst(xN1 · · ·Nj) be the negative occurrence
of the component ρ′j in σj → ρj (note that ρ′j �∩ ρj).
Consider Γ ` λx.N :σ → ρ derived from Γ ∪ {x :σ} ` N : ρ by (I→) and pst(λx.N) =
σ → ρ. Then, for Γ ∪ {x :σ} ` N : ρ let pst(N) be the occurrence of ρ in pst(λx.N).
If x ∈ dom(Γ), then nsp(x) is already defined. Otherwise, let nsp(x) be the negative
occurrence of σ in pst(λx.N).
Now, consider Γ ` N : τ1 ∩ · · · ∩ τn derived from Γ ` N : τ1, . . . ,Γ ` N : τn, (n > 1) by rule
(I∩). Then, nsp(x) is already defined for all x ∈ dom(Γ), as well as pst(N) = τ1 ∩ · · · ∩ τn.
To the occurrence of N in Γ ` N : τi we assign the positive occurrence of τi in pst(N).

Besides of the operations on tuples of updating and replication we also need to define an
operation of contraction.

I Definition 25 (Contraction). Contracting k ≥ 2 positions starting at position i in ~m =
(m1, . . . ,mt) is denoted by ~m[i, k ↓] for i+ k ≤ t and defined by

~m[i, k ↓] = (m1, . . . ,mi,mi+k, . . . ,mt).

Given an object E, possibly containing placeholders, let E[i, k ↓] denote the result of applying
operation [i, k ↓] to all placeholders in E. Then, E[i, k][i, k ↓] = E.

Proof of Theorem 10
Theorem 10 shows correctness of ↪→, where ~k|i denotes the projection of the ith coordinate
of a tuple ~k.
Theorem 10. Nhabs(τ) = {M | (M : n(τ)) ↪→∗ ε }.

Proof.
(⊆) Consider a derivation tree of ` M : τ and an occurrence of a formula Ψ of the form
Γ ` N : ρ in derivation tree Π, where Γ = {x1 :σ1, . . . , xs :σs}. Let n−i = n(nsp(xi)) ∈ N(τ)
for i ∈ [1..s], and m+ = n(pst(N)), according to Definition 24. Then, t(ni) = σi for i ∈ [1..s]
and t(m) = ρ. We show by induction that (N [Γ] :m) ↪→∗ ε, using N [Γ] as an abbreviation
for N [n1/x1, · · · , ns/xs].

Suppose that Ψ was obtained by rule (var), i.e. N = xi, σi = σ1
i ∩ · · · ∩ σli and ρ = σji

for some j ∈ [1..l]. For ni = n(σi) and nji = n(σji ), we have m+ ≡occT n
j
i and n

j
i �∩ ni, and

consequently m := ni ∈ pre(τ). Thus, (N [Γ] :m) = (ni :m) ↪→ ε.
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Next, consider a formula Ψ of the form Γ ` xiN1 · · ·Nk : ρ derived by (I→), with k > 0.
The derivation of Ψ results from successively applying rule (I→) to Γ ` xi : δ1 → ρ1 and
Γ ` N1 : δ1, to Γ ` xN1 : δ2 → ρ2 and Γ ` N2 : δ2, . . . , to Γ ` xN1 · · ·Nk−1 : δk → ρk
and Γ ` Nk : δk. Then, δ1 → ρ1 �∩ σi, δj → ρj �∩ ρj−1 for j ∈ [2..k], and ρ �∩ ρk.
Consider the identifiers of the subtypes assigned to terms in these formulas according to
Definition 24. Let cj = n(nst(xiN1 . . . Nj)) for j ∈ [0..k], and qj = n(pst(Nj)) for j ∈ [1..k].
Furthermore, let pj be the identifier of the occurrence of ρj in t(cj−1) = δj → ρj for j ∈ [1..k].
Then, m+ ≡occT ck �∩ pk �qk ck−1 �∩ . . . �∩ p2 �q2 c1 �∩ p1 �q1 c0 �∩ ni. We
conclude that m := ni q1 · · · qk ∈ pre(τ). Thus, (N [Γ] :m) = (ni(N1[Γ]) · · · (Nk[Γ]) :m) ↪→
(N1[Γ] : q1), . . . , (Nk[Γ] : qk)
↪→∗ ε.

Let Ψ be Γ ` λx.N ′ :σ → δ obtained by rule (I→) from Γ′ ` N ′ : δ, where Γ′ = Γ∪{x :σ}.
For Ψ we have m+ = n(pst(λx.N ′)). Consider for Γ′ ` N ′ : δ the identifiers k− = n(nsp(x))
and n+ = n(pst(N)). Then, n �k m, and consequently m := λk.n ∈ pre(τ). Thus,
((λx.N ′)[Γ] :m) ↪→ (N ′[Γ][k/x] :n) = (N ′[Γ′], n) ↪→∗ ε.

Finally, consider Γ ` N : τ1 ∩ · · · ∩ τk derived from Γ ` N : τ1, . . . ,Γ ` N : τk by rule by
(I∩), for some k > 1. Let m+ = n(pst(N)) and ni = n(pst(N)) in formulas Γ ` N : τi, for
i ∈ [1..k]. Then, m := (n1, . . . , nk) ∈ pre(τ). Thus, (N [Γ] :m) ↪→ (N [Γ][1, k] : (n1, . . . , nk)).
By induction (N [Γ] :ni) ↪→∗ ε, for i ∈ [1..k]. These rewriting sequences are, but for
applications of rule 1 which creates replications in corresponding places, determined by the
structure of N [Γ] and can be combined to a rewriting sequence from (N [Γ][1, k] : (n1, . . . , nk))
to ε.

(⊇) For the other inclusion consider a term M , such that (M : n(τ)) ↪→∗ ε. Let (E : ~m)
be any pair appearing in the corresponding rewriting sequence, where E is an extended term
and ~m = (m1, . . . ,mk). Furthermore, consider ~P = {~p1, . . . , ~pl}, the set of placeholders that
occur in E, and let us interpret each tuple in ~P as the name of a term variable. We will show,
by induction on the length of (E, ~m) ↪→∗ ε, that for all i ∈ [1..k] we have Γi ` E : t(~m|i),
where the projection |i is defined by (s1, . . . , sk)|i = si and Γi = {~p1 : t(~p1|i), . . . , ~pl : t(~pl|i)}.
In particular, it follows that `M : τ .

Suppose that (E : ~m) ↪→ (E[j, t] : ~m′), with ~m′ =
~m[(s1, . . . , st)/j] = (m1, . . . ,mj−1, s1, . . . , st,mj+1, . . . ,mk), because mj := (s1, . . . , st) ∈
pre(τ), for some j ∈ [1..k]. For this last pair the set of placeholders is now ~P ′ =
= {~p1[j, t], . . . , ~pl[j, t]}. If j 6= i, let i′ be the new position of mi in ~m′, which is i if i < j,
and equal to i+ t− 1 if i > j. Then, Γi′ = {~p1[j, t] : t(~p1[j, t]|i′), . . . , ~pl[j, t] : t(~pl[j, t]|i′)} =
{~p1[j, t] : t(~p1|i), . . . , ~pl[j, t] : t(~pl|i)}. By the induction hypothesis, Γi′ ` E[j, t] : t( ~m′|i′). This,
means that Γi ` E : t(~m|i), because ~m|i = ~m′|i′ and the only change in both formulas
is the name of variables (from ~ph to ~ph[j, t]). If i = j, then we have Γi ` E : t(~m|i) if
Γ′i ` E[i, t] : t(sr) for all r ∈ [1..t], where Γ′i = {~p1[i, t] : t(~p1|i), . . . , ~pl[i, t] : t(~pl|i)}. It follows
from the induction hypothesis (note that the position of sr in ~p[i, t] is i+ r − 1) that for
Γri = {~p1[i, t] : t(~p1[i, t]|i+r−1), . . . , ~pl[i, t] : t(~pl[i, t]|i+r−1)} we have Γri ` E[i, t] : t(sr) for all
r ∈ [1..t]. But, Γ′i = Γri and the result holds.

Now, suppose that (λx.E : ~m) ↪→ (N [~v/x] :~n) because mj := λvj .nj ∈ pre(τ), for all
j ∈ [1..k], where ~v = (v1, . . . , vk) and ~n = (n1, . . . , nk). In particular, mi := λvi.ni ∈ pre(τ)
and t(mi) = t(vi)→ t(ni). By the induction hypothesis Γi ∪{~v : t(vi)} ` E[~v/x] : t(ni). Thus,
Γi ` λ~v.E[~v/x] : t(~m|i), but λ~v.E[~v/x] ≡α λx.E.

Finally, consider (~v E1 · · ·Es : ~m) ↪→ (E1 : ~n1), . . . , (Es : ~ns) with s ≥ 0, because ~v =
(v1, . . . , vk), and mj := vj n

j
1 · · ·njs ∈ pre(τ), for all j ∈ [1..k]. In particular, we have

~m|i = mi := vi n
i
1 · · ·nis ∈ pre(τ). It follows from Definition 5 that there is a sequence of

identifiers such that

m+
i ≡occT cs �∩ qs� cs−1 �∩ . . . �∩ q1 � c0 �∩ v−i ,
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and lab(qt, ct−1) = nit for t ∈ [1..s]. Then, t(mi) = t(cs) �∩ t(qs), t(cs−1) = (t(nis) →
t(qs)), . . . , t(c0) = (t(ni1) → t(q1)) �∩ t(vi). We have ~v : t(vi) ∈ Γi. Thus, Γi ` ~v : t(ni1) →
t(q1) by (var). By the induction hypothesis, ΓE1 ` E1 : t(ni1), where ΓE1 is the restriction of
Γi to the free variables (placeholders) in E1. Thus we also have Γi ` E1 : t(ni1) and by rule
(E→) and (t(ni2)→ t(q2)) �∩ t(q1) it follows that Γi ` ~v E1 : t(ni2)→ t(q2), etc. Repeating
this process we conclude that Γi ` ~v E1 · · ·Es : t(cs) = t(mi) = t(~m|i). J

Proof of Theorem 13
I Definition 26. For a particular rewriting sequence of
(∅ : n(τ))  ∗ ε, where in each step the combination of rewriting rules applied is given, we
define a function pair that computes for each (~V : ~m) in that rewriting sequence a tuple
(~Γ,M) = pair(~V : ~m), where M is an extended term and ~Γ a set of placeholders with the arity
of ~m. The function pair is recursively defined as follows.
1. Let ~n = (n1, . . . , nk) and suppose that

(~V : ~m)  (~V [i, k] : ~m[~n/i]) because mi := ~n ∈ pre(τ), for some i ∈ [1..t] and k ≥ 2. If
pair((~V [i, k] : ~m[~n/i]) = (~Γ,M), then pair(~V : ~m) = (~Γ[i, k ↓],M [i, k ↓]).

2. If (~V : ~m) (~V ∪{~k} :~n) because mi := λki.ni ∈ pre(τ), for all i ∈ [1..t], ~k = (k1, . . . , kt)
and ~n = (n1, . . . , nt), then pair(~V : ~m) = (~Γ\{~k}, λ~k.N), where (~Γ, N) = pair(~V ∪{~k} :~n).

3. If (~V : ~m) (~V : ~n1), . . . , (~V : ~ns), because
mi := ki n

i
1 · · ·nis ∈ pre(τ), for all i ∈ [1..t], ~k = (k1, . . . , kt) ∈ ~V , and ~nj = (n1

j , . . . , n
t
j),

then pair(~V : ~m) = ({~k} ∪ ~Γ1 ∪ · · · ∪ ~Γs ,~k N1 · · ·Ns), where ( ~Γj , Nj) = pair(~V : ~nj), for
1 ≤ j ≤ s (s ≥ 0).

The correctness of function pair is stated in the following lemma.

I Lemma 27. Suppose that (~V : ~m)  ∗ ε for ~m = (m1, . . . ,mt), (t ≥ 1), and for some
particular rewriting sequence (~Γ,M) = pair(~V : ~m). Let ~Γ|i denote the context { ~p|i : t(~p|i) |
~p ∈ ~Γ }. Furthermore, let M |i be the result obtained by replacing every placeholder ~v in M
by ~v|i. Then, ~Γ|j `M |j : t(~m|j), for all j ∈ [1..t].

Proof. By induction on the length of the rewriting sequence. Let ~n = (n1, . . . , nk) and
suppose that (~V : ~m)  (~V [i, k] : ~m[~n/i]) because mi := ~n ∈ pre(τ), for some i ∈ [1..t]
and k ≥ 2. Furthermore, let pair(~V : ~m) = (~Γ[i, k ↓],M [i, k ↓]), for pair(~V [i, k] : ~m[~n/i]) =
(~Γ,M). First, consider j 6= i (j ∈ [1..t]) and let j′ be the position of mj in ~m[~n/i] =
(m1, . . . ,mi−1, n1, . . . , nk,mi+1, . . . ,mt). By induction, we have ~Γ|j′ ` M |j′ : t(~m[~n/i]|j′).
But (~Γ|j′ ,M |j′) = (~Γ[i, k ↓]|j ,M [i, k ↓]|j) and t(~m[~n/i]|j′) = t(~m|j). For j = i note
that t(mi) = t(n1) ∩ · · · ∩ t(nk). It follows from the induction hypothesis that ~Γ|i+r−1 `
M |i+r−1 : t(~m[~n/i]|i+r−1) for all r ∈ [1..k]. But, (~Γ|i+r−1,M |i+r−1) = (~Γ[i, k ↓]|i,M [i, k ↓]|i)
and t(~m[~n/i]|i+r−1) = t(nr). Thus, by rule (∩I) we have ~Γ[i, k ↓]|i `M [i, k ↓] : t(mi).

Now suppose that (~V : ~m)  (~V ∪ {~k} :~n), where ~k = (k1, . . . , kt) and ~n = (n1, . . . , nt)
and such that mi := λki.ni ∈ pre(τ), for all i ∈ [1..t]. For j ∈ [1..t] we have t(~m|j) = t(~k|j)→
t(~n|j). Let pair(~V ∪ {~k} :~n) = (~Γ, N) and consider pair(~V : ~m) = (~Γ \ {~k}, λ~k.N). By the
induction hypothesis ~Γ|j ` N |j : t(~n|j). Since ~Γ|j ∪ {~k|j : t(~k|j)} is consistent by definition, it
follows that ~Γ|j\{~k|j : t(~k|j)} ` λ~k|j .(N |j) : t(~k|j)→ t(~n|j). But ~Γ|j\{~k|j : t(~k|j)} = (~Γ\{~k})|j
and λ~k|j .(N |j) = (λ~k.N)|j .

Finally suppose that (~V : ~m) (~V : ~n1), . . . , (~V : ~ns), because mi := ki n
i
1 · · ·nis ∈ pre(τ),

for all i ∈ [1..t], ~k = (k1, . . . , kt) ∈ ~V , and ~nj = (n1
j , . . . , n

t
j), (Â§1 ≤ j ≤ s). Let ( ~Γh, Nh) =

pair(~V : ~nh), for 1 ≤ h ≤ s (s ≥ 0). Consider pair(~V : ~m) = (~Γ,~k N1 · · ·Ns), where ~Γ =
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{~k}∪ ~Γ1∪· · ·∪ ~Γs. By definition ~Γ|j is consistent. It follows from the induction hypothesis that
~Γh|j ` Nh|j : t( ~nh|j). On the other hand, ~Γ|j ` ~k|j : t(~k|j). Now, it remains to apply the same
argument as in the proof of Theorem 10 to conclude that ~Γ|j ` (~k N1 · · ·Ns)|j : t(~m|j). J

Theorem 13. Nhabs(τ) 6= ∅ if and only if (∅ : n(τ)) ∗ ε.

Proof. The ’if’ part follows from Lemma 27. For the ’only if’ part consider a term P such
that ` P : τ . By Theorem 10 there exists a ↪→-rewriting sequence, such that (P : n(τ)) ↪→∗ ε.
We show, by induction on its length, that for each pair (M : ~m) in that sequence we have
(FV(M) : ~m)  ∗ ε, where M is an extended term with placeholders figuring as names for
term variables. In this part of the proof we also use the fact that (~V , ~p)  ∗ ε implies
( ~V ′, ~p)  ∗ ε, whenever ~V ⊆ ~V ′. If (M : ~m) ↪→ (M [i, k] : ~m[~n/i]), then (FV(M) : ~m)  
(FV(M)[i, k] : ~m[~n/i]) = (FV(M [i, k]) : ~m[~n/i]) and the result follows from the induction
hypothesis. If (λx.N : ~m) ↪→ (N [~k/x] :~n), then (FV(λx.N) : ~m) (FV(λx.N) ∪ {~k} :~n). But
FV(N [~k/x]) ⊆ FV(λx.N)∪ {~k} and the result follows from the induction hypothesis. Finally,
if (~k N1 · · ·Ns : ~m) ↪→ (N1 : ~n1), . . . , (Ns : ~ns), then (FV(~k N1 · · ·Ns) : ~m)
 (FV(~k N1 · · ·Ns) : ~n1), . . . , (FV(~k N1 · · ·Ns) : ~ns). Again FV(Nj) ⊆ FV(~k N1 · · ·Ns) and
the result holds by induction. J

Proof of Proposition 16
Proposition 16. Let τ be a strict intersection type. Then, there exists M such that M
can be typed with τ at bounded multiset dimension ≤ p (denoted by p M : τ) if and only if
τ ∈ INHp.

Proof. We consider the decision procedure J given in [16], Section 6.1. The procedure
transforms multisets of constraints of the form C = 〈Γ1 `? : γ1, . . . ,Γn `? : γn〉, where all
Γi’s have the same domain and each γi is strict and not an intersection. Such a multiset
is referred to as a configuration of the decision procedure. Consider a configuration C as
above with dom(Γi) = {x1, . . . , xk}. Regarding some particular order in the multiset (for
instance 1, . . . , n) we associate the pair C∇ = (~V : ~m), where ~m = (n(γ1), . . . , n(γn)) and
~V = { (n(Γ1(xi)), . . . , n(Γn(xi))) | xi ∈ [1..k] }. In the other direction, let (~V : ~m)4 =
({~v1, . . . , ~vk} : (m1, . . . ,mn))4 = 〈Γ1 `? : t(m1), . . . ,Γn `? : t(mn)〉, where Γi(xj) = t(~vj |i),
for i ∈ [1..n] and j ∈ [1..k]. We have that dim(C∇) equals the number of constraints in
multiset C, and the same is true for a pair (~V , ~m) and configuration (~V , ~m)4.

Transformation step 1 of procedure J corresponds to an application of rule 2 by algorithm
I. Since in strict types intersections are not allowed on the right side of →, rule 1 never
applies right after rule 2. On the other hand, transformation step 2 in J corresponds to an
application of rule 3, followed subsequently by all possible applications of rule 1 (which is
incompatible with the remaining two rules) by algorithm I.

Now, using these conversions from configurations4 to pairs and back, it remains to show
by induction on the height of trees that for every accepting computation tree TJ〈`? : τ1,...,`? : τn〉
determined by a run of J (cf. [16]) there is an accepting computation tree Π for τ = τ1∩· · ·∩τn
by I, and vice-versa. The height of Π is typically O(|τ |) · h, where h is the height of TJ〈`? : τ〉,
due to the fact that each step 2 of J corresponds to an application of rule 3 followed by all
possible (≤ |τ |) applications of rule 1 by I. J

4 For conversion ·∇ one has to consider in each step a convenient order in C.
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