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Abstract
We consider weighted structures, which extend ordinary relational structures by assigning weights,
i.e. elements from a particular group or ring, to tuples present in the structure. We introduce an
extension of first-order logic that allows to aggregate weights of tuples, compare such aggregates,
and use them to build more complex formulas. We provide locality properties of fragments of this
logic including Feferman-Vaught decompositions and a Gaifman normal form for a fragment called
FOW1, as well as a localisation theorem for a larger fragment called FOWA1. This fragment can
express concepts from various machine learning scenarios. Using the locality properties, we show
that concepts definable in FOWA1 over a weighted background structure of at most polylogarithmic
degree are agnostically PAC-learnable in polylogarithmic time after pseudo-linear time preprocessing.
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1 Introduction

In this paper, we study Boolean classification problems. The elements that are to be classified
come from a set X , the instance space. A classifier on X is a function c : X → {0, 1}. Given
a training sequence T of labelled examples (xi, bi) ∈ X × {0, 1}, we want to find a classifier,
called a hypothesis, that can be used to predict the label of elements from X not given in
T . We consider the following well-known frameworks for this setting from computational
learning theory.

In Angluin’s model of exact learning [1], the examples are assumed to be generated using
an unknown classifier, the target concept, from a known concept class. The task is to find a
hypothesis that is consistent with the training sequence T , i.e. a function h : X → {0, 1} such
that h(xi) = bi for all i. In Haussler’s model of agnostic probably approximately correct (PAC)
learning [11], a generalisation of Valiant’s PAC learning model [21], an (unknown) probability
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10:2 Learning Concepts Described by Weight Aggregation Logic

distribution D on X ×{0, 1} is assumed and training examples are drawn independently from
this distribution. The goal is to find a hypothesis that generalises well, i.e. one is interested
in algorithms that return with high probability a hypothesis with a small expected error on
new instances drawn from the same distribution. For more background on PAC learning,
we refer to [12, 19]. We study learning problems in the framework that was introduced by
Grohe and Turán [9] and further studied in [3, 6, 7, 22]. There, the instance space X is a set
of tuples from a background structure and classifiers are described using parametric models
based on logics.

Our Contribution. We introduce a new logic for describing such classifiers, namely first-
order logic with weight aggregation (FOWA). It operates on weighted structures, which extend
ordinary relational structures by assigning weights, i.e. elements from a particular abelian
group or ring, to tuples present in the structure. Such weighted structures were recently
considered by Toruńczyk [20], who studied the complexity of query evaluation problems for
the related logic FO[C] and its fragment FOG[C]. Our logic FOWA, however, is closer to the
syntax and semantics of the first-order logic with counting quantifiers FOC considered in [13].
This connection enables us to achieve locality results for the fragments FOW1 and FOWA1
of FOWA similar to those obtained in [14, 8]. Specifically, we achieve Feferman-Vaught
decompositions and a Gaifman normal form for FOW1 as well as a localisation theorem
for the more expressive logic FOWA1. We provide examples illustrating that FOWA1 can
express concepts relevant for various machine learning scenarios. Using the locality properties,
we show that concepts definable in FOWA1 over a weighted background structure of at
most polylogarithmic degree are agnostically PAC-learnable in polylogarithmic time after
pseudo-linear time preprocessing. This generalises the results that Grohe and Ritzert [7]
obtained for first-order logic to the substantially more expressive logic FOWA1.

The main drawback of the existing logic-based learning results is that they deal with
structures and logics that are too weak for describing meaningful classifiers for real-world
machine learning problems. In machine learning, input data is often given via numerical
values which are contained in or extracted from a more complex structure, such as a relational
database (cf., [5, 10, 17, 18]). Hence, to combine these two types of information, we are
interested in hybrid structures, which extend relational ones by numerical values. Just as in
commonly used relational database systems, to utilise the power of such hybrid structures,
the classifiers should be allowed to use different methods to aggregate the numerical values.
Our main contribution is the design of a logic that is capable of expressing meaningful
machine learning problems and, at the same time, well-behaved enough to have similar
locality properties as first-order logic, which enable us to learn the concepts in sublinear
time.

Outline. This paper is structured as follows. Section 2 fixes basic notation. Section 3
introduces the logic FOWA and its fragments FOW1 and FOWA1, provides examples, and
discusses enrichments of the logic with syntactic sugar in order to make it more user-friendly
(i.e. easier to parse or construct formulas) without increasing its expressive power. Section 4
provides locality results for the fragments FOW1 and FOWA1 that are similar in spirit to the
known locality results for first-order logic and the counting logic FOC1. Section 5 is devoted
to our results on agnostic PAC learning. Section 6 combines the results from the previous
sections to obtain our main learning theorem for FOWA1, and concludes the paper with an
application scenario and directions for future work. Due to space restrictions, we omit some
proofs and proof details in this article; all these details can be found in the preliminary full
version of this paper [23].
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2 Preliminaries

Standard Notation. We write R, Q, Z, N, and N>1 for the sets of reals, rationals, integers,
non-negative integers, and positive integers, respectively. For all m,n ∈ N, we write [m,n]
for the set {k ∈ N : m 6 k 6 n}, and we let [m] := [1,m]. For a k-tuple x̄ = (x1, . . . , xk),
we write |x̄| to denote its arity k. By (), we denote the empty tuple, i.e. the tuple of arity
0. All graphs are assumed to be undirected. For a graph G, we write V (G) and E(G) to
denote its vertex set and edge set, respectively. For V ′ ⊆ V (G), we write G[V ′] to denote the
subgraph of G induced on V ′. We assume familiarity with standard definitions concerning
groups and rings (cf., [23]). When referring to an abelian group (or ring), we will usually
write (S,+S) (or (S,+S , ·S)), we denote the neutral element of the group by 0S , and −a
denotes the inverse of an element a in (S,+S) (and we denote the neutral element of the
ring for (S, ·S) by 1S).

Signatures, Structures, and Neighbourhoods. A signature σ is a finite set of relation
symbols. Associated with every R ∈ σ is an arity ar(R) ∈ N. A σ-structure A consists of
a finite non-empty set A called the universe of A (sometimes denoted U(A)), and for each
R ∈ σ a relation RA ⊆ Aar(R). The size of A is |A| := |A|. Note that, according to these
definitions, the universe A = U(A) of each considered structure A is finite, and all considered
signatures σ are relational (i.e. they do not contain any constants or function symbols), and
may contain relation symbols of arity 0 (the only 0-ary relations over a set A are ∅ and {()}).

Let σ′ be a signature with σ′ ⊇ σ. A σ′-expansion of a σ-structure A is a σ′-structure B
with universe B such that B = A and RB = RA for every R ∈ σ. If B is a σ′-expansion of
A, then A is called the σ-reduct of B. A substructure of a σ-structure A is a σ-structure B
with a universe B ⊆ A and RB ⊆ RA for all R ∈ σ. For a σ-structure A and a non-empty
set B ⊆ A, we write A[B] to denote the induced substructure of A on B, i.e. the σ-structure
with universe B and RA[B] = RA ∩Bar(R) for every R ∈ σ.

The Gaifman graph GA of a σ-structure A is the graph with vertex set A and an edge
between two distinct vertices a, b ∈ A iff there exists R ∈ σ and a tuple (a1, . . . , aar(R)) ∈ RA
such that a, b ∈ {a1, . . . , aar(R)}. The structure A is connected if GA is connected; the
connected components of A are the connected components of GA. The degree of A is the
degree of GA, i.e. the maximum number of neighbours of a vertex of GA. The distance
distA(a, b) between two elements a, b ∈ A is the minimal number of edges of a path from a

to b in GA; if no such path exists, we set distA(a, b) :=∞. For a tuple ā = (a1, . . . , ak) ∈ Ak
and an element b ∈ A, we let distA(ā, b) := mini∈[k] dist(ai, b), and for a tuple b̄ = (b1, . . . , b`),
we let dist(ā, b̄) := minj∈[`] dist(ā, bj).

For every r > 0, the r-ball of ā in A is the set NAr (ā) = {b ∈ A : distA(ā, b) 6 r}. The
r-neighbourhood of ā in A is the structure NAr (ā) := A[NAr (ā)] .

3 Weight Aggregation Logic

This section introduces our new logic, which we call first-order logic with weight aggregation.
It is inspired by the counting logic FOC and its fragment FOC1, as introduced in [13, 8],
as well as the logic FO[C] and its fragment FOG[C], which were recently introduced by
Toruńczyk in [20]. Similarly as in [20], we consider weighted structures, which extend ordinary
relational structures by assigning a weight, i.e. an element of a particular group or ring, to
tuples present in the structure. The syntax and semantics of our logic, however, are closer
in spirit to the syntax and semantics of the logic FOC1, since this will enable us to achieve
locality results similar to those obtained in [14, 8].

CSL 2021
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Weighted Structures. Let σ be a signature. Let S be a collection of rings and/or abelian
groups. Let W be a finite set of weight symbols, such that each w ∈W has an associated arity
ar(w) ∈ N>1 and a type type(w) ∈ S. A (σ,W)-structure is a σ-structure A that is enriched,
for every w ∈ W, by an interpretation wA : Aar(w) → type(w), which satisfies the following
locality condition: if wA(a1, . . . , ak) 6= 0S for S := type(w), k := ar(w) and (a1, . . . , ak) ∈ Ak,
then k = 1 or a1 = · · · = ak or there exists an R ∈ σ and a tuple (b1, . . . , bar(R)) ∈ RA
such that {a1, . . . , ak} ⊆ {b1, . . . , bar(R)}. All notions that were introduced in Section 2 for
σ-structures carry over to (σ,W)-structures in the obvious way. Specifically, if A is a (σ,W)-
structure and σ′ is a signature with σ′ ⊇ σ, then a σ′-expansion of A is a (σ′,W)-structure
B with B = A, RB = RA for all R ∈ σ, and wB = wA for all w ∈W.

We will use the following as running examples throughout this section.

I Example 3.1.
(a) Consider an online marketplace that allows retailers to sell their products to consumers.

The database of the marketplace contains a table with transactions, and each entry
consists of an identifier, a customer, a product, a retailer, the price per item, and the
number of items sold. We can describe the database of the marketplace as a weighted
structure as follows. Let (Q,+, ·) be the field of rationals, let W contain two unary
weight symbols price and quantity of type (Q,+, ·), let σ = {T}, and let A be a
(σ,W)-structure such that the universe A contains the identifiers for the transactions,
customers, products, and retailers. For every transaction, let TA contain the 4-tuple
(i, c, p, r) consisting of the identifier for the transaction, the customer, the product, and
the retailer. For every transaction identifier i, let priceA(i) be the price per item in the
transaction and let quantityA(i) be the number of items sold; for every other identifier
a in A, let priceA(a) = quantityA(a) = 0.

(b) In a recent survey [17], Pan and Ding describe different approaches to represent social
media users via embeddings into a low-dimensional vector space, where the embeddings
are based on the users’ social media posts1. We represent the available data by a weighted
structure A as follows. Consider the group (Rk,+), where Rk is the set of k-dimensional
real vectors and + is the usual vector addition, and let W contain a unary weight symbol
embedding of type (Rk,+). Let σ = {F} and let A be a (σ,W)-structure such that
the universe A consists of the users of a social network. Let FA contain all pairs of
users (a, b) such that a is a follower of b. For every user a ∈ A, let embeddingA(a) be a
k-dimensional vector representing a’s social media posts.

(c) Consider vertex-coloured edge-weighted graphs, where R,B,G are unary relations of red,
blue, and green vertices, E is a binary relation of edges, and where every edge (a, b) has
an associated weight that is a k-dimensional vector of reals (for some fixed number k).
Such graphs can be viewed as (σ,W)-structures A, where σ = {E,R,B,G}, W contains
a binary weight symbol w of type (Rk,+) and wA(a, b) ∈ Rk for all edges (a, b) ∈ EA.

Fix a countably infinite set vars of variables. A (σ,W)-interpretation I = (A, β) consists of
a (σ,W)-structure A and an assignment β : vars→ A. For k ∈ N>1, elements a1, . . . , ak ∈ A,
and k distinct variables y1, . . . , yk, we write I a1,...,ak

y1,...,yk
for the interpretation (A, β a1,...,ak

y1,...,yk
),

where β a1,...,ak

y1,...,yk
is the assignment β′ with β′(yi) = ai for every i ∈ [k] and β′(z) = β(z) for

all z ∈ vars \ {y1, . . . , yk}.

1 Among other applications, such embeddings might be used to predict a user’s personality or political
leaning.



S. van Bergerem and N. Schweikardt 10:5

The Weight Aggregation Logic FOWA and its Restrictions FOWA1 and FOW1. Let σ
be a signature, S a collection of rings and/or abelian groups, and W a finite set of weight
symbols. An S-predicate collection is a 4-tuple (P, ar, type, J·K) where P is a countable set
of predicate names and, to each P ∈ P, ar assigns an arity ar(P) ∈ N>1, type assigns a
type type(P) ∈ Sar(P), and J·K assigns a semantics JPK ⊆ type(P). For the remainder of this
section, fix an S-predicate collection (P, ar, type, J·K).

For every S ∈ S that is not a ring but just an abelian group, a W-product of type S is
either an element s ∈ S or an expression of the form w(y1, . . . , yk) where w ∈W is of type S,
k = ar(w), and y1, . . . , yk are k pairwise distinct variables in vars. For every ring S ∈ S, a
W-product of type S is an expression of the form t1· · · · ·t` where ` ∈ N>1 and for each i ∈ [`]
either ti ∈ S or there exists a w ∈W with type(w) = S and there exist k := ar(w) pairwise
distinct variables y1, . . . , yk in vars such that ti = w(y1, . . . , yk). By vars(p) we denote the
set of all variables that occur in a W-product p.

I Example 3.2. Recall Example 3.1(a)–(c), and let x and y be variables. Examples of
W-products are price(x)·quantity(x), embedding(x), and w(x, y). Below, in Definition 3.3,
we will provide the formal definition of a logic (including notions of formulas and so-called
S-terms) which is capable of expressing the following statements.
(a) Given a first-order formula ϕgroup(p) that defines products of a certain product group

based on the structure of their transactions, we can describe the amount of money a
consumer c paid on the specified product group via the S-term

tspending(c) :=
∑

price(i) · quantity(i) . ∃p ∃r
(
ϕgroup(p) ∧ T (i, c, p, r)

)
.

This term associates with every consumer c the sum of the product of price(i) and
quantity(i) for all transaction identifiers i for which there exists a product p and a
retailer r such that the tuple (i, c, p, r) belongs to the transaction table and ϕgroup(p)
holds. The S-term

tsales :=
∑

price(i) · quantity(i) . ∃c∃p ∃r
(
ϕgroup(p) ∧ T (i, c, p, r)

)
specifies the amount all customers have paid on products from the product group.
We might want to select the “heavy hitters”, i.e. all customers c for whom tspending(c) >
0.01 · tsales holds. In our logic, this is expressed by the formula

P>(tspending(c), 0.01 · tsales) , where

P> is a predicate name of type (Q,+, ·)× (Q,+, ·) with JP>K = {(r, s) ∈ Q2 : r > s}.
(b) For vectors u, v ∈ Rk, let d(u, v) denote the Euclidean distance between u and v. We

might want to use a formula ϕsimilar(x, y) expressing that the two k-dimensional vectors
associated with persons x and y have Euclidean distance at most 1. To express this in
our logic, we can add the rational field (Q,+, ·) to the collection S and use a predicate
name PED of arity 3 and type (Rk,+) × (Rk,+) × (Q,+, ·) with JPEDK = {(u, v, q) ∈
Rk × Rk ×Q : d(u, v) 6 q}. Then,

ϕsimilar(x, y) := PED(embedding(x), embedding(y), 1)

is a formula with the desired meaning.
(c) For each vertex x, the sum of the weights of edges between x and its blue neighbours is

specified by the S-term tB(x) :=
∑

w(x′, y).(x′=x ∧ E(x′, y) ∧B(y)).

CSL 2021



10:6 Learning Concepts Described by Weight Aggregation Logic

We have designed the definition of the syntax of our logic in a way particularly suitable for
formulating and proving the locality results that are crucial for obtaining our learning results.
To obtain a more user-friendly syntax, i.e. which allows to read and construct formulas in a
more intuitive way, one could of course introduce syntactic sugar that allows to explicitly
write statements of the form

tspending(c) > 0.01 · tsales instead of P>(tspending(c), 0.01 · tsales)
d(embedding(x), embedding(y)) 6 1 instead of PED(embedding(x), embedding(y), 1)∑
y

w(x, y).(E(x, y) ∧B(y)) instead of
∑

w(x′, y).(x′=x ∧ E(x′, y) ∧B(y)).

We now define the precise syntax and semantics of our weight aggregation logic.

I Definition 3.3 (FOWA(P)[σ, S,W]). For FOWA(P)[σ, S,W], the set of formulas and
S-terms is built according to the following rules:
(1) x1=x2 and R(x1, . . . , xar(R)) are formulas,

where R ∈ σ and x1, x2, . . . , xar(R) are variables2.
(2) If w ∈W, S = type(w), s ∈ S, k = ar(w), and x̄ = (x1, . . . , xk) is a tuple of k pairwise

distinct variables, then (s = w(x̄)) is a formula.
(3) If ϕ and ψ are formulas, then ¬ϕ and (ϕ ∨ ψ) are also formulas.
(4) If ϕ is a formula and y ∈ vars, then ∃y ϕ is a formula.
(5) If ϕ is a formula, w ∈W, S = type(w), s ∈ S, k = ar(w), and ȳ = (y1, . . . , yk) is a tuple

of k pairwise distinct variables, then
(
s =

∑
w(ȳ).ϕ

)
is a formula.

(6) If P ∈ P, m = ar(P), and t1, . . . , tm are S-terms such that (type(t1), . . . , type(tm)) =
type(P), then P(t1, . . . , tm) is a formula.

(7) For every S ∈ S and every s ∈ S, s is an S-term of type S.
(8) For every S ∈ S, every w ∈ W of type S, and every tuple (x1, . . . , xk) of k := ar(w)

pairwise distinct variables in vars, w(x1, . . . , xk) is an S-term of type S.
(9) If t1 and t2 are S-terms of the same type S, then so are (t1+ t2) and (t1− t2); furthermore,

if S is a ring (and not just an abelian group), then also (t1·t2) is an S-term of type S.
(10) If ϕ is a formula, S ∈ S, and p is a W-product of type S, then

∑
p.ϕ is an S-term of

type S.
Let I = (A, β) be a (σ,W)-interpretation. For a formula or S-term ξ of FOWA(P)[σ, S,W],
the semantics JξKI is defined as follows.

(1) Jx1=x2KI = 1 if a1=a2, and Jx1=x2KI = 0 otherwise;
JR(x1, . . . , xar(R))KI = 1 if (a1, . . . , aar(R)) ∈ RA, and JR(x1, . . . , xar(R))KI = 0 other-
wise;
where aj := β(xj) for j ∈ {1, . . . ,max{2, ar(R)}}.

(2) J(s = w(x̄))KI = 1 if s = wA(β(x1), . . . , β(xk)), and J(s = w(x̄))KI = 0 otherwise.
(3) J¬ϕKI = 1− JϕKI and J(ϕ ∨ ψ)KI = max{JϕKI , JψKI}.
(4) J∃y ϕKI = max{JϕKI

a
y : a ∈ A}.

(5) J
(
s =

∑
w(ȳ).ϕ

)
KI = 1 if s =

∑
S{wA(ā) : ā = (a1, . . . , ak) ∈ Ak with JϕKI

a1,...,ak
y1,...,yk = 1}

(as usual, by convention, we let
∑
S X = 0S if X = ∅).

(6) JP(t1, . . . , tm)KI = 1 if
(
Jt1KI , . . . , JtmKI

)
∈ JPK, and JP(t1, . . . , tm)KI = 0 otherwise.

(7) JsKI = s.
(8) Jw(x1, . . . , xk)KI = wA(β(x1), . . . , β(xk)).
(9) J(t1 ∗ t2)KI = Jt1KI ∗S Jt2KI , for ∗ ∈ {+,−, ·}.

2 In particular, if ar(R) = 0, then R() is a formula.
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(10) J
∑
p.ϕKI =

∑
S{JpK

I a1,...,ak
y1,...,yk : a1, . . . , ak ∈ A with JϕKI

a1,...,ak
y1,...,yk = 1}, where

{y1, . . . , yk} = vars(p) and k = |vars(p)| and JpKI = Jt1KI ·S · · · ·SJt`KI if p = t1· · · · ·t` is
of type S.

An expression is a formula or an S-term. As usual, for a formula ϕ and a (σ,W)-
interpretation I, we will often write I |= ϕ to indicate that JϕKI = 1. Accordingly, I 6|= ϕ

indicates that JϕKI = 0.
The set vars(ξ) of an expression ξ is defined as the set of all variables in vars that occur

in ξ. The free variables free(ξ) of ξ are defined as follows: free(ξ) = vars(ξ) if ξ is built
according to one of the rules (1), (2), (7), (8); free(¬ϕ) = free(ϕ), free((ϕ ∨ ψ)) = free(ϕ) ∪
free(ψ), free(∃y ϕ) = free(ϕ) \ {y}, free((s =

∑
w(y1, . . . , yk).ϕ)) = free(ϕ) \ {y1, . . . , yk};

free(P(t1, . . . , tm)) =
⋃m
i=1 free(ti); free((t1 ∗ t2)) = free(t1) ∪ free(t2) for ∗ ∈ {+,−, ·};

free(
∑
p.ϕ) = free(ϕ) \ vars(p). As usual, we will write ξ(x̄) for x̄ = (x1, . . . , xk) to indicate

that free(ξ) ⊆ {x1, . . . , xk}. A sentence is a FOWA(P)[σ, S,W]-formula ϕ with free(ϕ) = ∅.
A ground S-term is an S-term t of FOWA(P)[σ, S,W] with free(t) = ∅.

For a (σ,W)-structure A and a tuple ā = (a1, . . . , ak) ∈ Ak, we write A |= ϕ[ā] or
(A, ā) |= ϕ to indicate that for every assignment β : vars→ A with β(xi) = ai for all i ∈ [k],
we have I |= ϕ, for I = (A, β). Similarly, for an S-term t(x̄) we write tA[ā] to denote JtKI .

I Definition 3.4 (FOWA1 and FOW1). The set of formulas and S-terms of the logic
FOWA1(P)[σ, S,W] is built according to the same rules as for the logic FOWA(P)[σ, S,W],
with the following restrictions:
(5)1: rule (5) can only be applied if S is finite,
(6)1: rule (6) can only be applied if | free(t1) ∪ · · · ∪ free(tm)| 6 1.
FOW1(P)[σ, S,W] is the restriction of FOWA1(P)[σ, S,W] where rule (10) cannot be applied.

Note that first-order logic FO[σ] is the restriction of FOW1(P)[σ, S,W] where only
rules (1), (3), and (4) can be applied. As usual, we write (ϕ ∧ ψ) and ∀y ϕ as shorthands
for ¬(¬ϕ ∨ ¬ψ) and ¬∃y ¬ϕ. The quantifier rank qr(ξ) of a FOWA(P)[σ, S,W]-expression ξ
is defined as the maximum nesting depth of constructs using rules (4) and (5) in order to
construct ξ. The aggregation depth dag(ξ) of ξ is defined as the maximum nesting depth of
term constructions using rule (10) in order to construct ξ.
I Remark 3.5. FOW1 can be viewed as an extension of first-order logic with modulo-counting
quantifiers: if S contains the abelian group (Z/mZ,+) for some m > 2, and W contains a
unary weight symbol onem of type Z/mZ such that oneAm(a) = 1 for all a ∈ A, then the
modulo m counting quantifier ∃i mod my ϕ (stating that the number of interpretations for
y that satisfy ϕ is congruent to i modulo m) can be expressed in FOW1(P)[σ, S,W] via(
i =

∑
onem(y).ϕ

)
.

FOWA1 can be viewed as an extension of the logic FOC1 of [8]: if S contains the integer ring
(Z,+, ·) and W contains a unary weight symbol one of type Z such that oneA(a) = 1 for
all a ∈ A on all considered (σ,W)-structures A, then the counting term #(y1, . . . , yk).ϕ of
FOC1 (which counts the number of tuples (y1, . . . , yk) that satisfy ϕ) can be expressed in
FOWA1(P)[σ, S,W] via the S-term

∑
p.ϕ for p := one(y1)· · · · ·one(yk).

Let us mention, again, that we have designed the precise definition of the syntax of our logic
in a way particularly suitable for formulating and proving the locality results that are crucial
for obtaining our learning results. To obtain a more user-friendly syntax, i.e. which allows
to read and construct formulas in a more intuitive way, it would of course make sense to
introduce syntactic sugar that allows to explicitly write statements of the form

#(y1, . . . , yk).ϕ instead of
∑
p.ϕ for p := one(y1)· · · · ·one(yk)(

#(y).ϕ ≡ i mod m
)

or ∃i mod my ϕ instead of
(
i =

∑
onem(y).ϕ

)
.
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10:8 Learning Concepts Described by Weight Aggregation Logic

For this, one would tacitly assume that S contains (Z,+, ·) (or (Z/mZ,+)) and W contains a
unary weight symbol one of type Z (or onem of type Z/mZ) where oneA(a) = 1 (= oneAm(a))
for every a ∈ A and every considered (σ,W)-structure A.

To close this section, we return to the running examples from Examples 3.1 and 3.2.

I Example 3.6. We use the syntactic sugar introduced at the end of Remark 3.5.
(a) The number of consumers who bought products p from the product group defined by

ϕgroup(p) is specified by the S-term

t#cons :=
∑

one(c) . ∃i ∃p ∃r (ϕgroup(p) ∧ T (i, c, p, r));

and using the syntactic sugar described above, this S-term can be expressed via
#(c). ∃i ∃p ∃r (ϕgroup(p) ∧ T (i, c, p, r)).
The consumers c who spent at least as much as the average consumer on the products p
satisfying ϕgroup(p) can be described by the formula

ϕspending(c) := P>
(
(tspending(c) · t#cons) , tsales

)
,

where P> is a binary predicate in P of type Q×Q that is interpreted by the >-relation.
To improve readability, one could introduce syntactic sugar that allows to express this as
tspending(c) > tsales/t#cons. The formula ϕspending(c) belongs to FOWA1(P)[σ, S,W].

(b) The term t#follows(x) := #(y).F (x, y) specifies the number of users y followed by person x.
The term tsum(x) :=

∑
embedding(y).F (x, y) specifies the sum of the vectors associated

with all users y followed by x. To describe the users x whose embedding is δ-close (for
some fixed δ > 0) to the average of the embeddings of users they follow3, we might want
to use a formula ϕclose(x) of the form

d
(

embedding(x) , 1
t#follows(x) · tsum(x)

)
< δ .

We can describe this in FOWA1(P)[σ, S,W] by the formula

ϕclose(x) := Pdist<δ(embedding(x), t#follows(x), tsum(x)),

where Pdist<δ is a ternary predicate in P of type Rk × Z × Rk consisting of all triples
(v̄, `, w̄) with ` > 0 and d(v̄, 1

` ·w̄) < δ.
(c) Recall the term tB(x) introduced in Example 3.2 (c) that specifies the sum of the weights

of edges between x and its blue neighbours, and let tR(x) be a similar term summing
up the weights of edges between x and its red neighbours (using the syntactic sugar
introduced at the end of Example 3.2, this can be described as

∑
y

w(x, y).(E(x, y)∧R(y))).

To specify the vertices x that have exactly 5 red neighbours, we can use the formula
ϕ5 red(x) := ( 5 = #(y).(E(x, y) ∧R(y)) ). Let us now assume we are given a particular
set H ⊆ R2k and we want to specify the vertices x that have exactly 5 red neighbours
and for which, in addition, the 2k-ary vector obtained by concatenating the k-ary vectors
computed by summing up the weights of edges between x and its blue neighbours
and by summing up the weights of edges between x and its red neighbours belongs
to H. To express this, we can use a binary predicate P of type Rk × Rk with JPK ={

(ū, v̄) ∈ Rk×Rk : (u1, . . . , uk, v1, . . . , vk) ∈ H}. Then, the FOWA1(P)[σ, S,W]-formula
ψ(x) := ϕ5 red(x) ∧ P(tB(x), tG(x)) specifies the vertices x we are interested in.

3 Depending on the target of the embeddings, this could mean that the user mostly follows users with a
very similar personality or political leaning.
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4 Locality Properties of FOW1 and FOWA1

We now summarise locality properties of FOW1 and FOWA1 that are similar to well-known
locality properties of first-order logic FO and to locality properties of FOC1 achieved in [8].
This includes Feferman-Vaught decompositions and a Gaifman normal form for FOW1, and
a localisation theorem for the more expressive logic FOWA1.

For the remainder of this section, let us fix a signature σ, a collection S of rings and/or
abelian groups, a finite set W of weight symbols, and an S-predicate collection (P, ar, type, J·K).

The notion of local formulas is defined as usual [15]: let r ∈ N. A FOWA(P)[σ, S,W]-form-
ula ϕ(x̄) with free variables x̄ = (x1, . . . , xk) is r-local (around x̄) if for every (σ,W)-structure
A and all ā ∈ Ak, we have A |= ϕ[ā] ⇐⇒ NAr (ā) |= ϕ[ā] . A formula is local if it is r-local
for some r ∈ N.

For an r ∈ N, it is straightforward to construct an FO[σ]-formula distσ6r(x, y) such that
for every (σ,W)-structure A and all a, b ∈ A, we have A |= distσ6r[a, b] ⇐⇒ distA(a, b) 6
r. To improve readability, we write distσ(x, y)6 r for distσ6r(x, y), and distσ(x, y)>r for
¬distσ6r(x, y); and we omit the superscript σ when it is clear from the context. For a
tuple x̄ = (x1, . . . , xk) of variables, dist(x̄, y)>r is a shorthand for

∧k
i=1 dist(xi, y)>r, and

dist(x̄, y)6 r is a shorthand for
∨k
i=1 dist(xi, y)6 r. For ȳ = (y1, . . . , y`), we use dist(x̄; ȳ)>r

and dist(x̄; ȳ)6 r as shorthands for
∧`
j=1 dist(x̄, yj)>r and

∨`
j=1 dist(x̄, yj)6 r, respectively.

The r-localisation ϕ(r) of a FOWA(P)[σ, S,W]-formula ϕ(x̄) is the formula obtained from
ϕ by replacing every subformula of the form ∃y ϕ′ with the formula ∃y

(
ϕ′ ∧ dist(x̄, y) 6 r

)
,

replacing every subformula of the form
(
s =

∑
w(ȳ).ϕ′

)
, for ȳ = (y1, . . . , yk), with the

formula
(
s =

∑
w(ȳ).(ϕ′ ∧

∧k
j=1 dist(x̄, yj) 6 r)

)
, and replacing every S-term of the form∑

p.ϕ′ with the S-term
∑
p.
(
ϕ′ ∧

∧k
j=1 dist(x̄, yj) 6 r

)
, where {y1, . . . , yk} = free(ϕ′). The

resulting formula ϕ(r)(x̄) is r-local.

Feferman-Vaught Decompositions for FOW1. We pick two new unary relation symbols
X,Y that do not belong to σ, and we let σ′ := σ ∪ {X,Y }.

I Definition 4.1. Let A,B be (σ,W)-structures with A ∩B = ∅. The disjoint sum A⊕ B
is the (σ′,W)-structure C with universe C = A ∪ B, XC = A, Y C = B, RC = RA ∪ RB
for all R ∈ σ, and such that for all w ∈ W and k := ar(w) and all c̄ = (c1, . . . , ck) ∈ Ck,
we have wC(c̄) = wA(c̄) if c̄ ∈ Ak, wC(c̄) = wB(c̄) if c̄ ∈ Bk, and wC(c̄) = 0S otherwise (for
S := type(w)). The disjoint union A t B is the (σ,W)-structure obtained from C := A⊕ B
by omitting the relations XC , Y C.

I Definition 4.2. Let L be a subset of FOWA(P)[σ, S,W].
Let k, ` ∈ N and let x̄ = (x1, . . . , xk), ȳ = (y1, . . . , y`) be tuples of k+` pairwise distinct
variables. Let ϕ be a FOWA(P)[σ′,S,W]-formula with free(ϕ) ⊆ {x1, . . . , xk, y1, . . . , y`}. A
Feferman-Vaught decomposition of ϕ in L w.r.t. (x̄; ȳ) is a finite, non-empty set ∆ of tuples
of the form

(
α, β

)
where α, β ∈ L and free(α) ⊆ {x1, . . . , xk} and free(β) ⊆ {y1, . . . , y`},

such that the following is true for all (σ,W)-structures A,B with A ∩B = ∅ and all ā ∈ Ak,
b̄ ∈ B`: A⊕ B |= ϕ[ā, b̄] ⇐⇒ there exists (α, β) ∈ ∆ such that A |= α[ā] and B |= β[b̄].

Our first main result provides Feferman-Vaught decompositions for FOW1.

I Theorem 4.3 (Feferman-Vaught decompositions for FOW1(P)[σ, S,W]).
Let k, ` ∈ N and let x̄ = (x1, . . . , xk), ȳ = (y1, . . . , y`) be tuples of k+` pairwise distinct
variables. For every FOW1(P)[σ′,S,W]-formula ϕ with free(ϕ) ⊆ {x1, . . . , xk, y1, . . . , y`},
there exists a Feferman-Vaught decomposition ∆ in L of ϕ w.r.t. (x̄; ȳ), where L := Lϕ is
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the class of all FOW1(P)[σ, S,W]-formulas of quantifier rank at most qr(ϕ) which use only
those P ∈ P and S ∈ S that occur in ϕ and only those S-terms that occur in ϕ or that are of
the form s for an s ∈ S ∈ S where S is finite and occurs in ϕ.

Furthermore, there is an algorithm that computes ∆ upon input of ϕ, x̄, ȳ.

The proof proceeds in a similar way as the proof of the Feferman-Vaught decomposition
for first-order logic with modulo-counting quantifiers in [14]. For details as well as for the
proof of the following corollary of the theorem, we refer to [23].

I Corollary 4.4. Let k, ` ∈ N and let x̄ = (x1, . . . , xk), ȳ = (y1, . . . , y`) be tuples of k+`
pairwise distinct variables. Upon input of an r ∈ N and an r-local FOW1(P)[σ, S,W]-formula
ϕ(x̄, ȳ), one can compute a finite, non-empty set ∆ of pairs

(
α(x̄), β(ȳ)

)
of L-formulas, where

L is the class of all r-localisations of formulas in the class Lϕ of Theorem 4.3, such that the
following two formulas are equivalent:(∧k

i=1
∧`
j=1 dist(xi, yj) > 2r+1

)
∧ ϕ(x̄, ȳ)(∧k

i=1
∧`
j=1 dist(xi, yj) > 2r+1

)
∧
∨

(α,β)∈∆
(
α(x̄) ∧ β(ȳ)

)
.

Gaifman Normal Form for FOW1. We now turn to a Gaifman normal form for FOW1.

I Definition 4.5. A basic-local sentence in FOW1(P)[σ, S,W] is a sentence of the form
∃x1 · · · ∃x`

(∧
16i<j6` dist(xi, xj) > 2r ∧

∧`
i=1 λ(xi)

)
, where ` ∈ N>1, r ∈ N, λ(x) is an

r-local FOW1(P)[σ, S,W]-formula, and x1, . . . , x` are ` pairwise distinct variables.
A local aggregation sentence in FOW1(P)[σ, S,W] is a sentence of the form

(
s =∑

w(ȳ).λ(ȳ)
)
, where w ∈ W, s ∈ S := type(w), ` = ar(w), ȳ = (y1, . . . , y`) is a tuple of `

pairwise distinct variables, and λ(ȳ) is an r-local FOW1(P)[σ, S,W]-formula.
A FOW1(P)[σ, S,W]-formula in Gaifman normal form is a Boolean combination of local

FOW1(P)[σ, S,W]-formulas, basic-local sentences in FOW1(P)[σ, S,W], and local aggregation
sentences in FOW1(P)[σ, S,W].

Our next main theorem provides a Gaifman normal form for FOW1.

I Theorem 4.6 (Gaifman normal form for FOW1(P)[σ, S,W]). Every FOW1(P)[σ, S,W]-
formula ϕ is equivalent to an FOW1(P)[σ, S,W]-formula γ in Gaifman normal form with
free(γ) = free(ϕ). Furthermore, there is an algorithm that computes γ upon input of ϕ.

The proof proceeds similarly as Gaifman’s original proof for first-order logic FO ([2], see
also [4, Sect. 4.1]), but since subformulas are from FOW1(P)[σ, S,W], we use Corollary 4.4
instead of Feferman-Vaught decompositions for FO (cf. [4, Lemma 2.3]). Furthermore, for
formulas built according to rule (5)1, we proceed in a similar way as for the modulo-counting
quantifiers in the Gaifman normal construction of [14]. We defer the reader to the full version
for the details [23].

A Localisation Theorem for FOWA1. Our next main theorem provides a locality result
for the logic FOWA1, which is a logic substantially more expressive than FOW1.

I Theorem 4.7 (Localisation Theorem for FOWA1). For every FOWA1(P)[σ, S,W]-formula
ϕ(x1, . . . , xk) (with k > 0), there is an extension σϕ of σ with relation symbols of arity
6 1, and a FOW1(P)[σϕ,S,W]-formula ϕ′(x1, . . . , xk) that is a Boolean combination of local
formulas and statements of the form R() where R ∈ σϕ has arity 0, for which the following
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is true: there is an algorithm4 that, upon input of a (σ,W)-structure A, computes in time
|A|·dO(1), where d is the degree of A, a σϕ-expansion Aϕ of A such that for all ā ∈ Ak it
holds that Aϕ |= ϕ′[ā] ⇐⇒ A |= ϕ[ā].

We prove this by decomposing FOWA1-expressions into simpler expressions that can be
evaluated in a structure A by exploring for each element a in the universe of A only a local
neighbourhood around a. This is achieved by proving a decomposition theorem that is a
generalisation of the decomposition for FOC1(P) provided in [8, Theorem 6.6], and it builds
upon the Gaifman normal form result of Theorem 4.6. Again, we defer the reader to the full
version for the details [23].

5 Learning Concepts on Weighted Structures

Throughout this section, fix a collection S of rings and/or abelian groups, an S-predicate
collection (P, ar, type, J·K), and a finite set W of weight symbols.

Furthermore, fix numbers k, ` ∈ N. Let L be a logic (e.g. FO, FOW1(P), FOWA1(P),
FOWA(P)), let σ be a signature, and let Φ ⊆ L[σ, S,W] be a set of formulas ϕ(x̄, ȳ) with
|x̄| = k and |ȳ| = `. For a (σ,W)-structure A, we follow the same approach as [3, 6, 7, 9, 22]
and consider the instance space X = Ak and concepts from the concept class

C(Φ,A, k, `) :=
{

Jϕ(x̄, ȳ)KA(x̄, v̄) : ϕ ∈ Φ, v̄ ∈ A`
}
,

where Jϕ(x̄, ȳ)KA(x̄, v̄) is defined as the mapping from Ak to {0, 1} that maps ā ∈ Ak to
Jϕ(ā, v̄)KA, which is 1 iff A |= ϕ[ā, v̄]. Given a training sequence T =

(
(ā1, b1), . . . , (āt, bt)

)
from (Ak×{0, 1})t, we want to compute a hypothesis that consists of a formula ϕ and a tuple
of parameters v̄ and is, depending on the approach, consistent with the training sequence or
probably approximately correct.

Instead of allowing random access to the background structure, we limit our algorithms to
have only local access. That is, an algorithm may only interact with the structure via queries
of the form “Is ā ∈ RA?”, “Return wA(ā)” and “Return a list of all neighbours of a in the
Gaifman graph of A”. Hence, in this model, algorithms are required to access new vertices
only via neighbourhood queries of vertices they have already seen. This enables us to learn
a concept from examples even if the background structure is too large to fit into the main
memory. To obtain a reasonable running time, we intend to find algorithms that compute
a hypothesis in sublinear time, measured in the size of the background structure. This
local access model has already been studied for relational structures in [7, 22] for concepts
definable in FO or in FOCN(P). Modifications of the local access model for strings and trees
have been studied in [3, 6].

In many applications, the same background structure is used multiple times to learn
different concepts. Hence, similar to the approaches in [3, 6], we allow a precomputation
step to enrich the background structure with additional information. That is, instead of
learning on a (σ,W)-structure A, we use an enriched (σ∗,W)-structure A∗, which has the
same universe as A, but σ∗ ⊇ σ contains additional relation symbols. The hypotheses we
compute may make use of this additional information and thus, instead of representing them
via formulas from the fixed set Φ, we consider a set Φ∗ of formulas of signature σ∗. These
formulas may even belong to a logic L∗ different from L. We study the following learning
problem.

4 with P- and S-oracles, i.e., the operations +S , ·S for S ∈ S and checking if a tuple belongs to JPK for
P ∈ P can be done in constant time by referring to an oracle that provides us with the answers
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I Problem 5.1 (Exact Learning with Precomputation). Let Φ ⊆ L[σ, S,W] and Φ∗ ⊆
L∗[σ∗,S,W] such that, for every (σ,W)-structure A, there is a (σ∗,W)-structure A∗ with
U(A∗) = U(A) that satisfies C(Φ,A, k, `) ⊆ C(Φ∗,A∗, k, `), i.e. every concept that can be
defined on A using Φ can also be defined on A∗ using Φ∗. The task is as follows.
Given a training sequence T =

(
(ā1, b1), . . . , (āt, bt)

)
∈ (Ak × {0, 1})t and, for a (σ,W)-

structure A, local access to the associated (σ∗,W)-structure A∗,
return a formula ϕ∗ ∈ Φ∗ and a tuple v̄ ∈ A` of parameters such that the hypothesis

Jϕ∗(x̄, ȳ)KA∗(x̄, v̄) is consistent with T , i.e. it maps āi to bi for every i ∈ [t].
The algorithm may reject if there is no consistent classifier using a formula from Φ on A.

Next, we examine requirements for Φ and Φ∗ that help us solve Problem 5.1 efficiently.
Following the approach presented in [7], to obtain algorithms that run in sublinear time, we
study concepts that can be represented via a set of local formulas Φ with a finite set Φ∗ of
normal forms. Using Feferman-Vaught decompositions and the locality of the formulas, we
can then limit the search space for the parameters to those that are in a certain neighbourhood
of the training sequence. Recall that Φ is a set of formulas ϕ(x̄, ȳ) in L[σ, S,W] with |x̄| = k

and |ȳ| = `. In the following, we require Φ to have the following property.

I Property 5.2. There are a signature σ∗, a logic L∗, an r ∈ N, and a finite set of r-local
formulas Φ∗ ⊆ L∗[σ∗,S,W] such that the following hold.
(1) For every (σ,W)-structure A, there is a (σ∗,W)-structure A∗ with U(A∗) = U(A) such

that, for every ϕ(x̄, ȳ) ∈ Φ, there is a ϕ∗(x̄, ȳ) ∈ Φ∗ with A |= ϕ[ā, b̄] ⇐⇒ A∗ |= ϕ∗[ā, b̄]
for all ā ∈ Ak, b̄ ∈ A`.

(2) Every ϕ∗ ∈ Φ∗ has, for every partition (z̄; z̄′) of the free variables of ϕ∗, a Feferman-
Vaught decomposition in Φ∗ w.r.t. (z̄; z̄′).

(3) For all ϕ∗1, ϕ∗2 ∈ Φ∗, the set Φ∗ contains formulas equivalent to ¬ϕ∗1 and to (ϕ∗1 ∨ ϕ∗2).

This property suffices to solve Problem 5.1:

I Theorem 5.3 (Exact Learning with Precomputation). There is an algorithm that solves
Problem 5.1 with local access to a structure A∗ associated with a structure A in time
fΦ∗(A∗) ·

(
logn+ d+ t

)O(1), where A, A∗, Φ, and Φ∗ are as described in Property 5.2, t is
the number of training examples, n and d are the size and the degree of A∗, and fΦ∗(A∗) is
an upper bound on the time complexity of model checking for formulas in Φ∗ on A∗.

We prove the theorem in Section 5.1.
Apart from exact learning with precomputation, we also study hypotheses that generalise

well in the following sense. The generalisation error of a hypothesis h : Ak → {0, 1} for a
probability distribution D on Ak × {0, 1} is

errD(h) := Pr
(ā,b)∼D

(h(ā) 6= b).

We write rat(0, 1) for the set of all rationals q with 0 < q < 1. A hypothesis class
H ⊆ {0, 1}Ak is agnostically PAC-learnable if there is a function tH : rat(0, 1)2 → N and
a learning algorithm L such that for all ε, δ ∈ rat(0, 1) and for every distribution D over
Ak × {0, 1}, when running L on a sequence T of tH(ε, δ) examples drawn i.i.d. from D, it
holds that

Pr
(

errD(L(T )) 6 inf
h∈H

errD(h) + ε

)
> 1− δ.

The following theorem, which we prove in Section 5.2, provides an agnostic PAC learning
algorithm.
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I Theorem 5.4 (Agnostic PAC Learning with Precomputation). Let A, A∗, and Φ∗ be as
in Property 5.2. There is an s ∈ N such that, given local access to A∗, the hypothesis
class H := C(Φ∗,A∗, k, `) is agnostically PAC-learnable with tH(ε, δ) = s ·

⌈
log(n/δ)

ε2

⌉
via

an algorithm that, given tH(ε, δ) examples, returns a hypothesis of the form (ϕ∗, v̄∗) with
ϕ∗ ∈ Φ∗ and v̄∗ ∈ A` in time fΦ∗(A∗) ·

(
logn+ d+ 1

ε + log 1
δ

)O(1) with only local access to
A∗, where n and d are the size and the degree of A∗, and fΦ∗(A∗) is an upper bound on the
time complexity of model checking for formulas in Φ∗ on A∗.

The next remark establishes the crucial link between the learning results of this section and
the locality results of Section 4: it shows that suitably chosen sets Φ ⊆ FOWA1(P)[σ, S,W]
indeed have Property 5.2.
I Remark 5.5. Fix a q ∈ N and let Φ := Φq,k+` be the set of all FO[σ]-formulas ϕ of quantifier
rank at most q and with free variables among {x1, . . . , xk, y1, . . . , y`}. By the well-known
properties of first-order logic, Φ has Property 5.2 (e.g. via L′ := L = FO, σ∗ := σ, and
A∗ := A; this is exactly the setting considered in [7]). By using the locality properties of
FOW1 and FOWA1 from Section 4, we can apply a similar reasoning to FOWA1(P)[σ, S,W]
as to FO[σ]: let the collections P and S be finite (but S may contain some infinite rings or
abelian groups), fix a finite set S of elements s ∈ S ∈ S, and fix a q ∈ N. Let Φ := Φq,k+`,S be
the set of all FOWA1(P)[σ, S,W]-formulas ϕ of quantifier rank and aggregation depth at most
q and with free variables among {x1, . . . , xk, y1, . . . , y`} that have the following additional
property: all symbols s ∈ S ∈ S that are present in ϕ belong to S, all W-products present in
ϕ have length at most q, and the maximum nesting depth of term constructions using rule (9)
in order to construct terms present in ϕ is at most q. This set Φ has Property 5.2. To see
why, note that up to logical equivalence, Φ only contains a finite number of formulas. For
each of these finitely many formulas ϕ, we apply Theorem 4.7 to obtain an extension σϕ of σ,
a σϕ-expansion Aϕ of A, and a local FOW1(P)[σϕ,S,W]-formula ϕ′. Then we let σ∗ be the
union of all the σϕ, we let A∗ be the σ∗-expansion of A whose σϕ-reduct coincides with Aϕ for
each ϕ, and we let Φ′ be the set of all the formulas ϕ′. Choose a number r ∈ N such that each
of the ϕ′ ∈ Φ′ is r-local. Now we can repeatedly apply Theorem 4.3, take the r-localisations
α(r), β(r) of the resulting formulas α, β, and take Boolean combinations to obtain a finite
extension Φ∗ of Φ′ such that Φ∗ satisfies statements (2) and (3) of Property 5.2 and contains
only r-local formulas (see [23] for details on this construction). This Φ∗ witnesses that
Φ := Φq,k+`,S has Property 5.2.

5.1 Exact Learning with Precomputation
Section 5.1 is devoted to the proof of Theorem 5.3.

Let A be a (σ,W)-structure and let A∗ and Φ∗ be as in Property 5.2. To prove
Theorem 5.3, we present an algorithm that follows similar ideas as the algorithm presented
in [7]. Note, however, that [7] focuses on first-order logic, whereas our setting allows to
achieve results for considerably stronger logics.

While the set of possible formulas Φ∗ already has constant size, we have to reduce the
parameter space to obtain an algorithm that runs in sublinear time. Since the formulas in
Φ∗ are r-local, we show that it suffices to consider parameters in a neighbourhood of the
training sequence with a fixed radius.

For S ⊆ A and an element b ∈ A, let distA
∗
(b, S) := mina∈S distA

∗
(b, a). For R > 0,

set NA∗R (S) :=
⋃
a∈S N

A∗
R (a). Also, for a training sequence T =

(
(ā1, b1), . . . , (āt, bt)

)
∈

(Ak × {0, 1})t, let NA∗R (T ) := NA
∗

R (S), where S is the set of all a ∈ A that occur in one of
the āi.
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1: N ← NA
∗

(2r+1)`(T )
2: for all v̄∗ ∈ N ` do
3: for all ϕ∗(x̄, ȳ) ∈ Φ∗ do
4: consistent← true
5: for all i ∈ [t] do
6: N = NA∗r (āiv̄∗)
7: if Jϕ∗(āi, v̄∗)KN 6= bi then
8: consistent← false
9: if consistent then

10: return (ϕ∗, v̄∗)
11: reject

1: N ← NA
∗

(2r+1)`(T )
2: errmin ← |T |+ 1
3: for all v̄∗ ∈ N ` do
4: for all ϕ∗(x̄, ȳ) ∈ Φ∗ do
5: errcur ← 0
6: for all i ∈ [t] do
7: N = NA∗r (āiv̄∗)
8: if Jϕ∗(āi, v̄∗)KN 6= bi then
9: errcur ← errcur + 1

10: if errcur < errmin then
11: errmin ← errcur
12: ϕ∗min ← ϕ∗

13: v̄∗min ← v̄∗

14: return (ϕ∗min, v̄
∗
min)

Figure 1 Learning algorithms for Theorems 5.3 (left) and 5.4 (right). Both algorithms use as
input a training sequence T =

(
(ā1, b1), . . . , (āt, bt)

)
∈ (Ak × {0, 1})t and have only local access to

the structure A∗.

I Lemma 5.6. Let T =
(
(ā1, b1), . . . , (āt, bt)

)
∈ (Ak × {0, 1})t be consistent with some

classifier in C(Φ∗,A∗, k, `). Then there are a formula ϕ∗(x̄, ȳ) ∈ Φ∗ and a tuple v̄∗ ∈
NA

∗

(2r+1)`(T )` such that Jϕ∗(x̄, ȳ)KA∗(x̄, v̄∗) is consistent with T .

The proof can be found in [23]. It is similar to the proof of the analogous statement in [7]
for the special case of FO, but relies on Property 5.2. We can now prove Theorem 5.3.

Proof of Theorem 5.3. We show that the algorithm depicted on the left-hand side of Figure 1
fulfils the requirements given in Theorem 5.3. The algorithm goes through all tuples
v̄∗ ∈ (NA∗(2r+1)`(T ))` and all formulas ϕ∗(x̄, ȳ) ∈ Φ∗. A hypothesis Jϕ∗(x̄, ȳ)KA∗(x̄, v̄∗) is
consistent with the training sequence T if and only if Jϕ∗(āi, v̄∗)KA

∗ = bi for all i ∈ [t]. Since
Φ∗ only contains r-local formulas, this holds if and only if Jϕ∗(āi, v̄∗)KN

A∗
r (āiv̄

∗) = bi for
every i ∈ [t]. Hence, the algorithm only returns a hypothesis if it is consistent. Furthermore,
if there is a consistent hypothesis in C(Φ,A, k, `), then by Property 5.2 (1), there is also a
consistent hypothesis in C(Φ∗,A∗, k, `), and Lemma 5.6 ensures that the algorithm then
returns a hypothesis.

It remains to show that the algorithm satisfies the running time requirements while only
using local access to the structure A∗. For all ā ∈ Ak and v̄∗ ∈ A`, we can bound the size of
their neighbourhood by

∣∣NA∗r (āv̄∗)
∣∣ 6 (k + `) ·

∑r
i=0 d

i 6 (k + `) · (1 + dr+1). Therefore, the
representation size of the substructure NA∗r (āv̄∗) is in O

(
(k + `) · dr+1 · logn

)
. Thus, the

consistency check in lines 4–8 runs in time fΦ∗(A∗) · t ·O
(
(k+ `) ·dr+1 · logn

)
. The algorithm

checks up to |N |` · |Φ∗| ∈ O
(
(tkd(2r+1)`+1)` · |Φ∗|

)
hypotheses with N = NA

∗

(2r+1)`(T ).
All in all, since k, `, r are considered constant, the running time of the algorithm is in
fΦ∗(A∗) · (logn+ d+ t)O(1) and it only uses local access to the structure A∗. J

5.2 Agnostic PAC Learning with Precomputation
Section 5.2 is devoted to the proof of Theorem 5.4.
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To obtain a hypothesis that generalises well, we follow the Empirical Risk Minimization
rule (ERM) [19, 24], i.e. our algorithm should return a hypothesis h that minimises the
training error

errT (h) := 1
|T | · |{(ā, b) ∈ T : h(ā) 6= b}|

on the training sequence T . To prove Theorem 5.4, we use the following result from [19].

I Lemma 5.7 (Uniform Convergence [19]). Let H be a finite class of hypotheses h : Ak → {0, 1}.
Then H is agnostically PAC-learnable using an ERM algorithm and

tH(ε, δ) :=
⌈

2 log(2 |H| /δ)
ε2

⌉
.

Proof of Theorem 5.4. We show that the algorithm depicted on the right-hand side of
Figure 1 fulfils the requirements from Theorem 5.4. The algorithm goes through all tuples
v̄∗ ∈ (NA∗(2r+1)`(T ))` and all formulas ϕ∗(x̄, ȳ) ∈ Φ∗ and counts the number of errors that
Jϕ∗(x̄, ȳ)KA∗(x̄, v̄∗) makes on T . Then it returns the hypothesis with the minimal training
error.

Since Φ∗ and A` are finite, H = C(Φ∗,A∗, k, `) is finite. Thus, using Lemma 5.7, H is
agnostically PAC-learnable with tH(ε, δ) =

⌈
2 log(2|H|/δ)

ε2

⌉
6
⌈

4` log(|Φ∗|) log(n/δ)
ε2

⌉
. The

running time analysis works as in the proof of Theorem 5.3. The algorithm returns a
hypothesis in time fΦ∗(A∗) · (logn+d+ t)O(1). For a training sequence of length t = tH(ε, δ),
we obtain a running time in fΦ∗(A∗) ·

(
logn+ d+ log(1/δ) + 1/ε

)O(1). J

6 Putting Things Together

Let the collections P and S be finite (but S may contain infinite rings or abelian groups),
fix a finite set S of elements s ∈ S ∈ S, fix a q ∈ N, and let Φ := Φq,k+`,S be the set of
FOWA1(P)[σ, S,W]-formulas defined in Remark 5.5. Let Φ∗, σ∗, and A∗ (for all (σ,W)-
structures A) be as described in Remark 5.5. By Theorem 4.7, A∗ can be computed from
A in time |A|·dO(1), where d is the degree of A. By Remark 5.5, the formulas in Φ∗ are
r-local for a fixed number r, and this implies that model checking for a formula in Φ∗ on A∗
can be done in time polynomial in d. Combining this with Theorems 5.3 and 5.4 yields the
following5.

I Theorem 6.1. Let n and d denote the size and the degree of A.
(1) There is an algorithm that solves Exact Learning with Precomputation for Φ and Φ∗ with

local access to a structure A∗ associated with a structure A in time (logn+ d+ t)O(1),
where t is the number of training examples.

(2) There is an s ∈ N such that, given local access to a structure A∗ associated with a
structure A, the hypothesis class H := C(Φ∗,A∗, k, `) is agnostically PAC-learnable with
tH(ε, δ) = s·

⌈
log(n/δ)

ε2

⌉
via an algorithm that, given tH(ε, δ) examples, returns a hypothesis

of the form (ϕ∗, v̄∗) with ϕ∗ ∈ Φ∗ and v̄∗ ∈ A` in time
(

logn+ d+ 1
ε + log 1

δ

)O(1) with
only local access to A∗.

Additionally, the algorithms can be chosen such that the returned hypotheses can be evaluated
in time (logn+ d)O(1).

5 All mentioned algorithms are assumed to have P- and S-oracles, so that operations +S , ·S for S ∈ S and
checking if a tuple is in JPK for P ∈ P takes time O(1).
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We conclude with an example that illustrates an application scenario for Theorem 6.1.

I Example 6.2. Recall the (σ,W)-structure A for the online marketplace from part (a) of
Examples 3.1, 3.2, and 3.6. Retailers can pay the marketplace to advertise their products to
consumers. Since the marketplace demands a fee for every single view of the advertisement,
retailers want the marketplace to only show the advertisement to those consumers that are
likely to buy the product. One possible way to choose suitable consumers is to consider
only those who buy a variety of products from the same or a similar product group as the
advertised product and who are thus more likely to try new products that are similar to the
advertised one. At the same time, the money spent by the chosen consumers on the product
group should be above average.

In the previous examples, we have already seen a formula ϕspending(c) that defines
consumers who have spent at least as much as the average consumer on the product group.
The formula depends on a formula ϕgroup(p) that defines a certain group of products based
on the structure of their transactions. Due to the connection between graph neural networks
and the Weisfeiler-Leman algorithm described in [16], we may assume that there is a formula
in FO[σ] that at least roughly approximates such a product group. Likewise, we might
assume that there is a formula ϕvariety(c) in FO[σ] that defines consumers with a wide variety
of products bought from a specific product group. However, it is a non-trivial task to design
such formulas by hand. It is even not clear whether there exist better rules for finding
suitable consumers. Meanwhile, we can easily show the advertisement to consumers and then
check whether they buy the product. Thus, we can generate a list with positive and negative
examples of consumers. Since the proposed rule can be defined in FOWA1(P)[σ, S,W] as
ϕadvertise(c) := (ϕvariety(c) ∧ ϕspending(c)), we can use one of the learning algorithms from
Theorem 6.1 to find good definitions for ϕvariety(c) and ϕgroup(p) or to learn an even better
definition for ϕadvertise(c) in FOWA1(P)[σ, S,W] from examples.

We believe that our results can be generalised to an extension of FOWA1 where con-
structions of the form P(t1, . . . , tm) are not restricted to the case that |V | = 1 for V :=
free(t1)∪· · ·∪ free(tm), but may also be used in a guarded setting of the form

(
P(t1, . . . , tm)∧∧

v,w∈V dist(v, w)6 r
)
. It would also be interesting to study non-Boolean classification prob-

lems, where classifiers are described by S-terms defined in a suitable fragment of FOWA. We
plan to do this in future work.
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