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Previous studies demonstrated that melting, initiated by supercritical fluids in the 375-400 °C range, occurred as
part of anthracite metamorphism in the Appalachian Basin. Based on the known behavior of vitrinite at high tem-
peratures and, to a lesser extent, at high pressures, it was determined that the duration of the heating, melting,
and resolidification event was about 1 h. In the current study, featureless vitrinite within banded maceral assem-

blages demonstratesthe intimate association of melted and resolidified vitrinite with anthracite-rank macerals.

Handling Editor: M. Santosh

By analogy with metamorphosed inorganic rocks, such associations represent diadysites and embrechites,

i.e.,, cross-cutting and layered migmatites, respectively. Even though the temperature of formation of the anthra-
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cite structures is several hundred °C lower than that seen in metamorphosed inorganic rocks, anthracites are
metamorphic rocks and the nomenclature for metamorphic rocks may be appropriate for coal.
© 2020 Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

While there have been many attempts to correlate mineral and
maceral metamorphic parameters, Kisch (1987) noted that the accuracy
of the parameters and refinement of the correlations is limited by the
nature of the starting materials and many other factors including, but
not limited to, oxidation conditions, supply of cations, SiO, supersatura-
tion, permeability and porosity of rocks, partial pressure of CO,, changes
in the composition of interstitial solutions with time, persistence of non-
equilibrium mineral assemblages,and the selection of theappropriate
vitrinite type for reflectance measurements. Basically, as the “coalifica-
tion experiment” was run several hundred million years ago (in the
case of the Pennsylvania anthracites), it cannot be replicated by exper-
imental heating and in most, if not all cases, there are more variables
than can be reliably defined. Therefore, not only is it difficult to relate
structural and textural characteristics of high maturity coals to those
present in metamorphic rocks, it is even more difficult to interpret tex-
tural similarities in anthracite and those in metamorphic rocks in terms
of temperature and pressure conditions. Considering that organic mat-
ter is more sensitive to metamorphic processes than minerals, the ques-
tion remains whether metamorphic rock terminology can be applied to

* Corresponding author.
E-mail address: james.hower@uky.edu (J.C. Hower).
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high maturity coals in cases where structural and textural features re-
semble closely those in metamorphic rocks.

Metamorphic and tectonic structural techniques and nomenclature
(after Ramsay, 1967; Spry, 1969; Bucher and Grapes, 2011) have been
applied to high to low volatile bituminous coals in western Pennsylva-
nia by Hower (1978) and Zhang and Davis (1993); to an anthracite
from a mine in the Southern Anthracite field, Pennsylvania by Hower
(1978) and Hower and Davis (1981); to semi-anthracite- and
anthracite-rank coals in the Pennsylvania Anthracite fields by Levine
and Davis (1989a); to medium and low volatile coals in the Broad Top
coalfield, Pennsylvania by Levine and Davis (1989b); and to several lo-
cations in Alberta and British Columbia by Kalkreuth et al. (1990) and
Langenberg and Kalkreuth (1991). At a very fine scale, the occurrence
of nanotubes in anthracites and meta-anthracites with R,,x> 5% is a re-
flection of the metamorphic temperatures and pressures (Silva et al.,
2020). A similar mechanism was noted in anthracites intruded by igne-
ous rocks (Lietal., 2017), but the Silva et al. (2020) discovery appears to
be the first for regionally metamorphosed coals.

The theories on metamorphic events in the Pennsylvania Anthracite
Fields and, indeed, elsewhere in the Appalachians and beyond, evolved
from traditional views of the imposition of coal rank by folding pres-
sures (White, 1925; Turner, 1934), a view that persisted at least to the
work of Wood et al., 1969 despite Teichmiiller and Teichmiiller's
(1966) advocacy for the influence of geothermal heating. In contrast,

1674-9871/© 2020 Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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more recent works emphasize the static influence of heating at depths
of several kilometers accompanying the folding (Hower, 1978; Hower
and Davis, 1981; Levine, 1983, 1986; Levine and Davis, 1989a, b;
Roden and Miller, 1989; Kisch and van den Kerkhof, 1991; Hulver,
1997; Faill, 1998)'and/or the influence of hydrothermal fluids
(Gresley, 1896; Reeves, 1928; Oliver, 1986, 1992; Juster et al., 1987;
Daniels and Altaner, 1990; Daniels et al., 1990, 1994, 1996; Hower
et al.,, 1993; Hower, 1997, 2013; Hower and Gayer, 2002; Harrison
et al., 2004; Ruppert et al., 2010; Ruppert et al., 2014). Higher vitrinite
reflectances in the Pennsylvanian anthracites (Ruppert et al., 2010)
compared to those in the underlying Devonian black shales (Repetski
et al., 2008) suggest that hydrothermal fluids might have preferentially
flowed through the Pennsylvanian rocks rather than the Devonian
rocks. Coal, however, records higher reflectance than vitrinite in associ-
ated clastic sediments around the same intrusive body (Quaderer et al.,
2016). Based on the above observations, it is hypothesized thatthe esti-
mated peak temperature ranged from 200 °C for the semi-anthracites in
the western portion of the coalfield (Levine, 1983; Nickelsen, 1983) to
260-275 °C in the higher-rank, eastern basins (Eastern Middle Field
and the eastern end of the Southern Field) (Juster et al., 1987; Daniels
and Altaner, 1990). Fluid inclusion (Nickelsen, 1983; Kisch and van
den Kerkhof, 1991) and apatite fission-track data (Roden and Miller,
1989; Blackmer, 1992; Blackmer et al., 1994) support these temperature
estimates.

In Pennsylvania anthracite, based on extant maceral and resolidified
thermoplastic vitrinite evidence, Hower et al. (2019) estimated that
melting and resolidification of the high volatile C or B bituminous
vitrinite occurred at 375 °C<T<400 °C at a depth of at least 1-km over
a time span of about an hour. Hot fluids, perhaps in a supercritical
state, drove the metamorphism,emphasizing the interplay of tempera-
ture and pressure in metamorphism. The heating certainly persisted
after the coal solidified, so overall, the extent of the metamorphic
event would have been longer than an hour given the amount of time
necessary for cooling from the high-300 °C temperature range to the
ambient temperature (unknown, but certainly somewhat lower than
the peak metamorphic temperature). Clearly, temperatures close to
the peak metamorphic temperatures should be more influential in
coal rank advancement than the subsequent lower temperatures, so
the entire heating and cooling time span is less important than the
time near the peak temperature (Hood et al., 1975). For example,
Barker (1991) argued that the duration of heating could be a poor pre-
dictor of the vitrinite reflectance under some conditions.

Complex heating events like those discussed above often result in
unusual textures in anthracites and natural cokes. In this study, the ap-
plicability of igneous/metamorphic nomenclature to coal textures is
discussed by way of examples from the Pennsylvanian-age Pennsylva-
nia Anthracite Fields (specifically the Buck Mountain coal vein? from
Schuylkill County) and Narragansett Basin (Rhode Island) meta-
anthracite fields, fire-altered Pennsylvanian coal from Alabama, and ig-
neous intrusion-altered coals from North Carolina and Virginia (both
Triassic) and KwaZulu-Natal, South Africa (Permian). It is noted that if
metamorphic terminology is applied to coal textural features, it is very
important to address temperature and pressure conditions responsible
for their formation in comparison to the formation of similar textures
in the higher temperature, about 630-800 °C, rock metamorphic
regime.

! In an example from outside of the Anthracite Fields, Hower and Wild (1994) noted
that Jurassic coals (continental slope offshore New Jersey) had high volatile A
reflectancesat current sediment depths of 3.5 to 3.9 km, emphasizing the role of tectonic
history in determining the coal rank. The Jurassic coals were deposited in a rift basin, ini-
tially near a spreading ocean ridge; a passive margin, not an orogenic belt as with the An-
thracite Fields.

2 The convention in the Pennsylvania Anthracite Fields has been to refer to coal beds as
veins.
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2. Methods

Samples of the Pennsylvanian Buck Mountain vein from a mine in
western Schuylkill County, Pennsylvania, were examined. The epoxy-
bound pellets were made from the broken remnants, generally >1-
mm size, of a 5 cm x 5 cm block sample that had been subjected to
strength testing and from a 1-mm-thick oriented wafer prepared for
thermal testing (Weisenberger et al., 2020). As such, the maceral com-
position and chemistry of the test pellets are not representative of the
whole coal. Both pellets were prepared to a final 0.05-pm alumina slurry
polish. All other samples cited in the study were previously prepared for
other studies.

Reflectance measurements were taken on epoxy-bound particulate
pellets using a 50x, reflected-light, oil-immersion objective utilized in-
coming light polarized at 45°. The reflected light passed across a grating
monochrometer set at 547 nm on the path to the photomultiplier tube.
Random reflectance was determined from the average of orthogonal
measurements in the same area in which the maximum reflectance rep-
resents the maximum reading following a rotation of the stage.

Photographs were taken with a Diagnostics Instruments Spot Insight
CMOS 5 MP camera on a LeitzOrthoplan microscope using a 50x, oil-
immersion, reflected-light objective and crossed polars with and with-
out a wavelength plate.

3. Results and discussion
3.1. Evidence from previous studies

Hower et al. (2019), based on the observed textures of the macerals
in the coals, discussed melted and resolidified coal in Pennsylvania an-
thracites and intruded coals from Illinois, Colorado, Antarctica, and
South Africa. As a summary of such textural changes, Fig. 1 shows
some examples from markedly different types of coal metamorphism,
all converging on some common features. Fig. 1A and B show examples
of pyrolytic carbon in Pennsylvania anthracite. Much like some of the
examples discussed in Hower et al. (2019), the vitrinite at the top of
Fig. 1B apparently had melted. Goodarzi and Cameron (1989; their fig.
5), in an example from the Cretaceous Telkwa coalfield, British Colum-
bia, and Sudrez-Ruiz et al. (2006; their fig. 2, photo 3), in an example
from a late Westphalian Pefiarroya Basin anthracite, show featureless
vitrinite with devolatilization vacuoles. The latter two examples
(Goodarzi and Cameron, 1989; Suarez-Ruiz et al., 2006), the three im-
ages from Fig. 10 of Hower et al. (2019), and the example in Fig. 1B
(and possibly Fig. 1A) of this paper are all embrechites, or layered
migmatites (after Spry, 1969).

Pyrolytic carbon occurs along the edges of the brecciated fragments
in Fig. 1C. Fig. 1C and D shows mosaic structures in Rhode Island
meta-anthracites. Li et al. (2018, 2019) identified similar features as mi-
crocrystalline graphite in their study of a Hunan, China, Carboniferous-
age coal altered by a granitic pluton. In addition, a meta-anthracite of
unknown age and location, appears to have a sub-micron granularity
(mosaic structure) in the vitrinite (Fig. 2; Kenyon et al., 2021 in review).

The Mulga, Alabama, coal, collected from a burning coal-
beneficiation-reject pile, shows structures associated with melting and
coking (Fig. 3A and B; from unpublished work by Hower). The Triassic
natural cokes from North Carolina (Fig. 3C) and Virginia (Fig. 3D)
show the mosaic structure associated with the repolymerization of a
melted vitrinite into a semicoke (Gray and DeVanney, 1986; Hower
and Lloyd, 1999). Fig. 3D, from the Triassic Richmond (Virginia) Basin,
illustrates an example of a coke in close association with anthracite-
rank vitrinite; in this case, the liquid vitroplast migrated through frac-
tures and/or void spaces, perhaps associated with the fusinite, and
repolymerized adjacent to vitrinite. Based on the nature of the coke,
the pre-heating vitrinite was likely high volatile bituminous rank.
Coke adjacent to inertinite and, possibly, vitrinite is shown in examples
from Permian KwaZulu-Natal, South Africa, coal (Fig. 3 E,F). Vitrinite
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Fig. 1. Examples of thermoplastic and coke-like structures in coals: (A) Pyrolytic carbon (pc), vitrinite (v), and inertinite (i) in Schuylkill County, Pennsylvania, Pennsylvanian anthracite
(sample supplied by Blaschak Coal; Hower et al., 2017). Image 94000 01. Scale = 50 pm. (B) Pyrolytic carbon (pc) with vitrinite (v) and inertinite (i) in Luzerne County, Pennsylvania,
Pennsylvanian anthracite (sample supplied by Blaschak Coal). Image 94037 15. Scale = 50 um. (C) Fine mosaic (m) structure in Cranston, Rhode Island, Pennsylvanian meta-
anthracite. Scanned image (10,260 Cranston) from picture donated to Hower by Ralph Gray in conjunction with the writing of Hower et al. (1993). Scale not known. The coal rank of
the Cranston meta-anthracite was discussed by Quinn and Glass (1958) and Kisch (1974c). (D) Mosaic structure (m) in Rhode Island Pennsylvanian meta-anthracite. Scanned image

(9350 6 Rhode Island) from picture donated to Hower by Ralph Gray in conjunction with the writing of Hower et al. (1993). Scale not known. Skehan et al. (1982) summarized the
geologic setting of this sample and the Fig. 1C sample.

Fig. 2. Sub-micron mosaic (m) structure in vitrinite from the North Carolina site of the 1718 Queen Anne's Revenge shipwreck (Kenyon et al., 2021, in review). The meta-anthracite, with
7.5% Rmax, Was likely from a U.S. Navy ship in the late-19th /early-20th century, and, thus, might be from the Pennsylvania Anthracite Fields.As a domestically produced smokeless fuel,
Pennsylvania anthracite was a common fuel source used by the U.S. Navy at that time; therefore, the co-location with a 1700's shipwreck is coincidental. Image CCA 04 14. Scale = 50 pm.
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100 pm

50 pm

Fig. 3. (A) Fine mosaic (m) structure in heated (originally) Pennsylvanian high volatile A/medium volatile bituminous vitrinitefrom Mulga, Alabama (sample collected by Hower; site
discussed by Kolker et al., 2009). Inertinite (i) and vitrinite (v) are also shown. Image Mulga 04. Scale = 25 um. (B) Thin bands of pyrolytic carbon (pc) and devolatilization vacuoles
(dv) in Pennsylvanian heated (originally) high volatile A/medium volatile bituminous vitrinite from Mulga, Alabama (sample collected by Hower; site discussed by Kolker et al., 2009).
Image Mulga BW 10. Scale = 100 pm. (C) Mosaic structure (m) and inertinite (i) in natural coke from the Egypt mine, Triassic Deep River basin, Lee County, North Carolina (region
discussed by McArver, 2006; also see: http://www.ncmarkers.com/Markers.aspx?sp=search&k=Markers&sv=H-41). Image Vandy 683 15. Scale = 50 um. (D) Mosaic structure
(m) after thermoplastic vitrinite adjacent to inertinite (i) and anthracite-rank vitrinite (v) in Triassic coal from Richmond Basin, Virginia (Hower, 2014). Image Vandy 675 02. Scale =
25 pm. (E) Vesiculated mosaic coke (m) with inertinite (i). KwaZulu-Natal, South Africa. Image 69763 14. Scale = 25 pm. (F) Inertinite (i) and a semifusinite/vitrinite (sf/v) with coke
(c). KwaZulu-Natal, South Africa. Image 69763 18. Scale = 25 pum.

occurs adjacent to coke in the same coal (fig. 12C of Hower et al. 3.2. Evidence for melting of vitrinite
(2019)). Given the timing of melting of vitrinite and the

repolymerization as a coke,on the order of one hour, even if the cokes The coal sample examined in this study, an anthracite (Ryax 5.30%
illustrated above did not form in situ, they did not flow far from their and Riandom 4.51%) from the Buck Mountain vein, Western Middle
melting point prior to resolidification. Anthracite Field, Schuylkill County, Pennsylvania, has poor to

Fig. 3 (continued).
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50 pm

Fig. 4. Portion of the Buck Mountain vein with areas of banded vitrinite (v) and inertinite (i) and contiguous areas of poor to non-existent banding. Composite image 8689 s 08 with inset

image 8689 s 08d. Scale = 50 um on both the composite and inset images.

non-existent banding flankinga region with clearly banded coal (Fig. 4).
Inertinite is the best indicator of the vague traces of banding in the ad-
jacent “poor to non-existent banding” region. In terms of migmatites,
this is a diadysite structure, a cross-cutting migmatite (after Spry,
1969). Anisotropy in anthracitic vitrinite is common when the vitrinite
is deformed around a mineral or harder maceral (inertinite) (see Fig. 5).
While the contrast seen in Fig. 5 is a function of the deformation stress
associated with the mineral band (clay) at the bottom of the composite
image, this does not appear to be the case in the Fig. 4 example, as both
the composite and inset views show that the anisotropy-related change

| S—}
50 pm

Fig. 5. Inertinite (i) in vitrinite (v). Note the differences in brightness between points
where the curved inertinite in intruding into the vitrinite (broad arrows) compared to
the opposite points of no intrusion (narrow arrow) and minimal intrusion
(intermediate-width arrow). For discussions of similar phenomena in non-coal
metamorphic rocks, see Spry (1969). Anthracite, with 5.75% Rpax, is from the Queen
Anne's Revenge site (see discussion with Fig. 2 caption). Image CCA 03 04. Scale = 50 pm.

in reflectance of the vitrinite occurs within the “poor resolution of
banding” area in the inset.

Fig. 6, along with the enlargements of select areas of the composite
view (Fig. 7A-C), shows an area between the two inertinites with
even clearer signs of the loss of banding and of the presence of pyrolytic
carbon along one side of the latter feature and in one of the inertinite
grains (Fig. 6).The area of interest, the proposed diadysite migmatite
texture (after Spry, 1969), is a featureless vitrinite lodged between
two inertinite grains about 300-um apart (Fig. 7A-C). In this view, the
left side of the featureless vitrinite has pyrolytic carbon along its edge,
extending more than 100 pm into the otherwise unaltered vitrinite (in
part on Fig. 7A with the entire length shown on Fig. 6). In Fig. 7C, the py-
rolytic carbon extends along fractures in the inertinite. Fig. 7A-C shows
the fine, micron-scale details of the pyrolytic carbon.

This isotropic coke apparently formed consequent to the heating and
melting of the high volatile C/B bituminous vitrinite. As per the discus-
sions of Hower et al. (2019), the estimation of the original rank of the
melted coal is constrained by the lack of mesophase in the thermoplas-
tic vitrinite. This is in contrast to the original higher bituminous rank,
perhaps high volatile A to medium volatile, as inferred from the possible
mesophase structure,of theprecursors of the Narragansett Basin
vitrinite (Fig. 1C,D); the Lee County, North Carolina, coke (Fig. 3C);
and the Mulga vitrinite (Fig. 3A,B). The presence of pyrolytic carbon,
both in vitrinite porosity and at edge of melt zone, and in fractures in
inertinite suggests a gas phase associated with the Anthracite Field
melting event (after de Sousa, 1978; Goodarzi, 1985; Goodarzi et al.,
1992).

The mechanisms discussed by Hower et al. (2019) and in this paper
represent ephemeral events. In coals, short-duration events such as this
heating, melting, and resolidification over the course of about 1 h at a
melting temperature of 375-400 °C (Hower et al., 2019), require higher
temperatures than in regional metamorphism. Mineral-based tempera-
ture estimates of short-term events in coals are problematical; indeed,
Kisch (1987) suggested that the “no time influence” model of Price
and Barker (1985) over-estimated the metamorphic temperature in-
ferred from the mineral assemblages (Fig. 8). This could explain why
the projected temperatures exceed the mineral-based estimates by
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Featureless
vitrinite

Fig. 6. Portion of the Buck Mountain vein with large inertinite grains, banded vitrinite, and areas of poor to non-existent banding (“featureless vitrinite”) between and above the inertinite.
The areas for Figs. 7a to 7C are indicated. Composite image 8689 t 04. Scale = 50 pm.
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Fig.7. (A) Inertinite, normal banding, featureless vitrinite, and pyrolytic carbon. Image 8689 t 04d. Scale = 50 pm. (B) Inertinite, normal banding, featureless vitrinite, and pyrolytic carbon.
A portion of one inertinite fragment is visible beneath this veneer of vitrinite. Image 8689 t 04c. Scale = 50 um. (C) Inertinite, normal banding, featureless vitrinite, and pyrolytic carbon.
Some of the pyrolytic carbon is present in fractures in the inertinite. Composite image 8689 t 04b and 4a. Scale = 50 pum.



J.C. Hower, S.M. Rimmer, M. Mastalerz et al.

Metamorphic| Rank Runax (%) | Minerals : © :
zone -+ 50 — ! E‘: 1
1 o
, . oea 020 T e = |
Diagenesis Lignite o) Q 1
0.38 =]
100 —| | Subbit. 3] 1 @ P l
.. .1 0.60 Illite + Smectite (I/S) 100 — g H L ., 1
High vol G Lo I
Epigenesis j 1.10 . ! oo
Medium vol T Kaolinite s g L
150 — Lowvol | . No pyrophyllite T > !
o 170 — Semi-anth 209 150 & &
o 3 7 5 =] Nk N 0 Q
~ . 2.70 Pyrophyllite, allevardite, (%) 0 1 A=
) Anthracite . 3 = 1 1 1 =)
] 5.50 paragonite, phengite ' 2 =
2 250 g 1 p=t @ 8 ©
S Anchizone Hlctes ’ e o ! =] = o= e
o Anthracite No random illite/ —8 - Z 5 M
g" 300 — montmorillonite mixed 200 — SIS 1 : s o 2
38 layers or clastic biotite e . o = S >
%) 2 & = 2
= { K-Feldspar + chlorite =5 A = o
. g = M ol =
[ Chlorite .S , 250 s < a
Q = =
g 400 5 | 5 1 =
S = Biotite + muscovite =
§ Biotite & < e
O Muscovite + chlorite :
[ 300 —
500 —| Garnet Garnet + biotite
Muscovite + gamet
il 350
£60i Staurolite Graphite Staurolite + biotite

Geoscience Frontiers 12 (2021) 101122

Fig. 8. Metamorphic zones, coal rank, approximate vitrinite maximum reflectance (Rmax %), and some of the diagnostic mineral transitions and assemblages (after Kisch, 1974c, 1990). Key:
Subbit. - subbituminous; High vol - high volatile bituminous; Medium vol - medium volatile bituminous; Low vol - low volatile bituminous; Semi-anth. - semi-anthracite. Mineral
diagenesis diagram (on right; after Pollastro (1990) as modified after Hoffman and Hower (1979)) showing temperature ranges of common clays and I/S in diagenetic and low-grade
metamorphic settings. Note: Solid ovals denote approximate phase-limiting or phase-transitional temperatures.

100 °C or more. Neither the mineral- or maceral-thermoplasticity-based
estimate is necessarily inaccurate, they are just developed for distinctly
different materials; the mineral-based changes would not have hap-
pened within the time interval of the heat pulse necessary to influence
the macerals. While the melting of the vitrinite and the alteration of
the megaspores (as per Hower et al., 2019) may have been initiated by
supercritical fluids in the 375-400 °C range, the overall metamorphic
push to anthracite rank would have been the result of the lingering ther-
mal effect of the event (or multiple thermal events). Even at 1-km depth,
the minimum necessary for the stability of supercritical fluids, the heat
would have lingered long enough to significantly influence coal rank.

4. Summary

Coal, specifically the vitrinite in bituminous coals, can undergo melt-
ing from 375 °C to 400 °C and resolidification in the mid-400 °C range or
in about an hour, even if the temperature does not reach the mid-
400 °C's. The textures associated with this phenomenon are best de-
scribed by nomenclature usually reserved for igneous and metamorphic
rocks.

The textures seen in Fig. 5, and to a lesser extent in Fig. 3, are
diadysites (after Spry, 1969), a crosscutting migmatite. In contrast, the
Fig. 1A (this paper) and Hower et al.'s (2019) fig. 10C varieties would
be embrechites (after Spry, 1969), or layered migmatites. The texture
of coal versus gneiss/granite, in this case, is independent of the temper-
ature, just as the rock type (meaning sedimentary/metamorphic/igne-
ous) is fundamentally independent of the distinction between
macerals versus minerals.

Neither the temperature of formation nor the basic composition of
the rock should disqualify the adoption of an appropriate term from an-
other geology discipline, in this case from metamorphic petrology to
coal geology. Particularly since anthracites are the temperature equiva-
lent of, at least, low-grade metamorphic rocks (Kisch, 1974a-c), meta-
morphic petrology nomenclature is appropriate for the description of

high-rank coals. In the settings examined here, the temperature in-
crease not only initiated the melting of the vitrinite, but it also contrib-
uted to the increase in coal rank from high volatile C/B bituminous at the
onset of the metamorphic event to the anthracite rank now seen in
the coal.
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