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Abstract

We relate two formalisms recently proposed for describing classical integrable field

theories. The first (Costello and Yamazaki in Gauge Theory and Integrability, III,

2019) is based on the action of four-dimensional Chern–Simons theory introduced

and studied by Costello, Witten and Yamazaki. The second (Costello and Yamazaki,

in Gauge Theory and Integrability, III, 2017) makes use of classical generalised Gaudin

models associated with untwisted affine Kac–Moody algebras.

Keywords Four-dimensional Chern–Simons · Hamiltonian formalism · Dirac

bracket · Non-ultralocality · Affine Gaudin models

Mathematics Subject Classification 17B80 · 70S15 · 70S05

1 Introduction and summary

It was shown by Costello [11,12], and further developed recently in [13,14,48] by

Costello, Witten and Yamazaki that various integrable lattice models can be understood

as originating from a four-dimensional variant of Chern–Simons theory on the product

M := �×C of a real two-dimensional manifold � and a Riemann surface C equipped

with a non-vanishing meromorphic 1-form ω. It was also recently shown in [8] that

integrable lattice models with boundaries can be accounted for by putting the gauge

theory on an orbifold (� × C)/Z2.

Very recently in [15], Costello and Yamazaki extended this approach to describe

also integrable field theories on �, with spectral plane C , by starting from the same

variant of Chern–Simons theory on � × C as in [11–14,48].

The purpose of this note is to show that the framework of [15] is intimately related to

the description of classical integrable field theories that we proposed in [47], which is

based on Gaudin models associated with untwisted affine Kac–Moody algebras. Since
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the latter underlies a number of important conjectures and problems in both mathe-

matics and mathematical physics, including the ODE/IM correspondence [25], the

problem of non-ultralocality [47] and the formulation of a geometric Langlands cor-

respondence over complex surfaces, establishing its connection to 4D Chern–Simons

theory is likely to provide deep insights into these difficult problems.

In order to explain this connection in more detail, we first recall how the gauge

theory on � × C is defined more explicitly.

For concreteness, we shall let � = R × S1 with global coordinates (τ, σ ) and let

C = CP1 be the Riemann sphere with holomorphic coordinate z on C = CP1 \ {∞}.

We also fix a choice of meromorphic differential ω on CP1 which can be expressed

in coordinates as
ω = ϕ(z)dz,

where ϕ is a meromorphic function on CP1. As noted in [15], in order to be able to

describe a broad family of classical integrable field theories it is crucial in the present

context to allow ω to have zeroes.

Let g be a semisimple Lie algebra over C and 〈·, ·〉 : g×g → C be a non-degenerate

invariant symmetric bilinear form on g. We extend it to a symmetric bilinear pairing

〈·, ·〉 : g ⊗ �p(M) × g ⊗ �q(M) → �p+q(M).

The bulk action functional of four-dimensional Chern–Simons theory introduced

and studied in [11–15,48], for a g-valued 1-form A on M , reads

Sbulk[A] =
i

4π

∫

�×CP1
ω ∧ C S(A), C S(A) :=

〈
A, d A +

2

3
A ∧ A

〉
. (1.1)

The normalisation factor in front of the action is chosen to match the conventions

of [47]. It is interesting to note that it coincides, up to an integer factor, with the

normalisation of the action (in the case when ω = dz) motivated from the extension

of the standard Chern–Simons action to loop groups [48].

The action (1.1) is trivially invariant under the transformation A �→ A +̟ for any

1-form ̟ = f dz ∈ �1(� × CP1) proportional to dz. We can use this freedom to

eliminate the (1, 0)-component of A along CP1 and thereby fix it to be of the form

A = Aτ dτ + Aσ dσ + Az̄dz̄. The action is then invariant under gauge transformations

of these remaining three components.

The equation of motion ω ∧ F = 0, derived by extremising (1.1), expresses the

fact that A is a flat connection on � which varies meromorphically on CP1. This

strongly suggests that, when working in the gauge where Az̄ = 0, one can interpret

Aτ dτ + Aσ dσ as the Lax connection of some classical integrable field theory. Indeed,

the proposal of [15] is to describe integrable field theories in this way, as arising from

the introduction of specific surface defects along � in the four-dimensional Chern–

Simons theory on M = � × CP1.

However, in order to completely characterise the integrable structure of a classical

integrable field theory, it is necessary to move to the Hamiltonian framework and to

identify the Poisson bracket of Aσ with itself. There then exist sufficient conditions

on the form of this Poisson bracket [37,38] ensuring that the integrals of motion

constructed from Aσ are in involution.
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In Sect. 2 we perform a Hamiltonian analysis of the four-dimensional Chern–

Simons theory of [11–15,48], with ω a generic meromorphic differential on CP1.

There are first-class constraints associated with the gauge invariance of this theory

and second-class constraints coming from the fact that the Lagrangian C S(A) is

linear in the time derivative of A. We impose natural gauge fixing conditions and

determine the corresponding Dirac bracket {·, ·}⋆ on the reduced phase space. The

latter is parametrised by the g-valued field Aσ which, having fixed the gauge, is now

meromorphic and such that:

the combination ϕ Aσ has the same pole structure as ϕ. (1.2)

We find that the Dirac bracket on the reduced phase space takes the form

{Aσ1(z, σ ), Aσ2(z′, σ ′)}⋆ =
[
R12(z, z′), Aσ1(z, σ )

]
δσσ ′

−
[
R21(z′, z), Aσ2(z′, σ )

]
δσσ ′

−
(
R12(z, z′) + R21(z′, z)

)
δ′
σσ ′ , (1.3)

where the R-matrix is given explicitly by

R12(z, z′) := 2π
C12

z′ − z
ϕ(z′)−1. (1.4)

The factor of 2π in (1.4) is also there to match the conventions of [47].

In other words, the first result of this note is that the spatial component Aσ of

the Chern–Simons 1-form A can be interpreted as the Lax matrix of a non-ultralocal

classical integrable field theory with twist function ϕ.

Furthermore, by adding to the bulk Hamiltonian associated with the action (1.1) a

suitable boundary term, fixed by the requirement that the total Hamiltonian has well-

defined functional derivatives [41], we find that the Hamiltonian on the reduced phase

space is

H = −
1

2

∑

x∈ζ

ǫx

∫

S1
dσ resx 〈Aσ , Aσ 〉ω, (1.5)

where ζ is the set of zeroes of ω and {ǫx }x∈ζ is a set of complex numbers entering

through the choice of gauge fixing conditions imposed.

Let g̃ be the untwisted affine Kac–Moody algebra corresponding to g. We showed in

[47] (see also [17,33]) that classical integrable field theories with the properties (1.3)–

(1.5) can be understood as realisations of various generalisations of the Gaudin model

associated with g̃. Since this result is quite technical, but essential to the discussion,

we will recall its main features in Sect. 3.

The result of this note therefore establishes that the general formalisms of [15]

and [47] provide equivalent descriptions of classical integrable field theories in the

Lagrangian and Hamiltonian formulations, respectively.

More precisely, the action functional (1.1) of [15] can be used to describe those

classical integrable field theories which:
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(i) can be realised as a non-cyclotomic affine Gaudin model in the sense of [47],

(ii) satisfy the additional technical condition (1.2).

We do not discuss here the case of cyclotomic affine Gaudin model, let alone dihedral

ones, in the terminology of [47]. See Sect. 4.2 for a discussion of this point.

It is, however, interesting to note that the condition (1.2) is known not to hold

for certain classical integrable field theories which nevertheless do admit an affine

Gaudin model description. This is, for instance, the case for affine Toda field theories

which can be described as cyclotomic (in fact dihedral) affine Gaudin models [47].

The generalisation of the present work to the cyclotomic case could therefore provide

an explanation as to why these theories, including sine-Gordon theory, do not admit

straightforward interpretations in terms of four-dimensional Chern–Simons theory

[15].

We end with some comments and discussion of possible future work in Sect. 4.

2 Hamiltonian analysis of four-dimensional Chern–Simons theory

2.1 Bulk action

In order to move to the Hamiltonian framework, we begin by isolating the global time

coordinate on the cylinder by writing A = Aτ dτ + Â with Â := Aσ dσ + Az̄dz̄, and

for any η ∈ g ⊗ �p(M) we let dη = dτ ∧ ∂τη + d̂η, with d̂η := dσ ∧ ∂σ η + dz ∧

∂zη + dz̄ ∧ ∂z̄η.

We have

C S(A) = −dτ ∧
(
〈 Â, ∂τ Â〉 − 2〈Aτ , F̂〉

)
+ d̂〈Aτ dτ, Â〉 + 〈 Â, d̂ Â〉,

where F̂ := d̂ Â + Â ∧ Â. The last term in C S(A) can be ignored since it will drop

out when taking the wedge product with ω. The bulk action functional (1.1) can then

be rewritten as

Sbulk[A] =
i

4π

∫

R×S1×CP1
dτ ∧ ω ∧

(
〈 Â, ∂τ Â〉 − 2〈Aτ , F̂〉

)
(2.1)

where we ignored a ‘boundary term’. Indeed, even though S1 ×CP1 has no boundary

per se, using Stokes theorem we generate a term of the form dτ ∧ d̂ω ∧ 〈Aτ , Â〉 in

the integrand. Explicitly, we have

∫

S1×CP1
ω ∧ d̂〈Aτ , Â〉 = −

∫

S1×CP1
d̂
(
ω ∧ 〈Aτ , Â〉

)
+

∫

S1×CP1
d̂ω ∧ 〈Aτ , Â〉,

with the first term vanishing because ∂(S1 × CP1) = ∅. But d̂ω is a distribution on

CP1 with support at the poles of ω, so the integral in the second term above localises

at these poles. We shall therefore refer to such terms as ‘boundary terms’.

123
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Remark 2.1 One could equally describe these ‘boundary terms’ as actual boundary

terms. Let Dr be the union of small discs of radius r > 0 around each of the poles of

ω, and take the integral in (2.1) to be over Mr := S1 × CP1\Dr instead. Then

∫

Mr

ω ∧ d̂〈Aτ , Â〉 = −

∫

Mr

d̂
(
ω ∧ 〈Aτ , Â〉

)
+

∫

Mr

d̂ω ∧ 〈Aτ , Â〉,

where now the second term on the right hand side vanishes because d̂ω has support

inside Dr . On the other hand, the first term now gives a boundary integral which

in the limit when r → 0 coincides with the ‘boundary term’ identified above. More

generally, in order to allow other singularities in the fields Aτ or Â, as we will do when

imposing a gauge fixing condition on Aτ later in Sect. 2.7, we should also include in

Dr small discs of radius r around these additional points.

Writing Â in terms of its components and working up to ‘boundary terms’ in the

above sense, we can express the action (2.1) more explicitly as

Sbulk[A] =

∫

R×S1×CP1
dτ ∧ dσ ∧ dz ∧ dz̄ Lbulk(A), (2.2a)

where the bulk Lagrangian is given by

Lbulk(A) :=
iϕ

4π
〈Az̄, ∂τ Aσ 〉 −

iϕ

4π
〈Aσ , ∂τ Az̄〉

−
i

2π
〈Aτ , ∂z̄(ϕ Aσ ) − ϕ∂σ Az̄ − [ϕ Aσ , Az̄]〉. (2.2b)

2.2 Phase space

The conjugate momentum of the three g-valued fields Aτ , Aσ and Az̄ is given, respec-

tively, by the g-valued fields

�τ :=
∂L(A)

∂(∂τ Aτ )
= 0, �σ :=

∂L(A)

∂(∂τ Aσ )
=

iϕ

4π
Az̄, �z̄ :=

∂L(A)

∂(∂τ Az̄)
= −

iϕ

4π
Aσ .

The initial phase space is parametrised by three pairs of g-valued conjugate fields

Ai ,�i ∈ C∞(S1 × CP1, g) for i ∈ {τ, σ, z̄}, whose canonical Poisson brackets can

be expressed using standard tensorial index notation as

{Ai1(σ, z),�i2(σ ′, z′)} = 2πC12δσσ ′δzz′ , (2.3)

where δσσ ′ := 1
2π

∑
n∈Z

ein(σ−σ ′) is the Dirac comb, i.e. the Dirac δ-distribution on

S1, and δzz′ is the Dirac δ-distribution on CP1 with the properties that

∫

S1
dσ f (σ, z)δσσ ′ = f (σ ′, z),

∫

CP1
dz ∧ dz̄ f (σ, z)δzz′ = f (σ, z′)

123
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for any f ∈ C∞(S1 × CP1). Also, C denotes the split Casimir of g.

There are three primary constraints

�τ ≈ 0, Cσ := Az̄ −
4π

iϕ
�σ ≈ 0, Cz̄ := �z̄ +

iϕ

4π
Aσ ≈ 0. (2.4)

The last two constraints are second class and their Poisson bracket

{Cσ1(σ, z), Cz̄2(σ ′, z′)} = 4πC12δσσ ′δzz′

is invertible. We can therefore set them to zero strongly, which we shall do, provided

that we work with the corresponding Dirac brackets, given by

{Aτ1(σ, z),�τ2(σ ′, z′)}∗ = 2πC12δσσ ′δzz′, (2.5a)

{Az̄1(σ, z),�z̄2(σ ′, z′)}∗ = πC12δσσ ′δzz′ . (2.5b)

Let P denote the resulting phase space, parametrised by the fields Aτ , �τ , Az̄ and

�z̄ satisfying the Dirac brackets (2.5). We shall refer to the latter just as a Poisson

bracket from now on, but still keep denoting it as {·, ·}∗ to distinguish it from the

original Poisson bracket (2.3) since (2.5b) is now different.

Note that we have thus far fixed the last two of the primary constraints in (2.4), so

there remains the primary constraint �τ ≈ 0.

2.3 Differentiable functionals

Given any pair of functionals F ,G : P → C, it follows from (2.5) that their Poisson

bracket reads

{F ,G }∗ = 2π

〈〈
δF

δAτ

,
δG

δ�τ

〉〉
− 2π

〈〈
δF

δ�τ

,
δG

δAτ

〉〉

+ π

〈〈
δF

δAz̄

,
δG

δ�z̄

〉〉
− π

〈〈
δF

δ�z̄

,
δG

δAz̄

〉〉
, (2.6)

where we have introduced the notation

〈〈X , Y 〉〉 :=

∫

S1×CP1
dσ ∧ dz ∧ dz̄ 〈X , Y 〉 (2.7)

for any g-valued distributions X , Y on S1 × CP1 for which this integral makes sense.

However, problems could arise if the variational derivatives of F and G involve

distributions with overlapping supports. The right-hand side of (2.6) would then be

the integral of a product of such distributions, which is typically ill-defined.

In light of Remark 2.1, such distributions can be interpreted as ‘boundary terms’.

The treatment of boundary terms in the Hamiltonian framework was understood in

the seminal work of Regge and Teitelboim [41] in the context of general relativity; see
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also [9,10]. The application of these ideas to ordinary Chern–Simons theory, directly

relevant to the present discussion, was considered in [2,3]; see also [4].

We shall say, in the spirit of [41], that a functional F : P → C is differentiable if

its variational derivatives do not involve ‘boundary terms’, i.e. if we can write

δF =

〈〈
δF

δAτ

, δAτ

〉〉
+

〈〈
δF

δAz̄

, δAz̄

〉〉
+

〈〈
δF

δ�τ

, δ�τ

〉〉
+

〈〈
δF

δ�z̄

, δ�z̄

〉〉

but where the variational derivatives δF/δAi and δF/δ�i are smooth functions for

i ∈ {τ, z̄}, though possibly with singularities at finitely many points.

The resolution of the problem alluded to above is that the Poisson bracket {F ,G }∗

is only defined between differentiable functionals F and G . If a functional F is not

differentiable then one should find a suitable boundary term to add to it, so as to

cancel off any unwanted boundary terms in its variation δF . This will ensure that it

has well-defined Poisson brackets with any other differentiable functional.

2.4 Bulk Hamiltonian

The bulk Hamiltonian density is given by the Legendre transform of the bulk

Lagrangian (2.2b), namely

Hbulk(A) := 〈�τ , ∂τ Aτ 〉 + 〈�σ , ∂τ Aσ 〉 + 〈�z̄, ∂τ Az̄〉 − Lbulk(A) = 〈Aτ , γ 〉.

Here, we have introduced the g-valued field

γ := −2∂z̄�z̄ −
i

2π
ϕ ∂σ Az̄ + 2[�z̄, Az̄].

Therefore, the bulk Hamiltonian of four-dimensional Chern–Simons theory reads

Hbulk := 〈〈Aτ , γ 〉〉. (2.8)

We will come back to the issue of the differentiability of this functional in Sect. 2.8

after fixing the value of Aτ in Sect. 2.7.

2.5 Gauge invariance

There is just one constraint on the phase space P , namely �τ ≈ 0, which we should

ensure is preserved under time evolution. We have

{Hbulk,�τ }
∗ = γ.

This is, however, not quite a pure constraint since it already contains the necessary

‘boundary terms’ to ensure that 〈〈ε, γ 〉〉, for all ε ∈ C∞(S1×CP1, g), is a differentiable

functional in the sense of Sect. 2.3, cf. the computation in Sect. 2.8 below.
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On the other hand, γ is the correct ‘improved’ generator of gauge transformations.

Indeed, by using (2.5b) we obtain

1

2π
{γ1(σ, z), Aσ2(σ ′, z′)}∗ = [C12, Aσ2(σ, z)]δσσ ′δzz′ + C12δ′

σσ ′δzz′ , (2.9a)

1

2π
{γ1(σ, z), Az̄2(σ ′, z′)}∗ = [C12, Az̄2(σ, z)]δσσ ′δzz′ + C12δσσ ′∂z̄δzz′ . (2.9b)

It follows that the expression 1
2π

〈〈ε, γ 〉〉, for every ε ∈ C∞(S1 × CP1, g), generates

a gauge transformation of four-dimensional Chern–Simons theory since

1

2π
{〈〈ε, γ 〉〉, Aσ (σ, z)}∗ = [ε(σ, z), Aσ (σ, z)] − ∂σ ε(σ, z),

1

2π
{〈〈ε, γ 〉〉, Az̄(σ, z)}∗ = [ε(σ, z), Az̄(σ, z)] − ∂z̄ε(σ, z).

In particular, the bulk Hamiltonian (2.8) is thus a pure gauge transformation with the

field Aτ playing the role of the gauge parameter.

Moreover, the Poisson bracket of γ with itself reads

{γ1(σ, z), γ2(σ ′, z′)}∗ = 2π [C12, γ2(σ, z)]δσσ ′δzz′ + i(∂z̄ϕ(z))C12δ′
σσ ′δzz′, (2.10)

from which it follows that, for any ε, ε̃ ∈ C∞(S1 × CP1, g), we have

{〈〈ε, γ 〉〉, 〈〈ε̃, γ 〉〉}∗ = −2π〈〈[ε, ε̃, γ 〉〉 + i〈〈(∂z̄ϕ)ε, ∂σ ε̃〉〉. (2.11)

The second term on the right-hand side is a ‘boundary term’ localised at the poles of

the differential ω, cf. the analogous central extension in the Poisson algebra of the

‘improved’ constraints in ordinary Chern–Simons theory [2,3].

Let C∞(S1 × CP1, g)ω denote the subspace of C∞(S1 × CP1, g) consisting of

those functions which vanish at the poles of ω (and whose multiplicities at these zeroes

is given by the orders of the corresponding poles of ω). The central extension term in

(2.11) is then absent if either ε or ε̃ belongs to C∞(S1 × CP1, g)ω. In particular, we

see that the true bulk constraint can be described as the smearing 〈〈ε, γ 〉〉 ≈ 0 with all

possible ε ∈ C∞(S1 × CP1, g)ω. This is then first class by (2.11). By an abuse of

language, we will still refer to this constraint as γ ≈ 0.

Using (2.10), we find that

{Hbulk, γ }∗ ≈ −i(∂z̄ϕ)∂σ Aτ .

Thus, for each ε ∈ C∞(S1 × CP1, g)ω we have {Hbulk, 〈〈ε, γ 〉〉}∗ ≈ 0, and hence,

there are no tertiary constraints.
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2.6 Gauge fixing

We would like to fix the gauge invariance associated with the constraint γ ≈ 0

identified in Sect. 2.5. Concretely, letting z denote the set of poles of ϕ we will fix the

constraint γ (σ, z) ≈ 0 for z /∈ z, which is clearly first class by (2.10).

We shall do this by imposing the gauge fixing condition

Az̄ ≈ 0. (2.12)

This choice is motivated by the fact that, following [15], one would like to interpret

the gauge field A of four-dimensional Chern–Simons theory as the Lax connection of

an integrable field theory. Since the latter only has dσ and dτ components, we should

bring A to this form also by moving to the gauge (2.12). It follows from (2.9b) that

{Az̄1(σ, z), γ2(σ ′, z′)}∗ = {γ1(σ, z), Az̄2(σ ′, z′)}∗ ≈ −2π∂z̄′(C12δσσ ′δzz′). (2.13)

We can thus impose the constraint γ ≈ 0 together with the gauge fixing condition

(2.12) strongly, provided that we work with the appropriate new Dirac bracket {·, ·}⋆.

To define it, we note that (2.13) is invertible since

〈〈
− 2π∂z̄′(C12δσσ ′δzz′),−

1

(2π)2i

C23δσ ′σ ′′

z′ − z′′

〉〉

(σ ′,z′)2

= C13δσσ ′′δzz′′ ,

where we have used the fact that

−
1

2π i
∂z̄

(
1

z − z′

)
= δzz′ . (2.14)

The subscript ‘(σ ′, z′)2′ on 〈〈·, ·〉〉, as defined in (2.7), is used here to indicate that the

integration is taken over dσ ′ ∧ dz′ ∧ dz̄′ and the bilinear form 〈·, ·〉 is applied to the

second tensor factor.

The new Dirac bracket of any g-valued observables U and V is then defined by

{U1(σ, z), V2(σ ′, z′)}⋆ := {U1(σ, z), V2(σ ′, z′)}∗

+

〈〈
{U1(σ, z), γ3(σ ′′, z′′)}∗,

〈〈
1

(2π)2i

C34δσ ′′σ ′′′

z′′ − z′′
, {Az̄4(σ ′′′, z′′′), V2(σ ′, z′)}∗

〉〉

(σ ′′′,z′′′)4

〉〉

(σ ′′,z′′)3

+

〈〈
{U1(σ, z), Az̄3(σ ′′, z′′)}∗,

〈〈
1

(2π)2i

C34δσ ′′σ ′′′

z′′ − z′′′
, {γ4(σ ′′′, z′′′), V2(σ ′, z′)}∗

〉〉

(σ ′′′,z′′′)4

〉〉

(σ ′′,z′′)3

.

In order to compute the Dirac bracket of the field �z̄ with itself, we note from (2.9a),

and using the last constraint in (2.4), that

{�z̄1(σ, z), γ2(σ ′, z′)}∗ = {γ1(σ, z),�z̄2(σ ′, z′)}∗

= 2π [C12,�z̄2(σ, z)]δσσ ′δzz′ −
i

2
ϕ(z)C12δ′

σσ ′δzz′ .
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Using the above definition for the Dirac bracket {·, ·}⋆, we obtain

4π

i
{�z̄1(σ, z),�z̄2(σ ′, z′)}⋆ =

[
2πC12

z − z′
,�z̄1(σ, z) + �z̄2(σ ′, z′)

]
δσσ ′

+ i
2πC12

z − z′

ϕ(z) − ϕ(z′)

4π
δ′
σσ ′ . (2.15)

which is valid for z, z′ /∈ z. In view of the constraint Cz̄ ≈ 0 in (2.4), this is equivalent

to the non-ultralocal algebra (1.3) with R-matrix as in (1.4).

The slightly unconventional factor of 2π in (1.4) matches with the conventions of

[47], where (1.3) was derived from purely algebraic considerations, as we shall recall

in Sect. 3.1. Note that here δσσ ′ denotes the Dirac comb, whereas in [47] we used it

to denote the unnormalised Dirac comb, which in the present conventions is 2πδσσ ′ .

We have now imposed the constraint γ ≈ 0 strongly, or more precisely 〈〈ε, γ 〉〉 ≈ 0

for every ε ∈ C∞(S1 × CP1, g)ω. Using the gauge fixing condition (2.12), this gives

〈〈ε, ∂z̄�z̄〉〉 ≈ 0. (2.16)

It follows that �z̄ is meromorphic on CP1 with the same pole structure as ϕ. By virtue

of the definition of the constraint Cz̄ ≈ 0 in (2.4), this is equivalent to (1.2).

Remark 2.2 The condition (1.2) can also be seen in the Lagrangian formalism from

the equation of motion ω∧ F = 0. In the gauge (2.12), this implies that the connection

Aτ dτ + Aσ dσ is flat and that ϕ∂z̄ Aσ = ϕ∂z̄ Aτ = 0. In other words, Aσ and Aτ are

meromorphic with poles at the zeroes of ϕ (with the order of each pole coinciding

with the multiplicity of the corresponding zero of ϕ).

2.7 Fixing the Lagrangemultiplier

Note that we still have the first class primary constraint �τ ≈ 0. The effect of the

corresponding gauge transformation is just to change the Lagrange multiplier Aτ in

the bulk Hamiltonian. We shall impose it strongly by fixing the Lagrange multiplier.

Let ζ denote the set of zeroes of ω. We shall assume, for the sake of clarity of the

presentation, that ζ ⊂ C, i.e. infinity is not a zero, and moreover that all the zeroes

are simple. The latter means that ϕ(x) = 0 while ϕ′(x) �= 0 for x ∈ ζ . The arguments

given below and in Sect. 2.8 generalise straightforwardly to the generic case.

Having imposed the constraint Cz̄ ≈ 0 in (2.4) strongly, we have

Aσ (σ, z) ≈
4π i

ϕ(z)
�z̄(σ, z) =

∑

x∈ζ

4π i

ϕ′(x)

�z̄(σ, x)

z − x
. (2.17)

The second equality is obtained by performing a partial fraction expansion, noting

that �z̄ and ϕ have the same pole structure. The explicit form above follows from

assuming that ϕ has simple zeroes at points in the set ζ ⊂ C. Note that (2.17) is

exactly equation (2.39) from [17], in view of the discussion of Sect. 3.1 below.
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As noted in Remark 2.2, in the Lagrangian formalism two of the three equations of

motion on A impose that both components Aσ and Aτ are meromorphic with poles at

the zeroes of ϕ. We see that relation (2.17) is compatible with this property. Similarly,

we shall fix the Lagrangian multiplier Aτ to be meromorphic with poles at the zeroes

of ϕ. More precisely, choosing a set {ǫx }x∈ζ of complex numbers, we shall use the

gauge fixing condition

Aτ (σ, z) ≈ −
∑

x∈ζ

4π iǫx

ϕ′(x)

�z̄(σ, x)

z − x
. (2.18)

(Note that this coincides, up to a sign in the definition of the ǫx , with (2.40) from [17]

by the same remark as for (2.17) above.) In other words, we take a linear combination

of the singular parts at each x ∈ ζ of the partial fraction decomposition (2.17) with

coefficients ǫx . Since we are setting the Lagrange multiplier Aτ equal to a meromorphic

function with poles in ζ , we are technically only specifying its ‘boundary value’ at the

points in ζ . In any case, there is no need to specify its value as a whole on CP1 since

we are already working on the constraint surface γ ≈ 0. We will motivate the choice

(2.18) shortly in Sect. 2.8, but for the time being it is interesting to compare with the

choices made in [15].

To compare with [15], let us split the set ζ into two disjoint subsets as ζ = ζ+ ⊔ζ−

and take ǫx = ±1 for x ∈ ζ±. Let us also note in passing that the latter condition

was shown in [17] to imply that the resulting model is relativistic. It follows from

comparing (2.17) with (2.18) that Aτ ± Aσ is regular at each x ∈ ζ± and has a simple

pole at every x ∈ ζ∓. This is to be compared with the boundary conditions imposed on

the fields Aτ ± Aσ at the zeroes of ω in [15], where |ζ | is even and |ζ+| = |ζ−|. Note,

however, that by contrast with [15] we do not choose to work in a gauge in which the

pair of fields Aσ ± Aτ both vanish at the poles of ω. We will come back to this point

in Sect. 4.1 below. Choosing the right gauge in the Hamiltonian formalism is essential

since it is known, see e.g. [1], that the form of the Poisson bracket (1.3)–(1.4) is very

sensitive to this choice.

Introducing a Dirac bracket to impose �τ ≈ 0 strongly, together with its gauge

fixing condition (2.18), it is immediate that the Dirac bracket (2.15) is unmodified.

2.8 Reduced dynamics

In a classical field theory with no local degrees of freedom, such as (1.1), it is the

choice of boundary condition on the Lagrange multipliers in the Hamiltonian, such as

Aτ here, which completely determines the dynamics on the reduced phase space. In

this sense, the gauge fixing condition (2.18) was chosen so as to produce the correct

dynamics on the reduced phase space, as we now show.

The variation of the bulk Hamiltonian (2.8) reads

δHbulk = 〈〈γ, δAτ 〉〉 +

〈〈
i

2π
ϕ∂σ Aτ + 2[Aτ ,�z̄], δAz̄

〉〉
+ 2〈〈[Az̄, Aτ ] + ∂z̄ Aτ , δ�z̄〉〉.
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The first term vanishes on the constraint surface. Among all of the other terms, the

only potentially problematic one is the one involving ∂z̄ Aτ since it could correspond

to a ‘boundary term’, cf. Remark 2.1. And indeed, by using the explicit form of the

gauge fixing condition (2.18) and using the identity (2.14 we can rewrite it as

2〈〈∂z̄ Aτ , δ�z̄〉〉 = −4π
∑

x∈ζ

4πǫx

ϕ′(x)

∫

S1×CP1
dσ ∧ dz ∧ dz̄ δzx 〈�z̄(σ, x), δ�z̄(σ, z)〉

= δ

(
−

1

2

∑

x∈ζ

ǫx

ϕ′(x)

∫

S1
dσ 〈4π�z̄(σ, x), 4π�z̄(σ, x)〉

)
.

This suggests adding a boundary term to the bulk Hamiltonian Hbulk , given in (2.8),

to cancel off this boundary term in the above variation δHbulk . Explicitly, we define

the new Hamiltonian

H := 〈〈Aτ , γ 〉〉 +
1

2

∑

x∈ζ

ǫx

ϕ′(x)

∫

S1
dσ 〈4π�z̄(σ, x), 4π�z̄(σ, x)〉,

which is now differentiable in the sense of [41], see Sect. 2.3.

The Hamiltonian on the reduced phase space is then given by

H ≈
1

2

∑

x∈ζ

ǫx

ϕ′(x)

∫

S1
dσ 〈4π�z̄(σ, x), 4π�z̄(σ, x)〉.

This can equally be rewritten as

H ≈
∑

x∈ζ

ǫx resx

(
1

2
ϕ(z)−1

∫

S1
dσ 〈4π�z̄(σ, z), 4π�z̄(σ, z)〉

)
dz. (2.19)

which is equivalent to (1.5) using the constraint Cz̄ ≈ 0. In this final form (2.19), it

is straightforward to show that the result also holds, as written, in the more generic

situation when ω is allowed to have multiple zeroes including at infinity.

3 Connection with affine Gaudinmodels

We showed in Sect. 2.6 that the non-ultralocal Poisson algebra (1.3), with R-matrix

given by (1.4), naturally arises as the Poisson structure on the reduced phase space

of four-dimensional Chern–Simons theory. We then showed in Sect. 2.8 that for a

suitable choice of gauge fixing conditions (closely related to conditions imposed in

[15]), the Hamiltonian on the reduced phase space takes the very specific form (1.5).

By contrast, in [47] we gave a very different, more algebraic, interpretation of this

same non-ultralocal Poisson algebra (1.3)–(1.4) and Hamiltonian (1.5). We will briefly

review this below. In short, classical integrable field theories with properties (1.3)–(1.5)
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can equally be understood as particular representation of generalised (non-cyclotomic)

affine Gaudin models.

3.1 Non-ultralocal algebra

The object which naturally enters in the formalism of [47] is not so much the field Aσ

but rather the combination L := 4π i�z̄ = ϕ Aσ . Its Poisson bracket, which follows

immediately form (2.15), can be written as

{L1(σ, z),L2(σ ′, z′)} =

[
2π

C12δσσ ′

z′ − z
, ϕ(z)∂σ + L1(σ, z)

]

+

[
2π

C12δσσ ′

z′ − z
, ϕ(z′)∂σ ′ + L1(σ ′, z′)

]
. (3.1)

We have explicitly removed the superscript ‘⋆’ on the Poisson bracket since in what

follows we no longer want to think of it as a Dirac bracket on a reduced phase space.

To explain the origin of the Poisson bracket (3.1) from Gaudin models associated

with the untwisted affine Kac–Moody algebra g̃ := g ⊗ C[t, t−1] ⊕ CK ⊕ CD, we

briefly recall how these are defined.

Let {Ia} be a basis of g and denote {I a} its dual basis with respect to the bilinear

form 〈·, ·〉. Note that, in terms of these, we can write the split Casimir of g introduced

in Sect. 2.2 as C = Ia ⊗ I a , where the sum over the repeated index a is implicit.

A basis { Ĩa} of g̃ is then given by Ia,−n := Ia ⊗ t−n for n ∈ Z together with K and

D. Its dual basis with respect to the standard bilinear form (·|·) : g̃ × g̃ → C on g̃,

which we denote by {I ã}, consists of I a
n := I a ⊗ tn for n ∈ Z together with D and K.

Now the Lax matrix of the affine Gaudin model takes the form

L(z) := Ĩa ⊗ L
ã(z) (3.2)

where the infinite sum over the repeated index ã is implicit. The Lã(z) are given by

very explicit rational functions on CP1 which are valued in the algebra of observables

A of the Gaudin model. For instance, in the simplest case of Gaudin models with

regular singularities the algebra of observables A is a completion of S(̃g)⊗N where

N ∈ Z≥1 is the number of sites, which are located at z = {zi }
N
i=1. We then have

L
ã(z) =

N∑

i=1

I ã(i)

z − zi

where I ã(i) denotes the copy of the basis element I ã ∈ g̃ in the i th copy of S(̃g) in the

N -fold tensor product S(̃g)⊗N . Explicit and simple expressions for Lã(z) also exist

for other generalisations of the Gaudin model. However, since these are not directly

relevant for the present discussion, we refer the reader to [47] for the details. For our

purposes, the key property that we shall need of these functions is that the Poisson

brackets of the fundamental fields of the Gaudin model (in the above example these
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are I ã(i)) can be packaged into the following form [47]

{L1(z), L2(z′)} =

[
C̃12

z′ − z
, L1(z)

]
+

[
C̃12

z′ − z
, L2(z′)

]
, (3.3)

where C̃ := Ĩa ⊗ I ã is the split Casimir of g̃.

The connection with (3.1) is now apparent. Explicitly, let us consider the natural

representation ̺ of g̃ in terms of g-valued connections on S1, given explicitly in the

basis { Ĩa} by

Ia,−n �−→ Ia ⊗ e−inσ , K �−→ 0, D �−→ −i∂σ ,

where σ is a coordinate on S1 = R/2πZ. Applying ̺ to both tensor factors of the

split Casimir of g̃ yields

C̃ = K ⊗ D + D ⊗ K +
∑

n∈Z

Ia,−n ⊗ I a
n

̺⊗̺
�−−→ (Ia ⊗ I a)

∑

n∈Z

e−in(σ−σ ′) = 2πCδσσ ′ .

As recalled above, the definition of δσσ ′ used here is 1
2π

times the one in [47].

Likewise, applying ̺ to the first tensor factor of the formal Lax operator (3.2) gives

L(z) = K ⊗ D(z) + D ⊗ K(z) +
∑

n∈Z

Ia,−n ⊗ L
a
n(z)

̺⊗id
�−−→ −i∂σ ⊗ K(z) + Ia

∑

n∈Z

e−inσ ⊗ L
a
n(z),

where again we refer to [47] for the explicit forms of the rational functions D(z), K(z)

and La
n(z) valued in the algebra of observables A of the affine Gaudin model.

To describe a specific classical integrable field theory, we should also introduce a

representation π̂ of the Poisson algebra A. This should send K(z), which is valued in

the centre of A, to a complex number valued rational function. In the example of a

Gaudin model with regular singularities mentioned above, this takes the form

K(z) =

N∑

i=1

K
(i)

z − zi

,

and the central elements K(i) should be realised as complex numbers. Furthermore, π̂

should realise each La
n(z), n ∈ Z in terms of the Fourier modes of the various fields

of the classical integrable field theory in question. Explicitly, π̂ is given by

K(z) �−→ iϕ(z), Ia

∑

n∈Z

e−inσ ⊗ L
a
n(z) �−→ L(σ, z), (3.4)
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where L(z) is the g-valued Lax matrix of the classical integrable field theory and ϕ(z)

is its twist function. Combining this with the representation ̺, we have

L(z)
̺⊗π̂
�−−→ ϕ(z)∂σ + L(σ, z).

In other words, the twist function naturally arises as one of the components of the Lax

matrix of the affine Gaudin model.

Applying ̺ to the first and second tensor factors of the Poisson bracket relation

(3.3), labelled respectively by 1 and 2, as well as applying π̂ to the third factor which

is not explicitly labelled, we now obtain the non-ultralocal Poisson algebra (3.1).

3.2 Quadratic Hamiltonians

So far we have only described, though somewhat implicitly (but more explicitly in the

case of regular singularities), the kinematics of affine Gaudin models.

The dynamics of an affine Gaudin model is defined by its quadratic Hamiltonians.

These are conveniently defined, by using the Lax matrix (3.2), as the coefficients in

the partial fraction expansion of the rational function

S1(z) :=
1

2
(L(z)|L(z)) = K(z)D(z) +

1

2

∑

n∈Z

〈Ia, Ib〉L
a
−n(z)Lb

n(z), (3.5)

where the bilinear form (·|·) on g̃ is being applied to the pair of first factors of the

Lax matrices in (3.2). It follows directly from (3.3) that the quadratic Hamiltonians

generate a Poisson commutative subalgebra of A [47].

Since (3.5) is a rational function valued in A, we can apply to it the representation

π̂ which, after also multiplying through by the inverse twist function, gives [17]

ϕ(z)−1π̂
(
S1(z)

)
= π̂

(
D(z)

)
+

1

2
ϕ(z)−1

∫

S1
dσ 〈L(σ, z),L(σ, z)〉.

The first term on the right-hand side has poles only at the sites z = {zi }
N
i=1, namely at

the poles of the twist function ϕ, and is thus regular at the set ζ of zeroes of ϕ. Taking

the residue at any x ∈ ζ , we obtain

resx ϕ(z)−1π̂
(
S1(z)

)
dz = resx

(
1

2
ϕ(z)−1

∫

S1
dσ 〈L(σ, z),L(σ, z)〉

)
dz.

Recalling that we identified L = 4π i�z̄ in Sect. 3.1, it now follows that the Hamilto-

nian (2.19) of four-dimensional Chern–Simons theory on the reduced phase space is

given by a linear combination of the quadratic Gaudin Hamiltonians, explicitly

H ≈ −
∑

x∈ζ

ǫx resx ϕ(z)−1π̂
(
S1(z)

)
dz.
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This completes the proof of the main result, namely that the classical integrable field

theory on the reduced phase space of four-dimensional Chern–Simons theory identified

in Sect. 2 can indeed be described as a realisation of an affine Gaudin model.

Let us note in passing that higher-spin local integrals of motion in classical Gaudin

models of affine type are also intrinsically associated with the set ζ . Indeed, explicit

expressions for these were constructed in [34], in the case when g is of classical

type, generalising the original construction of [21] on the principal chiral model.

Specifically, there exists certain polynomials in the Lax matrix L(σ, z), whose degrees

are related to the set of exponents of g̃, and the evaluation of which at the points in ζ

yield the higher local conserved charges. It would be interesting to understand their

appearance from the point of view of four-dimensional Chern–Simons theory.

4 Discussion

4.1 Formal Gaudinmodel and realisations

Loosely speaking, one talks about a given classical integrable field theory as ‘being’

an affine Gaudin model if it has all the properties listed in (1.3)–(1.5). However, it is

convenient to distinguish the affine Gaudin model formulated at the abstract level of

affine Kac–Moody algebras from the classical integrable field theory itself. For this

reasons, quantities expressed at the level of Kac–Moody algebras were referred to as

being formal in [47].

As recalled in Sect. 3, in order to go from the formal affine Gaudin model to a

concrete classical integrable field theory, one needs to make a choice of representation

π̂ of the algebra of formal observables A, cf. (3.4). And although the twist function ϕ

is an important ingredient in the definition of π̂ it does not, by itself, define π̂ . Indeed,

one also needs a realisation of the formal fields of the Gaudin model in terms of the

fundamental fields of a given theory, represented by the second equation in (3.4).

In particular, different classical integrable field theories may share the same twist

function. Indeed, given a twist function with at most double poles, there are often

various natural ways of defining a corresponding realisation π̂ . A list of possibilities,

which is by no means complete, was given in [17].

One way of defining π̂ is to try to associate with every double pole of ϕ, or with

pairs of simple poles of ϕ, a copy of the cotangent bundle T ∗LG of the loop group

LG where G is a real Lie group with Lie algebra g, which we take here to be real. A

general recipe for doing so was given in [46] building on the earlier constructions in

[18,19].

Concretely, the group valued field gi parameterising the base of the copy of T ∗LG

associated with a given double pole zi of ϕ can be defined by the requirement that

the gauge transformation of the Lax matrix by gi vanishes at zi . Likewise, the group

valued field gi associated with simple poles z±
i is defined by requiring that the gauge

transformation of the Lax matrix by gi evaluated at the pair of points z±
i takes value

in a subalgebra complementary to g in g
C or to gdiag in g ⊕ g. See [46] for details.
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The proposals of [15] for constructing the group valued fields (called σi there) in

both the double and simple pole cases, i.e. rational and trigonometric cases, are very

reminiscent of the above general constructions. This serves to highlight again the very

close similarity between the two formalisms of [15,47].

Let us also mention that one particular family of classical integrable field theories

that were shown in [17] (see also [46]) to be realisations of affine Gaudin models are

the so called ‘λ-deformations’ of the principal chiral model [44], of the symmetric

space σ -models [30] and also of the semi-symmetric space σ -models [31]; see also [7]

for the λ-deformation of the pure-spinor superstring on Ad S5 × S5. It was argued in

[42,43] that the λ-deformation can be seen as the theory at the boundary of a ‘doubled’

ordinary Chern–Simons theory. It would be interesting to understand the connection

with the present analysis in the context of λ-deformations.

4.2 Dihedral equivariance

It will be interesting to generalise the analysis of the present note to four-dimensional

Chern–Simons theory on the orbifold � ×CP1/ZT for T ∈ Z≥2, where ZT here only

acts on CP1 by contrast with the orbifolds considered in [8]. This should amount to

Aσ being equivariant under an action of the cyclic group ZT in the sense that

σ̌ (Aσ (σ, z)) = Aσ (σ, ωz), (4.1)

where ω is a T th-root of unity and σ̌ a ZT -automorphism of g.

In the language of [47], this would then correspond to considering the family of

ZT -cyclotomic affine Gaudin models. The latter encompasses all symmetric and semi-

symmetric space σ -models and in particular the σ -model of the superstring on Ad S5×

S5 [45], but also affine Toda field theories.

We have also not addressed the issue of reality conditions here. In the setting of

[47], these are characterised by the Lax matrix Aσ also being equivariant under an

action of Z2, namely

τ̌ (Aσ (σ, z)) = Aσ (σ, z̄), (4.2)

where τ̌ is an anti-linear involution of the complex Lie algebra g that specifies the

choice of real form of g.

The conditions (4.1) and (4.2) put together imply that Aσ is, in fact, equivariant

under an action of the dihedral group D2T = ZT ⋊ Z2. It was shown, more precisely,

in [47] that many classical integrable field theories of interest admit a description as

dihedral affine Gaudin models. It will be interesting to connect such affine Gaudin

models to four-dimensional Chern–Simons theory. We leave this for future work.

4.3 (Dis)order defects and (non-)ultralocality

There are two types of classical integrable field theories discussed in [15], corre-

sponding to two types of surface defects, namely the order and disorder ones, that can

be added to the four-dimensional Chern–Simons theory described by the bulk action
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(1.1). It follows from the results of this note that this dichotomy is essentially the same

as the usual one between the ultralocal and non-ultralocal models.

Indeed, the order defects were considered only in the cases when ω has no zeroes,

as in the original papers [11–14,48] on lattice models—see Sect. 4.4 below. Among

those, the two cases covered by the formalism of this note are ω = dz (rational) and

ω = dz/z (trigonometric). In the former case ϕ(z) = 1 so that the δ′-term in the

Poisson bracket (1.3) of the Lax matrix is absent. In the latter case, the coefficient of

the δ′-term in (1.3) is constant, i.e. independent of the spectral parameters, and can

typically be eliminated by a suitable gauge transformation. A prime example of this,

albeit in the cyclotomic case, is given by KdV theory [5].

As noted in [15], however, the collection of classical integrable field theories that

can be described using order defects is very limited. Indeed, most theories of interest

are described instead, in the language of [15], using so called disorder defects. These

were considered in the case when the 1-form ω has zeroes. As we have shown, this

is in perfect agreement with the observation made in [47] that a very large family of

classical integrable field theories are described by affine Gaudin models, which are

intrinsically non-ultralocal. Indeed, the fact that many known non-ultralocal models

were recovered in [15], including the multi-parameter family of coupled integrable σ -

models introduced in [16], is what originally prompted us to seek a deeper connection

between the formalisms of [15,47].

Turning to the problem of quantising these classical integrable field theories, one

can expect the quantum inverse scattering method [20,22–24,32], i.e. RTT formalism,

to apply as usual in the ultralocal setting. In particular, this formalism should have a

reinterpretation in the language of four-dimensional Chern–Simons theory as was the

case for lattice models in [14].

In the non-ultralocal setting, however, we expect new techniques to be required,

which are ultimately related to the problem of ω having zeroes.

4.4 Zeroes of the differential!

The presence of zeroes in ω is known to pose problems in the perturbative quantisation

of four-dimensional Chern–Simons theory. Indeed, it was argued heuristically, e.g.

in [13], that since the action (1.1) depends on ω through the ratio ω/�, its zeroes

correspond to points where � → ∞. In light of the discussion of Sect. 4.3, this

issue can be seen as a reformulation of the long-standing open problem of quantising

non-ultralocal integrable field theories, which in turn is equivalent to the problem of

quantising (dihedral) affine Gaudin models [47].

It is interesting that in the lattice model context of [11–14,48], restricting attention

to Riemann surfaces C admitting a non-vanishing differential ω, so as to avoid these

difficulties, has led to rediscovering the classification of skew-symmetric solutions to

the Yang-Baxter equation due to Belavin and Drinfel’d [6].

By contrast, the presence of zeroes in ω is clearly needed in the context of classical

integrable field theories. In the language of [15], it is thus expected that quantising

non-ultralocal integrable field theories will require a non-perturbative definition of

quantum four-dimensional Chern–Simons theory with action (1.1) for generic ω.
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On the other hand, approaching the problem from the perspective of affine Gaudin

models, we anticipate from [LVY1, LVY2] that in studying quantum Gaudin models

associated with the affine Kac–Moody algebra g̃, the role of the zeroes of the twist func-

tion ϕ should be replaced by twisted homology cycles in CP1\z. This may also shed

some light on how to tackle the problem from the point of view of four-dimensional

Chern–Simons theory.

Finally, it is also expected that Langlands duality should play a central role in the

study of Gaudin models in affine type, see for instance [FF, FH, LVY1, LVY2], by

direct analogy with the well-studied case of Gaudin models in finite type [FFR, F1, F2,

MV1, MV2]. It would therefore be very interesting to see the emergence of Langlands

duality also from the four-dimensional Chern–Simons theory.

Acknowledgements I would like to thank Roland Bittleston, Sylvain Lacroix, Carlo Meneghelli and

Masahito Yamazaki for useful discussions.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which

permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,

and indicate if changes were made. The images or other third party material in this article are included

in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If

material is not included in the article’s Creative Commons licence and your intended use is not permitted

by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the

copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Babelon, O., Bernard, D., Talon, M.: Introduction to Classical Integrable Systems. Cambridge Univer-

sity Press, Cambridge (2003)

2. Bañados, M.: Global charges in Chern–Simons field theory and the (2+1) black hole. Phys. Rev. D.

52, 5816 (1996)

3. Bañados, M.: Three-dimensional quantum geometry and black holes. AIP Conf. Proc. 484(1), 147

(1999)

4. Bañados, M., Reyes, I.A.: A short review on Noether’s theorems, gauge symmetries and boundary

terms. Int. J. Mod. Phys. D. 25(10), 1630021 (2016)

5. Bazhanov, V.V., Lukyanov, S.L., Zamolodchikov, A.B.: Integrable structure of conformal field theory,

quantum KdV theory and thermodynamic Bethe ansatz. Commun. Math. Phys. 177, 381 (1996)

6. Belavin, A.A., Drinfeld, V.G.: Triangle equations and simple Lie algebras. Classic Reviews in Math-

ematics and Mathematical Physics. 1. Amsterdam: Harwood Academic Publishers. vii, 91 p, (1998)

7. Benítez, H.A., Schmidtt, D.M. λ-Deformation of the Ad S5 × S5 Pure Spinor Superstring,

arXiv:1907.13197 [hep-th]

8. Bittleston, R., Skinner, D.: Gauge theory and boundary integrability. JHEP 1905, 195 (2019)

9. Brown, J.D., Henneaux, M.: Central charges in the canonical realization of asymptotic symmetries: an

example from three-dimensional gravity. Commun. Math. Phys. 104, 207 (1986)

10. Brown, J.D., Henneaux, M.: On the poisson brackets of differentiable generators in classical field

theory. J. Math. Phys. 27, 489 (1986)

11. Costello, K.: Supersymmetric gauge theory and the Yangian, arXiv:1303.2632 [hep-th]

12. Costello, K.: Integrable lattice models from four-dimensional field theories. Proc. Symp. Pure Math.

88, 3 (2014)

13. Costello, K., Witten, E., Yamazaki, M.: Gauge theory and integrability, I. ICCM Not. 6, 46–191 (2018)

14. Costello, K., Witten, E., Yamazaki, M.: Gauge theory and integrability, II. ICCM Not. 6, 120–149

(2018)

15. Costello, K., Yamazaki, M.: Gauge Theory and Integrability, III, arXiv:1908.02289 [hep-th]

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1907.13197
http://arxiv.org/abs/1303.2632
http://arxiv.org/abs/1908.02289


   24 Page 20 of 21 B. Vicedo

16. Delduc, F., Lacroix, S., Magro, M., Vicedo, B.: Integrable coupled σ models. Phys. Rev. Lett. 122(4),

041601 (2019)

17. Delduc, F., Lacroix, S., Magro, M., Vicedo, B.: Assembling integrable σ -models as affine Gaudin

models. JHEP 1906, 017 (2019)

18. Delduc, F., Magro, M., Vicedo, B.: On classical q-deformations of integrable sigma-models. JHEP

1311, 192 (2013)

19. Delduc, F., Magro, M., Vicedo, B.: Derivation of the action and symmetries of the q-deformed Ad S5 ×

S5 superstring. JHEP 1410, 132 (2014)

20. Drinfeld, V.G.: Quantum groups. J. Sov. Math. 41, 898 (1988)

21. Evans, J.M., Hassan, M., MacKay, N.J., Mountain, A.J.: Local conserved charges in principal chiral

models. Nucl. Phys. B. 561, 385 (1999)

22. Faddeev, L., Sklyanin, E.K., Takhtajan, L.: The quantum inverse problem method. 1. Theor. Math.

Phys 40, 688 (1980)

23. Faddeev, L., Reshitikhin, N., Takhtajan, L.: Quantization of lie groups and lie algebras. Algebr. Analiz

1, LOMI-E-87-14 (1987)

24. Faddeev, L., Takhtajan, L.: The quantum method of the inverse problem and the Heisenberg XYZ-

model. Russ. Math. Surveys 34(5), 1168 (1979)

25. Feigin, B., Frenkel, E.: Quantization of soliton systems and Langlands duality. Adv. Stud. Pure. Math.

61, Math. Soc., Japan, Tokyo (2011)

26. Feigin, B., Frenkel, E., Reshetikhin, N.: Gaudin model, Bethe ansatz and correlation functions at the

critical level. Commun. Math. Phys. 166, 27–62 (1994)

27. Frenkel, E.: Opers on the projective line, flag manifolds and Bethe ansatz. Mosc. Math. J. 4(3), 655–705,

783 (2004)

28. Frenkel, E.: Gaudin model and opers, Infinite dimensional algebras and quantum integrable systems.

Progr. Math. Birkhäuser Basel 237, 1–58 (2005)

29. Frenkel, E., Hernandez, D.: Spectra of quantum KdV Hamiltonians, Langlands duality, and affine

opers. Commun. Math. Phys. 362(2), 362–361 (2018)

30. Hollowood, T.J., Miramontes, J.L., Schmidtt, D.M.: Integrable deformations of strings on symmetric

spaces. JHEP 1411, 009 (2014)

31. Hollowood, T.J., Miramontes, J.L., Schmidtt, D.M.: An integrable deformation of the Ad S5 × S5

superstring. J. Phys. A. 47(49), 495402 (2014)

32. Kulish, P.P., Sklyanin, E.K.: Quantum inverse scattering method and the Heisenberg ferromagnet. Phys.

Lett. A 70, 461 (1979)

33. Lacroix, S. Constrained affine Gaudin models and diagonal Yang–Baxter deformations,

arXiv:1907.04836 [hep-th]

34. Lacroix, S., Magro, M., Vicedo, B.: Local charges in involution and hierarchies in integrable sigma-

models. JHEP 1709, 117 (2017)

35. Lacroix, S., Vicedo, B., Young, C.: Affine Gaudin models and hypergeometric functions on affine

opers. Adv. Math. 350, 486 (2019)

LVY2. Lacroix, S., Vicedo, B., Young, C.A.S.: Cubic hypergeometric integrals of motion in affine Gaudin

models, to appear in Adv. Theor. Math. Phys., arXiv:1804.06751 [math.QA]

37. Maillet, J.M.: Kac-Moody algebra and extended Yang–Baxter relations in the O(N) non-linear sigma

model. Phys. Lett. B. 162, 137 (1985)

38. Maillet, J.M.: New integrable canonical structures in two-dimensional models. Nucl. Phys. B. 269, 54

(1986)

39. Mukhin, E., Varchenko, A.: Critical points of master functions and flag varieties. Commun. Contemp.

Math. 6(1), 111–163 (2004)

40. Mukhin, E., Varchenko, A.: Miura opers and critical points of master functions. Cent. Eur. J. Math. 3,

155–182 (2005)

41. Regge, T., Teitelboim, C.: Role of surface integrals in the Hamiltonian formulation of general relativity.

Ann. Phys. 88, 286 (1974)

42. Schmidtt, D.M.: Integrable lambda models and Chern–Simons theories. JHEP 1705, 012 (2017)

43. Schmidtt, D.M.: Lambda models from Chern–Simons theories. JHEP 1811, 111 (2018)

44. Sfetsos, K.: Integrable interpolations: from exact CFTs to non-Abelian T-duals. Nucl. Phys. B. 880,

225 (2014)

45. Vicedo, B.: The classical R-matrix of AdS/CFT and its Lie dialgebra structure. Lett. Math. Phys. 95,

249 (2011)

123

http://arxiv.org/abs/1907.04836
http://arxiv.org/abs/1804.06751


4D Chern–Simons theory and affine Gaudin models Page 21 of 21    24 

46. Vicedo, B.: Deformed integrable σ -models, classical R- matrices and classical exchange algebra on

Drinfel’d doubles. J. Phys. A. 48(35), 355203 (2015)

47. Vicedo, B.: On integrable field theories as dihedral affine Gaudin models. Int. Math. Res. Not, (2018).

series rny128

48. Witten, E.: Integrable lattice models from gauge theory. Adv. Theor. Math. Phys. 21, 1819 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

123


	4D Chern–Simons theory and affine Gaudin models
	Abstract
	1 Introduction and summary
	2 Hamiltonian analysis of four-dimensional Chern–Simons theory
	2.1 Bulk action
	2.2 Phase space
	2.3 Differentiable functionals
	2.4 Bulk Hamiltonian
	2.5 Gauge invariance
	2.6 Gauge fixing
	2.7 Fixing the Lagrange multiplier
	2.8 Reduced dynamics

	3 Connection with affine Gaudin models
	3.1 Non-ultralocal algebra
	3.2 Quadratic Hamiltonians

	4 Discussion
	4.1 Formal Gaudin model and realisations
	4.2 Dihedral equivariance
	4.3 (Dis)order defects and (non-)ultralocality
	4.4 Zeroes of the differential ω

	Acknowledgements
	References


