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What is the shape formed by a body that is melting or dissolving into an ambient fluid?
We present a theoretical analysis of the dynamics of melting or dissolving bodies in the
common situation where the transfer of heat or solute at the surface creates a thin thermal
or solutal convective boundary layer along its surface. By conducting a general analysis
of a mathematical model describing the shape evolution of such bodies (Pegler & Davies
Wykes, J. Fluid Mech., vol. 900, 2020, A35), we reveal new phenomena relating to the
emergence of fundamental similarity solutions, asymptotic transitions, tip structure and the
conditions for the development of sharp versus blunted tips. A universal regime diagram
is developed showing asymptotic transitions between two different classes of similarity
solutions. With t time, the tip of initially rectangular bodies is found to descend as t4/3
at early times, but transitions to the considerable faster power of t4 at long times, for
example. Surprisingly, the tips of certain shapes, including initially rectangular bodies,
sharpen continuously, whilst those of others, including initially conic bodies, blunt for all
times. For the former case, the tip curvature grows rapidly as t12, forming a needle-like
shape. More general initial shapes can produce multiple transitions between sharpening
and blunting. These results provide foundational understanding of buoyancy-driven fluid
sculpting that underlies numerous natural and industrial applications.

Key words: solidification/melting, buoyant boundary layers, flow–structure interactions

1. Introduction

The natural world is filled with shapes formed by a process involving either melting or
dissolution accompanied by fluid flow (Ristroph 2018). Examples include the dissolution
of a lump of sugar in water, the melting of an ice cube, the melting of icebergs, glaciers and
ice shelves (Hewitt 2020), the shaping of caves and rock spires (Meakin & Jamtveit 2010)
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Figure 1. Schematics illustrating (a) the general configuration, (b) an example of a shallow geometry
(hx � 1) and (c) a steep geometry (hx � 1).

and the karstification of subsurface salt deposits (which can lead to catastrophic land
subsidence and sinkholes, e.g. Frumkin & Raz 2001). The coupling between fluid flow
and the evolution of solid boundaries driven by melting, dissolving or eroding processes
create a rich variety of free-boundary problems in which the evolution of the surface forms
part of the problem to be determined. A classical example is the Stefan problem in which
the evolution of a melting solid is coupled to thermal diffusion (e.g. Jaeger & Carslaw
1959). However, in many common examples, the flux of heat or solute across the interface
between the ambient fluid and the body results in a buoyancy-driven convective flow along
the surface that controls the flux. There remains a fundamental open question with regard
to the shapes that arise as a consequence of this two-way interplay between the evolution
of geometry and the dynamics of buoyancy-driven convective flow.

In this study, we address this problem in situations where the convective flow is driven
by buoyancy directed towards the surface of the body, retaining a gravitationally stable
flow (figure 1). In the preceding paper (Pegler & Davies Wykes 2020), we developed a
new model describing the evolution of the shape of a body in this regime (to be reviewed
in § 2) given by a single partial differential equation describing the evolution of the surface
of the body. The predictions of the model were found to be in excellent agreement with the
results of a series of laboratory experiments involving the dissolution of upwards-pointing
cones of sugar candy attached to the base of a water-filled tank. Both the descent of the tip
and the full shape of the evolving body over time were captured successfully by the theory
with no use of any adjustable parameters.

Our mathematical analysis of the model in Pegler & Davies Wykes (2020) focused
on the illustrative example in which the body is initially wedge shaped or conic. For
this specific initial condition, similarity solutions provide exact solutions to the model
applicable for all times. In this case, the tip of the body descends as t4/5 and the curvature
of the tip decreases as t−4/5, where t is time. If the initial shape is not wedge shaped or
conic, a single similarity solution of this kind is not available. The result is a considerably
richer variety of phenomena and transitional similarity solutions, which we explore here.

The aim of the present paper is to identify, investigate and elucidate these new
phenomena. We conduct a complete analysis of the shape evolutions resulting from general
nonlinear initial shapes, using power laws as a template, thereby encompassing shapes
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The convective Stefan problem

initialised with rectangular profiles to those that start with a sharp tip. The analysis
identifies all fundamental similarity solutions to the model, and shows that these solutions
describe the shape of a dissolving or melting body during the evolution at small or large
times. We demonstrate that the initial shape determines the asymptotic shapes and scalings
of the tip position for all time, while the tip assumes a universal shape structure. For the
first time, it is established that a dissolving or melting tip can either blunt or sharpen, or
even switch from blunting to sharpening during the evolution, depending on the initial
shape.

In essence, the model of Pegler & Davies Wykes (2020) generalises classical theories
of stable thermal or solutal convection along surfaces to account for the evolution of the
underlying surface. Classical experimental and theoretical work (Wagner 1949; Merk &
Prins 1953; Ostrach 1953) have determined that the thermal or solutal flux produced
through dissolution, heating or cooling along a vertical or sloped wall of constant
inclination is proportional to s−1/4, where s is the distance from the top of the wall,
a result predicted by a similarity solution to the governing boundary-layer equations.
The flux decreases with distance along the wall because accumulation of solute acts to
insulate the dissolving surface from the fresh ambient fluid as the boundary layer grows
downstream. The analysis of buoyancy-driven boundary layers has since been extended to
numerous generalisations, including two-component compositional convection involving
both heat and solute diffusion (Josberger & Martin 1981; Wells & Worster 2011). Owing to
a favourable property of the governing boundary-layer equations, the self-similar structure
with flux decreasing as s−1/4 is preserved in this and numerous other generalisations.
This includes general dependences of the viscosity, diffusivity or density on the solute
or temperature field of the fluid (Pegler & Davies Wykes 2020). The shaping predicted
by the model of Pegler & Davies Wykes (2020) therefore correspondingly applies to a
broad range of applications. Consequently, the shapes arising during the dissolution of
rock candy in water (where the viscosity varies by orders of magnitude) are similar to
those arsing during the melting of a floating ice cube in salty water, which can include
two-component effects such as latent heating.

Previous research into the inverted case where the buoyancy is directed away from
the surface (e.g. the underside of a block of ice melting in warm water, or a suspended
block of rock candy dissolving in fresh water), has shown that the evolution develops a
uniform and constant mean recession rate of the solid surface controlled by the dynamics
of unstable free convection. This relatively simple model can explain the evolution of the
general shape of the base of a melting or dissolving body (Mcleod, Riley & Sparks 1996;
Davies Wykes et al. 2018; Cohen et al. 2020) or the roof of a dissolving cavity (Gechter
et al. 2008). Other work has considered melting, dissolving or eroding bodies submerged
in an externally forced flow (Hao & Tao 2001, 2002; Ristroph et al. 2012; Moore et al.
2013; Huang, Moore & Ristroph 2015; Moore 2017). Oltéan, Golfier & Bus (2013) used
experiments and numerical simulations to show that, when fluid is pumped upwards
through a vertical salt cavity, the morphology of the fissure depends on whether the flow
is dominated by buoyancy-driven or forced convection. The analysis of shape change of
a melting or dissolving object in the case of gravitationally stable natural convection has
to date focused on experimental analysis (Schenk & Schenkels 1968; Vanier & Tien 1970;
Nakouzi, Goldstein & Steinbock 2015; Davies Wykes et al. 2018), or has neglected shape
change when modelling the rate of recession (Mcleod et al. 1996).

We begin in § 2 by reviewing the development of our theoretical model. This is followed
by the derivation of a new intrinsic time scale introduced by an initial condition of
a general power-law form. A suite of numerical solutions to our dimensionless model
is then presented to illustrate the transient evolutions that arise for a variety of initial
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shapes, bridging rectangular cross-sections to spiked bodies. In § 3, these regimes are
analysed to reveal similarity solutions that describe the leading-order shape at early and
late times. A universal regime diagram is constructed showing the transitions of the rate
of descent of the tip and its sharpness. In § 4, we discuss the implications of more general
initial shapes including piecewise power laws and terraced structures, the stability of the
similarity solutions to perturbations and the role of thermal conduction. We end in § 5 by
summarising our key conclusions.

2. Model review, intrinsic scales and illustration of evolving forms

We consider a two-dimensional body that is either melting or dissolving into an ambient
fluid, forming a gravitationally stable convective flow along the surface of the body
(figure 1). We assume that the fluid is Newtonian and remains laminar. Let (x, z) denote the
horizontal and vertical coordinates, let t denote time, let z = h(x, t) denote the interface
between the solid and the fluid, let α(x, t) denote the slope of the surface at a given position
x and let s denote the arc length from the tip of the body, defined by

sx =
√

1 + h2
x, (2.1)

where we have used a subscript to denote the partial derivative. The rate of recession of
the boundary normal to the surface, V , is, for either a melting or dissolving body, assumed
to be related linearly to the thermal or solutal flux according to

V =
{

R qC (dissolving),
(1/ρsl)qT (melting), (2.2)

where qC = −κ∂C/∂y and qT = k∂T/∂y are the solute mass flux and thermal energy flux
at the surface, C and T are the mass concentration and temperature fields of the fluid and
κ and k are the solutal diffusivity and thermal conductivity, respectively. For the case of
dissolution, we define the mass concentration C by

ρ = ρl + (ρs − ρl)C, (2.3)

where ρs and ρl are the densities of pure solid and liquid, respectively, such that C = 0
represents pure solvent and C = 1 pure solid. The parameter R ≡ 1/(1 − Ci), where Ci is
the mass concentration of the fluid at the interface. With this specification, (2.2) represents
the balance between the flux of concentration released by recession of the surface, V(1 −
Ci), and the flux due to diffusion away from the surface, qC. For melting, (2.2) represents
the Stefan condition, where l is the specific latent heat. For this case, we have assumed
here that the heat supplied to the surface is purely latent, i.e. that no heat is necessary
to warm the body to the melt temperature before melting initiates. This assumption is
applicable if the body is initialised close to the melting temperature. A detailed discussion
of the conditions necessary for this assumption to apply, as well as the implications of its
relaxation, are provided later in § 4.3. To ease the exposition, we henceforth assume the
notation and terminology applicable to a dissolving body and drop the subscript C from qC
until § 4.3, where we focus specifically on melting. If the flux profile along the surface, q,
were known then the recession rate V can be determined using (2.2) and the height profile
evolved forwards using

ht = −sxV, (2.4)

where the factor sx converts the normal rate of recession V into the vertical rate of
recession. To develop a closed model describing the evolution of the height profile h(x, t),
it therefore remains to relate the flux q along the body to h(x, t) at any given time.
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The convective Stefan problem

In principle, the thermal flux along the body can be determined using the system
of equations describing a solutal boundary layer. Let u(s, y, t) and v(s, y, t) denote the
tangential and normal components of the velocity of the flow, and let C denote the mass
concentration of the solution. The boundary-layer equations of the flow read

∂u
∂s

+ ∂v

∂y
= 0, (2.5)

ρ

(
u
∂u
∂s

+ v
∂u
∂y

)
= ∂

∂y

(
μ
∂u
∂y

)
+ Δρsg sin[α(s, t)]C, (2.6)

u
∂C
∂s

+ v
∂C
∂y

= ∂

∂y

(
κ
∂C
∂y

)
, (2.7)

where ρ is the density of the fluid, μ is the dynamic viscosity, g is the acceleration
due to gravity and Δρs is the density difference between the solid and the fluid with
minimum concentration (e.g. Schlichting & Gersten 2017). These equations represent the
conservation of fluid mass, momentum and solute mass, respectively. In writing these
equations, we have neglected the contributions to the material derivatives due to the rates
of change in time, ∂u/∂t and ∂C/∂t, such that the flow can be treated as quasi-steady
compared to the relatively slower time dependence of the shape evolution. As discussed in
Pegler & Davies Wykes (2020), the strength of this assumption can be measured using the
dimensionless number given by

Γ = u/V, (2.8)

representing the ratio of the flow speed to the recession speed. The limit Γ � 1
corresponds to situations where the body is gradually sculpted by a relatively faster
boundary-layer flow and the adjustment time of the boundary-layer system towards a
quasi-steady state can be assumed to be instantaneous to good approximation.

In principle, it would be sufficient to solve the complete system of quasi-steady
boundary-layer equations given by (2.5)–(2.7) subject to suitable boundary conditions
(for example, a Dirichlet condition on the concentration at the interface, and suitable
no-slip and far-field stagnancy conditions) in order to determine the required flux along
the surface, q = −κ∂C/∂y, and couple this to (2.4). However, if the Schmidt number,
Sc = ν/κ where ν = μ/ρ, is sufficiently large (greater than unity is sufficient) then an
analytical result for the flux is available that bypasses the need to solve these equations
explicitly. In this limit, the solutal sublayer through which the solute concentration
transitions from the ambient value to the interfacial value is considerably smaller than
the viscous sublayer in which viscous stresses become important. The inertial term given
by the left-hand side of (2.6) can therefore be neglected in the solutal sublayer. Under this
simplification, a transformation of the boundary-layer equations is available that yields
the explicit expression relating the flux along the surface of the body to any given height
profile

q = D| sinα|1/3(∫ s

0
|sinα|1/3 ds

)1/4 , (2.9)

where D is a constant, and the local angle of inclination α can be related to the height
profile h(x, t) by sinα = −hx/sx. This result is derived by Acrivos (1960). A step-by-step
derivation is provided in Pegler & Davies Wykes (2020), where it is noted in particular
that the result generalises to situations in which the viscosity, diffusivity or density can

915 A86-5

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 4
6.

64
.2

31
.1

66
, o

n 
17

 Ju
n 

20
21

 a
t 1

0:
48

:1
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

1.
86

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.86


S.S. Pegler and M.S. Davies Wykes

all be specified as any given function of either temperature or solute concentration. For a
dissolving body, D ≡ γ κiCi(ΔρsgCi/κ∞μ∞)1/4, where the i subscripts denote quantities
in the fluid evaluated at the interface, and the ∞ subscripts denote quantities evaluated
in the far field (the analogue expression for D for melting is provided in Appendix C.1).
The dimensionless prefactor γ encapsulates any functional dependences of viscosity and
diffusivity on concentration (the value γ ≈ 0.5027 applies for uniform properties). For the
case of an instantaneously uniform α, (2.9) reduces to q ∝ s−1/4, recovering the prediction
of the similarity solution arising for a constant surface slope (Wagner 1949; Merk & Prins
1953; Ostrach 1953).

Using (2.9) and (2.2) to evaluate V in (2.4) and using the identity sinα = −hx/sx, we
obtain the governing equation for the surface evolution h(x, t) given by

ht = −A|hxs2
x |1/3(∫ x

0
|hxs2

x |1/3 dx
)1/4 , (2.10)

where s2
x = h2

x + 1, first derived in Pegler & Davies Wykes (2020). This integro-
differential hyperbolic equation independently describes the evolution of the surface of a
melting or dissolving body subject to an initial condition on h(x, 0). For dissolving bodies,
the parameter A ≡ RD is associated purely with the material properties of the fluid and the
solid under consideration. The parameter can be interpreted as the prefactor in the profile
of the recession rate that would apply for the case of a vertical wall, V = As−1/4. Since
A can be absorbed directly into the time t, it follows that the shapes that arise for a given
initial condition are universal, with A controlling only the speed at which the dissolution
and shape transitions take place.

2.1. Similarity solutions for initial wedges and cones
In Pegler & Davies Wykes (2020), we considered the preliminary example of initially
wedge-shaped bodies defined by h(x, 0) = −m|x|, where m is a positive constant
representing the initial slope of the sides. This produces a unique situation where (2.10)
admits exact similarity solutions that apply for all time of the form

h(x, t) = (At)4/5f
(

x
(At)4/5

)
, (2.11)

where f is the shape function determined from the similarity analysis (dependent on the
parameter m). The shape profile predicted by (2.11) ‘stretches’ as t4/5 in both the vertical
and horizontal dimensions, such that the distance between the tip and its initial position
increases as h0(t) = f0t4/5, where f0 ≡ f (0) is the tip-descent prefactor. The prefactor
was found to be given asymptotically by f0 ∼ −1.49 m2/5 in the limit of shallow slopes
(m → 0) and by f0 ∼ −1.30 m4/5 in the limit of steep slopes (m → ∞). The solution
demonstrates in particular that the information of the initial position of the tip is preserved
in the evolution for all times. A further feature, indicated by the scaling for the curvature of
the tip, hxx ∼ h/x2 ∼ (At)−4/5, is that the tip blunts with time. Identical scalings apply to
cones derived from an analogue axisymmetric theory, but with slightly modified prefactors
( f0 ∼ −1.726 m2/5 as m → 0 and f0 ∼ −1.505 m4/5 as m → ∞). By conducting a series
of laboratory experiments, we showed that the model not only predicts the descent rate
correctly with no adjustable parameters, but also the entire shape profile, thereby validating
the general model. As we will show here, more general (nonlinear) initial conditions result
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The convective Stefan problem

in a considerably richer variety of new similarly solutions and asymptotic transitions,
including the potential for both sharpening and blunting of the tip.

2.2. Tip shape and the relationship between tip curvature and descent rate
Before considering solutions to the model above, we review a selection of results from
Pegler & Davies Wykes (2020) concerning the admissible shape near the tip and the
relationship between the descent speed of the tip and the local tip curvature that follow
immediately from (2.10). By considering possible forms of the asymptotic shape, h ∼ xα
for x → 0 in the right-hand side of (2.10), we find that this equation reduces to ht ∝
x(α−2)/4. Therefore, α = 2 is the only value for which the descent speed of the tip ht is
finite. A tip moving at a finite speed must therefore be parabolic, i.e.

h(x, t) ∼ h0(t)− 1
2 S(t)x2, (2.12)

as x → 0, where h0(t) ≡ h(0, t) is the tip height and S(t) ≡ |hxx(0, t)| is the tip curvature
or sharpness. Shapes that are initialised at t = 0 with a non-parabolic tip will either remain
instantaneously stationary at t = 0 if α > 2, or move instantaneously with infinite speed
if α < 2 (with an integrable singularity, meaning that the tip position remains finite). In
either case, the tip will immediately transition to being parabolic for all times t > 0 with
the curvature of the tip either increasing from zero if α > 2 or decreasing from infinity
if α < 2 (a property that will be confirmed by our later analyses). In both cases, the
instantaneous evolution of the tip shape is such as to regularise the dissolution profile
of a free-convective boundary layer by forming the unique shape for which the bounday
layer produces a locally smooth dissolution rate at the tip (Pegler & Davies Wykes 2020).

It should be noted that, while the shape near a dissolving tip is therefore universally
parabolic, the broader tip profile is generally better represented by a different,
non-parabolic form. For example, initially steep bodies generally produce a much larger
region in which a 4/3-power shape applies in an intermediate asymptotic region near
the tip, with the parabolic region confined to an asymptotic sublayer that can be many
orders of magnitude smaller (see Pegler & Davies Wykes 2020, and § 3.2.1 here). It should
also be noted that, very close to the tip, a generalised boundary-layer model that includes
contributions due to gradients in hydrostatic pressure may play some role as the tip surface
becomes horizontal near the tip (a regime that applies to thermal or solutal boundary layers
on horizontal substrates). A discussion of this is provided in appendix B of Pegler &
Davies Wykes (2020).

Substituting (2.12) into (2.10), we determined further that the speed of descent of the tip
satisfies

dh0

dt
= −A

(
4
3

S(t)
)1/4

, (2.13)

yielding a general law relating tip-descent speed and tip sharpness (for axisymmetric
bodies, the prefactor is 16 % larger; Pegler & Davies Wykes 2020). Sharper tips therefore
descend faster, at a rate proportional to the tip curvature S(t) to the 1/4 power. With the
parameter A known, the result of (2.13) allows the curvature of a dissolving tip to be
determined from measurement of the descent speed alone, thereby bypassing the need for
direct measurement of the tip curvature at the microscale.
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2.3. Intrinsic scales and non-dimensionalisation
As a template for illustrating the variety of transitional behaviours and asymptotic regimes
that apply to freely melting or dissolving bodies, we allow here for a general class of initial
shapes of the power-law form

h(x, 0) = h0(x) = −L1−n|x|n, (2.14)

where L is a length scale and n is a positive exponent defining the initial shape. This
specification allows for initially rectangular cross-sectioned bodies (n = ∞), convex
parabolae (n = 2), triangular peaks (n = 1) and concave inverse parabolae (n = 1/2). For
n /= 1, the length L represents the horizontal scale of the shape. For example, 2L is the
width of the rectangle for n = ∞, and the radius of curvature of the parabola for n = 2.
For n = 1, (2.14) reduces to −|x| and, in this special case, the length scale L is lost from
the problem. Consequently, there is a unique degeneracy in the specification for n = 1 that
requires a dimensionless initial slope m to be specified for generality (Pegler & Davies
Wykes 2020). In this case, the lack of any intrinsic length scale in the problem results in
similarity solutions that apply for all time. The existence of the intrinsic length scale L for
n /= 1 precludes a single similarity solution from applying for all time, with the result of
producing more complex transitions.

For n /= 1, (2.10) and (2.14) yield the scalings of h/t ∼ (h/x)1/4 and h ∼ x ∼ L,
respectively. Combining these scales, we derive the intrinsic time scale in the problem,

T = L5/4/A. (2.15)

With a suitable multiplicative prefactor, this time scale represents the time taken for the
surface of a melting or dissolving body to recede a characteristic distance L. For example,
βT characterises the time scale for a cylinder of material of diameter 2L and height L to
melt in a quiescent environment, where β is an order-one dimensionless prefactor specific
to this shape. For a length scale of L = 1 cm, we evaluate T ≈ 110 min using the value
A ≈ 1.5 × 10−4 cm5/4 s−1 measured for candy dissolving in water (Pegler & Davies
Wykes 2020). The scaling in (2.15) implies that a body ten times larger in side length
would take 105/4 ≈ 18 times longer to melt. As we will show, the unique intrinsic time T
also represents the time scale on which the shape transitions between different asymptotic
self-similar regimes.

We non-dimensionalise the model of (2.10) by defining the non-dimensional variables,
denoted by hats, according to

x = Lx̂, s = Lŝ, h = Lĥ, t = Tt̂. (2.16a–d)

On dropping hats, (2.10) and (2.1) become

ht = −|hxs2
x |1/3(∫ x

0

∣∣∣hxs2
x

∣∣∣1/3 dx
)1/4 , sx =

√
1 + h2

x, (2.17a,b)

respectively, and the initial condition (2.14) becomes

h(x, 0) = −|x|n. (2.18)

The initial shape exponent n provides the only parameter in the dimensionless system
above. Thus, the transient forms of freely dissolving and melting bodies of any power-law
shape can be determined following a systematic exploration of the solutions to the
dimensionless system above over n.
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2.4. Overview of predicted shape evolutions
As an overview of the possible general evolutions, we begin by illustrating a suite of
numerical solutions to (2.17a,b) and (2.18) for various values of n. For this, we employed
the second-order upwind finite-difference scheme detailed in Pegler & Davies Wykes
(2020). The evolutions of the profiles calculated for n = 100, 2, 1, and 0.5 are shown
in panels (a)–(d), respectively. In each case, the profile is shown at a progression of
times, t = 0, 1, . . . 5. The right-hand plots show the corresponding evolutions of the tip
position h0(t) as red curves. The overlaid lines of circles and dashes represent asymptotic
predictions (with appropriate dimensionless prefactors) that will be determined later in the
analyses of § 3.

The case n = 100 shown in panel (a) of figure 2 is representative of the limiting case of
an initially rectangular body, n = ∞. The numerical solution shows that the initial effect
of dissolution is to round the corners of the rectangle. At early times, the large majority of
the dissolution occurs along the near-vertical edges of the body, producing a progressively
taller aspect ratio. By t ≈ 2, the initially blunt tip has formed a sharp needle-like profile.
The tip subsequently descends at a much faster rate. The plot of the descent distance of
the tip in the right-hand panel illustrates a relatively sudden acceleration of the descent
rate for t � 2. The descent position switches from a scaling of t4/3 at early times to the
considerably faster scaling of t4 at late times. The evolution of the tip sharpness S(t) plotted
in figure 3(a) shows a correspondingly abrupt increase in the rate of sharpening from a t4/3
trend at early times to a very fast t12 trend at late times.

The solution arising for an initially parabolic shape (n = 2) is illustrated in figure 2(b).
Initially, the shape descends at a near-uniform rate, forming a regime in which the surface
retains its full parabolic shape at early times. This contrasts to the case n = 100 discussed
above, where the early-time recession of the surface was primarily horizontal. For t � 1,
the profile transitions to a more pointed shape with a sharper tip. A qualitatively similar,
if less extreme, asymptotic transition from an initially smooth tip to a sharper tip occurs
as compared to the case n = 100 above. Likewise, the tip descends faster at larger times.
In this case, the tip position descends as t at early times and at the faster rate of t4/3 at late
times. The evolution of the sharpness S(t) plotted in figure 3(b) shows that the tip sharpens
for all time, initially with a slow rate of sharpening from the initial value S(0) = 2 and
transitioning towards the faster rate of S ∼ t4/3.

For the case n = 1 shown in figure 2(c), the initial recession speed is largest in the locale
of the tip, contrasting with the behaviour of the two cases n = 2 and 100 discussed above.
In further contrast, the initially sharp tip rounds out, and continues to blunt for all time. In
this case, figure 3(c) shows that the sharpness indeed decreases with time as S(t) ∼ t−4/5,
implying that the tip blunts with time. This behaviour contrasts qualitatively with the two
cases n = 100 and 2 discussed above, for which the tip sharpens for all time. The results
thus demonstrate that the tips of dissolving objects can either blunt or sharpen depending
on their initial shape.

Figure 2(d) shows the case n = 1/2, providing an example of an initially concave shape
with a spiked tip. In this case, the transience represents a reversal of the order of the regime
transitions that apply to the cases of (a,b) above. Instead of transitioning from a shallow
tip to a steeper tip, the profile transitions from an initially steep tip to a shallower tip. The
right-hand plot of panel (d) shows a transition from a steep regime descending as t1/3 at
early times to a shallow regime descending as t4/7 at long times. This reversal illustrates
the possibility for the slopes of the surface of a melting body either to steepen or shallow
with time, and the dependence of which of these occurs on the initial shape.
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Figure 2. A suite of numerical solutions to the dimensionless model (2.17a,b)–(2.18) for (a) a near-rectangular
initial profile, n = 100, (b) a parabolic initial profile, n = 2, (c) a piecewise linear initial profile, n = 1, and
(d) an inverse parabolic initial profile, n = 0.5. The left-hand plots show the evolution of the shape h(x, t) at
a progression of dimensionless times t = 0, 1, 2, 3, 4 and 5 (the last is not visible in (a)). On the right, we
show as red curves the evolution of the tip-descent distance, |h0(t)| = |h(0, t)|, illustrating transitions between
the shallow theory of § 3.1 and the steep theory of § 3.2. The predictions of the similarity solutions under the
shallow theory are overlaid by a line of black hollow circles, while those of the steep theory are overlaid as
dashed black lines. For cases (a,b), the transition switches from the shallow regime to the steep regime. For case
(c), there is a similarity solution given by (2.11) in which the shape scales in both the vertical and horizontal
dimensions as t4/5 with respect to the starting level of the tip z = 0 (Pegler & Davies Wykes 2020). For case
(d), the shape transitions away from a steep regime at early times to a shallow regime at late times, representing
a reversal of the regime progressions compared to (a) and (b).

915 A86-10

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 4
6.

64
.2

31
.1

66
, o

n 
17

 Ju
n 

20
21

 a
t 1

0:
48

:1
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

1.
86

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.86


The convective Stefan problem

100

100

101

10110–1

t

Sharpens

Sharpness S(t) Sharpness S(t) Sharpness S(t)

~ t4/3

~ t12n = 100

100 100 101
100

100

101

101

102

10110–1 10–110–2

t t

Sharpens
Blunts

~ t4/3

~ t–4/5

~ 2

n = 2 n = 1
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Figure 3. The evolution of the tip sharpness, S(t) = |hxx(0, t)|, as a function of time for initial shape exponents
of (a) n = 100, (b) n = 2 and (c) n = 1, derived from the numerical solutions of figure 2. The plots illustrate
the potential for melting or dissolving objects either to sharpen or blunt with time, the precise conditions for
which are analysed in § 3.1. The asymptotic predictions of (3.9) and (3.18) are shown as lines of circles and
dashes, respectively. Case (a) illustrates a pronounced transition to a rapid t12 growth in the tip curvature for
t � 5. Case (c) illustrates progressive blunting of the tip as t−4/5, corresponding to the prediction of the special
similarity solution that applies for n = 1 given by (2.11) for m = 1.

3. Asymptotic solutions and regime transitions

The suite of solutions above demonstrated transitions between two different asymptotic
regimes. The two limits represent distinct asymptotic reductions of the model: one arising
in situations where the surface in the locale of the tip is near horizontal (hx � 1), referred
to as the shallow regime, and the other arising in situations where the surfaces in the locale
of the tip are nearly vertical (hx � 1), referred to as the steep regime.

3.1. Shallow theory
If the slope of the body is shallow, the theory can be simplified under the approximation
that the along-slope component of gravity is determined to leading order by the local slope.
That is, sx ≈ 1 and the relationship sin[α(x, t)] ≈ −hx/sx simplifies to

sin[α(x, t)] ≈ −hx, (3.1)

and (2.17a,b) and the initial condition reduce to

ht = −|hx|1/3(∫ x

0
|hx|1/3 dx

)1/4 , h(x, 0) = −|x|n, (3.2a,b)

forming a shallow-slope limiting form of the theory (Pegler & Davies Wykes 2020). With
this reduction, it is now impossible to form an intrinsic horizontal length scale in the
problem without incorporation of time t, indicating the existence of similarity solutions.
By considering the scalings in (3.2a,b), the relevant similarity coordinate ξ and shape
function f (ξ) can be determined as

x = t4/(3n+2)ξ, h = t4n/(3n+2)f (ξ), (3.3a,b)

respectively. In accordance with (3.3b), the tip descends as

h0(t) = f0t4n/(3n+2), (3.4)

where f0 is an unknown dimensionless prefactor dependent on the initial-slope exponent n.
For n = ∞, 2, 1 and 0.5, the exponents in the tip-descent law (3.4) are 4/3, 1, 4/5 and
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4/7, respectively. These results verify the tip-descent exponents indicated earlier by our
numerical solutions of figure 2, occurring at early times for both cases (a) n = 100 and
(b) n = 2, at all times for case (c) n = 1 and at late times for case (d) n = 0.5.

The differing role of the shallow regime as a late-time asymptotic solution if n < 1 but
as an early-time asymptotic solution if n > 1 can be understood by considering the limits
of time (t → 0 or t → ∞) for which the similarity scalings (3.3a,b) predict shallowing of
the slope hx. In accordance with (3.3a,b), the slope scales as

hx ∝ t4(n−1)/(3n+2). (3.5)

Thus, the approximation of shallowness, hx � 1, is self-consistent as an early-time
asymptote (t → 0) only if n > 1, in agreement with our numerical results of figure 2.
Conversely, it provides a self-consistent late-time asymptote (t → ∞) only if n < 1.

To determine the shapes of the similarity solutions, we recast (3.2a,b) in terms of the
similarity variables (3.3a,b), yielding the ordinary integro-differential system

4
3n + 2

(n f − ξ f ′) = −| f ′|1/3
(∫ ξ

0
| f ′(ζ )|1/3 dζ

)−1/4

, (3.6)

f (∞) ∼ −ξn. (3.7)

The far-field condition (3.7) can be interpreted as the initial condition (2.14) recast in terms
of the similarity variables (noting that ξ → ∞ as t → 0). Alternatively, it follows from the
fact that the shape in the far field (ξ → ∞) must be given by the initial prescribed shape.
This is because the boundary layer becomes fully insulating as its thickness continues to
increase in the limit ξ → ∞.

We solved the system above numerically using a shooting method in which the similarity
coordinate of the tip position, f0 = f (0), is treated as a shooting parameter. For a given trial
value of f0, we integrate (3.6) forwards from ξ = 0 to a large far-field value of ξ∞ using
an initial-value integrator. In view of the fact that (3.6) cannot be rearranged explicitly for
f ′, the forwards marching was conducted using the implicit MATLAB solver ode15i. The
value of f (ξ∞) is then compared with the required far-field value −ξn∞ given by (3.7), and
the value of f0 tuned with successive iterations using the bisection method.

The resulting solutions are illustrated in figure 4. As shown in panel (b), the magnitude
of the prefactor | f0| increases to a maximum at n ≈ 0.5 and decreases towards the
asymptotic value f0 ≈ −0.735 as n → ∞. The profiles of the solutions for n = 0.5, 1,
2 and ∞ are shown in panels (c)–( f ), respectively. The solution for n = 0.5 inflects to
a rounded tip, as shown by the enlargement in the inset of panel (c). This inflection is
necessary in order for the solution to match to the parabolic form of the tip in accordance
with (2.12).

For an initially parabolic body, n = 2, (3.2a,b) admits the exact analytical solution

f = f0 − ξ2, where f0 = −(8/3)1/4. (3.8)

In this case, the dissolution rate over the surface of the body is uniform and the profile
simply descends at a constant speed, preserving its shape. This occurs uniquely for n =
2 because the parabola is the special shape for which a free-convective boundary layer
produces a uniform dissolution rate under the approximation of a shallow slope hx � 1
assumed here.

An interesting property of melting or dissolving bodies indicated by our numerical
solutions in figure 3 is their potential to either sharpen or blunt with time.
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Figure 4. Shallow theory predictions for the similarity solutions (§ 3.1). Panel (a) shows the exponent γ =
4n/(3n + 2) predicted by the tip-descent law (3.4) as a function of the shape exponent n, illustrating an increase
in the rate of growth as n is increased. Panel (b) shows the corresponding magnitude of the tip-descent prefactor
| f0| in (3.4) determined by solving (3.6) numerically. Panels (c)–( f ) show the associated shapes of the similarity
solutions for n = 0.5, 1, 2 and 100. The case (e) n = 2 is described by the exact analytical solution (3.8),
representing a parabola that descends at constant dimensionless speed | f0|. An enlargement in the inset of
panel (c) shows the inflection of the shape to a rounded, parabolic tip, in accordance with the general property
that the tip is locally parabolic (2.12).

Using the similarity variables (3.3a,b) to evaluate the sharpness S(t) = |hxx(0, t)|, we
obtain

S(t) = 3
4

(
4n| f0|
3n + 2

)4

t4(n−2)/(3n+2), (3.9)

where f0 is the descent prefactor (determined already, shown in figure 4b). We note that the
exponent changes sign at n = 2. Thus, cases of n < 2 blunt with time and those of n > 2
sharpen with time, while the case n = 2 neither sharpens nor blunts, in agreement with the
analytical solution of (3.8). It should be noted that the condition for blunting (n < 2) verses
sharpening (n > 2) differs from the condition for shallowing (n < 1) versus steepening
(n > 1). This is possible because sharpness is associated with the second derivative of the
profile, hxx, while steepness is associated with the first derivative, hx, resulting in different
scalings. It should also be noted that the prediction for the sharpness given by (3.9) is only
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applicable under the shallow regime (hx � 1). A different prediction for the evolution of
sharpness applies in the opposite limit of a steep body (§ 3.2), including a different critical
value separating cases that blunt versus those that sharpen (n = 4/3). The implication is a
rich variety of scalings for the tip sharpness as a function of time, to be discussed in § 3.4.

3.2. Steep theory
A different reduction of the governing equations (2.17a,b) arises in the limit of steep
slopes, hx � 1. In this limit, the slope is nearly vertical (α ≈ π/2) and hence the
proportion of gravity acting tangential to the slope can be approximated as

sin[α(x, t)] ≈ 1. (3.10)

The relative strength of gravity is therefore independent of the surface profile at leading
order. Moreover, the arc length per unit horizontal position (2.1) can be approximated by
the slope, sx ≈ −hx. The system of (2.17a,b) and (2.14) therefore simplifies to

ht = −|hx|
(h0(t)− h)1/4

, h(0, t) = −|x|n, (3.11a,b)

producing a steep version of the theory. In this limit, the leading-order dissolution profile
along the body corresponds to that predicted by a thermal boundary layer along an
effectively vertical wall of finite height with its top at z = h0(t).

Similarly to the shallow theory of § 3.1, the asymptotic reduction of the full model
to (3.11a,b) removes the intrinsic horizontal length scale from the problem. Again, this
indicates the existence of similarity solutions. By considering the scalings of (3.11a,b), we
determine the relevant similarity variable η and shape function g(η) defined by

x = t4/(n+4)η, h = t4n/(n+4)g(η), (3.12a,b)

respectively. Thus, the tip descends as h0(t) = g0t4n/(n+4), where g0 is the unknown
tip-descent prefactor. Recasting (3.11a,b) in terms of (3.12a,b), we obtain the
similarity system

4
n + 4

(ng − ηg′) = g′(g0 − g)−1/4, (3.13)

g(∞) ∼ −ηn. (3.14)

The system admits the analytical solution (Appendix A) given by

4n|g0|1/4
n + 4

η =
(

g(η)
g0

)1/n ∫ g(η)/g0

1

χ−(n+1)/n

(χ − 1)1/4
dχ. (3.15)

Taking the limit η → ∞ and imposing (3.14), we obtain the tip-descent prefactor

g0 = −

⎛
⎜⎜⎝
(n + 4)Γ

(
3
4

)
Γ

(
n + 4

4n

)

4nΓ
(

n + 1
n

)
⎞
⎟⎟⎠

4n/(n+4)

, (3.16)

where Γ (x) ≡ ∫∞
0 ηx−1e−η dη is the gamma function. The tip-descent prefactor given by

(3.16) is illustrated in panel (b) of figure 5. The values of g0 lie between unity and the
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Figure 5. Steep theory predictions for the similarity solutions (§ 3.2). Panel (a) shows the exponent γ =
4n/(n + 4) predicted by the tip-descent law (3.4). Panel (b) shows the tip-descent prefactor given by the
analytical solution (3.16). Panels (c)–( f ) show the shape function for n = 0.5, 1, 2 and 100, as predicted by
the analytical solution (3.15).

large-n asymptote g0 → π2/64 ≈ 1.522. The analytical solution for the shape (3.15) is
shown for a selection of n = 0.5, 1, 2 and 100 in panels (c)–( f ).

For n = 4/3, (3.15) and (3.16) reduce to the exact power-law solution

g = g0 − η4/3, where g0 = −4/3. (3.17)

Mathematically, this is the steep theory analogue of (3.8). The special case n = 4/3 is the
critical value for which the vertical rate of recession along a buoyancy-driven boundary
layer is uniform under the limit of steep slopes. The value differs from the result applicable
in the shallow limit (n = 2) because the simplification of the along-slope component of
buoyancy differs in the two limits (it is sx ≈ −hx, instead of sx ≈ 1). The critical value
n = 4/3 likewise corresponds to the special case for which the corresponding reduced
theory predicts that the full shape simply descends at a constant speed (the tip descent
exponent 4n/(n + 4) is again unity) and retains its initial shape.
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Substituting the self-similar prediction for the tip position (3.12b) into (2.13) and
rearranging for the tip sharpness S(t), we obtain

S(t) = 3
4

(
4n|g0|
n + 4

)4

t4(3n−4)/(n+4), (3.18)

yielding an explicit expression describing the evolution of the tip sharpness in the steep
regime. The result predicts tip-descent exponents of −4/5, 4/3 and 12 for n = 1, 2 and ∞,
respectively, in agreement with the numerically predicted evolutions of the sharpness at
late times shown in figure 3. According to the steep regime, the shape sharpens if n > 4/3
but blunts if n < 4/3, differing from the conditions predicted by the analogous result of the
shallow theory (3.9). The result above confirms that the critical value n = 4/3 corresponds
to the case where the shape is preserved over time and neither blunts nor sharpens.

Near the tip (η → 0), (3.15) simplifies to the leading-order asymptotic form

g ∼ g0 −
(

3n|g0|
n + 4

η

)4/3

(η → 0). (3.19)

Under the steep-slope approximation, the near-tip region therefore has a 4/3-power shape.
This appears to contradict the requirement that the local tip shape is parabolic with a finite
curvature S(t), as predicted by (2.12). This conflict occurs because the approximation of
steepness (hx � 1) breaks down close to the tip, where hx → 0. Indeed the steep solution
(3.19) itself predicts that gη → 0 as η → 0, thus predicting its own inconsistency near the
tip. A similar asymptotic structure was also found to occur in the context of an initially
conic body (Pegler & Davies Wykes 2020). To determine the asymptotic structure of the
near-tip region, we introduced a non-steep asymptotic sublayer a distance of order m−16/5

from the tip, where m is the initial slope of the body. For power laws with n /= 1, a similar
asymptotic structure arises, except the small parameter in the problem ε(t) is here based on
time (t → 0 if n < 1 or t → ∞ if n > 1) instead of the slope scale m, as we detail below.

3.2.1. Matching the steep solution to a non-steep asymptotic sublayer near the tip
In order to reconcile the conflict between the outer steep regime and the tip, we must
introduce a non-steep asymptotic sublayer that matches the inner limit of (3.19) to the
parabolic solution (2.12). Following the general approach of Pegler & Davies Wykes
(2020), we first recast the full, unsimplified system (2.17a,b) in terms of the similarity
variables derived for the steep theory (3.12a,b), and then consider the length scale on
which the neglected terms intervene in the limit η → 0. The essential asymptotic structure
is similar to that arising for wedges and cones (Pegler & Davies Wykes 2020), but differs
in that the downstream tip shape is here a general nonlinear power law (n /= 1) and the
asymptotic parameter is now based on time t instead of the initial slope m.

When recast in terms of the similarity variables (3.12a,b), (2.17a,b) becomes

4
n + 4

(ng − ηgη) = −|gη(ε + g2
η)|1/3[∫ η

0
|gη(ε + g2

η)|1/3 dη
]1/4 , (3.20)

where ε(t) = t−8(n−1)/(n+4) is a small time-based asymptotic parameter. The limit ε → 0
is consistent with the property that the steep regime arises at late times for n > 1 and
at early times for n < 1. The new terms compared to the steep theory of (3.11a,b) are
represented by the ε terms, which incorporate the slope dependence of the along-slope
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component of gravity. By substituting the leading-order form of the steep analytical
solution in the limit η → 0 given by (3.19) into (3.20) and considering the size of η at
which ε becomes significant (where g2

η ∼ ε), we determine the extent of the inner region
δ to be

η ∼ δ ≡ ε3/2 = t−12(n−1)/(n+4). (3.21)

Combining this with the scaling g2
η ∼ ε, we determine the associated vertical scale of the

inner region as g ∼ ε1/2δ ∼ ε2. Thus, appropriate inner variables ζ and ψ can be defined
by

η = ε3/2ζ, g(η) = g0 + ε2ψ(ζ ), (3.22a,b)

where ψ(ζ ) is of order unity in the non-steep sublayer. Recasting (3.20) in terms of
these variables and neglecting higher-order terms, we derive the leading-order equation
describing the shape through the non-steep region,

4ng0

n + 4
= −|ψ ′(1 + ψ ′2)|1/3[∫ η

0
|ψ ′(1 + ψ ′2)|1/3 dζ

]1/4 . (3.23)

This equation successfully matches the inner limit of (3.19) to a parabola near the tip
with sharpness given by (3.18). To check this, we note that in the limit ζ → 0, the terms
involving the square of the slope, ψ ′2, can be neglected in (3.23). The resulting simplified
equation admits the parabolic solution ψ = −(Σ/2)ζ 2 where Σ = (3/4)(4n|g0|/(n +
4))4, thus recovering the required parabolic solution with sharpness (3.18). Conversely, for
ζ → ∞, we can neglect the two instances of 1 in (3.23) compared to ψ ′2. The 4/3-power
shape given by (3.19) provides the solution to the resulting reduced form of (3.23).

In summary, the tip of a steep body forms a double-decked structure: an inner layer of
size x ∼ t−4(n−1)/(n+4) that connects the initial shape profile to the 4/3-power shape given
by (3.19). Closer to the tip, an inner–inner region of size x ∼ t−12(n−1)/(n+4) connects the
4/3 shape to a deeper parabola. The inner–inner region is a factor t−8(n−1)/(n+4) smaller
than the inner. For an initially rectangular body (n = ∞), this factor is t−8, implying a
rapid reduction in the region in which a parabola applies compared to the 4/3-power shape.
The 4/3-power shape therefore dominates the larger-scale form of the shape near the tip at
late times, but the tip retains a parabolic form at the finest scale.

3.3. Regime transitions
The numerical solutions in figure 2 illustrated transitions between two distinct asymptotic
regimes for each case of n /= 1. Sections 3.1 and 3.2 developed asymptotic similarity
solutions associated with these regimes. Here, we illustrate these transitions together in
a universal parameter–time regime diagram in which the times at which the shallow or
steep self-similar regimes apply to good approximation are demarcated (figure 6). To do
this, we define the times, t1 and t2, at which the tip predicted by the full model lies within
a factor of 1 ± ε of the shallow and steep similarity solutions, respectively, where ε is a
small parameter taken as 0.05. We define the transition times by

| f0tλ1
1 − h0(t1)|
h0(t1)

= ε,
|g0tλ2

2 − h0(t2)|
h0(t2)

= ε, (3.24a,b)

where λ1 = 4n/(3n + 2) is the tip-descent exponent associated with the shallow similarity
solution (3.3a,b), λ2 = 4n/(n + 4) is the tip-descent exponent associated with the steep
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Figure 6. Regime diagram illustrating when the shallow and steep asymptotic regimes apply over time as a
function of the initial shape exponent n. The diagram is constructed by evaluating the transition times, t1 and
t2, defined by (3.24a,b) as the times at which the numerically determined position of the tip of the body is
within 5 % of the shallow and steep similarity solutions, respectively. The plot shows the transition between the
shallow similarity solution (blue shading) and the steep similarity solution (green shading), and the opposite
order of the regimes depending on whether the initial shape is concave (n < 1) or convex (n > 1). The yellow
region represents times during which the evolution is transitioning from one regime to another or evolves
according to the different similarity theory represented by (2.11), as applies uniquely for n = 1 (indicated by
the vertical dashed line). Panel (a) shows the numerical solution (black solid curve) for the illustrative example
n = 5 at an early time t = 0.05 < t1 for which the shallow similarity solution determined from the analysis
of § 3.1 (blue dashed curve) applies to good approximation. The position of this case is indicated by a filled
black circle in the regime diagram. The initial shape is indicated by a thinner grey curve. Panel (b) shows a
corresponding late time t = 5 > t2 overlaid with the steep similarity solution determined in § 3.2.

similarity solution (3.12a,b) and h0(t) is the tip position predicted by our numerical
solution. The transition times t1 and t2 are plotted as functions of the shape exponent
n in figure 6. Regions of blue shading represent times at which the tip is predicted by
the shallow theory, green shading represents times at which the tip is predicted by the
steep theory and yellow shading represents the transitory state. For n < 1, the evolution
begins in the steep regime and transitions relatively quickly to the intermediate regime.
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The transition times diverge at n = 1 because the evolution never approaches the shallow
or steep asymptotic regimes in this special case, for which the distinct similarity solution
of (2.11) applies exactly for all times. For n > 1, the evolutions begin in the shallow regime
and transition to the steep regime. For large n � 10, the shallow regime transitions to the
steep regime with only a very brief intermission. This abrupt transition is in agreement
with our numerical solutions for n = 100 illustrated earlier in figure 2(a), showing that the
asymptotic solutions describe the large majority of the evolution.

3.4. Sharpening or blunting?
The evolutions of the tip sharpnesses shown in figure 3 for n = 100, 2 and 1 illustrated
the possibility for a dissolving or melting object either to sharpen or blunt with time,
depending on its initial shape. According to the differing predictions of the shallow and
steep similarity solutions, (3.9) and (3.18), the sharpness evolves in proportion to

S(t) ∝
{

t4(n−2)/(3n+2) ≡ tσ1 (shallow),
t4(3n−4)/(n+4) ≡ tσ2 (steep),

(3.25)

where σ1 and σ2 are referred to as the tip-sharpening exponents in the shallow and
steep regimes, respectively. If a tip-sharpening exponent is positive, σi > 0, then the
corresponding similarity solution (i = 1 or 2), predicts sharpening. If the exponent is
negative, σi < 0, the solution predicts blunting. To visualise the values of n for which
the tip-sharpening exponents σ1 and σ2 change sign, we have plotted these functions of n
in figure 7. Under the shallow regime, the tip sharpens if n > 2, and blunts if n < 2. On
the other hand, the steep similarity solution sharpens if n > 4/3 and blunts if n < 4/3.
Since the order in which the shallow and steep regimes arise chronologically is based on a
different condition altogether, dependent on whether n < 1 or n > 1, a variety of different
tip-sharpening scalings are possible.

For case A (n < 1), the sharpness at early and late times evolves according to

S(t) ∝
{

tσ2 with σ2 < 0 (steep blunting for t → 0),
tσ1 with σ1 < 0 (shallow blunting for t → ∞).

(3.26)

Since both tip-sharpening exponents are negative in this case, the body blunts for all time.
This confirms the observations of the solution n = 0.5 illustrated in figure 2(d).

For case B (1 < n < 4/3), the sharpness instead evolves according to

S(t) ∝
{

tσ1 with σ1 < 0 (shallow blunting for t → 0),
tσ2 with σ2 < 0 (steep blunting for t → ∞).

(3.27)

Again, both tip-sharpening exponents are negative, and hence the body blunts for all time.
However, in this case, the early-time blunting is predicted by the shallow theory, while the
late-time blunting is controlled by the steep theory, representing a chronological reversal
of the asymptotic regimes compared to the case of (3.26).

For case C (4/3 < n < 2), the sharpness evolves as

S(t) ∝
{

tσ1 with σ1 < 0 (shallow blunting for t → 0),
tσ2 with σ2 > 0 (steep sharpening for t → ∞).

(3.28)

Curiously, in these cases the body blunts at early times in the shallow regime but sharpens
at long times in the steep regime. The tip begins by blunting, reaches a minimum sharpness
and then switches to sharpening.
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Figure 7. Tip-sharpening exponents, σ1 and σ2, representing the powers in the evolution of the sharpening,
S(t) ∝ tσi , for the shallow (i = 1) (blue) and steep (i = 2) (green) asymptotic regimes, as summarised by (3.25)
and to the right of the figure above. If σi > 0, then the tip sharpens under the corresponding regime i, and if
σi < 0 then the tip blunts under that regime. For n < 1, the steep regime occurs at early times and the shallow
regime occurs at late times. For n > 1, the order is reversed. The thick branch of each curve represents the
situations for which the exponent applies at early times, while the thin solid branch represents the situations for
which it applies as late times. For case A (n < 1), both σ1 < 0 and σ2 < 0 and hence the tip blunts for all times.
For case B (1 < n < 4/3), σ1 < 0 and σ2 < 0 again, implying blunting for all times. However, the temporal
order in which exponents apply is reversed compared to case A. For case C (4/3 < n < 2), σ1 < 0 but σ2 > 0,
implying that the tip initially blunts under the shallow regime but transitions to sharpening at late times under
the steep regime. For case D (n > 2), σ1 > 0 and σ2 > 0, implying that the tip sharpens for all times.

For case D (n > 2), the sharpness evolves as

S(t) ∝
{

tσ1 with σ1 > 0 (shallow sharpening for t → 0),
tσ2 with σ2 > 0 (steep sharpening for t → ∞).

(3.29)

In this case, both sharpening exponents are positive, implying that the body sharpens for
all times. This includes the case of an initially rectangular body n = ∞, for example, as
represented in figure 3(a), for which σ1 = 4/3 and σ2 = 12 are both positive. The result is
to produce a sharp needle-like spike at long times.

A summary of the general controls on tip sharpening predicted by (3.26)–(3.29) over
all values of n > 0 is provided in table 1 and figure 7. A general property indicated by
these results is that the more blunted the initial power-law shape (larger n), the faster the
sharpening (the tip sharpening exponents shown in figure 7 are increasing functions of n).
The case of a rectangular body, n = ∞, provides the theoretical maximum for both the
fastest early- and late-time sharpening powers of t4/3 and t12, respectively. The case of
an initially sharp spike, n → 0, by contrast has the fastest theoretical rate of blunting,
S ∼ t−4, occurring at both early and late times.

Melting and dissolution are typically understood to be smoothing processes, and this
is indeed true for the majority of the body away from the tip (as will be demonstrated in
§ 4.2). Hence, it is perhaps surprising that it is possible for the tip to sharpen, as occurs
for all n > 4/3. The tip is a unique location where sharpening is possible because the
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The convective Stefan problem

Early time (t → 0) Late time t → ∞
A: 0 < n < 1 Steep blunting (σ2 < 0) Shallow blunting (σ1 < 0)

n = 1 Blunting (σ = −4/5) Blunting (σ = −4/5)
B: 1 < n < 4/3 Shallow blunting (σ2 < 0) Steep blunting (σ1 < 0)

n = 4/3 Shallow blunting (σ1 = −2/9) Sharpness preserving (σ2 = 0)
C: 4/3 < n < 2 Shallow blunting (σ1 < 0) Steep sharpening (σ2 > 0)

n = 2 Sharpness preserving (σ1 = 0) Steep sharpening (σ2 = 4/3)
D: n > 2 Shallow sharpening (σ1 > 0) Steep sharpening (σ2 > 0)

Table 1. Summary of the conditions under which the tip sharpens or blunts, as inferred from the tip-sharpening
exponents given by the shallow and steep asymptotic theories (3.25) and plotted in figure 7 and the
accompanying discussion of § 3.4.

boundary layers on either side of the body initiate at that location. The smoothing effect of
dissolution can therefore be uniquely absent directly at the tip itself. Like the sharpening
of a knife, sharpening occurs only if material is removed laterally from the sides of the
tip faster than it is removed vertically, producing a sharper edge. For the shallow regime,
the case n = 2 represents the critical value above which the horizontal rate of recession
of the interface near the tip is faster than vertical recession, resulting in sharpening. The
switch in the spatial variation of the recession rate across the critical value n = 2 leading to
sharpening or blunting can be seen explicitly by substituting the initial condition h = −|x|n
into (3.2a) to obtain

ht = −
(

n(n + 2)
3

)1/4

x(n−2)/4. (3.30)

The rate of vertical recession produced by the boundary-layer flow, |ht|, is therefore an
increasing function of the distance from the tip x for n > 2, and a decreasing function
of distance from the tip for n < 2, consistent with a switch from sharpening to blunting
across the critical value n = 2. For the steep regime, the corresponding critical value is
n = 4/3.

4. Generalisations

The analysis has so far focused on the evolutions resulting from initial shapes formed from
power laws and situations where the recession rate V is assumed to be directly proportional
to the thermal or solutal flux along the surface q. In this section, we will address more
general situations in which these assumptions are relaxed. First, we discuss how a shape
initialised with a non-power-law form will transition between different similarity solutions
of the kind we have calculated. Second, we consider the question of whether perturbations
to a given shape will decay towards these smooth similarity solutions. Finally, we develop
conditions for the applicability of the model to situations where thermal conduction
interior to a melting body must be taken into account.

4.1. Generalised initial shapes
To understand the evolution resulting for more complex initial shapes, we begin with the
simple example of a blunted wedge, defined by

h(x, 0) =
{

0 (|x| < 1),
−m(1 − |x|) (|x| > 1), (4.1)

915 A86-21

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 4
6.

64
.2

31
.1

66
, o

n 
17

 Ju
n 

20
21

 a
t 1

0:
48

:1
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

1.
86

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.86


S.S. Pegler and M.S. Davies Wykes

0

x

h

h

5−5 10010−1

10−2

102

100

101

t

0 1 2−1−2
−2.5

−2.0

−1.5

−1.0

−0.5

0

−5

−4

−3

−2

−1

1

0

−6

−7

Sharpening

Sharpening

Sharpness

oscillation

BluntingMaximum

sharpness

attained

S
h

ar
p

n
es

s 
S

10010−1

10−2

102

100

101

S
h

ar
p

n
es

s 
S

~ 0.69 t4/3

~ 0.69 t4/3

~ 2.10 t –4/5

~ 161 t –4/5

(a)

(b)

Figure 8. Numerical solutions to the model of (2.17a,b) for initial conditions given by (a) a blunted wedge
(4.1), and (b) a terraced wedge (4.2). The left-hand plots show the evolution at a progression of times
t = 0, . . . , 6. The right-hand plots show the evolution of the tip sharpness or curvature, S(t). Case (a)
demonstrates that the shape formed from piecewise power laws undergoes a transition between similarity
solutions corresponding to different values of n at early and late times. The early-time evolution is described by
the shallow similarity solution for n = ∞ while the late-time regime is described by the similarity solution
for an initial wedge, as given by (2.11). The sharpness initially evolves in accordance with the early-time
n = ∞ regime (cf. figure 3a) but attains a maximum before transitioning to the blunting predicted by the n = 1
regime. Case (b) demonstrates the decay of initial perturbations towards the smooth similarity solutions, and the
potential for a dissolving tip to oscillate repeatedly between sharp and blunt for an initially roughened surface.
The amplitude of the oscillation decays towards the n = 1 self-similar regime in which the sharpness decreases
as t−4/5, demonstrating convergence towards the asymptotic state relevant to the unperturbed large-scale shape.

where m is the magnitude of the slope of the sides. This initial shape shares properties
with two of the initial profiles considered previously: it has a horizontal top, which is
representative of the case n = ∞, but has sloped edges, representative of a wedge shape
for which (2.11) provides the solutions.

The evolution resulting from this initial condition is illustrated in figure 8(a) for m = 5.
Here the left-hand panel shows the evolution of the surface profile at a series of times
t = 0, 1, 2, 3, 4, 5 and 6. The right-hand panel shows the evolution of the sharpness of
the tip. Initially, the evolution follows the n = ∞ shallow similarity solution, in which
the tip sharpens as 0.69 t4/3 in accordance with the prediction of (3.18). The sharpness
continues to rise at a faster rate, in a similar manner to the evolution predicted in the
case of an initially rectangular body, shown earlier in figure 3(a). The sharpness reaches
a maximum value at t ≈ 3.4, before decreasing towards the asymptote 161 t−4/5 as t →
∞. The asymptote corresponds to the prediction of the similarity solution for an initially
wedge-shaped body given by (2.11) for m = 5, as calculated in Pegler & Davies Wykes
(2020).
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The convective Stefan problem

The example has illustrated a general property: at early times, the rate of descent is
determined primarily by the initial shape near the tip (the region x � L) for t � T , but
switches to being controlled primarily by the large-scale shape (the region x � L) for
t � T . Thus, the similarity solutions determined in our analysis of § 3 also describe the
transient forms arising for the more general class of shapes formed from piecewise power
laws. An interesting implication is that if a shape has an initial near-tip profile represented
by n > 1 but a large-scale shape represented by n < 1 then it is possible for the evolution
to remain in the shallow asymptotic regime for all time (a situation that is impossible for
pure power-law initial shapes).

4.2. Evolution of perturbations
To illustrate the decay of perturbations in more detail, we consider here the evolution from
an initially terraced profile prescribed by

h(x, 0) = �x�, (4.2)

where �x� is the floor function. As shown by the evolution in figure 8(b), the tip initially
evolves equivalently to the other examples with an initially horizontal top with S(t) ∼
0.69 t4/3 (cf. figures 3a and 8a). The snapshot at t = 0.1 shows that the recession is initially
largest along the vertical sections of the body and the corners round to a smoother surface.
At late times, the tip begins to oscillate between sharpening and blunting, alternating
between the vanishing of a sharp protrusion and the sharpening of the resulting flat surface.
Mathematically, the oscillation occurs as the characteristics of the governing equation
propagate the information of the initial profile to the tip. In simple physical terms, the
features of the surface migrate towards the tip. The oscillation reflects the alternation
between near-horizontal and near-vertical sections of the initial terraced profile. The
evolution demonstrates that alternation between sharpening and blunting of a dissolving
or melting tip can, in principle, occur any number of times, depending on the initial shape.
At late times, the magnitude of the oscillation dampens and approaches the asymptote
applicable to the late-time similarity solution describing the evolution from an initially
wedge-shaped body (2.11) with slope m = 1, given by S ∼ 2.10 t−4/5 (Pegler & Davies
Wykes 2020). The results demonstrate that an initial perturbation to a shape described by
a leading-order power law n will decay towards the corresponding late-time asymptotic
similarity solution.

To analyse the evolution of perturbations in more detail, we conduct a linear stability
analysis. We demonstrate this approach here for the case where the basic state is given
by the exact parabolic solution (3.8) to the shallow model (3.2a), which can be expressed
analytically by h0(t)− x2, where h0(t) = −(8/3)1/4t. Thus, we define

h(x, t) = h0(t)− x2 + h̃(x, t), (4.3)

where h̃(x, t) is the perturbation. Substituting this into (3.2a), linearising the resulting
equation and solving for separable eigenmodes of the form e−αtφ(x) where α is the decay
constant and φ(x) is the structure function, we find that the only solutions φ(x) that remain
regular as x → ∞ require α ≥ 0 (Appendix B). Therefore all the eigenmodes decay,
demonstrating that the basic state is a stable attractor. The general superposed solution
can be written down in the form (Appendix B)

h̃(x, t) =
∫ ∞

0
c(α)e−αtΦ(

√
αx) dα, (4.4)

where Φ(z) is a unique (parameter-free) function given by a one-off solution of the
second-order equation (B5), and c(α) is the distribution of coefficients dependent on the
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initial condition h̃(x, 0). Larger decay constants α represent perturbations localised closer
to the tip (see figure 10). Perturbations closer to the tip therefore decay faster than those
further downstream, a phenomenon also illustrated by the solution of figure 8(b).

In simple physical terms, the decay of perturbations illustrated by the results above
occurs because the dissolution is more efficient along the steeper sides of a protrusion.
The locally faster dissolution rate dissipates the perturbation, resulting in attraction
towards the smooth similarity solutions. The same argument can be anticipated to apply
to three-dimensional perturbations such as an isolated protrusion. In this case, the
boundary-layer flow will flow around the protrusion, leaving the tip of the protrusion
exposed to the relatively fresher ambient fluid. The faster dissolution on the sides of the
protrusion will cause it to reduce in size relative to its smoother surroundings. However, the
tip of the protrusion could, in principle, sharpen or blunt as it reduces in size, depending on
whether its profile is representative of n < 2 (e.g. a cone, n = 1) or n > 2 (e.g. a cylinder,
n = ∞), in accordance with the results of § 3.1.

4.3. Model applicability to melting bodies with internal conduction
The model we have analysed (2.10) depends on an assumption that the recession rate of
the boundary is proportional to the solutal or thermal flux at the surface, as specified by
(2.2) for either dissolution or melting. However, unless the body is initialised very close
to the melt temperature, the recession rate of a melting body can also be affected by the
transport of heat inside it through conduction. The surface of the body must first warm to
the melt temperature before melting begins, thereby invalidating the assumption that the
recession rate and thermal flux are in direct proportion (2.2). In particular, this can cause
different parts of the body to initiate melting at different times. In principle, the effects of
conduction could be analysed by introducing a heat equation describing the temperature
field θ(x, y, t) coupled to the complete Stefan condition for the recession speed inside the
body, given by

V = 1
l

(
q − k

∂θ

∂y

)
, (4.5)

where q is the flux of thermal energy along the surface of the body predicted by (2.9). This
condition generalises (2.2) to incorporate the heat loss from the interface to the interior of
the body, represented by the new k∂θ/∂y term.

In order to understand the essential conditions under which our model applies under
this generalised situation, either because the conduction of heat through the interior of the
body is negligible, short lived or can be incorporated into a generalised proportionality
relationship between V and q, we consider here a one-dimensional Stefan problem
describing the melting of a finite body subject to a sustained convective thermal flux q
at its surface. Of course a two-dimensional body will involve variations in the flux q along
its surface (2.9) and vertical diffusion, which we neglect in our one-dimensional analysis.
While simplified, the analysis will nonetheless establish sufficient conditions for the model
assumption of (2.2) to fail.

We consider a symmetrical one-dimensional body with surfaces at x = ±xN(t) and
a relative temperature field denoted by θ(x, t), with θ = 0 representing the melting
temperature. A condition of symmetry along the centre of the body, ∂θ/∂x(0, t) = 0, is
assumed. We assume that the body has an initial finite length of 2L and its temperature
field is initialised at a temperature θ0 < 0 and evolves according to the heat equation, as
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The convective Stefan problem

specified by
∂θ

∂t
= κ

∂2θ

∂x2 , θ(x, 0) = θ0, xN(0) = L, (4.6a–c)

where κ ≡ k/ρcp is the coefficient of thermal diffusivity, assumed constant, and cp is
the specific heat capacity. While the surface temperature θ(xN, t) is less than the melting
temperature, the surface will remain stationary (ẋN = 0). If instead it lies at the melting
temperature (θ = 0), then it will evolve according to the Stefan condition (4.5). Thus, we
impose ⎧⎪⎨

⎪⎩
k
∂θ

∂x
(xN, t) = q, ẋN = 0 if θ(xN, t) < 0,

θ(xN, t) = 0, ẋN = −1
l

(
−k
∂θ

∂x
+ q

)
if θ(xN, t) = 0.

(4.7a,b)

The problem above describes the melting of a finite body initialised below its melt
temperature. This combines features of two problems: the melting of an infinite slab
initiated below the melt temperature (e.g. Jaeger & Carslaw 1959) and the conduction
of heat through a finite body (e.g. Incropera et al. 2007). We analyse this problem with the
aim of establishing the necessary conditions for the recession rate and the thermal flux at
the surface to remain linearly related to good approximation during the evolution of the
body, as required for our model of shape evolution (2.10) to apply.

We non-dimensionalise the system above by defining x = Lx̂, t = (L2/κ)t̂ and θ =
|θ0|θ̂ . On dropping hats, (4.6a–c) becomes

∂θ

∂t
= ∂2θ

∂x2 , θ(x, 0) = −1, xN(0) = 1, (4.8a–c)

and (4.7a,b) becomes⎧⎪⎨
⎪⎩
∂θ

∂x
(xN, t) = B, ẋN = 0 if θ(xN, t) < 0,

θ(xN, t) = 0, ẋN = S
(
∂θ

∂x
− B

)
if θ(xN, t) = 0.

(4.9a,b)

The system above depends on two dimensionless numbers, namely

S ≡ cp|θ0|
l
, B ≡ Lq

k|θ0| , (4.10a,b)

a Stefan number and a Biot number. The Stefan number S measures the relative
significance of sensible heating compared to latent heating, with a larger Stefan
number representing a larger difference between the initial temperature and the melting
temperature, |θ0|. The Biot number B measures the relative speed of conduction through
the body, with larger values representing a slower conduction rate. To give an idea of
typical values, ice initialised at θ0 = −10 ◦C has a Stefan number of S ≈ 0.06. A 1 cm
cube of ice melting in air at 20 ◦C has a Biot number of B ≈ 0.04 and a 1 m cube has a
value of B ≈ 1.3 (see Appendix C.1 for the material parameters used for these estimates).

Three illustrative numerical solutions to the system above are shown in figure 9 in the
form of space–time diagrams. In each, the colour indicates the dimensionless temperature,
with θ = −1 (red) representing the initial temperature and θ = 0 (yellow) representing
the melting temperature. In case A (S = 1, B = 1), the evolution is shown to involve two
steps: an initial purely conductive step during which the temperature field equilibrates
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Figure 9. Regime diagram illustrating the possible evolutions of a one-dimensional Stefan problem in which a
convective flux is imposed at the surface of a melting body. The diagram partitions the space of Biot and Stefan
numbers, (B, S), into a region in which the shape theory analysed in this paper will apply to good approximation
even under the effects of internal conduction (white), and those for which the underlying assumption of direct
proportionality between recession speed and thermal flux (2.2) does not apply to good approximation during
the full evolution (blue). Three distinct modes of evolution are possible, illustrated by space–time diagrams.
The colour represents the dimensionless relative temperature field θ(x, t), with red representing the initial
temperature and yellow the melting temperature.

to the melting temperature, followed by a second step characterised by melting while the
temperature field is still evolving appreciably. The example involves significant conduction
within the body for all times, and the initiation of melting occurs on a time scale
comparable to the total melt time of the body. In this case, the recession rate V is not
generally proportional to the surface flux q, and hence, for this region of the (B, S)
parameter space, the assumption of (2.2) will fail.

In case B (S = 1, B = 20), melting instead initiates rapidly compared to the total melt
time. Unlike case A, the temperature throughout the majority of the body remains at the
initial temperature, with the conduction localised to a narrow boundary layer under the
surface of the body. In this regime, the recession rate and the thermal flux are related
linearly according to

V ≈ q
(1 + S)l

, (4.11)

a result that can be derived from an exact travelling wave solution (e.g. Jaeger &
Carslaw 1959), reviewed in Appendix C.2. In this regime, the imposed flux q is shared
between sensible and latent heat at the surface in such a way as to retain a linear
relationship between the thermal flux q and the recession rate V . The assumption of linear
proportionality (2.2) is, for these parameter settings, therefore retained under the effect of
conduction. The shape evolution (2.10) is therefore applicable in this limit. To generalise
the theory to these situations, one simply needs to use the prefactor in the generalised
expression (4.11) given by 1/[(1 + S)l] in place of 1/l as appears in (2.2).
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The convective Stefan problem

In case C (S = 0.1,B = 1), the evolution involves two steps, similarly to case A.
However, in this case the conduction is sufficiently rapid that the temperature of the entire
body equilibrates to the melt temperature in a relatively short time compared to the total
melt time. With the exception of the brief initial equilibration, the heating of the body is
effectively purely latent during the melting of the body and the surface recedes at the rate
given by (2.2). Thus, our original modelling assumption applies to good approximation.
Notably, the applicability of a linear relationship between flux and recession speed occurs
here for a fundamentally different reason than case B. In this case, it applies because the
conductive equilibration step is so rapid that it can be neglected (a consequence of small
Stefan number), while in case B, the equilibration is instead sufficiently slow that a steady
state in the frame of the surface is able to form.

To provide a complete classification of the situations for which a linear proportionality
between V and q applies to good approximation, we demarcate the solutions according
to the ratio of the time to start melting τ∗ to the total melt time τ . For small values of
τ∗/τ , melting initiates rapidly and the subsequent evolution exhibits a close proportionality
between V and q, as illustrated by cases B and C. The region for which τ∗/τ < 0.1
indicates the regions for which linear proportionality between V and q applies to good
approximation, and is shown in white in figure 9 (for this calculation, we applied a simple
analytical expression for the total melt time, τ = (1 + S)/SB, derived in Appendix C.3).
The remaining region, shown in blue, represents situations for which this proportionality
does not apply to good approximation.

The key result demonstrated is the existence of two distinct parameter limits that lead
to a predominantly linear relationship between flux q and recession speed V , namely,
S < 0.1 or B > 10. If the Stefan number S is small (i.e. the body is initialised very close
to the melting temperature or a substantial amount of energy is required to move the
boundary), then our theory of shape evolution will apply irrespective of the value of the
Biot number because the temperature throughout the body equilibrates rapidly to the melt
temperature. If the Biot number B is large (i.e. the body is large or heat transfer into the
exterior convective boundary layer is much more efficient than conduction interior to the
body), then the model of (2.10) will also apply irrespective of the value of the Stefan
number because the conduction forms a narrow boundary layer that splits the heat flux
into a constant ratio between conduction and latent heating. The assumption of linear
proportionality underlying the model of (2.17a,b) will fail if both B � 10 and S � 0.1,
corresponding to the upper-left quadrant of the regime diagram of figure 9. In such cases,
different parts of a two-dimensional body would start to melt at different times, distorting
the shape evolution from that predicted by (2.10).

In interpreting these results in the context of a two-dimensional body melting under
free convection, we must take into account the fact that the flux at the surface q varies
along the body in accordance with (2.9). Since the Stefan number does not depend on
q, a representative Stefan number for the body as a whole is given directly by (4.10a,b).
Since the Biot number depends on q, we instead evaluate a maximum Biot number using
the scaling q ∼ DH−1/4 implied by (2.9), where H is the height of the body, given by
B = DL/(k|θ0|H1/4). As an example, we determine the conditions for a melting block of
ice to lie inside the white region of the regime diagram, in which the shape model can
be anticipated to apply. The configuration will be guaranteed to be in the white region
if the ice is initialised with a temperature greater than −15 ◦C, as this will ensure that
S < 0.1. If this condition is met, then the theory will apply irrespective of the Biot number
(i.e. it will apply for any initial body size). If the initial temperature is instead less than
−15 ◦C, then the applicability of the model will depend on the value of the Biot number
and hence the size of the body. If B > 10, then the model will apply irrespective of the
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value of the Stefan number. For ice melting in air at 20 ◦C with an initial temperature
of θ0 = −20 ◦C, the condition B > 10 corresponds to blocks of ice with widths of
2L > 40 m.

5. Conclusions

We have explored the general phenomena, regime transitions and shape dynamics that
apply during the melting or dissolution of a solid body by gravitationally stable free
convection. The analysis reveals a complete understanding of the shapes formed in this
fundamental regime.

Our results established that the initial shape has a permanent influence on the evolving
forms for all times. Locally, the tip universally forms a parabola because this is the
unique shape for which a natural convective boundary layer has a locally smooth
thickness profile across a tip. However, the broader tip profile forms a rich variety of
shapes including similarly solutions with differing tip-descent exponents and sharpening
properties.

We established two distinct reduced asymptotic regimes of the full model for shape
evolution: a theory for shallow slopes (in § 3.1) and a separate theory for steep slopes (in
§ 3.2). Analysis of these reduced models determined a large class of similarity solutions,
each with different characteristics. The solutions were found to apply asymptotically
during the evolution of a dissolving or melting body at either small (t → 0) or large
(t → ∞) times. For shapes with initial power-law exponents of n /= 1 prescribed by
h(x, 0) = −L1−nxn where L is a length scale, these similarity solutions predict that the
tip descends in these respective regimes as

h0 ∼

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f0

(
(At)4n

L2(n−1)

)1/(3n+2)

(shallow regime),

g0

(
(At)4n

L4(n−1)

)1/(n+4)

(steep regime),

(5.1)

where f0 and g0 are prefactors determined from the similarity analyses, and A is a material
parameter defined below (2.10). For power-law exponents of n > 1 (e.g. initially parabolic
or rectangular bodies), the body begins in the shallow regime at early times and switches
to the steep regime at late times. For example, a rectangular body (n = ∞) switches from
a t4/3 descent position at early times to the considerably faster t4 at late times. For n < 1,
the order of these regime transitions is reversed: the steep theory predicts the evolution at
early times, while the shallow theory predicts the shape at late times.

While the tip always forms a parabola at the finest scale, the broader shape varies
depending on the initial shape and the time of observation. In the steep regime, an
asymptotic analysis of the near-tip region shows that it forms a prevailing 4/3-power shape
that matches to a deeper parabola within an asymptotic sublayer. For n > 1, the relative
size of the parabolic region becomes smaller with time such that the most representative
broad shape at the tip is a 4/3-power. However, the shape of the tip at the finest scale
remains parabolic.

The theory of Pegler & Davies Wykes (2020) includes a general law (2.13) which
predicts that the rate of descent of a tip is proportional to the curvature of the tip to the
quarter power. Analysis of the tip sharpness predicted by our model reveals a rich variety of
possible behaviours. Under certain circumstances, the tip blunts with time, while in others
it sharpens. Remarkably, sharpening can occur indefinitely, creating needle-like shapes.
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The convective Stefan problem

The conditions for blunting versus sharpening were classified in terms of the initial
power-law exponent n and the asymptotic regime in which the body lies (shallow versus
steep). In these respective limiting regimes, the tip curvature evolves according to

S(t) ∼

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3
4

(
4n| f0|
3n + 2

)4
(
(At)(n−2)

L4(n−1)

)4/(3n+2)

(shallow regime),

3
4

(
4n|g0|
n + 4

)4
(
(At)(3n−4)

L4(n−1)

)4/(n+4)

(steep regime),

(5.2)

which can be derived by substituting (5.1) into (2.13) and rearranging for S. For n < 4/3
(encompassing initially sharp-tipped bodies and wedges), the tip blunts for all time. For
4/3 < n < 2, the tip initially blunts, but then switches to sharpening at late times. For n >
2 (encompassing initially rectangular bodies), the tip sharpens for all time. The conditions
for blunting versus sharpening depend on whether the shape downstream of the tip ‘falls
away’ sufficiently quickly that the horizontal rate of recession at the sides of the body
are larger than the vertical rate of recession of the tip (cf. the sharpening of a knife). By
conducting a linear stability analysis, we showed that perturbations representing surface
roughness decay and the solutions converge towards the smooth similarity solutions.
Remarkably, despite dissolution and melting being smoothing processes at all other points
along the surface of a two-dimensional body, the tip provides a unique location that is
able to sharpen. Curiously, the most blunted initial power-law shape (n = ∞) creates the
conditions for the fastest sharpening rate of t12, representing a theoretical maximum for
the sharpening rate of a dissolving or melting tip.

Several generalisations of the results were explored. We showed that a blunted wedge
initially evolves according to the rectangular early-time regime but transitions to the
similarity solution applicable to a wedge. Thus, the blunted wedge undergoes an initial
sharpening phase before reaching a maximum sharpness and blunting thereafter. This
explains the observation of an initial sharpening of blunted cones of rock candy (Pegler &
Davies Wykes 2020). The results show that the asymptotic evolutions arising for piecewise
power laws are given by the same similarity solutions applicable to pure power laws,
except with a transition between two different values of n at early and late times. Analysis
of the evolution of a terraced wedge showed that the tip undergoes a sustained periodic
oscillation between sharpening and blunting. Eventually, the oscillation settles to the
late-time asymptote applicable to the broad unperturbed initial shape.

Finally, we considered the applicability of our results to a melting body initialised below
the melting temperature. By considering a one-dimensional body of initially finite size
melting subject to a prescribed convective flux at its surface, we showed that the space
of Stefan and Biot numbers demarcates situations where the surface flux and recession
rate are in direct proportion and those where this is not the case. A key result is that
proportionality can arise for two distinct reasons: either the body equilibrates rapidly to
the melting temperature, or forms a thin conductive boundary layer that sustains a constant
ratio between sensible and latent heating. For sufficiently small Stefan numbers (e.g. ice
initialised at temperatures greater than −15 ◦C), the model applies during the evolution
irrespective of the size of the body. Otherwise, different parts of the body begin to melt at
different times, altering the evolving shape away from those derived here.

This work complements a recent study demonstrating that a dissolving block of candy
containing vertical cavities evolves into a series of upwards-pointing spikes (Huang
et al. 2020) reminiscent of the remarkable stone forests of China and Madagascar,
further emphasising the real-world applications of this research. Their model predicts
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that the tip curvature always increases to infinity in a finite time, contradicting the
potential for blunting implied by our full model solutions (e.g. (2.11)) and our earlier
experiments of dissolving candy cones showing sustained blunting (Pegler & Davies
Wykes 2020).

We have shown that dissolving and melting bodies coupled to exterior gravitationally
stable natural convective boundary layers display a variety of behaviours. Key results
include the potential for dissolving bodies to either sharpen or blunt indefinitely, to
retain information of the initial shape for all time, to smooth perturbations fastest near
the tip (with the exception of the tip itself) and to exhibit universal characteristics such
as parabolic tips. Our model provides a theoretical basis for numerous generalisations,
including axisymmetric and three-dimensional geometries, cavities, thin-layer flows,
non-Newtonian fluid and turbulent flows, to name a few. The work lays a foundation
for understanding buoyancy-driven fluid melting and dissolution, with widespread
applications including the shaping of icebergs, ice floes, ice cubes, salt dissolution and
limestone karstification.
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Appendix A. Analytical solutions for the sharp regime

This appendix derives the analytical solution to (3.12a,b) given by (3.15). First, we apply
a transformation that switches the dependent and independent variables, defined by ζ =
g(η), and X(ζ ) = η. The transformed form of (3.11a) is

4(nζX′ − X)
n + 4

= ( f0 − ζ )−1/4. (A1)

Multiplying by (−ζ )−(1/n) and combining the exact derivative, we obtain

4nζ
n + 4

[(−ζ )−1/nX]′ = (−ζ )−1/n

( f0 − ζ )1/4
. (A2)

Integrating this equation subject to the tip condition X( f0) = 0, we obtain

X =
(

n + 4
4n

)
(−ζ )1/n

∫ ζ

ζ0

(−ζ )−(n+1)/n

( f0 − ζ )1/4
dζ. (A3)

Substituting ζ = f0χ and reverting to the original variables, we obtain (3.15).

Appendix B. Linear stability

To provide a demonstration that the asymptotic similarity solutions we determine are stable
attractors, this appendix conducts a linear stability analysis of the exact parabolic solution
to the shallow theory given by (2.12). This case is chosen here for illustration due to the
existence of an analytical basic state. The essential approach could be applied to the other
similarity solutions, including the analytical solution to the steep model given by (3.8).

In terms of the dimensionless coordinate x, the analytical solution (2.12), which we treat
as a basic state, is given by h(x, t) = h0(t)− x2, where h0(t) = −(8/3)1/4t. We define the
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Figure 10. Structure functions φ(x) of the eigenmodes predicted by the linear stability analysis of
Appendix B for a selection of eigenvalues α = 0.1, 1 and 10. The functions were determined by solving
(B4) numerically subject to the boundary conditions φx(0) = 0 and φ(0) = 1. The functions each satisfy
φ(x) = Φ(

√
αx), whereΦ(z) is the solution to (B5), and are therefore equivalent up to scaling of the argument

by
√
α. Modes that are more localised near the tip correspond to larger α and hence decay faster.

perturbation h̃(x, t) by

h(x, t) = h0(t)− x2 + h̃(x, t), (B1)

where h̃(x, t) � (h0(t)− x2). In order for the height profile h(x, t) to satisfy the
requirement that the tip is parabolic, it is necessary for the gradient of the perturbation
to vanish at the tip, h̃x(0, t) = 0. Substituting (B1) into (3.2a) and linearising the resulting
equation, we obtain the evolution equation for the perturbation given by

h̃t = b
x

(
h̃x − x−1/3

3

∫ x

0
x−2/3h̃x dx

)
, (B2)

where b ≡ (486)−1/4. Seeking separable eigenmodes of the form h̃ = e−αtφ(x), where
α is the eigenvalue and φ(x) is the structure function, we obtain the ordinary
integro-differential equation given by

− αφ = b
x

(
φx − x−1/3

3

∫ x

0
x−2/3φx dx

)
. (B3)

Multiplying by x4/3, taking the derivative with respect to x and simplifying, we reduce this
equation to the second-order Sturm–Liouville equation given by

bφxx + α(xφx + 4
3φ) = 0. (B4)

On noting that all solutions to this equation approach φ ∼ e−(α/2b)x2
as x → ∞, it follows

that α > 0 is required for regularity. Thus, only eigenvalues representing decay, α > 0,
yield admissible eigenmodes. The parabolic basic state is therefore a stable attractor for
all perturbations.

To determine the spatial structure of the eigenmodes, we let z = √
αx and Φ(z) = φ(x).

In terms of these variables, (B4) becomes

bΦzz + zΦz + 4
3Φ = 0. (B5)

This equation is free of parameters, implying that its solution, determined subject to
the boundary condition Φz(0) = 0 and normalisation condition Φ(0) = 1, describes the
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fundamental shape of all the structure functions, φ = Φ(
√
αx), up to scaling of its

argument by
√
α. The solution for Φ(z) can be determined using a one-off numerical

solution of (B5). The structure function for any given eigenvalue α can then be expressed
independently in terms of the function Φ(z) using φ(x) = Φ(

√
αx), which we have

illustrated for a selection of α in figure 10. By the completeness of Sturm–Liouville
eigenfunctions, the general solution for the perturbation is given by the superposition

h̃(x, t) =
∫ α

0
c(α) e−αtΦ

(√
αx
)

dα, (B6)

where c(α) is the amplitude distribution set by the initial condition on h̃(x, 0).

Appendix C. Melting of a finite body with internal conduction and surface
convection

This appendix provides supplementary results used in the analysis of the one-dimensional
Stefan problem considered in § 4.3.

C.1. Estimating the Stefan and Biot numbers for ice melting in air
To provide representative estimates of the Stefan and Biot numbers defined by (4.10a,b),
we use the example of an ice cube of size L melting in air for the situation where the
thermal flux at the surface is controlled primarily by a buoyancy-driven boundary layer
in the air. We assume that the melt-water runoff creates a thin layer across which the
temperature is assumed continuous (an approximation often made in the modelling of
icicles, e.g. Makkonen 1988; Short, Baygents & Goldstein 2006). All material parameters
used below are from Haynes (2014).

To estimate the Stefan number, S = (cp)ice|θ0|/l, we use the latent heat of fusion of ice,
l = 333.4 kJ kg−1, and specific heat capacity, cp = 2.1 kJ kg−1 K−1. For ice initialised
at θ0 = −1 ◦C and −10 ◦C, the characteristic Stefan numbers are S ≈ 0.0063 and 0.063,
respectively.

We calculate a representative minimum Biot number for a two-dimensional block of ice
using the expression B = Lq/k|θ0| given by (4.10a,b). For this, we begin by estimating the
minimum thermal flux of a body of height H using the scaling q = DH−1/4 implied by
(2.9), where

D ≡ γΔTairkair

(
Δρairg
κairμair

)1/4

. (C1)

Here, kair = 25 × 10−3 W m−1 K−1 is the thermal conductivity of the air, g = 9.81 m s−2,
κair = 2.0 × 10−5 m2 s−1 is the thermal diffusivity of the air, μair = 18 × 10−6 Pa s is
the viscosity of the air and γ ≈ 0.50 is the dimensionless coefficient determined from the
solution of the boundary-layer system applicable for uniform fluid viscosity and diffusivity
(Schlichting & Gersten 2017). Assuming that the ambient air is at a room temperature
of 20 ◦C far from the body (making ΔTair = 20 K), the maximum density difference is
Δρ ≈ 0.084 kg m−3. Using the above, we estimate D ≈ 55 W m−7/4. Assuming a cube
with height H = 2L and an initial temperature of −10 ◦C, we estimate the Biot number to
be B ≈ 0.040, 1.3 and 40 for sides of length H = 1 cm, 1 m and 100 m, respectively.
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C.2. Travelling wave solution for the thermally thin limit
If the conduction within the body forms a thin boundary layer under the surface of the
body then the finitude of the body has no effect on the evolution of the temperature, which
approaches a steady state in a frame moving with the melting surface. In this regime, the
solution is described to leading order by an exact travelling wave solution applicable for
melting infinite slabs (e.g. Jaeger & Carslaw 1959). By considering the steady solution
to (4.8a–c) in the moving frame (ξ, t), where ξ = x − Ut, and integrating the resulting
equation subject to the surface condition θ = 0 at ξ = 0 and the far-field condition θ →
−1 as ξ → −∞, we obtain the solution as

θ = −1 + eΛ[x−xN(t)], (C2)

where Λ ≡ SB/(1 + S) is the dimensionless recession speed. Recasting the recession
speed in dimensional variables, V = (κ/L)Λ, we obtain (4.11). In this regime, melting
and warming of the body occur in parallel, producing a linear proportionality between
V and the surface flux q. The interior of the body remains predominantly at the initial
temperature during the evolution, as illustrated by case B of figure 9. This contrasts with
case C, which involves two steps: an initial step of near uniform warming of the body to
the melt temperature, followed by a second step in which the melting takes place (sensible
and latent heating occur in series, rather than parallel). Since Λ−1 characterises the extent
of the conductive layer in (C2), the regime represented by (C2) is self-consistent only if
the extent of the layer is much less than that of the body, Λ � 1.

C.3. Total melt time
The total melt time for the Stefan problem given by (4.6a–c) and (4.7a,b) is given by a
simple analytical expression representing the time necessary for the heat flux prescribed
at the surface to supply all the sensible and latent heat needed both to warm and melt the
solid. To derive this, we apply a definite spatial integral of (4.6a) over the extent of the
solid, use Leibniz’s theorem and impose (4.7a,b) to obtain

d
dt

∫ xN(t)

0
θ(x, t) dx = θ∗ẋN + q. (C3)

Integration subject to the initial conditions (4.6a,b) gives∫ xN(t)

0
θ(x, t) dx = θ0L − (θ∗[L − xN(t)] + qt), (C4)

which provides the total thermal energy in the system as a function of time. Setting xN = 0,
we determine the total melt time to be (|θ0| + θ∗)L/q, representing the time needed to
supply all the sensible and latent heat to melt the body fully. In dimensionless form, the
time is τ = (1 + S)/SB, which we used in our computation of the ratio of the time to start
melting to the total melt time used to produce figure 9.
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