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A B S T R A C T

Effective representation of objects in irregular and unordered point clouds is one of the core

challenges in 3D vision. Transforming point cloud into regular structures, such as 2D im-

ages and 3D voxels, are not ideal. It either obscures the inherent geometry information of 3D

data or results in high computational complexity. Learning permutation invariance feature di-

rectly from raw 3D point clouds using deep neural network is a trend, such as PointNet and its

variants, which are effective and computationally efficient. However, these methods are weak

to reveal the spatial structure of 3D point clouds. Our method is delicately designed to cap-

ture both global and local spatial layout of point cloud by proposing a Local k-NNs Pattern

in Omni-Direction Graph Convolution Neural Network architecture, called LKPO-GNN. Our

method converts the unordered 3D point cloud into an ordered 1D sequence, to facilitate feeding

the raw data into neural networks and simultaneously reducing the computational complexity.

LKPO-GNN selects multi-directional k-NNs to form the local topological structure of a cen-

troid, which describes local shapes in the point cloud. Afterwards, GNN is used to combine the

local spatial structures and represent the unordered point clouds as a global graph. Experiments

on ModelNet40, ShapeNetPart, ScanNet, and S3DIS datasets demonstrate that our proposed

method outperforms most existing methods, which verifies the effectiveness and advantage of

our work. Additionally, a deep analysis towards illustrating the rationality of our approach, in

terms of the learned the topological structure feature, is provided. Source code is available at

https://github.com/zwj12377/LKPO-GNN.git

1. Introduction

3D point cloud has a broad range of emerging applications, such as autonomous driving[1], 3D reconstruction,

urban planning[2], etc. Learning and representation of point clouds is the core research problem in semantic-related

tasks e.g. object classification[3, 4], object detection[5] and instance segmentation [6, 7, 8]. One natural and naive

representation of point clouds is set, which is unordered, irregular, and sparse, making its understanding difficult. This

paper explores graph-based deep learning architecture for effective reasoning of 3D point cloud.

Deep learning has dominated most of computer vision tasks in recent years. A proven track record can be found

that deep learning methods can effectively analyze the large-scale and high-dimensional regular or Euclidean data[9].

In particular, Convolutional Neural Networks (CNNs) is able to extract meaningful statistical patterns from big regular

grid structure data, such as images, audios and videos. Unfortunately, point clouds are irregular and unordered, thus

making it difficult to be directly processed using conventional CNNs. As a result, most existing methods convert 3D

point cloud to 2D images using casting and rendering [10] or voxel representation by down-sampling [11, 12, 13].

Though all the methods above have achieved good performance, there are still problems have not been solved. Firstly,

rendering 3D point cloud or shape into 2D images will miss out the 3D geometry information. Secondly, applying 3D

CNNs on volumetric representation is constrained by its high computational complexity. Finally, these operations are

still based on sparse volumes, and it is challenging to deal with large-scale problems.

Recently, the Graph Neural Network (GNN) has become increasingly popular in many areas [14] and achieves state-

of-the-art performance in modelling node relationships. Graph structure elegantly represents the feature information

and spatial layout of the points simultaneously. In order to combine the local and global features of 3D point cloud,

this paper proposes local k-Nearest Neighbors (k-NNs) pattern in Omni-Direction for point cloud object classification

and segmentation with graph CNN, referred as LKPO-GNN.
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Figure 1: (a) The 3D Space of the Center Point pi; (b) Omni-Direction of Center Point pi; (c) Omni-Directional k-NNs
Patten of Center Point pi.

Given a centroid pi of a set of 3D points (the black point in Figure 1(a)), the local region of point pi is a sphere

with radiusR. We first partition the sphere into eight octants (sub-regions), called Omni-Direction, as shown in Figure

1(b). And then we find k∕8 neighboring points of pi according to the coordinate in each octant. The obtained k

points are sorted by the distances to pi from small to large, as shown in Figure 1(c)). Finally, The unordered points

are transformed into an ordered 1D sequence, which usually maintains the original spatial layout. The details will be

presented in Section 3. k-NN is a traditional non-parametric density estimation method, and we find this simple and

naive method is suitable for solving the spatial structure problem well. Since we choose the k-NN points in different

orientations, so we name our proposed representation "Local K-NNs Pattern in Omni-Direction" (LKPO).

Stacking multiple convolution layers can capture global information to some extend. In this paper, we use GNN to

propagate the local information represented by LKPO.

Three main contributions of our paper are: 1) We proposed a novel architecture, i.e. using k-NN points in Omni-

Direction, to represent and learn enriched local shape information of point clouds; 2) We proposed a method to convert

the 3D unordered points into an ordered 1d sequence, to generate unified data for learning and also reduce the compu-

tational complexity; 3) GNN is employed to propagate the certain local geometric structure modelled by our proposed

LKPO to obtain the global spatial layout.

2. Related work

2.1. Deep Learning on ordered Sets
Deep Neural Networks (DNNs) have been widely used in computer vision and natural language processing, and

obtained promising performance. DNNs can learn significant statistical patterns from large-scale data in 3D Euclidean

space. These learned patterns are known as feature representations. Extending DNNs to 3D data is challenging due

to the fact that volumetric representations are spatial sparseness and computation complexity. Spectral methods are

proposed by FPNN[11] and Vote3D[12] to solve the sparsity problem, but these methods are difficult to handle very

large-scale 3D point cloud scenes. Multi-view CNNs [12, 13, 10] have tried to convert 3D point cloud or shapes into 2D

images, then use 2D CNN to solve classification and instance segmentation problems. These methods have achieved

good performance on 3D shape classification and retrieval tasks, however, it is nontrivial to extend them to point

cloud classification and shape completion. Later, Riegler et al.[15] proposed OctNet to address these issues. OctNet

represents point clouds with a hybrid of shallow grid octrees (depth = 3). Compared to its dense peers, OctNet reduces

the computational and memory costs to a large degree, and is applicable to high-resolution inputs up to 256×256×256.

Whereas OctNet must process point clouds as regular 3D volumes due to its 3D-CNN kernels. There is no such

constraint in our proposed Local k-NNs Pattern in Omni-Direction with Graph CNN.

2.2. Deep Learning on Unordered Sets
Charles R. Qi [16] designed a deep learning framework that can directly consume unordered point sets as inputs,

then use a simple symmetric function to aggregate the information from each point. However, PointNet[16] doesn’t
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capture local structures induced by the metric space points live in, limiting its ability to recognize fine-grained patterns

and generalizability to complex scenes. In order to solve this problem, PointNet++ [17] was proposed and used

a hierarchical neural network that applied PointNet recursively on a nested partitioning of the input point set. By

exploiting metric space distance, this network is able to learn local feature with increasing contextual scales. However,

it lacks sufficient ability to reveal the spatial structural characteristics of 3D point cloud. Subsequently, the SO-Net[18]

models the spatial distribution of point cloud by building the irregular point cloud into an m ×m 2D rectangular map.

and performs hierarchical feature extraction on individual points and SOM nodes, to obtain the feature vector for the

map. KCNet[19] also based on PointNet and introduced a point-set template to learn geometric correlations of points

in 3D point clouds. Similarly, Li et al proposed PointCNN [20] to learn an x-transformation from the input points to

attack the desertion of shape information and variance to point ordering of 3D point cloud. Jiang et al. [21] designed

a PointSIFT module adaptive to scale of shape, encoding information of different orientations. These methods are

related to our work in terms of directly using the coordinates of points as input. Here, for fairness, we remove the

normal information of point cloud in experiment based on PointCNN.

2.3. Deep Learning using Graph Neural Networks
GNN-based methods can be grouped into spectral[22, 23, 24] and spatial [14] approaches. These methods have

different mechanisms in modelling the correspondence between filter weights and nodes in local graph neighborhoods.

Point cloud can be formulated as a graph structure [14], and applying DNN on the graph is a trend. Currently,

most Graph Neural Network (GNN) follow a pattern of cyclic recursive neighborhood aggregation in which each point

aggregates the eigenvectors of its neighbors to compute its new eigenvector. After the k-round aggregation iteration, the

point is represented by its transformed feature vector, which captures the structural information of the k-hop network

neighboring points of the point. Then, you can use pooling to get a representation of the entire graph structure, such

as summing the eigenvectors of all the points in the graph. Many GNN variants based on different neighborhood

aggregation and graph-level pooling schemes have been proposed by many scholars[25, 26, 27, 15, 28, 29]. As a rule

of thumb, these GNNs have achieved optimal performance in many tasks, such as point classification, link prediction,

and graph classification. In regards to processing point clouds with deep learning using tree structures, Klokov et al.

[14] built a kd-tree for the input point cloud, followed by hierarchical feature extractions from the leaves to root. In

our proposed method, instead of the randomization of the tree construction as [14], we use deterministic structured

geometric relationships between the points, obtaining richer structure information of 3D point clouds and also reducing

the computation cost.

2.4. A Critical Analysis
Deep learning using ordered sets usually converts 3D point clouds to 2D images or 3D volumetric grids. However,

3D convolution and rendering 2D images are often time- and memory- consuming. Compared to using ordered sets,

deep learning using unordered sets directly takes raw point clouds as the input without converting them to other formats.

In these approaches, most of them only use neighborhood information to capture the local information. Compared to

GNNs applied to 3D point objects, learning on unordered sets is unlikely to capture the rich local and global geometrical

layout in a 3D point cloud. The input of GNNs are unordered sets, but the difference is that these points are input to

the neural network in the form of a graph. Deep learning using GNNs can learn the rich structural information of

a centroid through its k-top connected neighboring points in the graph, therefore, achieving better representation of

spatial features in the topological graph.

3. Method

In the pipeline of 3D point clouds understanding, the key problem is the extraction of the topological features of

the 3D point cloud and its representation in the computer. Topology refers to the structure of its shape or the spatial

relationship of points, as shown in Figure 2. Although the point cloud of chair is unordered and irregular, each point

has its own characteristic information. Additionally, it has certain local structural information between it and the

surrounding points. Obviously, the characteristics of these points and their surrounding points are mostly consistent in

Omni-Direction. Thus, in the point cloud classification and instance segmentation tasks, both global and local features

are essential in an effective feature representation[14, 22]. This phenomenon indicates that the closer the point is to the

centered point, the more similar the feature representation is. This topological relationship between points in space is

extremely important in the study of point clouds. If this factor is ignored, directly convolving against feature associated
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Figure 2: A Point Cloud of Chair. The chair can be divided into three sub-portions, which are indicated by green,
yellow and blue, respectively. For example, points p1, p2, p3 represent random point of three sub-portions of chair. Here,

neighbor (p1) = {p1i | dist(p1, p1j) < d, p1j ∈
{
p1t

}k
t=1
, d ∈ R} in Omni-Direction. Following this way, the neighbor point

p1 can be expressed as (p2) = {p2j | dist(p2, p2j) < d, p2j ∈
{
p2t

}k
t=1
, d ∈ R} and neighbor (p3) = {p3j | dist(p3, p3j) <

d, p3j ∈
{
p3t

}k
t=1
, d ∈ R}. Obviously, it is observed that points p1,p2,p3 and their neighbor points are mostly consistent

characteristics.

with the point and its neighbor points will result in desertion shape information and variance to point structural. To

address these problems, we propose to design a novel deep Omni-Direction with LPKO-GNN architecture for point

clouds.

Here we presents the details of our method by a graph representation of 3D point clouds that propagates topological

features between k-NNs points in Omni-Direction. A point cloud is represented as a set of 3D points,
{
pi|i = 1, 2, 3,… , N

}
,

where each point pi is a vector of its (x, y, z) coordinate plus extra feature channels such as color, normal etc. Usually,

more channel features result in better classification performance. In order to demonstrate modeling ability of geomet-

ric structure of points, we only use the (x, y, z) coordinates as input. Inspired by PointSIFT [21], we represent the

shape pattern centered at a point by k neighborhoods in Omni-Direction to obtain the spatial structure between points

and its neighbors. Given the input point cloud P =
{
p1, p2, ..., pN

}
, we choose a subset P̃ that contains m points to

define the local regions of centroid by iterative Farthest Point Sampling(FPS)[30], where 2 < m <= N . Then the

Ball Query[17] is used for finding all points that are within a radius R to the centroids. Next, similar to PointNet[16],

we use Multi-Layer Perceptron(MLP) and global pooling layer to obtain the rich local feature vector of m centroids,

respectively. Here, these local feature vector of m centroids carry rich local information.

3.1. Farthest Point Sampling Method
Farthest point sampling(FPS) iteratively get the next sampled point in the middle of the least-known sampling

domain. The FPS method was first introduced for generic graph clustering algorithm[30], and then applied to 2D

images [31] and further extended to 3D point cloud [17]. The FPS method has been widely used for a variety of

isometry-invariant surface processing tasks[32]. For example, [33] explores this sampling strategy to efficiently esti-
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mate geodesic distances. [34] and [35] use FPS for the context representation of shape recognition. Given an point

set � =
{
pi|i = 1, 2, 3,… , n

}
, pi ∈ Rd , we can use FPS to choose a subset of points

{
pi1
, pi2

, pi3
,… , pin

}
, such

that pij is the most distant point (in euclidean distance metric) from the set
{
pi1
, pi2

, pi3
,… , pij−1

}
with regard to the

rest points. In general, the most widely-used subsampling method is random subsampling. However, it is difficult to

cover the entire point set. Compared to random sampling, the advantage of FPS is that a better convergence can be

achieved over the whole point set. The drawback of this method is that the iterative subsampling relies on previously

selected points. In [17], the robustness of FPS method to this randomness is investigated, and the results show a good

robustness to random sampling. Hence, we use FPS to sample 3D point clouds.

3.2. Ball Query Method
Ball Query[17] finds all points that are within the radiusR to the query point. For example, given a set of 3D points

�, we select a subset # =
{
pj|j = 1, 2, 3,… , m

}
, m < N and pj ∈ Rd using FPS as the centroids for a point cloud.

Here, we set I as the number of points to be obtained by the Ball Query. For each centroid pj in subset #, we compute

the distance(in Euclidean distance) from each pi in � to it. When the distance of pi to pj is smaller than R, point pi is

within in the radius R with respect to the center point pj . This process will be repeated until the number of points is I .

Comparing with k-NN, the local neighborhood developed by Ball Query method can generate 3D regions with a fixed

scale to learn more generalizable local features across space, which is extremely important for recognition tasks using

learned local features. When dealing with non-uniform point set, the generalization ability of feature learning using

k-NN cannot be guaranteed. It is worth noting that Ball Query usually takes slightly more time than k-NN methods.

3.3. Local k-NNs Pattern in Omni-Direction
Given a center point pi(pix, piy, piz) ∈ P̃ , the 3D point cloud space i centered at pi is partitioned into eight octants,

indicating different orientations in Euclidean space. These different orientations are defined as Omni-Direction. The

k neighbors in Omni-Direction of pi is referred as its local Omni-Directional k-NNs pattern. The distance Dji from

the center point pj to pi can be represented as follows according to euclidean distance metric:

Dji =

√(
pjx − pix

)2
+
(
pjy − piy

)2
+
(
pjz − piz

)2
(1)

Here, pi, pj ∈ P̃ , and j ≠ i. If Dji ≤ R, the coordinate relationship between point pj and point pi can be expressed as:

intx̃ =
(
pjx > pix

)
(2)

intỹ =
(
pjy > piy

)
(3)

intz̃ =
(
pjz > piz

)
(4)

Here x̃, ỹ and z̃ are binary values (0 or 1). For example, when pjx > pix, x̃ = 1, otherwise x̃ = 0. There are 8 = 23

permutations of a set of three Integer values {x̃, ỹ, z̃}. Next the number index id of points in local Omni-Directional

k-NNs pattern can be obtained:

id = x̃ ∗ (k∕2) + ỹ ∗ (k∕4) + z̃ ∗ (k∕8) (5)

Here, k = 8v, v ∈ R+. If v = 1, k = 8, and the space  i is partitioned into 8 octants. The details of id index are:

{x̃, ỹ, z̃} = {0, 0, 0}; id = 0 ∗ (k∕2) + 0 ∗ (k∕4) + 0 ∗ (k∕8) = 0 (6)

{x̃, ỹ, z̃} = {0, 0, 1}; id = 0 ∗ (k∕2) + 0 ∗ (k∕4) + 1 ∗ (k∕8) = k∕8 = 1 (7)

{x̃, ỹ, z̃} = {0, 1, 0}; id = 0 ∗ (k∕2) + 1 ∗ (k∕4) + 0 ∗ (k∕8) = 2k∕8 = 2 (8)

{x̃, ỹ, z̃} = {0, 1, 1}; id = 0 ∗ (k∕2) + 1 ∗ (k∕4) + 1 ∗ (k∕8) = 3k∕8 = 3 (9)

{x̃, ỹ, z̃} = {1, 0, 0}; id = 1 ∗ (k∕2) + 0 ∗ (k∕4) + 0 ∗ (k∕8) = 4k∕8 = 4 (10)

{x̃, ỹ, z̃} = {1, 0, 1}; id = 1 ∗ (k∕2) + 0 ∗ (k∕4) + 1 ∗ (k∕8) = 5k∕8 = 5 (11)

{x̃, ỹ, z̃} = {1, 1, 0}; id = 1 ∗ (k∕2) + 1 ∗ (k∕4) + 0 ∗ (k∕8) = 6k∕8 = 6 (12)
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{x̃, ỹ, z̃} = {1, 1, 1}; id = 1 ∗ (k∕2) + 1 ∗ (k∕4) + 1 ∗ (k∕8) = 7k∕8 = 7 (13)

If v > 1(k > 8), all of the possibilities for the value of the index number of the space  i are k, which can be expressed

as {0, 1, 2, ..., k − 1}. The possibilities for the value of set {x̃, ỹ, z̃} are 8 = 23. The possibilities of the rest index

number for  i are k− 8, which can be computed by adding the id obtained from each set {x̃, ỹ, z̃} to the each value in

the set [0, k∕8). The details of id index for the space  i can be expressed by (5) as follows:

x̃, ỹ, z̃ = {0, 0, 0}; id = 0 (14)

id + 1 = 0 (15)

id + 2 = 0 (16)

⋮

id + (k∕8) − 1 = 0 (17)

x̃, ỹ, z̃ = {0, 0, 1}; id = k∕8 (18)

id + 1 = k∕8 (19)

⋮

id + (k∕8) − 1 = k∕8 (20)

x̃, ỹ, z̃ = {0, 1, 0}; id = k∕4 (21)

id + 1 = k∕4 (22)

⋮

id + (k∕8) − 1 = k∕4 (23)

⋮

x̃, ỹ, z̃ = {1, 1, 1}, id = 7k∕8 (24)

id + 1 = 7k∕8 (25)

⋮

id + (k∕8) − 1 = 7k∕8 (26)

Thus, by this operation, we can obtain the local k-NNs pattern of center point pi in Omni-Direction. Next, we com-

pute the distancesDji for each centroid pj to center point pi. Then, allDji are sorted ascendingly, and the corresponding

local feature vectors are selected in the Omni-Direction, where k-NNs pattern of a center point pi is used as the feature

for these k-NNs points. Finally, these feature vectors for k-NNs points are connected to represent the explicit structural

information of the point pi within a local area (i.e. its k-NNs points in Omni-Direction). Thus, we can obtainm graphs,

and each graphm is pair (V ,E) with V = {V1, V2, ..., Vk} and the set of edges areE ⊆ V1×V2, V2×V3, ......, Vk−1×Vk.

Algorithm 9 gives the pseudocode for graph representation of a 3D Point Cloud.

In this way, the Omni-Direction with local k-NNs pattern graph of each central point would be obtained. Here, the

center points and its local Omni-Directional k-NNs pattern maintain the initial spatial structure, which will served as

feature for the subsequent task of point clouds classification and segmentation.

Three common tasks of point cloud are:

Task 1: Object classification. The input is the 3D point cloud directly sampled from the shape, the output is n

scores for all n candidate classes.

Task 2: Object part segmentation. The input can be shape representation of point clouds, the output is a part

category label for each point.

Task 3: semantic segmentation. The input is a 3D scan model represented by point clouds, the output is a semantic

object class for each point.

In the following section, we present our architecture for 3D point clouds.
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Algorithm 1 Graph Representation of a 3D Point Cloud.

Input: A point cloud P with N points, the number of center points m, k points in Omni-Direction

Output: m graphs and each graph with k vertices and k − 1 edges

1: Downsample #m =
{
pj|j = 1, 2, 3,… , m

}
from P using FPS;

2: for i = 1; i <= m; i + + do

3: Compute the rich local feature vector fi = �
(
#i
)
;

4: Compute local k-NNs pattern gi =
{
st = �

(
#i
)}k

t=1
in Omni-Direction;

5: Sort gi according to the Euclidean distance between st to #i in ascending order;

6: Select fi in gi corresponding to the order;

7: Connect points in fi in this order to represent the explicit structural information of the point #i and its k-NNs

points in Omni-Direction;

8: end for

9: Return m graphs and each graph with k vertices and k − 1 edges

Figure 3: This figure illustrates the convolution operation over channels. Here, given a graph Gi constructed by Omni-
Directional k-NNs pattern of the center point pi, and a set of fixed-size convolution filters, an example of the proposed
convolution is conducted. The fN2

is the number of filters and fN1
is the number of filter elements. Finally, a deterministic

non-linear feature transform, that implicitly represents the structured geometrical shape of a point pi within an area of
k-NNs pattern in Omni-Direction, can be learned by back-propagation through time.

3.4. Local k-NNs Pattern in Omni-Direction GNN
For m graphs using method described in Section 3.3, each graph Gi, i ∈ {1, 2, ..., m} consists of a set of vertices

and a set of edges (V ,E) i.e the vertices V = {V1, V2, ..., Vk} and the edge E ⊆ V1 × V2, V2 × V3, ......, Vk−1 × Vk. The

details of convolution are shown as Figure 3.

VGi
= {pi1, pi2, ..., pik} (27)

In the Figure 3, VGi means the vertices of the graph Gi constructed by the local Omni-Directional k-NNs pattern

of center point pi, which contains the rich geometric information. Next, we transform these vertices into an order

sequence(see Figure 3), which carriers certain origin geometric structure. Finally, we design a set of fixed-size convo-

lution filters(as described in Figure 3). The feature representation of Xt
Gi

for graph Gi can be obtained by (28).

Xt
Gi

= �

(
F∑

f=1

(
k∑

ℎ=1

W
f,t

ℎ
⊙ Y

f

Gi

)
+ Bt

)
(28)

Here, � represents the activation function, and Y
f

Gi
= VGi

. t means ttℎ feature for Gi, and f represent the number

of filters. ⊙ is the element-wise multiplication. Bt is the ttℎ bias. After we obtain Xt
Gi

, the center points pi and its

k-NNs in Omni-Direction maintain the initial spatial structure would be obtained. The idea is to apply convolution

filters which slide over the vertices of graph Gi to extract local structure features within the graph Gi in a manner

analogous to the standard convolution operation on grid 2D data. In particular, our LKPO-GNN can map graphs to

point cloud space to effectively preserve local spatial structures information in the original space. Additionally, our
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Figure 4: The architecture of the proposed LKPO-GNN for classification and object part segmentation. In this Figure,
the networks take n points as the input. Firstly, Ball Query Module is to extract the rich feature information of the center
points, and then use LKPO-GNN to get the deep structural features between k-NNs points in Omni-Direction by a graph
representation of 3D point clouds. After several steps of processing by Ball Query Modules and LKPO-GNN Modules, point
features are aggregated by max pooling. For classification, a triple-layer perceptron i.e. FC1(512), FC2(256) and FC3(C)
is employed using feature with rich structure information (shown in blue color at the bottom). The feature is reused and
connected with fully-connected layers i.e. FP1(256),FP2(128),and FP3(128), and after that, another two fully-connected
layers i.e. FC1(128) and FC2(NxC) are used for the object part segmentation.

method converts unordered intersections between points of 3D point cloud into an ordered 1D sequence, making it

easier to combine with neural networks and also reduce the computational complexity.

3.5. Our Proposed Network Architecture
For unstructured data, kd-tree[14] is an efficient method to store the point neighborhood relationship. The tree

structure of points not only provides guidelines for neural network architectures that can be used to process the 3D point

cloud, but also possesses the much desired attributes of permutation and translation invariance for neural networks. In

this section, we present our architecture for 3D point cloud classification and segmentation. Our approach uses similar

techniques with convolutions over graph, in particular our method uses Omni-Directional deterministic structured

geometric relationships between the points. Our core module is LKPO-GNN, which propagates topological features

between k-NNs points in Omni-Direction by a graph representation of 3D point clouds. In our network, all convolution

layers before the last layer are followed by batch normalization and ReLU activations, implemented with CUDA for

speed-up in our experiments. Especially important is that the global and local spatial layout of 3D point cloud can be

extracted by LKPO-GNN Architecture.

3.5.1. Classification and Object Part Segmentation Network

Ball Query and feature propagation(FP)[17] are two core modules of our proposed network. FP was used to prop-

agate features from subsampled points to the original points. The input of our network is the 3D coordinates of n × 3

points. Firstly, we can use Ball Query Module to obtain the center points with the rich information of point cloud. The

number of center points on Ball Query Modules are n = 512,n = 128, and radius r1 = 0.2, r2 = 0.4. Secondly, we use

LKPO-GNN to propagate the rich topological features between k-NNs points in Omni-Direction by a graph represen-

tation of 3D point clouds. The number of points on LKPO-GNN modules are n = 512,n = 128, and r1 = 0.2, r2 = 0.4

respectively. After several steps of processing by Ball Query Modules and LKPO-GNN modules, the center point

in 3D point cloud scene becomes less and less, and the feature information of the center point aggregation become

richer. These feature information aggregate rich global spatial structure features. Then, we use FP method to obtain
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Figure 5: Illustration of LKPO-GNN Architecture for Semantic Segmentation. For semantic segmentation, the network
takes n points as input. Firstly, LKPO-GNN is applied to get deep structural features between k-NNs points in Omni-
Direction using a graph representation, and then Ball Query Module is employed to extract the rich feature information
of the points. After several steps of applying LKPO-GNN modules and Ball Query modules alternately, point features
can be aggregated by Ball Query module. Features at the bottom (blue) are of enriched structural information and
back propagate features to the original set through a number of layers points by FP1(512), LKPO-GNN(512), FP2(256),
LKPO-GNN(256), FP3(128), and LKPO-GNN(128) moduels. And then a couple-layer architecture, i.e. FC1(128) and
FC2(NxC), are used for the semantic segmentation.

the original set of points. Finally, the fully-connected layers are used for the classification and object part segmentation

tasks. Figure 4 shows the architecture for classification and object part segmentation for 3D point clouds.

3.5.2. Semantic Segmentation Network

Each shape is represented with n × 3 points in the semantic segmentation task. We use the LKPO-GNN modules

and Ball Query Modules iteratively to obtain the structural information of the center points. The number of points

on LKPO-GNN modules are n = 8192,n = 1024,n = 512, respectively. The number of center points on Ball Query

Modules are n = 1024,n = 256,n = 64. Next, the FP module is used to perform upsampling operations. Through

the FP module, the point cloud scene is restored. The saved scene contains richer feature information, which would

contributes to the subsequent segmentation processing. After upsampling, LKPO-GNN module is used to acquire

the structural information of the sampling points and its its k-NNs in Omni-Direction. Finally, fully-connected layers

are used to perform semantic segmentation of the 3D point cloud. The center point number of the three steps are

n = 256,n = 1024,n = 8192 respectively. Comparing with [21], our module converts the unordered 3D point cloud

into an ordered 1D sequence, making it easier to combine with neural networks and also significantly reduce the

computational complexity. Here, thanks to [21], the contribution made in attacking the multi-direction information of

3D point cloud. That gives our method much inspiration in considering the local k-NNs pattern in Omni-Direction

information of center points in 3D point cloud. In Figure 5, shows the architecture for segmentation for 3D point cloud.
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3.6. Comparison to existing methods
In this subsection, we compare our LKPO-GNN with existing methods to highlight the differences. In the recent

years, several methods [14, 17, 19, 20] have been proposed to model the structural information between points in 3D

point clouds. All of these methods relate to our work in terms of directly accepting the spatial coordinates of points as

input. There are three main differences of our LKPO-GNN between these methods. Firstly, in our method, the vertices

of graph, made of Omni-Directional k-NNs pattern , are learned from the feature vectors of these points, rather than use

the point coordinates in [14, 19]. In this way, each vertex in the graph carried the rich local geometrical information,

which will be conducive to understanding the 3D point cloud scene. Secondly, the vertices of the graph in our method

were gotten from different orientations of center point, such that the representation ability of the graph, which is one of

key components in understanding 3D objects, will be better. However, in [14, 17, 19, 20], the local features represented

by the points are mostly derived from the measurement of Euclidean distance without considering the direction for each

point. Additionally, [14] built a kd-tree for the input point cloud, followed by hierarchical feature extractions from the

leaves to root. This causes its performance to be heavily relied on the randomization of the tree construction. Different

from [14], the vertices of the graph in our method considered deterministic structured geometric relationships. Thus,

the performance of our method can avoid depending on the graph construction. Finally, since the graph in our method

is built on a certain geometric structure, the sequential convolution kernel can be designed to convert the unordered

intersections between points in 3D point cloud into an ordered 1D sequence, making it easier to combine with neural

networks and also significantly reduce the computational complexity.

4. Experimental Results and Analysis

4.1. Dataset and Performance Evaluation
Four commonly used point cloud dataset are used in our experiments, ModelNet40[36], ScanNet[37], ShapeNetPart[38],

and S3DIS[39]. We performed object classification on the ModelNet40, and semantic part segmentation on the

ShapeNetPart dataset. Next, we completed the semantic segmentation based on ScanNet and S3DIS datasets. Object

classification performance is evaluated by Average Class Accuracy (ACA%) and Overall Accuracy (OA%). Semantic

segmentation of scene labeling is evaluated by per-voxel Accuracy(Accuracy%)[37], (OA%) and Mean IOU(MIOU%)[12]

metrics.

In object classification, the ACA calculates the proportion of pixels that are correctly classified within each cat-

egory, and then take averages over all categories. OA calculates the ratio between the model and the total number

of predictions on all test sets. In semantic segmentation, our goal is to predict the semantic object label on per-voxel

basis, OA and MIOU. The per-voxel Accuracy is based on voxel accuracy, which is similar to[37]. MIOU is mean

IOU for all shapes from test dataset. IOU is a standard measure of semantic segmentation[40, 41, 42]. It calculates the

intersection of the two sets and the union of the two sets, which are ground truth labels and predicted label respectively.

For each shape m of category k, in order to calculate the shape’s MIOU, firstly, for every part of category k, we should

compute its IOU between ground truth and prediction. Then we take average of IOUs for all shapes in its category. We

list below the experiment setting for each dataset as Table 1. Figure 6 shows part of the samples from four datasets.

4.2. 3D Object Classification on ModelNet40
In this section, we evaluate our proposed method on classifying 3D point clouds uniformly sampled from 3D

(ModelNet40) Euclidean spaces. 3D point clouds are sampled from mesh surfaces from ModelNet 40 shapes. 1024

points are used for ModelNet40 defautly. During training we augment 3D point cloud on-the-fly by randomly rotating

the object along the up-axis and jitter the position of each point by Gaussian noise with zero mean and 0.02 standard

deviation following. We train the network for 250 epochs for LKPO-GNN module with batch size 16, base learning

rate is set to 0.001. Cross-entropy loss is minimized during training. The ADAM solver is adopted to optimize the

network on two GPU TITAN Xp. Momentum is set to 0.9. In Table 2, we compare our model with several neural

network methods designed for 3D point cloud.

The result shows that our model achieves state-of-the-art performance. Here, when k = 32, our LKPO-GNN

outperforms the previous state-of-the-art [20] by 1.2% ACA and 0.2% in OA metric. There still a small gap between

our method and MVCNN[10], and we think that is because multi-view perception can capture more details of a 3D point

cloud. However, it’s nontrivial to extend them to scene understanding or other 3D tasks such as point classification

and shape completion [46]. In addition, when k=8, the result of [20] is better than our method in OA metric. That is

because it can learn x-transformation from the input points to promote the input features associated with the points and
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Table 1
Introduction of the Datasets

Databases Description Total Scenarios Training Testing

ModelNet40
CAD models

40 categories.
12311 9843 2468

ShapeNetPart

shapes,

16 categories,

50 parts.

16881 14006 2874

ScanNet

scanned and

reconstructed,

indoor scenes.

1513 1201 312

S3DIS

3D scans in

6 areas with

271 rooms,

13 categories.

23585 20291 3294

the permutation of the points into a latent and potentially canonical order. It indicates that the spatially-local structural

information of the points in the 3D point cloud has an extremely important role in the classification. Compared to our

approach, [20] is unable to achieve permutation-invariance, which is desired for point clouds. The main reason why

our method achieves better results is that, Omni-Directional structured geometric relationships (between the points)

are used to build the graph, thereby possessing the much desired attributes of permutation and translation invariance

for 3D point cloud.

4.3. Object Part Segmentation on ShapeNetPart
In ShapeNetPart dataset, following the settings in [38], we evaluate our method on object part segmentation assume

that category label for each shape is already known. Each shape is represented by 3D point cloud with input size of

1024 points, the task is to predict a part label for each point. The dataset includes 16881 shapes from 16 categories,

annotated with 50 parts in total. These categories are labeled with two to five parts.We train the network for 200 epochs

for LKPO-GNN respectively and use dropout with keep ratio 0.5 on the fully connected layer. The decay rate for batch

normalization starts with 0.7 and is gradually increased to 0.99. Cross-entropy loss is minimized during training. We

use adam optimizer with initial learning rate 0.001, momentum 0.9 and batch size 32.

Compared with state-of-the-art algorithms, quantitative results are provided in Table 3. We can see that our LKPO-

GNN performs better than other competitive algorithms in most classes. When k = 32, our model outperforms [20]

by 0.3% accuracy in mean IOU. In particular, our method acquires considerable improvement in bag, car, ear phone,

lamp, laptop, motor, mug, pistol and skateboard. These shapes are mostly rigid and often contain rich geometric

information. Notice our method achieves better results than [14, 19, 18, 20], which have been proposed to reason about

the structural information between points in 3D point clouds. However, in these methods, the local features represented

by the points are mostly derived from the measurement of Euclidean distance without taking into accounting the multi-

direction deterministic structured geometric relationships between the points in 3D point cloud, limiting their ability

to represent the local geometrical information, which is one of the key components in classification and segmentation

of 3D point cloud. Additionally, [20] achieves good results by learning an x -transformation from the input points to

promote the input features associated with the points. However, it needs more than twice the number of parametric

layers and times as required by our method k = 8 to achieve the reported performance. This is a direct consequence

of effective exploration of multi-direction deterministic structured geometric by LKPO-GNN. This factor should be

considered in the study of 3D point cloud. In the future study, the author will be working on this part.
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Figure 6: Part of samples from four datasets. From top to bottom line, these pictures are sampled from ModelNet40,
ShapeNetPart, ScanNet and S3DIS separately.

4.4. 3D Semantic Segmentation on ScanNet
We formulate semantic segmentation as a per-point classification problem. For semantic segmentation in ScanNet

dataset, each shape is represented by a 3D point cloud with 8192 points, as in[15]. Semantic segmentation distinguishes

points of different classes. Furthermore, semantic segmentation assigns the same label to points belonging to the same

instance.We train the network for 1000 epochs for LKPO-GNN respectively and use dropout with keep ratio 0.5 on the

fully connected layer. The decay rate for batch normalization starts with 0.7 and is gradually increased to 0.99. Cross

entropy loss is minimized during training. Adam optimizer is used with initial learning rate 0.001, momentum 0.9 and

batch size 32.

The input is the 3D coordinates of N = 8192 points. The number of center points on LKPO-GNN modules are

N = 8192, N = 1024, N = 512, respectively. The number of center points on Ball Query Modules are N = 1024,

N = 256, N = 64, and then the FP module is used to perform upsampling operations. After upsampling, LKPO-

GNN module is used to acquire the structural information of the sampling points and its neighboring points in local

Omni-Directional k-NNs pattern. For fair comparison, the input of point cloud removes the normal information.

We only use the coordinate information as input. In Table 4 we present the Accuracy(%) and MIOU(%) scores. This

experiment demonstrates the effectiveness of our approach on Semantic Segmentation for 3D point cloud. We compare

our method with previous state-of-the-art method [21] in Table 4. Our method achieves the best performance an

ScanNet benchmark, and it outperforms the previous state-of-the-art model [21] by 0.2 % accuracy. In particular, it

improves previous PointNet++ by 1.5 in MIOU. This validates the effectiveness of the LKPO-GNN. Although [21]

method is designed to describe eight crucial orientations, it only stack eight orientation-encoding units. Thus, the

ability of a certain geometric structure for points in 3D point cloud will be limited. We argue that the performance

improvements come from the deterministic structured geometric relationships in Omni-Direction between the points

in a 3D point cloud. Additionally, our method achieves better or comparable accuracy and computes more efficiently

than [20, 21] with fewer parameters.

4.5. 3D Semantic Segmentation on S3DIS
In this section, we experiment on S3DIS dataset. We split the dataset into training and testing following the way

of[16]. Here, in order to more clearly represent the structural information of the point cloud, we only consider the
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Table 2
3D Object Classification Results on ModelNet40

Methods Input ACA OA

SPH [43] mesh 68.2 -

3DShapesNets[38] volume 77.3 84.7

VoxNet[44] volume 83.0 85.9

Subvolume[13] volume 86.0 89.2

LFD[36] image 75.5 -

MVCNN[10] image 90.1 -

OctNet[15] point 83.8 86.5

ECC[45] point 83.2 87.4

PointNet[16] point 86.2 89.2

PointNet++[17] point 86.5 89.8

Kd-Net[14] point 86.3 90.6

SO-Net[18] point 87.3 90.9

KCNet[19] point - 91.0

PointCNN[20] point 87.7 91.2

LKPO-GNN(k=8) point 88.2 90.9

LKPO-GNN(k=32) point 88.9 91.4

coordinate information of the point. In S3DIS dataset, each shape is represented by a 3D point cloud with 4096 points.

We train the network for 50 epochs for LKPO-GNN respectively and use dropout with keep ratio 0.5 on the fully

connected layer. The decay rate for batch normalization starts with 0.5 and is gradually increased to 0.99. Cross

entropy loss is minimized during training. We use adam optimizer with initial learning rate 0.001, momentum 0.9 and

batch size 24.

Similarly, We only use the coordinate information as input. The input is the 3D coordinates of n = 4096 points.

Then cross use the LKPO-GNN modules and Ball Query Modules to obtain multi-direction deterministic structured

geometric relationships of the center points. The number of center points on LKPO-GNN modules are N = 4096,

N = 1024, N = 256, respectively. The number of center points on Ball Query Modules are N = 1024, N = 256,

N = 64. Finally, the FP module is used to perform upsampling operations. The point number in three steps are N =

256, N = 1024, N = 4096 respectively. After upsampling, LKPO-GNN module is used to acquire the deterministic

structured geometric of the sampling points and its neighboring points in local Omni-Direction k-NNs pattern. The

results of semantic segmentation for S3DIS is represented by Table 5. One can see that our method achieves the state-

of-the-art in OA and MIOU. Our LKPO-GNN improves previous SPG method by 0.3 % in OA, and [21] method by 0.8

% in MIOU. The detailed percategory IOU results show that the LKPO-GNN is able to achieve better performances

in door, table, sofa, and clutter. SPGraph offers a compact yet rich representation of contextual relationships between

object parts and achieved good results. While the vertices of the graph in this method can not obtain the multi-direction

of the point in 3D point cloud, which will limit its representation ability of the graph.

4.6. Space and Time Complexity
We further compare the space and time complexity with other methods. Here we choose our object part segmen-

tation model to test the space and time complexity. Specifically, we record the forward times and modelsize of batch

1, 1024 points for these methods using TensorFlow on a Titan XP GPU. The forward times and modelsize are re-

ported in Table 6. Table 6 shows that our model has the fastest forward time with acceptable model size compared to
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Table 3
Object Part Segmentation Results on ShapeNetPart

Methods MIOU aero bag cap car chair
ear

phone
guitar knife Lamp Laptop motor mug pistol rocket

skate

board
table

Wu[42] - 63.2 - - - 73.5 - - - 74.4 - - - - - - 74.8

3DCNN[38] 79.4 75.1 72.8 73.3 70.0 87.2 63.5 88.4 79.6 74.4 93.9 58.7 91.8 76.4 51.2 65.3 77.1

Yi[47] 81.4 81.0 78.4 77.7 75.7 87.6 61.9 92.0 85.4 82.5 95.7 70.6 91.9 85.9 53.1 69.8 75.3

Kd-net[14] 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3

PointNet[16] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

SSCNN[48] 84.7 81.6 81.7 81.9 75.2 90.2 74.9 93.0 86.1 84.7 95.6 66.7 92.7 81.6 60.6 82.9 82.1

KCNet[19] 84.7 82.8 81.5 86.4 77.6 90.3 76.8 91.0 87.2 84.5 95.5 69.2 94.4 81.6 60.1 75.2 81.3

SO-Net[18] 84.9 82.8 77.8 88.0 77.3 90.6 73.5 90.7 83.9 82.8 94.8 69.1 94.2 80.9 53.1 72.9 83.0

PointNet++ [17] 84.9 82.9 81.3 85.3 78.5 90.6 73.3 91.2 86.9 82.5 95.3 71.8 95.0 82.1 57.7 75.4 81.6

PointCNN [20] 85.3 82.3 79.9 88.1 78.1 90.9 74.6 91.0 86.7 83.2 95.6 71.3 95.4 81.7 57.2 73.4 81.6

LKPO-GNN(k=8) 85.3 82.5 81.8 87.7 78.8 90.7 75.4 90.8 87.1 83.5 95.6 72.0 95.6 81.7 55.9 75.8 82.8

LKPO-GNN(k=32) 85.6 82.6 80.8 86.9 78.6 90.9 77.7 90.8 86.9 84.9 95.8 71.7 94.6 82.4 56.1 76.0 82.8

Table 4
Semantic Segmentation on ScanNet

Methods Accuracy MIOU

3DCNN[38] 73.0 -

PointNet[16] 73.9 -

PointNet++[17] 84.0 56.9

PointCNN [20] 84.8 -

PointSIFT[21] 85.1 54.5

LKPO-GNN(k=8) 85.3 58.4

[16],[19],[18], [17] and [20] methods. Though [17] and [19] have less space consumption than our model, our method

outperforms the [17] and [19] by 0.7 and 0.9 respectively in the mean IOU metric. Hence, our model is amenable to

real-time object part segmentation tasks.

5. Conclusions

We proposed a deep neural architecture called LKPO-GNN. LKPO extracts local topological structure from 3D

point clouds, and GNN propagates LKPO to obtain global information. Our proposed method can obtain deeper

feature representation and then improve the classification and segmentation performance. We apply our LKPO-GNN

on four datasets (ModelNet40, ShapeNetPart, ScanNet and S3DIS datasets), and perform on three point cloud-based

applications ( classification, object part segmentation, and semantic segmentation). The experimental results show the

simplicity and effectiveness of our model. Future work will focus on: 1) investigating the possibility to optimise the

architecture using Neural Architecture Search(NAS) technologies; 2) accelerating the neighbour searching procedure

in Omni-Directional k-NNs pattern by Approximate Nearest Neighbor (ANN).
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Table 5
Segmentation Results on S3DIS Dataset

Methods OA MIOU ceiling floor wall beam column window door chair table bookcase sofa board clutter

PointNet[16] 80.6 54.8 87.9 97.1 65.1 50.0 41.1 63.9 47.4 63.9 65.4 29.9 44.8 9.6 46.4

RSNet[7] - 51.9 93.3 98.3 79.1 0.00 15.7 45.4 50.1 65.5 67.9 22.5 52.5 41.0 43.6

SPGraph[49] 85.5 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9

PointCNN[20] - 62.7 85.6 85.2 77.1 63.8 34.8 56.1 69.3 60.8 71.2 64.3 43.2 47.9 56.3

PointSIFT[21] 83.6 63.8 86.5 86.3 71.9 54.5 30.0 65.4 66.3 64.6 77.9 52.1 53.7 58.8 61.6

LKPO-GNN(k=8) 85.8 64.6 83.4 85.6 73.1 63.3 36.7 64.4 70.5 65.9 79.1 46.3 54.5 55.9 61.7

Table 6
Complexity Comparison

Methods ModelSize(MB) Forward Times(ms)

PointNet[16] 98.2 128.26

KCNet[19] 25.7 36.5

SO-Net[18] 59.5 68.3

PointNet++[17] 16.2 24.63

PointCNN [20] 95.4 80.43

LKPO-GNN(k=8) 28.2 19.94

LKPO-GNN(k=32) 51.1 27.64
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