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Multiscale modeling of current-induced switching in magnetic tunnel junctions using ab initio

spin-transfer torques
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School of Physics, AMBER and CRANN Institute, Trininty College, Dublin 2, Ireland

(Received 29 September 2017; published 7 December 2017)

There exists a significant challenge in developing efficient magnetic tunnel junctions with low write currents for

nonvolatile memory devices. With the aim of analyzing potential materials for efficient current-operated magnetic

junctions, we have developed a multi-scale methodology combining ab initio calculations of spin-transfer torque

with large-scale time-dependent simulations using atomistic spin dynamics. In this work we introduce our

multiscale approach, including a discussion on a number of possible schemes for mapping the ab initio spin

torques into the spin dynamics. We demonstrate this methodology on a prototype Co/MgO/Co/Cu tunnel junction

showing that the spin torques are primarily acting at the interface between the Co free layer and MgO. Using spin

dynamics we then calculate the reversal switching times for the free layer and the critical voltages and currents

required for such switching. Our work provides an efficient, accurate, and versatile framework for designing

novel current-operated magnetic devices, where all the materials details are taken into account.

DOI: 10.1103/PhysRevB.96.224410

I. INTRODUCTION

Magnetic tunnel junctions (MTJs), composed of two epi-
taxially grown ferromagnetic (FM) metal layers separated by
an insulating barrier (most often a few monolayers of MgO
providing a dramatic spin-filtering enhancement), constitute
the principle unit for a multitude of emerging technologies, in
particular, in magnetic random access memory (MRAM) and
spin torque oscillators (STOs) [1,2]. In both these cases the
magnetization dynamics of the free FM layer is driven by a
spin-polarized current. When the free-layer magnetization is
misaligned with that of the polarizing layer, under current-
carrying conditions, the exchange interaction between the
itinerant and localized electron spins results in a spin-transfer
torque (STT). For one of the two possible directions of
the current this opposes the Gilbert damping torque and
promotes switching from an antiparallel (AP) to a parallel (P)
magnetization state or vice versa when the current direction
is reversed [3]. For MRAM applications it is a significant
challenge to develop MTJs with a suitably low write current
so as to ensure energy efficiency and to prolong device lifetime
[4].

It is becoming increasingly more apparent that computa-
tional modeling can provide an initial analysis of the viability
of materials for efficient MTJs. However, a current-carrying
MTJ, where magnetization dynamics is excited, poses a rather
multiscale (both spatially and temporally) problem which
cannot be fully tackled from the most fundamental ab initio

theory. In fact, to date only a few studies have attempted to
analyze a MTJ on multiple scales [5,6]. At one side, significant
effort has been devoted to develop more precise ab initio

models of spin-transfer torque [7,8]. These typically rely
on ballistic quantum transport theory, which is suitable for
the spin-transport properties of MTJs formed by epitaxially
grown thin layers with atomically sharp interfaces and very
few defects, such as in Fe/MgO/Fe. At the larger scale
end, typical micromagnetic modeling of MTJs [9] employs
Slonczewski’s theory of STT [10]. This assumes perfectly
symmetric junctions and incorporates all material-specific
information of the electronic structure of the electrodes and

their interfaces into a pair of polarization factors for the two
FM leads, PL and PR . Such quantities are often taken as
empirical parameters. Although the method may be suitable
for some FeMgO-based MTJs, the interface details may be
of crucial importance for other junctions (for instance, in
antiferromagnetic stacks [11,12]). Atomistic spin dynamics
(ASD) has proved useful in modeling systems on a finer
detail than micromagnetics and has been developed to employ
ab initio parameters to better describe the STT [13]. Still,
there remains a significant gap in our modeling ability, since
to date no quantitative and materials specific transport method
has been combined with atomistic spin dynamics simulators.
In practice, this means that we are not capable of performing
current-induced spin dynamics simulations without making a

priori assumptions on the nature and type of the STT.
In this work we attempt to bridge this gap and we

present a multiscale approach to modeling current-induced
magnetization dynamics in magnetic devices using STT. At the
microscopic scale, a quantum transport method is employed to
compute an ab initio atom-resolved STT, which is then mapped
onto the Landau-Lifshitz-Gilbert (LLG) equation of motion
for atomistic magnetic moments to perform the magnetization
dynamics [14,15]. The method is general and can be applied to
metallic and tunneling junctions on the same footing, including
nanoscaled objects such as point contacts or atoms on surfaces.

Our paper is structured as follows: First we will introduce
the computational scheme for calculating the ab initio STT
and its mapping onto our atomistic spin model. We will then
demonstrate this methodology on an example Co/MgO/Co/Cu
MTJ stack. We will discuss the bias, current, and spatial
dependence of the STT and how these features influence the
magnetization switching of the free layer, both at zero and
finite temperature.

II. METHODS

Our multiscale methodology is built upon using an
ab initio method at the microscale for the electron transport
and an atomistic scale spin model to simulate the dynamics.
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In particular, we utilize the SMEAGOL [16,17] code to model
ballistic electron transport through the MTJ under a finite-
bias voltage. SMEAGOL is an implementation of the Keldysh
nonequilibrium Green’s function (NEGF) approach to the
steady-state open-boundary problem within the framework of
density functional theory (DFT), as implemented in the SIESTA

code, which provides an efficient order-N scaling core DFT
algorithm [18]. Within this formalism the MTJ is modeled as
a central scattering region (SR) connected to two semi-infinite
periodic leads. As the electronic properties of the latter can be
determined independently from those of the junction, their
action on the scattering region can be described in terms
of suitably chosen self-energy operators acting at the SR
boundaries. This effectively reduces the original electronic
structure problem for an infinite nonperiodic system to an
energy-dependent problem for a finite atomic construct. The
bias voltage, V , is applied as a shift to the chemical potentials
of either lead by ±V/2, and the nonequilibrium charge
density of the SR can be determined self-consistently from
the associated nonequilibrium Keldysh Green’s function.

For our calculation of the spin-transfer torque we follow
the approach proposed by Haney et al. [11]. The out-of-
equilibrium spin density σ V is assumed to be separable into an
equilibrium spin density σ 0 and a transport correction σ tr,
where such correction is much smaller in magnitude than
the equilibrium part. A transverse spin transport contribution
arises from the noncollinearity in the open-boundary system,
giving rise to a STT in the free layer. Further details of our
method are given in Ref. [12]. Here we adopt the magnetic
moment version (as opposed to working with spin variables)
of the atom-resolved STT, in which the STT acting on the ath
atom is written as

Ta =
μB

2

∑

i∈a

∑

j

�ij × σ tr
ji , (1)

where �ij are the matrix elements of the exchange-correlation
field written over the localized atomic basis orbitals of SIESTA

and μB is the Bohr magneton. Note that while the first
summation is restricted to orbitals that belong to the atomic
site a (the atom for which the torque is calculated), the second
one spans over all the orbitals in the SR. The transport spin
is calculated from the difference between the equilibrium
(V = 0) and the nonequilibrium (V �= 0) density matrices
ρV

ij as

σ tr = Tr [(ρV − ρ0)σ ] , (2)

with σ being the vector of Pauli matrices.
The ab initio side of our multiscale approach is then

completed with the evaluation of the dataset {Ta(V,θ )} of
atom-resolved STTs as a function of the bias voltage V and the
angle θ between the fixed and the free-layer magnetizations. It
should be noted here that the use of a single angular parameter
assumes that there is no noncollinearity within the free layer.
In some cases, when the self-consistent calculation of the
density matrix across a range of finite-bias grid points is too
involved computationally, we also utilize the linear response
quantity, namely, the spin-transfer torkance (STTk) τ a , that is

defined as

τ a ≡
∂Ta

∂V
=

1

2

∑

i∈a

∑

j

�ij × Tr

[

∂ρji(V )

∂V
σ

]

V =0

. (3)

Once the spin-transfer torques, {Ta(V,θ )}, for the given
junction are obtained, we can then proceed to computing the
current-induced magnetization dynamics using an atomistic
spin model. ASD is a semiclassical model typically using
a Heisenberg spin Hamiltonian to describe a system of
constant spin magnetic moments. These magnetic moments
are localized at atomic sites and their dynamics is calculated
from evolving discretized LLG-like equations of motion. The
LLG equations for atomic spins with additional STTs are often
referred to as LLG-Slonczewski equations, whose atomistic
form reads

∂Si

∂t
= −γ Si × Hi + λSi ×

∂Si

∂t
+

1

μi

Ti(V,{Si}) , (4)

where Si = μi/μi is a unit vector in the direction of the spin
magnetic moment of atom i of magnitude |μi | = μi . Since the
ab initio torque in Eq. (1) is derived as the rate of change of
the spin angular momentum, it is necessary to normalize the
torque to the unit vector used in the ASD. In Eq. (4) λ is the
atomistic damping parameter that corresponds to the Gilbert
damping parameter at the microscopic scale and

Hi(t) = −
1

μi

∂H

∂Si

+ ξ i(t) (5)

is the effective magnetic field acting on spin i. The system
is kept at a finite temperature through a stochastic time-
dependent thermal field, ξ i(t). In the white noise limit this is
represented as a Gaussian random number with the following
moments:

〈ξia(t)〉 = 0 , (6)

〈ξia(t)ξjb(t ′)〉 =
2λkBT

μsγ
δijδabδ(t − t ′) , (7)

where i,j label the different atoms, a,b = x,y,z are the
Cartesian components, and t,t ′ is the time. In order to model
the dynamics of an MTJ free layer, we limit the Hamiltonian
to contain only the Heisenberg exchange and a uniaxial
anisotropy term as follows:

H = −
∑

ij

Jij Si · Sj −
∑

i

ki(êani · Si)
2 , (8)

where Jij is the isotropic exchange constant and ki is the
uniaxial anisotropy constant for spin i along the axis êani.
In general one must also consider the demagnetizing field
acting on the free layer and its contribution to the anisotropy.
In the following we consider the intrinsic anisotropy to be
out of plane (êani = ẑ), and since our free layer is ultrathin
the demagnetizing field can be represented as that of an
infinite thin platelet. Therefore, instead of calculating the
demagnetizing field directly, which can be costly since it
involves adding long-range dipolar interaction to the spin
Hamiltonian, we incorporate it into the uniaxial field such
that ki = ku − μ0(MsVa)2/2. Here ku is the intrinsic uniaxial
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anisotropy constant, μ0 is the permeability of free space, Ms

is the saturation magnetization, and Va is the atomic volume.
The next step is to map the two-parameter discretized

ab initio {Ta(V,θ )} dataset onto the STT term of Eq. (4),
which is, in general, a continuous function of the angular
coordinates of the whole set of spins {Si}. Such mapping can be
performed in several manners, and here we have implemented
three different strategies. The first is a full two-dimensional
interpolation of the dataset, i.e., for each atom i in layer li an
interpolated STT value is obtained for the specified voltage V

and the instantaneous angle θ = acos(Si · P̂) between the local
spin Si and the direction of the fixed layer magnetization P̂.
In order to simplify the calculation during the simulations, a
linear interpolation is performed along V while a cubic spline
is used for θ , since the dynamics is more sensitive to the angular
variation and only a limited set of angles are calculated at finite
voltage.

Our second mapping uses the angular dependence of the
STT derived by Slonczewski [10]. In this way we avoid
calculating the angular dependence of the STT at each voltage
from first principles. The torque magnitude, however, is taken
from the ab initio calculations, i.e., the bias dependence of the
torque is still from first principles, namely, it is interpolated
out of the ab initio dataset. This semifunctional mapping is
given as

Ti(V,Si) =T||(V,li)Si × Si × P̂ + T⊥(V,li)Si × P̂ , (9)

where T|| and T⊥ are the parallel and perpendicular torque
magnitudes, which can be extracted at θ = 90◦.

Our final mapping utilizes the torkance instead of the finite
voltage torques. In this manner a finite voltage is simulated
by assuming a linear voltage dependence and by scaling the
torkance to the desired V as follows:

Ti(V,Si,li) = V
∂T(θ,li)

∂V

∣

∣

∣

∣

V =0

. (10)

We discuss the applicability of this linear dependence in
the case of a Co/MgO-based MTJ in the following section.
The angular dependence can again be interpolated using cubic
splines, but it is also possible to use the Slonczewski form
given in Eq. (9).

Although the STTs are extracted from ballistic transport
at a constant bias voltage, we have developed a numerical
scheme to utilise the ab initio–calculated I -V characteristics,
which allows us to simulate the atomistic spin dynamics also
under constant-current conditions. As we will show in the next
section, the conductance of a CoMgO-based MTJ is found to
follow the equation

g(θ,V ) =
J (V,θ )

V
= A(V ) + B(V ) cos(θ ) . (11)

Our model can then compute the current as it changes with
the free-layer angle and apply the torque appropriately for
the given current and voltage. This is directly reflected in the
prefactor of the Slonczewski STT equations [19].
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FIG. 1. The Co/MgO MTJ stack studied in this work. Panel

(a) shows a schematic of the scattering region for the SMEAGOL

calculation, while panels (b) and (c) present the atomic resolved ab

initio STT for 90◦ misalignment at 1 V and the atomic spin moments

profiles, respectively. In (b) and (c) the first 4 Co and last 4 Cu atoms

are omitted, since in the calculations these are replaced with the

semi-infinite leads.

III. RESULTS

A. Ab initio STT in a Co-MgO MTJ

Our computational strategy is now tested for a CoFeB-
MgO based MTJ, which is probably the most studied magnetic
device today. In order to model such a system, we simplify the
structure to only comprise Co atoms in a Co/MgO(4)/Co(4)/Cu
stack, where the numbers indicate the number of atomic planes
in each layer. Note that the outermost layers are the semi-
infinite leads as visualized in Fig. 1(a). In our generic Co-based
MTJ, both leads share a bcc lattice with a lattice parameter of
2.857 Å. This is the lattice constant of Fe and the intention to
mimic the highly spin-polarized conventional CoFeB lead.

Our DFT calculations are based on the local spin-density
approximation with the Ceperley-Alder parametrization of the
exchange-correlation functional as implemented in the SIESTA

code [18]. A double-ζ numerical atomic basis set is used for
all atomic species with additional polarization for s orbitals of
the transition metal atoms. A Monkhorst-Pack Brillouin zone
sampling is used, based on a 20 × 20 real-space grid.

The magnetic moments of each layer are shown in Fig. 1(c).
As expected, there is no magnetization in MgO and Cu, while
the Co fixed layer shows moments close to the bulk value of
μCo = 1.72μB. Since the free layer is ultrathin, the moments
are larger than in the bulk with a peak at the MgO interface.
From the layer-resolved calculations we observe that the STT
is strongly peaked at the MgO interface, as shown in Fig. 1(b)
at 1 V for 90◦ misalignment. Following the sharp decay of the
STT inside the Co layer, there is a characteristic higher STT
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FIG. 2. The angular dependence of (a) the current density and (b)

the total torque at 0.5 V. The solid line in (a) is a fit to the current

density using J (θ ) = A + B cos(θ ). The solid lines in (b) are a fit

using the Slonczewski angular dependence given in Eq. (9). In both

cases the fits agree well with the data, indicating that the empirical

forms can be used.

value also at the other interface with the Cu lead but with an
opposite sign.

The angular dependence of the current density with the
misalignment of the ferromagnetic layers is shown in Fig. 2(a)
at V = 0.5 V. The solid line shows a fit obtained by using
Eq. (11), which matches the data almost exactly and this
behavior is consistent at higher voltages. Figure 2(b) shows the
angular dependence of the total torque also at 0.5 V with the
solid lines showing a fit using Eq. (9). Also in this case the fit
performs well and so the functional approximation discussed
earlier is a suitable replacement for the interpolation of the
data. At higher voltages the perpendicular torque Ty becomes
asymmetric, which would require a further parametrization.
At present this asymmetry is neglected in the semifunctional
mapping, since such torque contributes little to the switching
so that its effect is minimal. We note that Slonczewski’s
description of the tunneling, which is based on Fermi’s golden
rule, is valid for sufficiently wide barriers, eliminating the
direct overlap of the minority and majority spin states in the
FM layers of symmetric MTJs [10]. As the STT decays very
quickly from the interface and is practically contained within
the free layer (see Fig. 1), Slonczewski’s sinusoidal angular
dependence of the net free-layer STT appears to be a good
approximation for our junction (see Fig. 2).

Figure 3 shows the total STT acting on the free layer in
the Co-MgO MTJ as function of the applied bias voltage for a
fixed misalignment of the free-layer magnetization of 90◦. The
asymmetry of the torque with bias arises from the asymmetry
of the stack, namely, the free layer contains only four atomic
planes, while the fixed layer in our MTJ is semi-infinite. In
both cases, however, there is an approximately linear and a
quadratic relationship with voltage for the out-of-plane and
in-plane torques, respectively. The slope of the in-plane STT
around zero matches well our zero bias torkance from Eq. (3),
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FIG. 3. The voltage dependence of the in-plane (open squares)

and out-of-plane (filled circle) torque, and the in-plane torkance (solid

line). The in-plane torque shows a linear behavior up to approximately

1.4 V. Within this range the torkance is a good approximation of

the finite-bias torque. The out-of-plane torque shows a quadraticlike

behavior, for which the zero-bias torkance is not sufficient to describe.

and therefore the latter approximation offers a reasonable
quantitative measure for the in-plane STT at low bias.

Figure 4 shows the current-voltage characteristics for our
MTJ stack in both the parallel (P) and antiparallel (AP)
configuration. The sharp increase of the in-plane STT above
1.4 V in Fig. 3 is due to the increase of the conductivity in
the antiparallel configuration. This is in turn due to the fact
that the 
1 symmetry band for the minority spin carriers is
approximately aligned to the 
1 majority one at that bias
voltage [5]. Intriguingly, while this leads to a lower tunneling
magneto-resistance (TMR) at high voltages, the increased
electron flow appears to result in a larger in-plane torque and
in a reduction of the out-of-plane one, as can be seen in Fig. 3.

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

C
u

rr
e

n
t 

d
e

n
si

ty
, 

J(
V

) 
(A

µ
m

-2
)

Voltage (V)

P
AP

FIG. 4. The resulting current density for an applied bias voltage in

the Co/MgO/Co/Cu MTJ. The solid circles show the current density

in the antiparallel configuration, while the open squares show the

parallel configuration. Up to approximately 1 V there is a significant

TMR, but above this value more current flows in the antiparallel state

and the TMR drops.
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B. Switching dynamics at zero temperature

We now move our attention to the switching dynamics based
on the ab initio torques computed in the previous section.
In order to construct the spin model, we require values for
the exchange constants, uniaxial anisotropy, atomistic Gilbert
damping, and magnetic moments. For the exchange we use
the tabulated bulk value [15] for bcc Fe, namely, Jij =

7.05 × 10−21 J, which is assumed here to be similar to that of
bcc Co, while the magnetic moments are taken directly from
the SMEAGOL calculations. In order to explore a wide range of
current-induced switching, we vary the anisotropy between
0.001 and 0.5 meV, which, as discussed earlier, accounts
for both intrinsic anisotropy and demagnetizing fields. First-
principles calculations by Hallal et al. [20] on Fe/MgO thin
films found that the anisotropy is ku ≈ 0.275 meV per atom
for a layer thickness similar to ours. For comparison the
switching field at k = 0.1 meV is Hk ≈ 1.7 T, while to achieve
a thermal stability of KV/kBTroom = 60 an area of (36 nm)2 is
required. The Gilbert damping in thin films has been observed
to vary with the layer thickness, and the presence of capping
layers can enhance the damping through spin pumping effects.
Experimental measurements for a Ta/CoFeB/MgO stack show
damping parameters of the order λ = 0.01 for ultrathin FM
layers [21], and so here we vary the damping from 0.01 to
0.1. The magnetization dynamics is computed by numerically
solving Eq. (4) using the stochastic Heun scheme [15] with
a time step of 0.1 fs. This has been tested for stability in
equilibrium.

We start by investigating the voltage required to observe
switching in the MTJ free layer without explicit thermal
effects. The lack of thermal effects allows us to simulate the
switching with only the basic unit cell and periodic boundary
conditions in the lateral directions. In order to measure the
switching we calculate the time that is required for mz to
pass the mz = 0 plane. We model the dynamics of each MTJ
by initiating the simulation with a small deviation of the
free-layer magnetization from the −ẑ axis at different applied
bias voltages.

The magnetization switching curves are shown in Fig. 5 for
(a) constant voltage and (b) constant current with an anisotropy
of k = 0.1 meV and a damping parameter of λ = 0.01. When
the junction is kept at a constant voltage the switching is
uniform and stable. In practice, the magnetization of the
free layer remains antiparallel to that of the pinned one for
a long time and then switches fast. This is expected since
the torque increases as the two magnetization vectors become
noncollinear, and it is maximized for θ = 90◦. Furthermore,
it is observed that increasing the voltage systematically shifts
the transition to lower times.

In contrast, at a constant current the torque can initially
overcome the anisotropy but, as the misalignment angle
between the fixed and the free layer decreases, the resistance
of the junction also decreases. This causes the voltage required
to maintain the desired current to be reduced, and as a
consequence, also the torque is reduced. The reduction of
the torque as the magnetization vectors become noncollinear
to each other has to be contrasted with an increase of the
anisotropy, leading to a stable precessional state where a fine
balance of the torques is achieved. As the current is increased
further, the angle of this stable point becomes larger until it
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voltage, while at constant current the torque has an additional angular

dependence given by the variation of the conductivity (hence the

voltage at constant current) with angle.

reaches the maximum of the anisotropy torque at about 45◦.
Then the full reversal occurs. Further increasing the current
reduces the reversal time and also the transition width.

Figure 6 shows the measured switching time against the
voltage calculated with the different mapping strategies for
three values of the anisotropy. We find that there is no
significant difference between the full and semi-interpolation
methods, since the angular dependence of the ab initio STT
agrees well with the Slonczewski form. As such, only the
full interpolation results are compared to the torkance-based
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FIG. 7. The critical (a) voltage and (b) current required to switch

the free layer for a given anisotropy and damping at T = 0 K.

Three alternative methods for interpolating the STT are shown for

each case: torkance (solid lines), full interpolation (filled circles),

and semifunctional (open circles). The dotted lines are a guide to

the eye.

ones. For each anisotropy there is no switching below a critical
voltage and a sharp decay of the switching time above it. Since
there is a large increase in the torque above approximately
1.4 V (see Fig. 3), the switching time shows a consistent drop
at this point. For an anisotropy of 0.1 meV (green triangles and
line), the critical voltage lies close to this increased torque and
we find that there is a large difference between the calculations
using the finite-voltage torques and those obtained at zero
voltage with the torkance method.

The critical voltages and currents for a range anisotropy
strengths and damping coefficients are shown in Fig. 7. The
three interpolation methods discussed earlier are shown as
solid lines for the torkance, filled points for full interpolation,
and open points for the semifunctional method. Our results
show that there is no significant difference between the
semifunctional and the full interpolation method over the range
simulated here. For the full interpolation method the loss of
numerical accuracy may arise in some instances due to the poor
interpolation at θ close to the end points, 0 and π , if too few data

points are available where the curvature is high. Such numeri-
cal errors lead to longitudinal torques, which effectively (due to
the constrained spin length in the ASD) reduce the net torque.

The nonlinear behavior of the critical voltage shown in
Fig. 7(a) arises simply because of the calculated voltage
dependence of the in-plane torque, while in (b) there is an
additional effect arising from the voltage dependence of the
current. At a lower damping the torkance matches the other
methods for a wider range of anisotropies. This is due to
the fact that the critical voltage is related to the product of
the damping and the anisotropy. When the critical voltage
is below approximately 1 V, then the torque is in the linear
regime; hence, we find the torkance agrees well with the
finite-voltage-calculated torque (see Fig. 3). In high-anisotropy
systems, where a large switching voltage may be required, an
accurate knowledge of the STT voltage dependence becomes
important.

C. Switching dynamics at finite temperature

Finally, we consider the switching process at finite temper-
ature. Now our simulation cell needs to be largely increased in
order to account for the temperature-induced noncollinearity.
In this case we simulate a 32 × 32 × 4 spin slab corresponding
to a lateral dimension of 9.2 nm and still apply periodic
boundary conditions in the lateral directions. Ideally, one
should consider thermal effects on the current and the STT
as well, but here we only consider thermal effects in the ASD
through the stochastic noise term introduced into the effective
field in Eq. (5). The noncollinearity now requires a further
decision to be made when mapping the STT to the ASD.
The ab initio calculation of the torque is for a fully collinear
free layer, but noncollinearity in ASD is required to achieve
a thermal spin distribution. One can then decide to use the
angle of the total magnetization or that of each individual spin
in order to determine the torque. The effects of this choice
will be discussed in what follows. Note that, in principle, one
can still calculate the torques from ab initio for a noncollinear
situation. In fact, one can even calculate the torques at each
time step in the ASD, for instance, as it is done for the forces in
ab initio molecular dynamics. This is, however, not practical
here, since the transport calculations, in particular at finite bias,
are much more demanding than the ASD ones.

Figure 8 shows the inverse average switching time at
different temperatures for (a) k = 0.1 meV and (b) 0.5 meV.
The filled symbols show results obtained by using the angle
of the total magnetization to calculate the STT, while the open
ones use the individual spin angle. From the figure we observe
that results obtained with the different angle methods are
almost indistinguishable from each other except in (b) at 300 K.
Here the switching time is averaged over 24 independent
simulations since it is a stochastic process. This may lead
to an equivalence in the methods, since while these are
fundamentally different the average switching time may be
similar.

Different anisotropies present us two different situations.
In Fig. 8(a) the inverse relaxation time is linear with the
voltage, since the critical voltage is within the linear regime,
while in Fig. 8(b) it is nonlinear. In general, however, for
both anisotropy values increasing the temperature reduces the
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FIG. 8. Inverse switching time with (a) k = 0.1 meV and (b)
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by using the angle calculated for the total magnetization or for each

individual spin, respectively. The dashed lines indicate the inverse

reversal time at T = 0 K using a scaled anisotropy constant.

switching time and also the critical voltage. Within a micro-
magnetic picture this behavior is reproduced by introducing
temperature-dependent parameters, namely, the anisotropy, the
damping, and the magnetic moment. These reduced parame-
ters then lead to a reduction in the critical switching voltage.
Callen-Callen theory [22] predicts that at finite temperature
the macroscopic uniaxial anisotropy constant Ku scales as
Ku(T )/Ku(0) = [M(T )/M(0)]3. From our simulations we
find that at 100 K and 300 K the average magnetization is
approximately 0.94 and 0.80, respectively. This returns us
expected anisotropy constants of Ku(100) ≈ 0.83Ku(0) and
Ku(300) ≈ 0.51Ku(0). The dashed lines in Fig. 8, therefore,
show the inverse switching time at 0 K obtained by using
these scaled anisotropy values. As we can see in panel (b),
the zero-temperature dynamics computed using these scaled
constants agree well with the average switching time obtained
at finite temperature, despite the lack of thermal fluctuations.
The same is not true for the lower-anisotropy case of Fig. 8(a).
Here there is agreement only at higher voltages for 100 K,

while at 300 K the zero-temperature switching times at the
rescaled anisotropies are constantly longer than those obtained
with the finite-temperature dynamics. This has to be attributed
to the actual thermal fluctuations, which are more pronounced
for a lower anisotropy and cause the switching to occur faster.

IV. CONCLUSION

To summarize, we have developed a multiscale model-
ing methodology combining ab initio calculations of the
spin-transfer torque and large-scale finite-temperature spin
dynamics simulations. Using the SMEAGOL code, both the
STT and the linear response STTk have been computed for
various applied voltages and angles of misalignment between
the fixed and free magnetic layer in a nanoscopic junction.
This is then mapped onto an atomistic spin dynamics model,
which is used to calculate the switching times with and without
thermal effects. We apply this methodology to a prototype MTJ
based on Co/MgO, where we find that the STT is strongly
localized on the Co atoms at the MgO interface and that the
STT is linear at low voltages. In contrast, above 1.4 V there
is a sharp increase in the total current in the AP configuration
driven by the minority spin component. Such current density
increase leads to a sharp enhancement of the in-plane torque
and in a reduction of the out-of-plane one.

The ab initio calculated torques are then mapped onto the
ASD with different mapping types being analyzed. A full
interpolation of the ab initio data set is preferred, but using the
Slonczewski angular form together with the ab initio voltage
dependence extracted at a fixed angle performs equally well
over a wide range of parameters. Due to the linear nature of the
STT, at low bias the 0-V linear response (torkance) is a suitable
replacement. At finite temperature the picture described above
does not change drastically, except for the fact that the thermal
fluctuations reduce the critical voltage required for switching.

The advantage of such multiscale methodology is that no
empirical model of the STT is required, as this is calculated
at the atomic level from first-principles ballistic transport
theory. The atomic resolution allows systems where the typical
micromagnetic models break down (e.g., where atomically
staggered magnetic order is present) to be investigated. While
currently some parameters, such as the exchange interaction
and the anisotropy, are inferred from experiments, those can
also be taken from ab initio calculations of the actual MTJ stack
with atomic resolution [20,23]. Computational feasibility may
ultimately limit the size of treatable systems and the accessible
time scales; however, this prototypical MTJ study is still far
from these limits, suggesting a range of realistic magnetic
multilayered devices (including some accounts for disorder)
to be well within the scope of the method.
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