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a b s t r a c t

Predicting events in the real world with a computer model (simulator) is challenging. Every
simulator, to varying extents, hasmodel discrepancy, a mismatch between real world obser-
vations and the simulator (given the ‘true’ parameters are known). Model discrepancy
occurs for various reasons, including simplified or missing physics in the simulator, numer-
ical approximations that are required to compute the simulator outputs, and the fact that
assumptions in the simulator are not generally applicable to all real world contexts. The
existence of model discrepancy is problematic for the engineer as performing calibration
of the simulator will lead to biased parameter estimates, and the resulting simulator is
unlikely to accurately predict (or even be valid for) various contexts of interest. This paper
proposes an approach for inferring model discrepancy that overcomes non-identifiability
problems associated with jointly inferring the simulator parameters along with the model
discrepancy. Instead, the proposed procedure seeks to identify model discrepancy given
some parameter distribution, which could come from a ‘likelihood-free’ approach that con-
siders the presence of model discrepancy during calibration, such as Bayesian history
matching. In this case, model discrepancy is inferred whilst marginalising out the uncertain
simulator outputs via a sampling-based approach, therefore better reflecting the ‘true’
uncertainty associated with the model discrepancy. Verification of the approach is per-
formed before a demonstration on an experiential case study, comprising a representative
five storey building structure.
� 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Computer models (herein defined as simulators) never perfectly reflect the real world. This is due to the existence ofmodel

discrepancy, which will always be present to varying degrees and for a multitude of reasons, e.g. missing physics, numerical
approximations, simplified assumptions, etc. This mismatch between simulator and real world — even if the ‘true’ parame-
ters of the simulator are known — is problematic as performing calibration will lead to biased parameter estimates and pre-
dictions from the simulator are unlikely to be accurate (or, in some cases, even valid).

Several methods have been proposed for inferring model discrepancy [1–8], with most forming a Bayesian hierarchical
model to solve a joint parameter and model discrepancy inference problem [1–7]. However, this type of approach is known
to suffer from non-identifiability issues [4–7], leading to spurious estimations of both the parameter and model discrepancy
distributions, even if the mean predictive outputs are accurate. These non-identifiability issues are caused, in particular, by
an uninformative prior structure for the model discrepancy, caused by modelling the term with an unconstrained Gaussian
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process (GP) [1–7]; although this can be made even worse by uninformative priors on the parameters [6]. However, the rea-
son the joint inference approach uses a Gaussian process is because little (if anything) is known about model discrepancy a

priori, as by definition it involves some level of epistemic uncertainty. Consequently, the joint hierarchical approach utilises
Gaussian processes as they offer a natural, Bayesian model over unknown functions, and are a flexible nonparametric
method for performing regression (where flexible refers to the fact a GP can fit any arbitrary function well [9]). The main
issue with the joint inference approach arises as ‘bad’ parameter estimates can be adequately compensated for by the Gaus-
sian process model discrepancy term, due to the GPs ability to model any arbitrary discrepancy well, leading to a rather flat
likelihood that is insensitive to changes in the parameters; making it a bad choice in likelihood. A potential remedy to this
problem is sometimes available by specifying (if known) more informative prior parameter distributions, essentially enforc-
ing that the prior dominates in the posterior, when the likelihood is insensitive [6]. Another technique tries to improve the
likelihood by applying constraints to the Gaussian process, e.g. it must be positive at a particular input [6]. However, both
improved specifications of the priors, and additional constraints on the GP, are often difficult to obtain a priori, as this
involves obtaining more knowledge about the parameters or the model discrepancy, and still leaves the problem that fun-
damentally the likelihood does not accurately model reality.

In response to these issues with the joint approach, this paper seeks to develop an alternative method for inferring model
discrepancy. Although the approach outlined in this paper is generally applicable to scenarios where some parameter dis-
tribution is available for the simulator parameters, the technique is specifically designed to accompany a ‘likelihood-free’

approach to the calibration problem. In this scenario, calibration is performed via a ‘likelihood-free’ method, rather than
using a ‘true’ likelihood function. Model discrepancy is instead introduced as some notation of distance between the simu-
lator and the real world [10–16,8]. It is argued that this is a more appropriate way of specifying a level of epistemic uncer-
tainty than using a formal likelihood function [10–16,8]. Methods such as Bayesian history matching [8] take this approach,
and can be seen as forming a decoupled two stage solution to the problem of inferring simulator parameters and model dis-
crepancy, i.e. infer plausible simulator parameters using the ‘likelihood-free’ approach, and then infer the model discrepancy
given the calibrated parameter estimates. The two stage process has the benefit of decoupling the inference problem, mean-
ing that non-identifiability issues, resulting from the GP model, are removed.

As stated, an additional benefit of the proposed approach, is that it can be used even if the viewpoint is taken that any
calibration procedure will lead to biased parameter estimates, and therefore the best course of action is to better elicit
the simulator parameters from physics or experimentation directly; given they can be identified without the use of the sim-
ulator in question. The argument here is that knowing the ‘true’ parameters from the physics (rather than calibration) will
allow more robust extrapolation. However, the problem still remains that model discrepancy is present, and even given that
the physically ‘true’ parameters exist and are known, there is no guarantee (in fact it is very unlikely) that the simulator will
predict a given real world context well without inferring the functional form of the model discrepancy.

Both the ‘likelihood-free’ decoupled parameter and model discrepancy inference procedure, and fixing (physical) param-
eter estimates and inferring model discrepancy, can be seen as requiring the same step, i.e. given some estimates of the sim-
ulator parameters what is the model discrepancy?.

This paper proposes a novel method for inferring model discrepancy given any arbitrary set of samples of the parameter
distribution (whether inferred via a likelihood-free approach or elicited). As a result, the engineer is better able to under-
stand the mismatch between the simulator and real world, enabling them to more informatively target improvements to
the simulator. The proposed approach marginalises out the uncertain simulator outputs whilst inferring the model discrep-
ancy as a Gaussian process regression model via a sampling-based technique. As a result, model discrepancy is inferred given
all valid parameter values (from the parameter distribution), providing a more accurate estimation of the uncertainty asso-
ciated with the model discrepancy.

The outline of this paper is as follows. The approach for model discrepancy inference from some given parameter samples
is stated, showing the Gaussian process and sampling-based formulation in Section 2. A ‘likelihood-free’ method for obtain-
ing the calibrated parameter distribution, Bayesian history matching, is introduced in Section 3. Next, two numerical case
studies are provided in Section 4, verifying the approach, with the first numerical example benchmarking the proposed
approach against the hierarchical Bayesian method. Finally, an experimental case study is provided in Section 5, demonstrat-
ing the effectiveness of the method, before conclusions and future work are presented in Section 6.

2. Model discrepancy inference

Model discrepancy is defined as the mismatch between simulator predictions and real world observations, given that the
‘true’ parameters of the simulator are known. Typically, this means that model discrepancy is assumed to be some additive,
corrective function [1] — with the simulator considered as a complicated, black-box model and therefore invasive model dis-
crepancy terms, modifying the underlying simulator equations, are avoided. However if more information about the cause of
model discrepancy is known, i.e. it affects some internal states [17], and the simulator can be modified in an invasive man-
ner, then it should be modelled more appropriately. Following these assumptions (as first proposed in [1]), model discrep-
ancy can be mathematically defined for a single output as,

z Xð Þ ¼ g X; hð Þ þ d Xð Þ þ e ð1Þ
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where z 2 R
N�1 are real world observations for a set of inputs X 2 R

N�dx. The simulator g �; �ð Þ depends on a set of inputs X and
parameters h 2 R

M�1, whereas the model discrepancy term d �ð Þ is assumed to only be dependent on the inputs X. Finally,
e 2 R

N�1 is assumed Gaussian additive noise. The decision about what the inputs X and parameters h of a simulator are will
be application specific, where generally, the inputs X are chosen to reflect the measured outputs z and the parameters h are
additional variables in the simulator that could be tuned. For example, the inputs X could be variables that drive a physical
process, such as a force or crack length, or independent variables like spectral lines or frequency bins, with the parameters h
being, for example, material properties, or even mass, stiffness and damping coefficients, such as in direct model updating
[18].

The main difference between the proposed method and existing techniques, such as in [1], is that the parameters h are
identified before the functional model discrepancy term d �ð Þ is inferred; rather than jointly inferring both h and d �ð Þ. This
decoupling assumption is made as the alternative joint inference problem is susceptible to non-identifiability issues, caused
by modelling model discrepancy d �ð Þ with a Gaussian process whilst inferring the parameters [4,6]. In fact, this modelling
choice in the joint approach, leads to a rather poor likelihood, where even ‘bad’ parameter samples are given a high prob-
ability in the likelihood function [6], due to the ability of the GP to model any arbitrary function well [9], making the like-
lihood insensitive. Instead, by decoupling the problem, inferring the parameters and then the model discrepancy, non-
identifiability issues and problems with the likelihood can be overcome.

In order to decouple the parameter and model discrepancy inferences, the calibration method must be able to account for
model discrepancy in another way. ‘Likelihood-free’ approaches, such as Bayesian history matching, offer such a technique.
These methods incorporate model discrepancy though a notion of distance, removing issues associated with defining a speci-
fic likelihood, whilst approximating the parameter posterior distribution p hjzð Þ. Once obtained, model discrepancy can be
inferred using a Gaussian process model — without affecting the parameter posterior distribution. However, the Gaussian
process model must be constructed from the uncertain simulator outputs p yjX; hð Þ to the real world observations z. Unfor-
tunately, it is not possible in closed-form to create a Gaussian process from uncertain inputs, meaning that a sampling-based
solution is required.

It is noted that in the joint inference method, the parameters h are inferred, given an empirical Bayes estimate of the
model discrepancy hyperparameters, requiring the Gaussian process to be conditioned on the parameter prior distributions,
e.g.

R
p zjy;/; hð Þp hð Þdh [1–7] — this can bias the inferred model discrepancy. This conditioning, typically leads to a restricted

choice in prior distributions p hð Þ that are conjugate with a Gaussian process, such as a Gaussian [1] or uniform [4] distribu-
tion; where non-conjugate priors require an additional expensive sampling procedure, on top of the parameter estimation,
which is performed in low dimensions by a quadrature approach, and in high dimensions by another sampling step [1].
These issues are removed by considering the decoupled approach proposed in this paper.

By decoupling the inference procedure, the model discrepancy method can also be applied in scenarios where the param-
eter distribution is obtained by some elicitation process or experimentation. This makes the technique more generally appli-
cable to a wider range of problems outside of those originally considered by the joint approach.

The proposed method assumes that some parameter distribution p hjzð Þ has been obtained from a ‘likelihood-free’ calibra-
tion method, or p hð Þ has been acquired from some elicitation process; where, for simplicity, p hð Þ will be used to denote a
generic parameter distribution. The approach then seeks to find the additive model discrepancy (and noise) term modelled
using Gaussian process (GP) regression. As the simulator outputs, given the parameter distribution, are uncertain, a
sampling-based approach is used to marginalise out the simulator outputs, meaning (potentially calibrated and) bias-
corrected model predictions can be made, reflecting the uncertainty from the parameter distribution. A brief outline of
the approach is as follows:

� Obtain Ns samples from the parameter distribution i.e. for the jth sample, h jð Þ � p hð Þ.
� Propagate those Ns samples through the simulator to obtain Ns simulator output (denoted y 2 R

N�1) samples i.e.

y jð Þ ¼ g X; h jð Þ
� �

.

� Learn a GP mapping for each of the Ns output samples y jð Þ to a set of training observations z i.e. GP jð Þ : y jð Þ; X
� �

! z and
obtain a weight wj for each regression model — the weights will be formally introduced in Section 2.2.

� Calculate the weighted average of the set of GP regression models generating a bias-corrected model prediction
p z�jX�; h;Dð Þ.

It is noted that in the case where the simulator is computationally expensive to evaluate, a more computationally efficient
emulator, or surrogate model [19], can be constructed. This efficient approximation can be sampled instead of the simulator
in step two, where any emulator technique within the literature could be implemented [19–21]; in this paper a Gaussian
process emulator is utilised.

2.1. Gaussian process regression

Model discrepancy is modelled in this paper by GP regression as it is a flexible, nonparametric tool, and because it has a
Bayesian formulation allowing the uncertainty associated with the inferred functional form to be estimated [22,9]. These
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properties, the ability to approximate any unknown function well whilst quantifying the uncertainty in the prediction, are
useful as the functional form of the model discrepancy is unknown a priori and quantifying the uncertainty associated with
this form may aid simulator developers in targeting improvements to their computer model. In addition, by decoupling the
inference problem, the choice of modelling model discrepancy with a Gaussian process no longer affects the likelihood in the
parameter inference stage, making it a more suitable assumption.

The model discrepancy term is assumed in Eq. (1) to be additive, meaning it can be formed as a map from the simulator
outputs y and inputs X to the observational data z; GP : y; Xf g ! z, where the inferred model discrepancy GP can be related
back to the inputs as d Xð Þ. For this reason GP regression is introduced in this section with the simulator outputs y being part
of the inputs to the GP along with X, and where the noisy observations z are the outputs of the GP.

A Gaussian process states a prior distribution over a latent function f y;Xð Þ (of the noisy function z y;Xð Þ ¼ f y;Xð Þ þ e),

f � GP m y;Xð Þ; k y;Xð Þ; y0;X0� �� �� �
ð2Þ

where GP �; �ð Þ is a Gaussian process, with a mean function m �ð Þ and covariance function k �; �ð Þ which define the prior belief
about the types of possible functions that could model the function f 2 R

N�1. Here a zero mean function is assumed, i.e.
m y;Xð Þ ¼ 0, although it is trivial to add a non-zero mean function. The covariance function defines the correlation between
any two points in the input space (hence being a function of y;Xð Þ and y0;X0� �

) in a Reproducing Kernel Hilbert Space (RKHS)
and is fully specified by a set of hyperparameters /, i.e. K ¼ k �; �;/ð Þ. The covariance function utilised in this paper is a Matérn
3/2 covariance function, as it is ideal for modelling relatively ‘smooth’ real world functions,1 as it is (3/2–1) times mean
square differentiable [23], and is defined as,

K f ;f ¼ k y;Xð Þ; y0;X 0� �� �
¼ r2

f 1þ
ffiffiffi
3

p
ry exp

ffiffiffi
3

p
ry

� �� �
1þ

ffiffiffi
3

p
rx exp

ffiffiffi
3

p
rx

� �� �
ð3Þ

where,

ry ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y � y0ð ÞTL�1

y y � y0ð Þ
q

ð4Þ

and,

rx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X � X 0� �T

L�1
x X � X0� �q

ð5Þ

where K f ;f 2 R
N�N is the covariance matrix for inputs2 y 2 R

N�1 and X 2 R
N�dx , r2

f is the signal variance hyperparameter, and

Ly ¼ diag ly1; . . . ; lyd
� �

and Lx ¼ diag lx1; . . . ; lxdð Þ are lengthscale hyperparameters (making the covariance function an automatic
relevance determination prior, i.e. it reduces the effect of redundant inputs). The covariance structure here separates out y

and X allowing them to have an independent relationship with the outputs z. The hyperparameter vector for the Matérn 3/2
covariance function is therefore / ¼ rf ; Ly; Lx

� �
. It is noted that the notation K f ;� ¼ k y;Xð Þ; y�;X�ð Þð Þ is used, where f indicates

training and � test data. In order to make predictions, the joint Gaussian distribution is formed between a set of training
D ¼ y;Xf g; zf g and testing data y�;X�f g; z�f g, assuming a Gaussian likelihood,

z

z�

	 

� 0

0

	 

;

K f ;f þ Ifr2
n K f ;�

K�;f K�;� þ I�r2
n

" # !
ð6Þ

where If 2 R
N�N and I� 2 R

N��N� are identity matrices and r2
n is a Gaussian noise variance. Following standard Gaussian con-

ditionals, the posterior for a Gaussian process regression model can be formed as,

p z�jy�;X�;D;/ð Þ ¼ N E z�ð Þ;V z�ð Þð Þ ð7aÞ
E z�ð Þ ¼ K�;f K f ;f þ Ifr2

n

� ��1
z ð7bÞ

V z�ð Þ ¼ K�;� þ I�r2
n � K�;f K f ;f þ Ifr2

n

� ��1
K f ;�: ð7cÞ

Conventionally, GP models are inferred by taking a type-II maximum likelihood approach [9], i.e. finding the hyperparam-

eters that maximise the marginal likelihood, leading to an empirical Bayes estimate of the hyperparameters /̂. By combining
the noise variance with the set of covariance function hyperparameters, i.e. / ¼ rf ; Ly; Lx;r2

n

� �
, the empirical Bayes estimates

for the set of hyperparameters may be found through optimisation, — here a global optimisation approach is used, specifi-
cally via quantum particle swarm [24] — by minimising the negative log marginal likelihood,

/̂ ¼ arg min
/

� logp zjy;X;/ð Þf g ð8Þ

where,

1 It is noted that many other choices of covariance function exist and the reader is referred to [9] for more options.
2 However, if the simulator produces a multivariate output then the inputs to the GP model may be d-dimensional i.e. Y 2 R

N�d , meaning the covariance
function is formed from Y.
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� logp zjy;X;/ð Þ ¼ 1
2
zT K f ;f þ Ir2

n

� ��1
z þ 1

2
log jK f ;f þ Ir2

nj þ
N

2
log 2p: ð9Þ

It is noted that a fully Bayesian analysis would require marginalisation of the hyperparameters, which is not solvable in
closed-form due to the dependence of the hyperparameters in the covariance function. However, the fully Bayesian solution
may be inferred from a sampling-based approach [25–27] and is explored in the following section.

2.2. Sampling-based approach

The method outlined in this paper utilises GP regression in identifying the map GP : y;Xf g ! z, and therefore inferring
the model discrepancy term d Xð Þ. However, the output from a simulator y will typically be uncertain, i.e. p yjX; hð Þ, arising
from parametric uncertainty in p hð Þ. However, Gaussian process regression cannot be solve in closed-form for uncertain
inputs, and even though the simulator inputs X are deterministic, the simulator outputs y are uncertain. To create bias-
corrected predictions that account for this parametric uncertainty, the simulator outputs y� must be integrated out, forming
the following integral,

p z�jX�; h;D;/ð Þ ¼
Z

p z�jy�;X�;D;/ð Þp y�jX�; hð Þdy� ð10Þ

where p z�jX�; h;D;/ð Þ is the bias-corrected predictive output, p y�jX�; hð Þ is the simulator prediction at test inputs X� which is
conditioned on the parameter distribution p hð Þ. It is noted that in previous work [8] the bias-corrected outputs have been
approximated using the maximum a posteriori (MAP) estimate of the parameters (and an empirical Bayes estimate of the

hyperparameters /̂) meaning p z�jX�; h
MAP;D; /̂

� �
. However, this will not account for the complete parametric uncertainty

from p hð Þ and may result in a biased estimate of the model discrepancy.
The proposed method seeks to approximate Eq. (10) via a sampling-based approach — specifically from an importance

sampling viewpoint. Importance sampling is a technique for obtaining unbiased estimates of expectation integrals [28], such
as in Eq. (10), and can be generalised as,

Ep f xð Þð Þ ¼
Z

f xð Þp xð Þdx ¼
Z

q xð Þ f xð Þp xð Þ
q xð Þ dx ¼ Eq

f Xð Þp Xð Þ
q Xð Þ

� �
ð11Þ

where f xð Þ is a function, p xð Þ the nominal distribution over the variable x and q xð Þ is the proposal distribution, where X � q

are independent draws from the proposal distribution. The expectation in Eq. (11) can be formed as,

Ep f xð Þð Þ � 1
N

XN

i¼1

f Xð Þp Xð Þ
q Xð Þ ¼ 1

N

XN

i¼1

f Xð Þw Xð Þ ð12Þ

where N are the number of samples and w Xð Þ ¼ p Xð Þ=q Xð Þ are the importance weights [28].
Eq. (10) can be approximated by setting the nominal and proposal distributions equal to the simulator output predictive

distribution p y�jX�; hð Þ. This means that Ns samples can be obtained from the parameter distribution, i.e. h jð Þ � p hð Þ and prop-

agated through the simulator to obtain output samples y jð Þ
� � p y�jX�; h

jð Þ
� �

¼ q y�jX�; h
jð Þ

� �
, meaning that the weight for each

sample equals one, i.e.w y�
jð Þ� �

¼ 1 (this effectively is the same as approximating the integral via Monte Carlo sampling, how-
ever the language of importance sampling will useful later in this section). The predictive equation p z�jX�; h;D;/ð Þ can now
be approximated using the set of weights and Gaussian process predictions for each sample, and the laws of total expectation
and variance,

p z�jX�; h;D;/ð Þ � N E z� j X�; h;D;/ð Þ;V z� j X�; h;D;/ð Þð Þ ð13aÞ

E z� j X�; h;D;/ð Þ ¼ 1
Ns

XNs

j¼1

w jð Þ
E z jð Þ

�
� �

ð13bÞ

V z� j X�; h;D;/ð Þ ¼ 1
Ns

XNs

j¼1

w jð Þ
V z jð Þ

�
� �

þ E z jð Þ
�

� �
E z jð Þ

�
� �T� �

�E z� j X�; h;D;/ð ÞE z� j X�; h;D;/ð ÞT
ð13cÞ

where E z�ð Þ and V z�ð Þ are the GP predictive mean and covariance from Eq. (7). The bias-corrected predictions are approxi-
mately Gaussian, given that they are formed from weighted averaged Gaussian processes. The method is outlined in Algo-
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rithm 1. The main computational expense is in sampling the simulator outputs, which can be reduced by replacing the sim-
ulator with a computationally efficient emulator [19–21]. One problem with this approach is that the predictions are still
dependent on a set of hyperparameters (that have been inferred from the GP associated with the parameter MAP estimates).
However, these hyperparameters can also be marginalised out of the predictive equations using importance sampling, as dis-
cussed below.

Algorithm 1. Model discrepancy inference dependent on empirical Bayes estimates of /

The following integrals can be solved to generate a bias-corrected prediction not dependent on either the simulator out-
puts or GP hyperparameters,

p z�jX�; h;Dð Þ ¼
Z Z

p z�jy�;X�;D;/ð Þp y�jX�; hð Þdy�

� �
p /jDð Þd/ ð14Þ

requiring the posterior of the hyperparameters p /jDð Þ, which can also be approximated via importance sampling. By solving
Eq. (14), rather than optimising the GP via a type-II maximum likelihood technique, the fully Bayesian solution of the hyper-
parameters can be acquired.

The posterior distribution of the hyperparameters p /jDð Þ / p zjy;X;/ð Þp /ð Þ (where D ¼ y;Xf g; zf g), can be approximated
with importance sampling by setting the unnormalised nominal distribution as p zjy;X;/ð Þp /ð Þ. By keeping the proposal and
nominal distributions for the parameters the same as in the first approach, and by setting the proposal distribution for the

hyperparameters equal to the prior distribution, i.e. / kð Þ � p /ð Þ ¼ q /ð Þ, the weights for each of the N/ hyperparameter sam-

ples are equal to p zjy;X;/ kð Þ
� �

, i.e. the marginal likelihood of the GP model (in negative log-form in Eq. (9)). This formulation

now allows both y� and / to be integrated out with importance sampling forming p z�jX�; h;Dð Þ as,
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Algorithm 2. Model discrepancy inference marginalising /

p z�jX�; h;Dð Þ � N E z� j X�; h;Dð Þ;V z� j X�; h;Dð Þð Þ ð15aÞ

E z� j X�; h;Dð Þ ¼
XNs

j¼1

XN/

k¼1

w j;kð Þ
E z i;kð Þ

�
� �

ð15bÞ

V z� j X�; h;Dð Þ ¼
XNs

j¼1

XN/

k¼1

w j;kð Þ
V z j;kð Þ

�
� �

þ E z j;kð Þ
�

� �
E z j;kð Þ

�
� �T� �

�E z� j X�; h;Dð ÞE z� j X�; h;Dð ÞT
ð15cÞ

where the overall procedure is outlined in Algorithm 2.
Is it noted that the approaches rely on importance sampling, which will suffer from the curse of dimensionality as the

dimension of Y and / increases, as it will be less likely that a given sample will carry some meaningful weight. This issues
can be mitigated by an adaptive approach [26], which is left for further research.

3. Obtaining the parameter distribution

As aforementioned, the proposed model discrepancy inference approach is primarily designed to accompany a
‘likelihood-free’ calibration process, where model discrepancy is account though a distance measure. These approaches allow
for p hð Þ to be obtained without the GP model discrepancy influencing the posterior parameter distribution, removing prob-
lems associated with non-identifiability. This section briefly introduces Bayesian history matching as one such approach that
can be used in combination with the proposed procedure (for more details on Bayesian history matching the interested
reader is referred to [8]).
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3.1. Bayesian history matching

Bayesian history matching (BHM) is an approximate Bayesian approach for calibrating statistical models of the form in Eq.
(1). The method seeks to determine whether parameter combinations are ‘implausible’, i.e. they are not likely to have pro-
duced the observations z, based on a criteria such that the remaining non-implausible parameter space is identified; leading
to an approximation of the posterior distribution p hjzð Þ. The criteria for discarding implausible samples is a combination of
an implausibility metric and a threshold T, where the implausibility metric accounts for model discrepancy though a notion of
distance.

BHM assumes that the simulator is computationally expensive to evaluate, and hence replaces the simulator with a com-
putationally efficient GP emulator g X; hð Þ � GP : X; hf g ! y. This replacement of the simulator for an emulator is possible as
a GP estimates the uncertainty associated with the approximation through the predictive variance V y X; hð Þð Þ from
g X; hð Þ � N E y X; hð Þð Þ;V y X; hð Þð Þð Þ (formed in a similar manner to Eq. (7)). This means that parameter combinations are only
discarded when the approximation is certain enough, given the other uncertainty in the implausibility metric. The implau-
sibility metric assess the distance between the mean emulator prediction E g�ð Þ and the observed data z, weighted by several
uncertainties,

I X; hð Þ ¼ jz Xð Þ � E y X; hð Þð Þj
Vo þ Vm þV y X; hð Þð Þð Þ1=2

ð16Þ

where Vo and Vm are variances associated with observational and model discrepancy uncertainties.
BHM acts in an iterative manner as follows:

� A parameter space Hi is proposed and sampled, h jð Þ � H.

� For each parameter sample h jð Þ the implausibility I X; hð Þ is assessed.

� Given the criteria I X; h jð Þ
� �

> T the sample h jð Þ is rejected (where the sample is kept if the inverse is true).

� The set of samples that are not discard define the new parameter space Hiþ1.
� The simulator is run at a set budget of new parameter combinations from the new parameter space hnew 2 Hiþ1, i.e.
ynew ¼ g X; hnewð Þ.

� The emulator is updated based on the new training data X; hnewf g; ynewf g.
� Repeat until convergence.

The threshold is set given the statistical properties of the implausibility metric [8], e.g. for Eq. (16) the threshold can be set
as T ¼ 3 given Pukelsheim’s 3r rule [29]. By updating the emulator approximation at each iteration, the criteria can discard
more parameter combinations with increased confidence. Finally, convergence is reached when either the uncertainty in the
emulator is lower than the remaining uncertainties i.e. Vo þ Vm > V y X; hð Þð Þ or all the parameters are discarded.

4. Case study: numerical verification problems

The proposed two stage calibration and model discrepancy inference was verified on two numerical case studies; one
where x 2 R

N�1 and the other x 2 R
N�2. In addition, the first numerical case study is used to benchmark the proposed decou-

pled approach, using Bayesian history matching and the sampling-based model discrepancy procedure, against the hierar-
chical Bayesian model formulation, where the model discrepancy and model parameters are jointly inferred together. In
both case studies the simulator modelled the tip deflection of a cantilever beam subject to an open crack with a point force
of 10kN at the tip. The stiffness reduction model for an open crack used in this case study was that proposed by Christides
and Barr [30],

EI xð Þ ¼ EI0
1þ C exp �2ajx� llocj=tð Þ ð17Þ

where the stiffness along the beam EI �ð Þ is a function of the length along the beam x, Young’s modulus E, the second moment
of area for the undamaged beam I0, the beam thickness t, the crack location lloc and a, a coefficient experimentally defined by
Christides and Barr as 0:667. The constant C ¼ I0 � Icð Þ=Ic is a function of the undamaged I0 and damaged second moments of

area Ic , which for a rectangular beam are I0 ¼ wt3
� �

=12 and Ic ¼ w t � lcrð Þ3=12; wherew is the beam width and lcr is the crack
length. The tip deflection was numerically estimated via Euler–Bernoulli bending beam equation,

@2y

@x2
¼ �M xð Þ

EI xð Þ ð18Þ

where M �ð Þ is the moment along the beam. In both case studies the beam used in the analysis was rectangular with the fol-
lowing dimensions: l ¼ 1m, w ¼ 0:5m and t ¼ 0:1m.
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4.1. Numerical case study: one input problem

The first illustrative case study considers a scenario where the input was crack location x ¼ lloc, the parameters were
Young’s modulus E and crack length lcr , i.e. h ¼ lcr ; Ef g, and the output (both from the simulator and experiments) was the

tip deflection. In this analysis the true parameters were defined as l̂cr ¼ 38mm and bE ¼ 68GPa, i.e. ĥ ¼ 38; 68f g; the simu-
lator evaluated at these parameters is depicted in Fig. 1. The training inputs for both the simulator and experimental data
were 13 equally spaced points from 0:1m to 0:9m, and the simulator parameters were evaluated between 0mm and
50mm, and 50GPa and 90GPa, resulting in 25 equally spaced data points. These training inputs were used to construct an
emulator with a linear mean and Matérn 3/2 covariance. The model discrepancy was defined as,

d xð Þ ¼ 0:3 1:5� xð Þ � sin 1:8 x� 0:2ð Þ � 2pð Þ ð19Þ

shown in Fig. 1. The experimental data z was formed from the simulator output plus the additive model discrepancy where
the observation noise was Gaussian distributed with variance 0:001, where the experimental data is displayed in Fig. 1. The
prior model discrepancy uncertainty (used in BHM) was Vm ¼ 0:05, reflecting the expected magnitude of the model discrep-
ancy, where the error bars on the experimental data in Fig. 1 show the total prior uncertainties.

BHM was used to find the approximate posterior distribution, shown in Fig. 2 where the true parameters (shown in red)
are close to the mode of the joint posterior distribution. Samples from the posterior distribution are shown in Fig. 1, where
the output from the mode of the posterior distribution is visually in good agreement with the output at the true parameter
values.

Fig. 1. The simulator, experimental data and model discrepancy for the first numerical case study. The left panel shows experimental training data z ( )
with error bars indicating the total prior BHM uncertainties and testing data z� ( ). The simulator evaluated at the true parameters ( ) is compared to the
BHM samples ( ) where the mode ( ) is indicated. The right panel depicts the model discrepancy.

Fig. 2. Posterior joint parameter distribution from Bayesian history matching for the first numerical case study where red markers indicate true parameter
values.
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The proposed model discrepancy inference procedure was subsequently run for three scenarios:

1. Using a MAP estimate of the simulator parameters hMAP and an empirical Bayes estimate of the GP hyperparameters /̂

(when the simulator output for hMAP is used).
2. Marginalising out the simulator outputs y� using importance sampling, with an empirical Bayes estimate of the GP hyper-

parameters /̂ (when the simulator output for hMAP is used); Ns ¼ 1000.
3. Marginalising out both the simulator outputs y� and GP hyperparameters / via importance sampling; Ns ¼ 1000 and

N/ ¼ 500.

For each scenario a zero mean and Matérn 3/2 covariance function were used.
The hierarchical Bayesian approach was also applied to the same training dataset where the prior parameter distributions

were lcr � N 35;10ð Þ and E � N 70;36ð Þ and the model discrepancy Gaussian process was also modelled with a Matérn 3/2
covariance function. These prior parameter distributions are more informative than those consider in BHM (which can be
understood as a uniform prior), where a comparison is shown in Fig. 3. The reason for using more informative priors in
the hierarchical Bayesian approach than in BHM, is due to the findings of Brynjarsdóttir and O’Hagan [6], where to reduce
the problem of non-identifiability, one solution is to apply more informative priors, constraining the posterior when the like-
lihood is relatively flat as a result of the model discrepancy Gaussian process; although it is noted that obtaining more infor-
mative priors is challenging in practical applications. Other aspects of the hierarchical Bayesian analysis were kept the same
as in the BHM approach, such that objective comparisons could be made. The posterior distributions from the hierarchical
Bayesian approach were obtained via an adaptive Markov chain Monte Carlo scheme [31,32], such that 100;000 posterior
samples were obtained with a 50;000 sample burn-in period. The autocorrelations of the chains were checked for station-
arity in order to confirm convergence. The posterior distribution is shown in Fig. 4, where it can be seen that the parametric
uncertainties are much larger than in the posterior distribution from Bayesian History Matching (BHM). The effect arises as
the likelihood has dominated in the posterior distribution, enlarging the area of probably parameter values due to the insen-
sitive likelihood function [4,6] — which arises as a result of modelling the model discrepancy as a Gaussian process during
joint inference approach.

The results from the three decoupled approaches and the hierarchical Bayesian approach are shown in Fig. 5, were it can
be seen that all of the methods have managed to accurately predict the tip deflection well, reflected in low normalised mean
squared errors (NMSEs) in Table 1 for a 200 point independent test dataset. However, due to the large parametric uncertainty

Fig. 3. Comparison of prior distributions for Bayesian history matching (BHM) and hierarchical Bayesian (HB) approaches.

Fig. 4. Posterior joint parameter distribution from the hierarchical Bayesian approach for the first numerical case study where red markers indicate true
parameter values.
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in the posterior distribution from the hierarchical Bayesian approach, the inferred model discrepancy not only has a large
variance, but also a less accurate mean prediction with a NMSE of 39.349, over 17 times larger than the highest NMSE from
the decoupled approach. This shows the challenges an insensitive likelihood causes on the inference process, and why a
decoupled solution is one approach that can be used to overcome these challenges. Furthermore, the hierarchical Bayesian
approach has an underestimated predictive variance for the tip deflection dtip, with a large number of data points, particu-
larly around the first peak at 0.36 m, exceeding a three standard deviation interval. This relatively simple numerical case
study shows the problems with a hierarchical Bayesian approach and further motives the need for alternative solutions
to the model discrepancy inference problem, such as the decoupled approach proposed in the paper.

In terms of comparing the three decoupled-based approaches, the main difference, as expected, is in the estimated uncer-
tainty for the model discrepancy. Scenario one has the smallest uncertainty, with a larger number of experimental test data
points outside a 3r range when compared to the other two scenarios. The first scenario is also overconfident in the model
discrepancy predictions, especially around 0.1m, where the true model discrepancy is outside of the 3r range. Scenarios two
and three increase the uncertainty in the model discrepancy, reflecting the parameter uncertainty in the posterior distribu-
tion, meaning the true model discrepancy remains within the 3r variance range. The NMSE is lowest for the model discrep-
ancy in scenario three, with scenario two producing the largest error in its mean prediction. It can be argued from the results,
that scenario one is overconfident and although the mean prediction is better than scenario two, its distribution could be
misleading and less helpful to the engineer by not reflecting the true uncertainty in the analysis. Finally, the posterior of
the Gaussian process hyperparameters is obtainable as part of scenario three, and presented in Fig. 6.

4.2. Numerical case study: two input problem

The second case study considers a scenario with multiple inputs, where X ¼ lloc; llenf g i.e. crack location and length, where
the output is tip deflection. The parameter in this analysis is the Young’s modulus h ¼ E, where the true parameter value is
68GPa. The training inputs for both the simulator and experimental data were 64 data points evenly spaced between 0:1m
and 0:5m, and 0mm and 50mm (for the crack location and length respectively) where the outputs are shown in Fig. 7. The
simulator parameters were evaluated at four points between 50GPa and 90GPa and an emulator was constructed using a
linear mean and Matérn 3/2 covariance function. The model discrepancy was defined as,

Fig. 5. A comparison of the three scenarios and the hierarchical Bayesian model (left to right) indicating the calibrated and bias corrected predictions (top
panels) and model discrepancy (bottom panels) for the first numerical case study. The mean ( ) and 	3r (blue shaded region) for the calibrated and bias
corrected predictions are compared against the training z ( ) and testing data z� ( ). The model discrepancy mean ( ) and 	3r (green shaded region) are
compared to the true model discrepancy ( ). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.).

Table 1

A comparison of the normalised mean squared errors for the experimental (z) and model discrepancy (d) mean predictions for the first numerical case study. HB
denotes the hierarchical Bayesian model.

Scenario 1 2 3 HB

NMSE z 0:768 0:765 0:765 0:770
NMSE d 1:756 2:288 1:654 39:349
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d xð Þ ¼ 0:3 sin 3x1 � 2p� 0:2ð Þ � 0:2 1� x1ð Þ cos 6x2 � 2pð Þ ð20Þ

and displayed in Fig. 7. Again the experimental data, shown in Fig. 7, was formed from the simulator at the true parameters
plus the model discrepancy with Gaussian additive noise with a variance of 0.001. The prior model discrepancy variance was
Vm ¼ 0:05.

The approximate posterior from BHM is presented in Fig. 7 where the difference between the mode and true parameter
value is 0.9%. Samples from the posterior are shown in Fig. 7 showing the simulator has been adequately calibrated.

The model discrepancy inference procedure was run for three scenarios:

Fig. 6. The posterior hyperparameter distribution for scenario three for the first numerical case study; marginal (diagonals) and pairwise joint posterior
(off-diagonal) distributions.

Fig. 7. The experimental data (top left panel), simulator (top right panel), model discrepancy (bottom left panel) and posterior parameter distribution
(bottom right panel) for the second numerical case study. The top left panel compares the experimental training z ( ), testing z� ( ) data and true simulator
outputs ( ). The top right panel compares the true simulator output ( ) and BHM output samples ( ). The bottom right panel shows the posterior
parameter distribution compared to the true value ( ).
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1. Using a MAP estimate of the simulator parameters hMAP and an empirical Bayes estimate of the GP hyperparameters /̂

(when the simulator output for hMAP is used).
2. Marginalising out the simulator outputs y� using importance sampling, with an empirical Bayes estimate of the GP hyper-

parameters /̂ (when the simulator output for hMAP is used); Ns ¼ 1000.
3. Marginalising out both the simulator outputs y� and GP hyperparameters / via importance sampling; Ns ¼ 1000 and

N/ ¼ 1000.

For each scenario a zero mean and Matérn 3/2 automatic relevance determination covariance function were used. The
results in Fig. 8 show adequate predictions for all the scenarios with scenario 3 producing the lowest predictive NMSE on
a 400 point independent test dataset (see Table 2). Interestingly, the second approach achieves a lower NMSE on the model
discrepancy when compared to scenario three (with both performing better than scenario one). It can be seen in Fig. 8 that
the model discrepancy has been correctly captured by all three approaches. Finally, scenario three obtained the posterior
hyperparameter distribution, useful in understanding the extracted model discrepancy. (see Fig. 9).

5. Case study: five storey shear structure

In order to demonstrate the effectiveness of the proposed approach an experimental case study is presented. This case
study seeks to infer the model discrepancy of a modal finite element model used to predict the change in natural frequency
when different masses are applied to the fourth floor (simulating a damage scenario). Estimation of the parameter distribu-
tion was performed using Bayesian history matching as outlined in [8]. A brief overview of the calibration process is intro-
duced below, where the reader is referred to [8] for more details.

5.1. Calibration using Bayesian history matching

Bayesian history matching was applied to infer the material properties h ¼ E; m;qf g (Young’s modulus, Poisson’s ratio and
density) of a finite element model of a five storey shear structure (g �; �ð Þ) known to have model-form errors due to modelling

Fig. 8. A comparison of the three scenarios (left or right) indicating the calibrated and bias corrected predictions (top panels) and model discrepancy
(bottom panels) for the second numerical case study. The mean ( ) and 	3r ( ) for the calibrated and bias corrected predictions are compared against the
training z ( ) and testing data z� ( ). The model discrepancy mean ( ) and 	3r ( ) are compared to the true model discrepancy (�).

Table 2

A comparison of the normalised mean squared errors for the experimental (z) and model discrepancy (d) mean predictions for the
second numerical case study.

Scenario 1 2 3

NMSE z 0:433 0:425 0:423
NMSE d 0:587 0:481 0:519
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simplifications (particularly of the boundary condition between the structure and fixing). Observational data were the first
five bending modes of a representative building structure, z ¼ x1; . . . ;x5f g, constructed from aluminium 6082, depicted in
Fig. 10. These data were obtained via modal testing, where an electrodynamic shaker applied a Gaussian noise excitation
with a bandwidth of 409.6 Hz, and five uniaxial accelerometers were used to capture the acceleration response at each of
the five floors (where sample rate and time were chosen to allow frequency resolution of 0.05 Hz). Masses were incremen-
tally added to the fourth floor of the structure m ¼ 0;0:1; . . . ;0:5f gkg, representing pseudo-damage, and were treated as the
inputs in this analysis i.e. m ¼ x. Ten repeat estimates of the natural frequencies were obtained for each mass providing a
representation of observational uncertainty.

Calibration was performed on training data, which were the ten repeat observations of the bending natural frequencies
when x ¼ 0;0:3;0:5f g. The testing data were the ten repeat observations of the bending natural frequencies when
x� ¼ 0:1;0:2;0:4f g. The prior parameter bounds were 	15% of typical material properties for aluminium 6082; E ¼ 71GPa,
m ¼ 0:33;q ¼ 2770kg/m3. These parameter bounds behave in a similar way to a uniform prior over the space. The approxi-
mate posterior distribution of the parameters, identified from the Bayesian history matching analysis, is displayed in Fig. 11.

Samples of the simulator output distribution (for each of the five natural frequencies) y jð Þ
�;i � p y�;ijx�; h jð Þ

� �
8i 2 1 : 5f g, given

samples of the posterior distribution h jð Þ, are depicted in Fig. 12, where the error bars define to the prior model discrepancy
and observational uncertainties. It is clear from Fig. 12 that there is a large amount of model discrepancy for the first natural
frequency.

Fig. 9. The posterior hyperparameter distribution for scenario three for the second numerical case study; marginal (diagonals) and pairwise joint posterior
(off-diagonal) distributions.

Fig. 10. Representative five storey building structure. Panel (a) show the test setup and panel (b) presents an example of the pseudo-damage, glued added
masses, applied to the fourth floor [8].
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5.2. Model discrepancy inference

Inference of the model discrepancy from the Bayesian history matching analysis in Section 5.1 was performed using three
approaches:

1. Using a MAP estimate of the simulator parameters hMAP and an empirical Bayes estimate of the GP hyperparameters /̂

(when the simulator output for hMAP is used).
2. Marginalising out the simulator outputs y� using importance sampling, with an empirical Bayes estimate of the GP hyper-

parameters /̂ (when the simulator output for hMAP is used); Ns ¼ 1000.
3. Marginalising out both the simulator outputs y� and GP hyperparameters / via importance sampling; Ns ¼ 1000 and

N/ ¼ 500.

For each of the three methods the model discrepancy was inferred as a map GPi : Y;Xf g ! zi 8i 2 1 : 5f g. It is noted that a
multiple output Gaussian process could be implemented [33], meaning only one map would need to be inferred from Y;Xf g
to Z. This would not change the general formulation of the approach and is therefore left for further research. The priors for
each of the five GP models were zero mean functions with Matérn 3/2 automatic relevance determination covariance func-
tions (specified by Eqs. (3)–(5)).

For the third approach — the marginalisation of both the simulator outputs and GP hyperparameters — independent
Gaussian priors were defined for each hyperparameter in the set. The priors for lengthscale hyperparameters assumed that
the process will change slowly with the input (i.e. large lengthscales), log lyi;j � N 8;1ð Þ 8i; j 2 1 : 5f g and

log lxi � N 8;1ð Þ 8i 2 1 : 5f g. The signal variance priors were logrf ;i � N 0;10ð Þ 8i 2 1 : 5f g, and the noise variance priors were
logrn;i � N �11;4ð Þ 8i 2 1 : 5f g.

The calibrated and bias-corrected predictions for each of the three approaches are displayed in Fig. 13, with the inferred
model discrepancies shown in Fig. 14. Firstly, it can be seen that the mean predictions of all three approaches, both in terms
of their output predictions’ and inferred model discrepancies’, are visually similar. The main difference between all three
approaches is their estimation of the uncertainty, with significant differences in the inferred model discrepancy uncertainty.

Fig. 11. Calibrated simulator posterior parameter distributions; marginal (diagonals) and pairwise joint posterior (off-diagonal) distributions [8].

Fig. 12. Calibrated simulator outputs; simulator output samples gi x�; h
jð Þ

� �
( ),MAP simulator output gi x�; h

MAP
� �

( ), training data zi ( ), testing data z�;i
( ) 8i 2 1 : 5f g. The error bound indicate the prior observational and model discrepancy uncertainties used in the Bayesian history matching analysis [8].
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The second and third methods have propagated the posterior parameter uncertainty through to the model discrepancy and
the output predictions, unlike the first approach which collapses this uncertainty down to the parameterMAP estimates. This
increase in uncertainty in the model discrepancy frommethods two and three is useful to the engineer as it provides a better
reflection of the underlying model discrepancy and will be helpful in identifying simulator improvements, as the ‘true’ model
discrepancy is more likely to be contained within the confidence intervals. This is particularly clear given the results in the
numerical case studies, where method one resulted in model discrepancy predictions where the ‘true’ model discrepancy

Fig. 13. Calibrated and bias corrected natural frequency outputs; mean ( ) and 	2r (blue shaded region), training data zi ( ), testing data z�;i ( ). First
row, predictions from scenario 1, i.e. p z�;i j x�; hMAP ;D; /̂i

� �
8i 2 1 : 5f g; second row, predictions from scenario 2, i.e. p z�;i j x�; h;D; /̂i

� �
8i 2 1 : 5f g; third row,

predictions from scenario 3, i.e. p z�;i j x� ; h;D
� �8i 2 1 : 5f g.

Fig. 14. Inferred model discrepancies; mean ( ) and 	2r (green shaded region). First row, predictions from scenario 1; second row, predictions from
scenario 2; third row, predictions from scenario 3.
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occasionally exceeded 3r. In terms of output prediction, each of the methods visually appear to have captured the noise pro-
cess, with the third method showing increases in uncertainty outside of the training observations. This effect is likely to be
caused by the small number of training observations, causing the uncertainty to increase away from the training data, indi-
cating that the prior has a large effect on the posterior due to the small number of observations in the likelihood. However,
the extra uncertainty quantified by marginalising out the posterior hyperparameter distributions is useful for gaining an
insight into the level of trust in the identified model discrepancy given the limited training data used to estimate the
discrepancy.

Several validation metrics have been applied in order to quantitatively assess the performance of the inferred models for
each of the three scenarios. The first metric, the normalised mean squared error (NMSE) (the sum of the squared errors
divided by the variance and the number of data points), assesses the performance of the mean prediction. The second metric
is the maximum mean discrepancy (MMD) distance, a measure of the distance between two distributions [34]. The distance
is the difference between the means of two kernel embeddings of the data (where here a Gaussian kernel is used, where the
scale parameter is inferred via a median heuristic [35]). The third metric is the posterior likelihood, and is a measure of the
probability of the data coming from the inferred GP model. The validation metrics are applied to the predictions from each
three scenario and are shown in Fig. 15 and Table 3.

In terms of the mean predictions, the NMSEs indicate that on average the third approach provided the best mean perfor-
mance. In fact, both the second and third methods outperformed the first method in all of their mean predictions (apart from
method three’s predictions of the fourth natural frequency). This shows that including and propagating these sources of
uncertainties are beneficial for the overall mean predictive performance, with the results supporting the conclusions from
the numerical case studies. Helpfully, the models for all three scenarios show the same general mean predictive behaviour
across the five natural frequencies, with predictions being poorest for the second natural frequency. Comparing the output
distributions, the MMD distances for each scenario are relatively comparable, with the third method performing best on
average. The reason for similar MMD distances is that the data distribution is being inferred from 10 observations at every
input, and that this has a greater effect on the distance than each scenarios change in predictive distribution. This demon-
strates the challenges in validating predictive distributions when only a few number of validation data points are available.
In comparison to the NMSEs, the posterior likelihood indicates a different assessment of which natural frequency is predicted
best — the second natural frequency is most likely to have produced the observational data. The posterior likelihoods indi-
cate that on average the first method was more likely to have produced the observational data than the other approaches.
However, the secondmethod produces the highest posterior likelihoods for the third and fourth natural frequencies. Further-
more, the second and third methods have comparable posterior likelihoods for the first to third natural frequencies, which
are very similar to method one. It is noted that the first method does not reflect the uncertainty associated with the param-
eters, and therefore may be overconfident in it’s predictions, given the training observations.

From the third approach it is possible to obtain the posterior distribution of the GP hyperparameters. Fig. 16 depicts two
of the posterior hyperparameters distributions; the first and fifth natural frequencies. The posteriors show that the length-
scales for the simulator output Ly are all uncorrelated (as expected by the automatic relevance determination and distance
metric assumptions in the covariance function, i.e. Ly is diagonal). Furthermore, both show that the modes of the signal vari-
ance and noise variance are fairly constant when compared to the lengthscales. This means that the noise and signal variance
have been well-identified, and the output uncertainty is mainly attributed the uncertainty in the lengthscales. Resultantly,
the posterior hyperparameter distributions provide a high level of insight into the inferred model discrepancy. With more
observational data, these posterior distributions will provide insight into the type of missing functional-form in the simula-
tor, as the lengthscale distributions will be expected to decrease in uncertainty.

Fig. 15. Validation metrics for each scenario showing the differences between the bias-corrected output predictions and experimental data. NMSE -
Normalised Mean Square Error; MMD - Maximum Mean Discrepancy; LPL - Log Posterior Likelihood.
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6. Conclusions

Every computer model (here defined as a simulator) will imperfectly reflect the real world due to some level of model
discrepancy (whether due to missing physics, simplifications or approximations etc.). Without identifying the level of model
discrepancy within a simulator, predictions are likely to be inaccurate. This paper proposes a method based on Gaussian pro-
cess (GP) regression and a sampling-based approach for identified model discrepancy given some parameter distribution.
This method has been demonstrated to be effective on numerical examples and an experimental case study of a represen-
tative five storey building structure.

The approach in this paper allows for bias-corrected predictions to be constructed that marginalise out the simulator out-
puts, with the additional ability to marginalise out the GP hyperparameters. By performing this process, the bias-corrected
predictive distributions better reflect the parameter and hyperparameter uncertainty in the predictions and help the engi-
neer identify ‘true’ improvements to a simulator, rather than those based on overconfident estimations of the model discrep-
ancy. The technique relies on generating a set of Gaussian process maps from the uncertain simulator outputs and
deterministic inputs to observational data and performing weighted averages to form the bias-corrected predictive
distributions.

Three scenarios were investigated: using a MAP estimate of the simulator parameters and simulator outputs, and an
empirical Bayes estimate of the GP hyperparameters; marginalising out the simulator outputs using importance sampling,
and an empirical Bayes estimate of the GP hyperparameters; and marginalising out both the simulator outputs and the GP
hyperparameters via importance sampling.

The numerical case studies show that a two stage decoupled process, utilising Bayesian history matching and the pro-
posed model discrepancy procedure, is appropriate for calibrating a simulator and extracting model discrepancy. In addition,
the first numerical case study demonstrated issues associated with the hierarchical Bayesian approach that seeks to jointly
infer the parameters andmodel discrepancy. In accordance with the literature [4,6], the approach leads to an insensitive like-
lihood, and can cause non-identifiability issues. In the numerical case study the hierarchical Bayesian approach inferred a
model discrepancy distribution that was more uncertain than the proposed decoupled approaches, and had a worse mean
predictive performance. Furthermore, both numerical case studies showed that considering both the simulator output

Table 3

Validation metrics for each scenarios showing the differences between the bias-corrected output predictions and experimental data. NMSE - Normalised Mean
Square Error; MMD - Maximum Mean Discrepancy; LPL - Log Posterior Likelihood.

Scenario x1 x2 x3 x4 x5 Average

NMSE 1 1:490 4:610 0:474 0:019 0:063 1:331
2 1:440 4:118 0:385 0:016 0:133 1:218
3 1:271 4:378 0:303 0:034 0:037 1:205

MMD 1 6:544 6:537 6:552 6:555 6:543 6:546
2 6:547 6:541 6:556 6:547 6:546 6:548
3 6:540 6:546 6:541 6:542 6:549 6:544

LPL 1 228:4 252:0 229:5 238:5 222:0 234:1

2 225:5 247:0 241:6 239:9 161:5 223:1
3 225:5 246:5 238:4 173:4 172:8 211:3

Fig. 16. Inferred posterior distributions of Gaussian process hyperparameters for the first (x1) and fifth (x5) natural frequencies.
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and hyperparameter uncertainties provides more information about the model discrepancy function, and in improves the
performance of the mean prediction.

Finally, an experimental case study was provided, where it was shown that the third approach (marginalising both the
simulator outputs and the GP hyperparameters) produced the best mean predictions. In addition, the uncertainty associated
with the parameters was propagated onto the model discrepancy and output predictions, better reflecting the uncertainty
quantified by the BHM parameter posterior distribution. The inclusion of the parametric uncertainty is valuable in under-
standing the ‘true’ model discrepancy, and is beneficial in determining what is known about the model discrepancy from
the analysis. In addition, the third approach provides posterior distributions of the hyperparameter, which provide further
insight into the model discrepancy process.
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