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Abstract

Background Health state utility values (‘utilities’) are an integral part of health technology assessment. Though tradition-

ally categorised by disease status in oncology (i.e. progression), several recent assessments have adopted values calculated 

according to the time that measures were recorded before death. We conducted a simulation study to understand the limita-

tions of each approach, with a focus on mismatches between the way utilities are generated, and analysed.

Methods Survival times were simulated based on published literature, with permutations of three utility generation mecha-

nisms (UGMs) and utility analysis methods (UAMs): (1) progression based, (2) time-to-death based, and (3) a ‘combination 

approach’. For each analysis quality-adjusted life-years (QALYs) were estimated. Goodness of fit was assessed via percentage 

mean error (%ME) and mean absolute error (%MAE). Scenario analyses were performed varying individual parameters, 

with complex scenarios mimicking published studies. The statistical code is provided for transparency and to aid future 

work in the area.

Results %ME and %MAE were lowest when the correct analysis form was specified (i.e. UGM and UAM aligned). Under-

estimates were produced when a time-to-death element was present in the UGM but not included in the UAM, while the 

‘combined’ UAM produced overestimates irrespective of the UGM. Scenario analysis demonstrated the importance of the 

volume of available data beyond the initial time period, for example follow-up.

Conclusions We show that the use of an incorrectly or over-specified UAM can result in substantial bias in the estimation 

of utilities. We present a flowchart to highlight the issues that may be faced.

Key Points for Decision Makers 

A mismatch between the data structure and analysis 

method results in biased and inaccurate estimates of util-

ity values.

Unexpectedly, analysing utilities as a combination of 

progression- and TTD-based values performed poorly, 

even if utilities were generated within a corresponding 

framework. Over-specification of analyses should there-

fore be avoided.

The volume of data available has a marked impact on the 

accuracy of estimates; this especially means the duration 

of follow-up and number of long-term survivors.

Electronic supplementary material The online version of this 

article (https ://doi.org/10.1007/s4025 8-020-00620 -6) contains 

supplementary material, which is available to authorized users.
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1 Introduction

Health state utility values are pivotal in cost-utility analy-

sis—the preferred form of cost-effectiveness analysis for 

health technology assessment (HTA) agencies in the UK, 

and others internationally. Utility values are used to for-

mally capture changes in patient health-related quality of 

life (HRQL), which then impact the estimation of quality-

adjusted life-years (QALYs), and consequently the incre-

mental cost-effectiveness ratio (ICER). The ‘true’ HRQL 

of patients (and the pattern this follows through the course 

of a disease) is not possible to objectively measure, and 

so preference-based measures such as the EQ-5D may 

instead be used to capture key determinants of HRQL. 

These measures capture HRQL through self-reporting of 

a patient’s current health state, and how this affects their 

capabilities in different health dimensions (such as self-

care and anxiety/depression). Patient responses are then 

converted into utilities, which are then grouped to pro-

duce health state utility values that can populate economic 

models [1].

The method of grouping utilities by health state in 

oncology has generally centred around disease progres-

sion. In cancer cost-utility analyses, this approach implic-

itly assumes that progression status is the most important 

driver of HRQL. Recent literature, however, suggests that 

progression is not always a good proxy for HRQL [2], an 

issue magnified with immune-oncology (IO) agents where 

there can be issues with ‘pseudo-progression’ where the 

action of the treatment is mistaken for disease progres-

sion [3]. The reasons for progression being imperfectly 

correlated with HRQL may include delays from the effect 

of cancer growing to the experience of symptoms, and 

that the impact of disease progression will vary by dis-

ease area (for instance, haematological vs. solid tumour 

cancers). Similarly, there may be differences between 

tumours growing or spreading to different locations—both 

of which may be classified as disease progression. Conse-

quently, alternative methods of analysing HRQL data have 

been proposed, including grouping observations by when 

the HRQL measure was taken prior to a patient’s death, 

termed ‘time to death’ (TTD) [4], with other approaches 

classifying patients by different health states, for instance 

by response to treatment.

A number of published economic evaluations of IO 

treatments have used the approach of TTD-based utility 

values, noting that such an approach avoids a number of 

issues typically attributed to progression-based analyses 

[5–7]. A recent review of IO appraisals performed by the 

National Institute for Health and Care Excellence (NICE) 

found that of the 21 identified company submissions, 11 

defined health states by progression status, seven by TTD, 

and three by using a model that had aspects of both ele-

ments [8]; a per-appraisal summary is presented in the 

Online Supplementary Materials (OSM).

Under ideal circumstances, the most appropriate health 

states could be determined by analysis of complete patient-

level data from clinical trials—unfortunately this is not always 

possible due to issues that are common in contemporary stud-

ies. These include limited follow-up (many trials include a 

substantial proportion of survivors who are administratively 

censored), the absence or limited amount of HRQL data post-

progression, the previously highlighted issue of pseudo-pro-

gression, the interval between HRQL observations, and the 

role of missing data. As an example, a previous study con-

sidered trial data for seven licensed IO indications, for which 

overall survival data were available for a mean of 1.95 years 

after treatment initiation (range 1.38–3.95) with a mean of 

40.6% of patients still alive at the end of follow-up (range 

9.4–70.0) [8].

Due to such limitations, both progression- and TTD-based 

methods seek to assign observations in homogenous groups, 

noting that there may be small differences within the group that 

may need to be accounted for by covariates (such as treatment 

assignment). If complete data were available for all patients 

from treatment initiation until death, the results of each analy-

sis would be identical (as modelled groups would reflect the 

mean). Even in practice with complete data, results using the 

two approaches are likely similar as they are correlated; most 

patients will experience disease progression before their death, 

with progression being irreversible. There may, however, be 

important differences in how each of the approaches perform 

when data are more limited; particularly with regard to the 

features seen in IO studies—one of which is the presence of 

long-term survivors, who will represent a substantial amount 

of censored data and were atypical for studies in end-stage 

cancer until recently.

To understand the relative performance of progression- 

and TTD-based methods in analysing HRQL under different 

study designs (informed by recent IO trials), we conducted a 

simulation study. The use of such an approach allows us to 

understand how the application of the different methods varies 

when the data generation mechanism is known—something 

that is not possible with ‘real’ data. Based on the findings of 

this study, we highlight when bias and error may arise with 

different methods of analysis, and the possible impacts these 

may have when estimating QALYs in economic models.

2  Methods

2.1  Data Simulation

A simulation study was programmed in the statistical 

software package R version 3.6.1 [9] following published 
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guidance on simulation studies [10, 11]. In each simulation, 

survival and utility data were resampled, with 2500 simula-

tions performed for each scenario; at this point results were 

seen to have converged visually, with Monte Carlo Standard 

Errors of all outcomes an order of magnitude smaller than 

the results.

The simulation took approximately 10 days to run 

(including scenario analyses) on an Intel 8th generation i5 

laptop. The statistical code is provided as supplementary 

material for transparency and to aid future work in the area 

(see OSM).

2.2  Survival Data

Time-to-event data were simulated for a hypothetical IO 

treatment. In order to mimic published studies, three groups 

of patients were assumed to exist, with different proportions 

of each sampled from parametric survival functions. These 

three groups were those with poor outcomes (in published 

studies a large number of patients experience only a few 

months of progression-free survival), those with intermedi-

ate outcomes (from several months to several years), and a 

final group who do not experience disease progression—the 

‘plateau’ seen in IO studies of patients with durable survival.

To simulate survival data each patient had a ‘natural’ life 

expectancy sampled from UK Office for National Statistics 

Life Tables [12] based on their age and gender; this was 

then used as the upper limit of their survival. Each patient 

was then randomized to the poor, intermediate, or long-term 

survival groups, with a time to progression (TTP) sampled 

from a corresponding survival distribution. Post-progression 

survival (PPS) was then sampled for all patients from a fur-

ther distribution, with overall survival for each patient then 

given as the minimum of TTP and PPS added together, or 

alternatively the patient’s natural life expectancy.

To produce patient characteristics (age and sex) from 

which to sample life expectancy, similar figures were used to 

studies previously conducted for IOs in non-small-cell lung 

cancer, melanoma, and renal cell carcinoma [8]. The values 

used to generate survival data such as patients sampled to 

each group, and survival models used to sample survival 

times are shown in Table 1. The resulting approach mimics 

well the patterns of survival seen with existing IOs (Fig. 1). 

Functional R code to demonstrate the approach is presented 

in the supplementary material.

2.3  Utility Data and Generation of Quality‑Adjusted 
Life‑Years (QALYs)

Patient utility values were assumed to be correlated at the 

individual level, using a parameter for simulated underly-

ing health. This underlying health was then used to give 

three approaches for generating utilities: health decreasing 

on progression (progression-derived), health decreasing as 

a patient is approaching death (TTD-derived), and health 

decreasing on progression and as a patient is approaching 

death (combination-derived)—the three approaches found 

in the review of previous NICE appraisals (Supplementary 

Table 1, OSM).

Using the simulated survival duration and patients’ 

underlying health status, utility values were then simulated 

for each day a patient was alive using a beta distribution. 

This dataset was duplicated for utilities to be produced for 

the three utility generation mechanisms (UGMs). To each 

dataset appropriate decrements were applied if: a patient had 

progressed disease (progression-derived); was in the ‘close-

to-death’ window (TTD-derived); was progressed or in the 

‘close-to-death’ window (combo-derived). These different 

approaches are shown stylistically in the OSM Appendix. 

The utility values for each patient day were then summed 

across datasets to calculate the QALYs experienced by each 

cohort.

To ensure the simulation mimics trial data, utility values 

were sampled according to a measurement interval—120 

days in the base case, up to the point at which administrative 

censoring in the simulated trial was assumed to occur (48 

months in the base case). This restricted dataset was then 

used with each form of analysis to estimate QALYs for the 

population, which could be compared to the QALYs expe-

rienced in the full dataset.

2.4  Analytical Approaches

Following the derivation of the full datasets for each of the 

UGMs, the restricted datasets (with measurement intervals 

and administrative censoring applied) were then analysed via 

general estimating equation (GEE) regressions using TTD-

based and/or progression-based approaches, for a total of 

three UGMs, and three utility analysis methods (UAMs). 

GEE regressions were used as observations would likely be 

correlated at the patient level (as in real life) due to being 

reported by the same patient (in our study applied using each 

patients’ ‘underlying health’) [13].

In the simulations, survival was assumed to be known 

so as to isolate the effect of utility estimation methods (and 

not conflate this with a survival extrapolation approach). To 

compare between the three analysis approaches, the esti-

mated utility for each health state from regression models 

was multiplied by the (known) time spent in each health 

state, to produce estimated QALYs. For clarity the simula-

tion study design is shown visually in Fig. 2.

2.5  Outcomes

The percentage mean error (%ME) and the percentage 

mean absolute error (%MAE) in estimated versus ‘actual’ 
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Table 1  Setup of the simulation study base case and scenarios

Characteristic Base-case value Rationale Scenario analysis value(s)

Study design settings

 Number of patients in study 300 300 patients is approximately what has been 

seen in immune-oncology studies to date 

(though this does vary)

150 (scenario 1)

500 (scenario 2)

 Cohort age, years 65 The approximate age of patients enrolled in to 

contemporary immunotherapy studies

55 (scenario 3)

75 (scenario 4)

 Male: female ratio 1:1 Although the gender ratio in studies is driven 

by the prevalence of conditions. In the 

simulation study, however, this only affects 

background mortality so is not varied

 Utility measurement interval 120 days Utilities are usually measured at increasing 

intervals over time, for simplicity a uniform 

pattern has been imposed

90 days (scenario 5)

180 days (scenario 6)

 Administrative censoring for utility values 48 months for all patients Utilities are generally only collected until the 

end of the study period. A ‘typical’ data 

collection period has been used, which is 

varied in sensitivity analysis to include other 

observation periods seen in trials

18 months for all patients (scenario 7)

60 months for all patients (scenario 8)

Until progression or maximum 60 months 

(scenario 9)

Until 30 days after progression or maximum 60 

months (scenario 10)

 Missing data 0% Missing data can be an issue in clinical stud-

ies. In the base case this is assumed to be 

zero, with different mechanisms for missing-

ness explored in sensitivity analysis

10% of observations MCAR (scenario 11)

10% of patients lost to follow up at a random 

timepoint (all subsequent data censored; 

permanent MCAR) (scenario 12)

Increasing likelihood of censored values as util-

ity decreases (MNAR) (scenario 13)

Censoring probability linked to time to death 

(scenario 14)

Survival simulation

 Ratio of patients exhibiting poor/intermedi-

ate/background survival

13:7:4 In immune-oncology studies a number of 

patients have experienced durable survival, 

this proportion however varies between 

studies

13:7:0 (scenario 15)—no long-term survivors

13:7:2 (scenario 16)—a lower rate of long-term 

survivors

13:7:6 (scenario 17)—a higher rate of long-

term survivors

 Time to progression for patients with poor 

outcomes (months)

Gamma (shape = 3, scale = 1) Immuno-oncology studies exhibit a chang-

ing hazard over time with a short period on 

enrollment before many progression and 

survival events are observed, which decrease 

in frequency over time, with few being 

observed beyond 18 months [3]

 Time to progression for patients with inter-

mediate outcomes (months)

Weibull (shape = 1.3, scale = 8)

 Post-progression survival Weibull (shape = 1.5, scale = 14)

 Percentage of deaths pre-progression 20%
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MCAR  missing completely at random, MNAR missing not at random, N number of patients, OS overall survival, PFS progression-free survival

Table 1  (continued)

Characteristic Base-case value Rationale Scenario analysis value(s)

 Pseudo-progression 0% A known issue with immuno-oncology is that 

the immune response can lead to swelling, 

which may be (incorrectly) categorized as 

disease progression. Whilst new measures 

have been developed to account for this, the 

impact is explored in sensitivity analysis 

where a portion of patients are miscatego-

rized for regressions as having PFS as per 

the intermediate group

10% of long-term survivors incorrectly assumed 

to have progressed in line with the patterns 

seen for other groups (scenario 18)

 Link between pre- and post-progression 

survival

Independent distributions The assumption is made that response to 

treatment, and post-progression survival are 

uncorrelated i.e. patient characteristics are 

not both predictive and prognostic

A scenario analysis (scenario 19) is presented 

where simulated post-progression survival 

is multiplied by 1.25 for long-term survi-

vors, and 0.75 for short-term survivors. This 

implicitly assumes responders to treatment are 

healthier patients

Utility simulation

 Patient utility distribution before progression 

or being close to death

Beta (α = 80, β = 20) i.e. mean 0.80, quartiles 

0.77, 0.80, 0.83

In line with the literature on utilities which 

show reasonably high levels pre-progres-

sion, falling on disease progression [18] Progressed utility (in progression scenarios) 

distribution

Beta (α = 60, β = 20) i.e. mean 0.75, quartiles 

0.72, 0.75, 0.78

 Time at which utility fell before death (in 

time-to-death scenarios)

Uniform (minimum, 90 days; maximum, 270 

days)

Various observations have been reported in 

the literature, and thus a range is used which 

varies by scenario

 Utility fall before death (distribution) Normal (mean, 0.5; SD, 0.2) The absolute fall seen in studies have differed, 

but all have been substantial
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QALYs were calculated for each analysis method, using 

each dataset. The result of these measurements over 2500 

simulations were the main outcomes of the study.

These metrics were selected as the %ME gives an esti-

mation of bias, i.e. whether a method is systematically 

under/over predicting, while the %MAE gives a measure of 

the absolute error. Percentages were used as the number of 

QALYs generated in each scenario (and under each UGM) 

were slightly different, and would also vary between sce-

narios. As a result the same level of percentage error 

would result in different levels of absolute error, masking 

the magnitude of any differences between scenarios.

2.6  Scenario Analyses

Scenario analyses were conducted where common features 

of clinical trials were varied individually to understand the 

impact on each data generation mechanism and analysis 

method (Table 1).

Settings relating to trial design and/or patient characteris-

tics included the age and number of patients, interval of util-

ity observation, and duration of time before administrative 

censoring. The effect of different mechanisms for missing 

data were also tested (in the base case, data are assumed 

to be complete)—the mechanisms included data missing 

Fig. 1  Example of simulated time to event data compared to published immuno-oncology trials

* Censoring includes removing all data unavailable for the analysis including utility measurement intervals, administrative censoring, and 

missing data rules 

Generate survival data for each paent

Generate underlying health

Generate progression based ulies

Apply censoring* and analyse using:

TTD Progression Combinaon

Generate TTD based ulies

Apply censoring* and analyse using:

TTD Progression Combinaon

Generate combinaon based ulies

Apply any censoring* and analyse using:

TTD Progression Combinaon

Fig. 2  Visual representation of the generation and analysis of each scenario
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completely at random (MCAR) either as individual values 

censored or patients assumed to be lost to follow-up, missing 

related to the known event of death date (formally known 

as missing at random, MAR), and missing linked to lower 

utility values (formally known as missing not at random, 

MNAR). Further sensitivity analyses were performed vary-

ing survival parameters, including the number of long-term 

survivors, and the role of pseudo-progression.

A set of more complex scenario analyses were also 

undertaken, which mimicked the design of IO studies pub-

lished in the literature. The studies chosen include those of 

ipilimumab, nivolumab, pembrolizumab and atezolizumab. 

These scenarios attempted to synthesize multiple issues and 

understand how each approach would fare when faced with 

the trial conditions that IO therapies have been studied under 

(Table 2), given the assumptions inherent in the simulation 

study.

3  Results

The results of the base-case analysis are shown numerically 

in Table 3 and visually in the OSM Appendix. In the base 

case it can be seen that although %MAE is non-zero (due to 

variability and sampling of utility values), progression and 

TTD-based UAMs were unbiased and accurate when used 

appropriately (i.e. when the UGM and UAM matched, ME 

of 0.0% and − 0.4%, MAE of 0.4% and 0.6%). When there 

was a mismatch between UGM and UAM (e.g. analysing 

progression-based utilities as TTD), both methods were less 

accurate, though not majorly so. The UAM of a combination 

of progression and TTD (combination-based approach) fared 

much worse with results showing lower accuracy (MAE 

0.7–5.9%) and a degree of bias shown in the ME being non-

zero, even when the UGM used this approach (a 5.5% over-

estimate in QALYs in the base-case scenario). This may be a 

result of the multicollinearity between progression and TTD, 

and difficulty in estimating multiple parameters based on a 

limited number of observations.

Scenario analyses demonstrate how different assump-

tions around study design impacted the results. Varying 

patient numbers (scenarios 1 and 2) and patient age (sce-

narios 3 and 4) did not greatly affect results, nor did the 

frequency at which utility was measured (scenarios 5 and 

6). More important, however, was the duration of follow-

up data available; having only 18 months of data available 

(scenario 7) led to exaggerated errors where the UGM and 

UAM were misaligned (e.g. analysing a TTD UGM within 

a progression-based UAM increased the ME from − 3.5% in 

the base case to − 7.4%), although more data did not change 

the results noticeably from the base case (scenario 8, using 

a follow-up of 60 months). This pattern of increased error 

with less information available continued with scenarios 9 

and 10, where data were either not collected following the 

visit where progression was determined, or collected for a 

limited period; results are more imprecise than when the 

same length of study is available with all data.

Where data are assumed to be missing, the impact on 

results depended on the type of missingness. For mecha-

nisms involving data MCAR (whether individual values, 

scenario 11, or individuals lost to follow-up, scenario 12), 

this led to increased uncertainty, without necessarily intro-

ducing bias (an increase in %MAE, but little change in 

%ME). This, however, was not the case when values were 

not missing completely at random—for example, missing 

data linked to observable outcomes such as death (scenario 

13) or unobservable characteristics such as underlying health 

(scenario 14). In these scenarios, %MAE was increased for 

all UAMs, but importantly %ME was shown to move further 

from zero; demonstrating the presence of bias.

Scenarios changing the nature of survival data did have 

a sizable impact, depending on the changes made. When 

varying the number of long-term survivors from none (sce-

nario 15), to half the base case (scenario 16),to double the 

base case (scenario 17), the impact varies by UGM and 

UAM—despite scenario 15 effectively having no adminis-

trative censoring (as nearly all deaths are within the study 

period), combination-based UAMs continued to perform 

Table 2  Setup of ‘real’ scenarios, mimicking previous immunotherapy studies

# Scenario Scenario analysis value(s)

A Ipilimumab in melanoma [19], ipilimumab monotherapy arm N = 137; utility data available for 54 months for all patients; 

pseudo-progression present (assumed 25% of long-term 

survivors)

Age = 57; 59% male; survival plateau = 17%

B Nivolumab in renal cell carcinoma [20], nivolumab monotherapy arm N = 410; utility data available for 32 months for all patients

Age = 62; 77% male; survival plateau = 20%

C Pembrolizumab in non-small-cell lung cancer [21], pembrolizumab 3 weekly 

arm

N = 287; utility data available for 27 months for all patients

Age = 64; 51% male; survival plateau = 30%

D Atezolizumab in urothelial carcinoma [22], atezolizumab monotherapy arm N = 467; utility data available for 23 months for all patients

Age = 67; 76% male; survival plateau = 22%
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Table 3  Scenario analysis results

Scenario Utility generation 

mechanism (UGM)

True QALYs Utility analysis method (UAM)

% Mean error (ME) % Mean absolute error 

(MAE)

Prog TTD Combo Prog TTD Combo

Base case Prog-derived 3.4 0 0.2 − 0.7 0.4 0.5 0.7

TTD-derived 3.3 − 3.5 − 0.4 5.8 3.5 0.6 5.9

Combo-derived 3.1 − 3.4 − 0.2 5.5 3.4 0.6 5.5

Scenario 1 Prog-derived 3.4 0 0.2 − 0.7 0.4 0.5 0.8

N = 150 TTD-derived 3.3 − 3.4 − 0.4 6 3.5 0.7 6

Combo-derived 3.1 − 3.4 − 0.3 5.6 3.5 0.7 5.6

Scenario 2 Prog-derived 3.4 0 0.2 − 0.7 0.2 0.3 0.7

N = 300 TTD-derived 3.3 − 3.4 − 0.4 5.8 3.4 0.6 5.9

Combo-derived 3.1 − 3.4 − 0.3 5.4 3.5 0.5 5.5

Scenario 3 Prog-derived 4.5 0 0.3 − 0.5 0.4 0.5 0.6

Age = 55 years TTD-derived 4.5 − 3.1 − 0.4 4.3 3.1 0.7 4.3

Combo-derived 4.2 − 3.1 − 0.3 4 3.1 0.7 4

Scenario 4 Prog-derived 2.4 0 0 − 1 0.4 0.4 1

Age = 75 years TTD-derived 2.3 − 4.6 − 0.4 8.6 4.7 0.6 8.6

Combo-derived 2.2 − 4.6 − 0.3 8 4.7 0.6 8.1

Scenario 5 Prog-derived 3.4 0 0.4 − 0.7 0.3 0.5 0.7

Utility interval = 90 TTD-derived 3.4 − 5.6 − 0.4 5.3 5.6 1.1 5.5

Combo-derived 3.2 − 5.6 − 0.6 4.9 5.6 0.8 5.1

Scenario 6 Prog-derived 3.4 0 0 − 0.7 0.5 0.5 0.8

Utility interval = 180 TTD-derived 3.3 − 1.2 − 0.4 6.1 1.4 0.5 6.1

Combo-derived 3.1 − 1.2 − 0.1 5.7 1.4 0.6 5.7

Scenario 7 Prog-derived 3.4 0 0.7 − 0.7 0.5 0.8 0.8

Length = 18 months TTD-derived 3.3 − 7.4 − 0.4 5 7.4 1.8 5.4

Combo-derived 3.1 − 7.7 − 1 4.6 7.7 1.5 5

Scenario 8 Prog-derived 3.4 0 0.1 − 0.7 0.4 0.4 0.8

Length = 60 months TTD-derived 3.3 − 2.5 − 0.4 5.9 2.5 0.5 5.9

Combo-derived 3.2 − 2.4 − 0.2 5.5 2.5 0.6 5.5

Scenario 9 Prog-derived 3.3 0 0.1 − 0.7 0.4 0.4 0.8

Length = 60 months or progression TTD-derived 3.3 − 2.5 − 0.4 5.9 2.6 0.5 5.9

Combo-derived 3.1 − 2.5 − 0.2 5.5 2.6 0.6 5.6

Scenario 10 Prog-derived 3.4 0 0.1 − 0.7 0.4 0.4 0.8

Length = 60 months or progression + 30 days TTD-derived 3.3 − 2.7 − 0.4 5.9 2.7 0.5 5.9

Combo-derived 3.1 − 2.6 − 0.2 5.6 2.7 0.6 5.6

Scenario 11 Prog-derived 3.4 0 0.1 − 0.7 0.4 0.5 0.8

Missing data = 10% randomly MCAR TTD-derived 3.3 − 1.8 − 0.4 6 1.9 0.5 6

Combo-derived 3.1 − 1.8 − 0.1 5.6 1.9 0.6 5.6

Scenario 12 Prog-derived 3.4 0 0.2 − 0.7 0.4 0.5 0.8

Missing data = 10% of patients MCAR TTD-derived 3.3 − 3.7 − 0.4 5.8 3.7 0.7 5.8

Combo-derived 3.1 − 3.6 − 0.3 5.4 3.7 0.7 5.4

Scenario 13 Prog-derived 3.4 0.2 0.4 − 0.5 0.5 0.5 0.7

Missing data = proportional to utility (MNAR) TTD-derived 3.3 − 2.7 − 0.4 5.9 2.7 0.6 5.9

Combo-derived 3.2 − 2.6 − 0.1 5.7 2.7 0.6 5.7

Scenario 14 Prog-derived 3.4 0 0.2 − 0.7 0.4 0.5 0.8

Missingness increases closer to death TTD-derived 3.4 − 3 − 0.4 5.8 3 0.6 5.9

Combo-derived 3.2 − 2.9 − 0.2 5.4 2.9 0.6 5.5

Scenario 15 Prog-derived 1 0 − 0.5 − 2.5 0.4 0.6 2.5
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poorly. This is explained by the limited amount of data 

available to the model to estimate parameters for patients 

post progression and close to death (which are highly cor-

related). As a result, when this UAM was also misspecified 

(i.e. used to analyse data from a different UGM), the errors 

were extremely large—over 20% in ME and MAE when ana-

lysing a TTD UGM using combination-based UAM with no 

long-term survivors (scenario 15). Conversely, increasing 

the number of long-term survivors reduced errors for all 

UAMs under all UGMs—the larger number of long-term 

survivors allowed for more data points from patients achiev-

ing long-term survival, i.e. in the ‘tail’ of the curve. This 

meant that even where the UAM was misspecified, the num-

ber of data points available ensured the mean values were 

approximately correct.

Pseudo-progression (scenario 18) was implemented to 

the study as patients being misclassified as progressed and 

gaining a group assignment of a short- or medium-term 

survivor’s PFS, when in reality they were in the long-term 

survivor group. This misclassified progression led to an 

overestimate of utility values under UAMs that used pro-

gression status (i.e. increasing the mean value for the 

post-progression group). It may be the case that a TTD 

approach is more accurate as whether a patient is within 

the TTD window is known, while progression is no longer 

a reliable marker of health state (even with only 10% of 

patients misclassified). To an extent this finding is similar 

under the assumption of shorter studies (though not as 

pronounced), where if few progressions have occurred, 

a TTD approach may have comparable performance to a 

progression-based UAM (such as in scenario 7) despite 

ostensibly being the incorrect analysis form. The results, 

however, did not seem to be impacted by whether post-

progression survival and response to treatment were linked 

(scenario 19), where although the magnitude of results 

changed, similar patterns to the base case were seen.

Scenarios A–D mimic existing immunotherapy trials 

(with assumptions around parameters that are not publicly 

Table 3  (continued)

Scenario Utility generation 

mechanism (UGM)

True QALYs Utility analysis method (UAM)

% Mean error (ME) % Mean absolute error 

(MAE)

Prog TTD Combo Prog TTD Combo

No long-term survivors TTD-derived 0.8 − 4.5 − 0.4 27.5 4.6 1.1 27.5

Combo-derived 0.7 − 4.6 − 0.5 25 4.8 1.3 25

Scenario 16 Prog-derived 2.2 0 0.1 − 1.1 0.4 0.5 1.1

Lower rate of long-term survivors TTD-derived 2.1 − 6.5 − 0.4 8.8 6.5 1 9.1

Combo-derived 2 − 6.7 − 0.7 8.1 6.7 1 8.5

Scenario 17 Prog-derived 4.3 0 0.2 − 0.6 0.5 0.5 0.7

Higher rate of long-term survivors TTD-derived 4.3 − 1.4 − 0.4 4.6 1.5 0.5 4.6

Combo-derived 4.1 − 1.4 − 0.1 4.3 1.5 0.5 4.3

Scenario 18 Prog-derived 3.4 0.1 0.2 − 0.5 0.5 0.5 0.6

10% Pseudo-progression included TTD-derived 3.3 − 10 − 0.4 5.5 10 0.6 5.7

Combo-derived 3.2 − 8.1 − 0.2 5.4 8.1 0.6 5.5

Scenario 19 Prog-derived 3.3 0 0.2 − 0.7 0.4 0.5 0.8

Link between pre- and post-progression survival TTD-derived 3.2 − 4.5 − 0.4 6 4.5 0.7 6.1

Combo-derived 3 − 4.4 − 0.3 5.7 4.5 0.7 5.7

Scenario A Prog-derived 4 0.1 0.2 − 0.4 0.2 0.3 0.4

Ipilimumab melanoma TTD-derived 4 − 14.2 − 0.4 4.3 14.2 0.7 4.5

Combo-derived 3.7 − 12 − 0.4 4.3 12 0.6 4.4

Scenario B Prog-derived 3.7 0 0.4 − 0.6 0.2 0.5 0.6

Nivolumab RCC TTD-derived 3.7 − 4.4 − 0.4 5 4.4 0.9 5.1

Combo-derived 3.5 − 4.5 − 0.5 4.6 4.5 0.7 4.7

Scenario C Prog-derived 4.6 0 0.5 − 0.5 0.2 0.5 0.5

Pembrolizumab NSCLC TTD-derived 4.7 − 3 − 0.4 4.1 3 0.8 4.1

Combo-derived 4.4 − 2.9 − 0.3 3.8 2.9 0.7 3.8

Scenario D Prog-derived 3.5 0 0.5 − 0.7 0.3 0.6 0.7

Atezolizumab UCC TTD-derived 3.4 − 5.3 − 0.4 5.3 5.3 1.1 5.4

Combo-derived 3.2 − 5.5 − 0.5 4.9 5.5 0.9 5
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reported or knowable such as utility measurement intervals). 

It is apparent from these results that the potential for error 

with an incorrect analysis framework could have a meaning-

ful impact on adoption decisions using contemporary study 

designs. Using progression and TTD based UAMs under the 

opposing UGM led to an average MAE of 3.6%, whereas 

using each UAM in the correct framework had only a 0.6% 

MAE. In none of the ‘real’ scenarios did the combination-

based approach perform well, with generally the largest 

MAE, and non-zero MEs in all cases, even when matched 

to the correct UGM.

4  Discussion

Under ideal conditions, provided the approach used to ana-

lyse HRQL matches that of the data-generation mechanism, 

both progression- or TTD-based utilities are likely to pro-

duce good estimates of QALYs. This finding is based on 

%ME and %MAE, which are anticipated to be low, though 

not zero (as not all data are observed, and thus estimates 

produced will never match exactly). An unexpected find-

ing was the poor performance of the combination-based 

approach to analysis—even where combination-derived 

utilities were present. This is likely due to the multicollin-

earity between the values, i.e. it would be expected that the 

majority of patients progress before dying (with none mov-

ing backwards), and limited numbers of patients to estimate 

coefficients.

As it is not possible to know a priori (and never possi-

ble to conclude absolutely) what the main drivers of patient 

HRQL are, the evidence to support the assumed mechanism 

of utility generation should be presented, and alternative 

frameworks explored in any analysis plan. This would be 

mean in practice fitting both progression- and TTD-based 

models, then selecting between them for the final analysis 

based on goodness of fit. This finding is especially strong 

in the presence of TTD-generated utilities, where this mis-

specification of progression-based analyses can markedly 

underestimate the QALYs generated (also shown in the vio-

lin plot presented in the OSM Appendix). Although there 

is no standard threshold for an important level of error in 

total QALYs estimated, in our simulated example this error 

can reach 5.4% (scenario 15), which would seem sufficient 

to impact adoption decisions. It should also be noted that a 

difference in the mean QALYs would also impact the prob-

ability of cost effectiveness at different thresholds, likely in a 

non-linear fashion. Any utilities generated may also be used 

in assessments of future products, which would exacerbate 

the impact of errors in estimation.

The poor performance of the combination-based approach 

indicates that given the potential for error, a higher bar 

should be used for justifying such an approach over more 

simple specifications. Although overspecification of the 

model is superficially appealing to capture any impacts (even 

if weak), this has clear negative consequences for accuracy if 

unjustified. Even if justified, where insufficient data is avail-

able to accurately estimate parameters (such as in shorter 

trials), the potential for error remains high, and it may be 

preferred to selection either a progression- or TTD-based 

UAM, depending on which element has the stronger effect.

Although seemingly a self-evident finding, the effects of 

pseudo-progression and informative missing data should 

also be considered. In such instances further analysis may 

be warranted prior to the analysis of utility data—such as 

reclassifying the progression status of long-term survivors, 

and multiple imputation for data missingness. In the authors’ 

experience, though imputation (or at the very least, Last 

Observation Carried Forward) is common for use within 

efficacy analysis, this is seldom used with HRQL data when 

deriving utilities and may be an oversight as approaches for 

missing data with health outcomes become more standard-

ised [14, 15].

The recommendations that we have derived from our 

findings are summarised in Fig. 3, and give a suggested 

approach to analysis of HRQL data in cancer studies (and 

of IO treatments in particular). This involves first accounting 

for any issues within the data (such as missing data), before 

fitting a variety of models. At this stage we would suggest 

statistical tests and plotting of values may inform the best 

fitting models and help justify the approach used. We would 

then also suggest presenting scenario analyses to investigate 

the impact of structural choices in analysis framework. It 

should also be noted that the approach we have explored is 

based on a single dataset with a given intervention; a study 

with multiple arms (potentially with interventions that have 

different mechanisms) may need more complex forms of 

analysis, or indeed analysis by arm.

4.1  Limitations

There are a number of important limitations with the work 

presented, the most prevalent of these being the use of 

simulated data. In having to assume how utility falls when 

approaching death, or on progression, this does not neces-

sarily represent the way HRQL is reported, or how changes 

in health are experienced by patients. We have attempted 

to account for this (for example with variability within 

patient observations for ‘good’ and ‘bad’ days) though this 

is unlikely to be perfectly representative. In particular we 

would highlight that the influence of progression on HRQL 

is highly uncertain (and likely to vary between cancers). 

For instance, the timing of HRQL falling related to pro-

gression could be when a cancer begins to rapidly grow, 

whereas tumour imaging would only document this at the 
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Fig. 3  Recommendations for selection of analysis framework for health-related quality of life (HRQL) data
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next follow-up appointment held between patient and clini-

cian. Alternatively, patients may not experience symptoms 

until well after radiographic progression has occurred. 

Understanding when HRQL is impacted around progression 

would therefore seem relevant for future research in quality 

of life, as this may not coincide with the timepoint at which 

progression is measured in practice.

A similar assumption is that survival (in terms of indi-

vidual survival times) is assumed to be known, whereas in 

reality many of these would be based on extrapolations. 

This assumption was imposed to avoid conflating survival 

modelling questions with those regarding analysis of HRQL 

data. The shape of these survival curves however is a bigger 

assumption; for IOs we have assumed background survival 

for a proportion of patients—should this not be the case (and 

there be future disease relapse) this may affect our findings, 

though the durability of survival in IO treated patients is an 

open question in the medical literature at present, despite 

encouraging data [16, 17].

A further limitation is in the analysis frameworks used, 

which are in many ways a ‘straw man’; the timepoint at 

which HRQL falls prior to death in each analysis is assumed 

to be known, and be a single decrement. In reality this will 

likely involve some form of continuous decline over time. 

To account for this, most published work group periods of 

time together, (for instance the 30 days before death), though 

the justification for the groups selected is often arbitrary. 

Similarly, the combination-based approach was implemented 

in our simulation regardless of the significance of the coef-

ficients in the analysis, which may be an oversimplification. 

The development of a standardised strategy and associated 

algorithm to account for issues such as the appropriate 

grouping of time to death health states, and model selection 

would be helpful in establishing best practice for analyses.

5  Conclusion

The simulation study performed demonstrates that a number 

of factors can influence accuracy and bias when analysing 

HRQL data, the most important of which would appear to be 

the selection of an appropriate analysis framework. Rather 

than a de facto standard approach of progression or TTD-

based utilities, or the inclusion of all possible coefficients 

(as seen in the combination-based approach), practitioners 

should investigate the structure of their dataset, and justify 

the approach taken.

While the simulation study demonstrates the important lim-

itations of different approaches and the importance of adequate 

data, further work is needed to develop appropriate protocols 

for analyses and apply these to ‘real’ datasets.
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