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Abstract 

Background: In 2018, about 10 million people were found infected by tuberculosis, 

with approximately 1.2 million deaths worldwide. Despite these numbers have been 

relatively stable in recent years, tuberculosis is still considered one of the top 10 deadli-

est diseases worldwide. Over the years, Mycobacterium tuberculosis has developed a 

form of resistance to first-line tuberculosis treatments, specifically to isoniazid, leading 

to multi-drug-resistant tuberculosis. In this context, the EU and Indian DBT funded 

project STriTuVaD—In Silico Trial for Tuberculosis Vaccine Development—is supporting 

the identification of new interventional strategies against tuberculosis thanks to the 

use of Universal Immune System Simulator (UISS), a computational framework capable 

of predicting the immunity induced by specific drugs such as therapeutic vaccines and 

antibiotics.

Results: Here, we present how UISS accurately simulates tuberculosis dynamics 

and its interaction within the immune system, and how it predicts the efficacy of the 

combined action of isoniazid and RUTI vaccine in a specific digital population cohort. 

Specifically, we simulated two groups of 100 digital patients. The first group was 

treated with isoniazid only, while the second one was treated with the combination of 

RUTI vaccine and isoniazid, according to the dosage strategy described in the clinical 

trial design. UISS-TB shows to be in good agreement with clinical trial results suggest-

ing that RUTI vaccine may favor a partial recover of infected lung tissue.

Conclusions: In silico trials innovations represent a powerful pipeline for the predic-

tion of the effects of specific therapeutic strategies and related clinical outcomes. Here, 

we present a further step in UISS framework implementation. Specifically, we found 

that the simulated mechanism of action of RUTI and INH are in good alignment with 

the results coming from past clinical phase IIa trials.
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Background

Tuberculosis (TB), a disease caused by Mycobacterium tuberculosis (MTB) infection, 

is still one of the top 10 causes of death worldwide, especially in emerging countries. 

According to the World Health Organization (WHO), in 2018 10 million people fell ill 

with tuberculosis, of which 5.7 million were men, 3.2 million women, and 1.1 million 

children [1]. TB spreads from person to person through aerosol transmission. As today, 

no one is immune or isolated from the risk of being affected by the disease [2], and no 

prophylactic vaccines are available. Recently, bedaquiline and delamanid were approved 

as new two anti‐TB drugs, while novel candidates and repurposed drug have been devel-

oped and are in the final stages of drug development process [3].

Commonly, first-line TB treatments (isoniazid (INH), rifampin (RIF), pyrazinamide 

(PZA), ethambutol (EMB) and streptomycin (SM) [4]) are used for active tuberculosis in 

order to reduce the bacterial load in the lungs and the probability of transmission. INH, 

already known as isonicotinic acid hydrazide [5], is one of the leading standard antibiotic 

treatments for people at low risk for drug-resistance, leading to a significant reduction of 

mycobacterial load [6]. INH inhibits the synthesis of mycolic acids, an essential compo-

nent of the bacterial cell wall, and is used in conjunction with other effective anti-tuber-

culosis agents in a multi-drug therapy protocol [7]. INH has a short half-life ranging 

from 1 to 4 h [8] and a double-activity: for the first 24 h from the administration, INH 

shows a bacteriostatic mechanism, then its activity becomes bactericidal [9–11]. This 

pro-drug requires a preliminary activation, which is carried out by the heme enzyme 

catalase/peroxidase (KatG) of MTB [12]. The interactions between the host immune sys-

tem and INH allow to decrease the growth of intracellular and extracellular MTB bacilli. 

It is worth mentioning that the active form of tuberculosis should be treated with differ-

ent combinations of anti-tuberculosis drugs to prevent the emergence of drug resistance 

phenomena. This is due to the fact that the single use of isoniazid for active tuberculosis 

is not always effective. The high bactericidal activity, the elevated intracellular penetra-

tion, and the low costs make INH one of the most commonly used antimicrobial agents 

to fight tuberculosis.

Second-line drugs are sub-divided into two categories: fluoroquinolones (ofloxacin 

(OFX), levofloxacin (LEV), moxifloxacin (MOX) and ciprofloxacin (CIP) and injectable 

antituberculosis drugs (kanamycin (KAN), amikacin (AMK) and capreomycin (CAP). 

Other second-line antituberculosis (ethionamide (ETH)/prothionamide (PTH), cyclo-

serine (CS)/terizidone, p-aminosalicylic acid (PAS) [4]) are used for the treatment of 

drug-resistant and multi-drug-resistant TB patients. However, second-line treatment 

options own some disadvantages because they require very long treatment regimens, 

along with a toxic exposure and high costs for the patients.

To overcome these issues, many EU-funded projects are trying to fight TB with spe-

cific trials concerning new therapeutic strategies. Among these, the HORIZON 2020 In 

Silico Trial for Tuberculosis Vaccine Development (STriTuVaD) project aims to evaluate 

a specific therapeutic vaccine against tuberculosis through an innovative computational 

modelling infrastructure named Universal Immune System Simulator (UISS). In this 
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context, UISS for Tuberculosis (UISS-TB) is capable to reproduce the dynamics of the 

immune system affected by TB and predict the outcome of a real clinical trial under the 

administration of specific interventions such as the RUTI vaccine [13].

RUTI vaccine is a polyantigenic liposomal vaccine previously used as an immuno-

therapeutic intervention during antibiotic treatment for Multi-Drug-Resistant Tubercu-

losis (MDR-TB). This vaccine showed an excellent safety profile in a phase 2 trial [14], 

and has the potential to reduce the time required for the current antibiotic treatments 

significantly.

To investigate the effects of the combination of a conventional anti-TB chemotherapy 

strategy with a potential therapeutic vaccine such as RUTI, we present here an extension 

of our pre-existing version of UISS-TB able to predict their combined efficacy.

Methods

UISS computational framework, widely discussed in [13], was successfully applied to a 

large number of disease modelling scenarios [15–17], including COVID-19 [18]. UISS 

is based on Agent-Based Model (ABM) methodology [19, 20] that predicts the efficacy 

of vaccines and/or antibiotics treatments targeting MTB in a specific digital patients 

cohort.

To simulate the effects of isoniazid, we implemented in UISS its mechanism of action 

and modeled the effects on MTB using the administration protocol described in [14] for 

one month.

To this end, we added INH as a new entity (also called “agent” in ABM terminology) 

into the simulation framework. INH agents are described through their concentration in 

each position of simulation space and their half-life, used by the simulation framework 

to calculate the degradation of INH and to manage the bacteriostatic and bactericidal 

activities. INH injection time and quantities are defined according to the administra-

tion protocol described in [14]. The interaction that describes the effects of INH against 

MTB can be briefly reassumed as follows. The bacteriostatic effect was implemented 

considering infected AM cells that encounter INH formulation within the lung com-

partment. With a probability dependent on INH concentration, the intracellular and 

extracellular replication rates of MTB are reduced. The mathematical law that describes 

the intracellular and extracellular proliferation of MTB has been implemented with a 

method similar to the one described in [21, 22]. The bactericidal activity of INH affects 

the circulating TB bacilli. With a probability depending on INH concentration, circulat-

ing TB bacilli are cleared from the bloodstream.

Moreover, we also revised the RUTI implementation in UISS, to better model the 

mechanism of action (MoA) and the vaccine interaction with the host immune system. 

According to RUTI formulation, we added the liposome entity and its related dynam-

ics. At the beginning of each simulation, the user provides UISS with two parameters: i) 

RUTI dosage and ii) the time of the administration. The aim was to allow UISS to simu-

late the interaction between the liposome and dendritic cell (DC). In particular, when in 

the lymph node compartment, a naïve DC encounters a liposome, DC scans the surface 

of the liposome to recognize the MHC-1/peptide complex. Through the calculation of a 

proportional probability function that depends on the affinity level between DC pattern 

recognition receptor (DC-PRR) and MHC-1/peptide complex expressed on the surface 
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of the liposome. This immunological process led by DC is known as nibbling. Finally, the 

liposome—CD8 T cells (TC) interaction has been added. If the interaction succeeds, i.e., 

TC recognizes the MHC-I/liposome peptide on the liposome surface (by affinity score 

calculation), the TC releases a predefined quantity of interferon gamma (IFN-γ) in situ. 

The release of free antigens through the liposomes (due to physiological degradation) 

over time has also been considered.

To better represent the biological diversity of TB patients, we enriched the compo-

sition of the vector of features used for the generation of digital patients libraries. In 

particular, the "vector of features" that defines a specific TB patient is composed by the 

following parameters: (1) MTB virulence; (2) MTB Sputum; (3) CD4-Th1; (4) CD4-

Th2; (5) IgG; (6) TC; (7) IL-23; (8) IL-12; (9) IL17-A; (10) IL-2; (11) IL-1; (12) IL-10; (13) 

IFN1A; (14) IFN1B; (15) IFNG; (16) TNF; (17) Treg; (18) LXA4; (19) PGE2; (20) Vita-

min D; (21) Age; (22) BMI. The digital patients were generated according to the steps 

explained in [23]. Table 1 summarizes the biological description of each entity that com-

poses the vector of features, specifying the unit of measurements and the values used to 

run the simulations.

As UISS is written in C language, a Graphic User Interface (GUI) and a web server 

is needed to provide a user-friendly interface. In a previous work, we presented a web-

interface developed in Flask micro-server [24]. Here, we improved the performance of 

the web platform. These enhancements allow the launch of the simulations separately 

from the main thread and in a more efficient way. To this aim, we used Django, the high-

level Python Web framework. Figure 1 shows the last version of the UISS web-GUI. On 

the right side, one can see a box called "Your simulation" containing a list of the simula-

tions, sorted by their creation date and classified in "running" or in "completed" status. 

On the left side, one can see a box named "Simulation Parameters" that contains a set of 

the biological and physiopathological parameters that compose the vector of features, 

created for the customization of TB patients.

In details, after the user connects to the UISS-TB web interface, she/he selects the 

Tuberculosis disease model. After that, the general GUI panel appears. The user finds 

already filled in default values in the vector of features parameters. She/he can vary these 

values according to the ranges that are shown within brackets, near the selected param-

eter. After that, one can press the Submit button and a unique identification simulation 

number is assigned. The user can check the simulation status simply clicking on the 

check status button, after selecting the simulation id. When the simulation is completed, 

the user can visualise results of immune system dynamics, simply choosing the one she/

he would like to analyze.

Results and discussion

A first step in moving UISS towards clinical validation was to evaluate its prediction 

capabilities. In this context, we designed different simulations over cohorts of digital 

patients to obtain accurate in silico predictions about the efficacy of therapeutic inter-

ventions directed against TB. We run a total of 400 simulations, within four different 

scenarios: (1) 100 digital patients treated with INH only; (2) 100 digital patients treated 

with the combination of INH and RUTI vaccine; (3) 100 digital patients treated with 

the combination of INH and two RUTI vaccine administrations; (4) 100 digital patients 
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Table 1 Vector of features

# Parameter name Unit 
of measurement

Biological description Values set 
in the simulations

1 MTB virulence Real The ability of a mycobacteria to cause tuber-
culosis, depending on its capability to reside 
within host cells and evade the microbicidal 
mechanisms of macrophages

0.5

2 Mtb sputum CFU/mL Mycobacterium bacilli present in sputum 
smear traditionally quantified by counting 
colony forming units

80,000

3 CD4+-Th1 cells/µL Lineage of  CD4+ effector T cell required for 
host defense against pathogens promoting 
cell-mediated immune responses

0

4 CD4+-Th2 cells/µL Lineage of  CD4+ effector T cell required for 
humoral immunity promoting the coordina-
tion of the immune response to extracellular 
pathogens

0

5 IgG titer The main type of antibody in blood and 
extracellular fluid, allowing control infection 
of body tissues and body protection from 
intracellular caused infections

0

6 TC  (CD8+) cells/µL A type of lymphocyte that can kill foreign cells, 
cancer cells, and cells infected with a virus

562

7 IL-23 pg/mL A proinflammatory cytokine involved in the 
induction of IL-17-producing antigen-specific 
CD4 + T cells (Th17) and in the control of 
tuberculosis. It also outlines the expres-
sion of vaccine-induced protection against 
tuberculosis

0

8 IL-12 pg/mL A proinflammatory cytokine naturally pro-
duced by dendritic cells, macrophages, neu-
trophils in response to antigenic stimulation

0

9 IL17-A pg/mL A proinflammatory cytokine produced by 
activated T helper cells in response to their 
stimulation with IL-23. In tuberculosis, it 
represents a protective cytokine against 
mycobacteria

0

10 IL-2 pg/mL A proinflammatory cytokine that stimulates the 
growth and replication of B lymphocytes (B 
cells) and T lymphocytes (T cells). It is signifi-
cantly higher in active TB patients, suggest-
ing that IL-2 represents a potential infection 
severity biomarker

0

11 IL-1 pg/mL An anti-inflammatory cytokine produced by 
macrophages. It usually raises body tempera-
ture, spurs the production of interferon, and 
stimulates growth of disease-fighting cells. 
IL-1 receptor pathways are essential for the 
control of MTB infection

0

12 IL-10 pg/mL An anti-inflammatory cytokine with multiple, 
pleiotropic, effects in immunoregulation 
and inflammation. It downregulates the 
expression of Th1 cytokines, MHC class II 
antigens, and co-stimulatory molecules on 
macrophages. It also enhances B cell survival, 
proliferation, and IgE antibody production. 
IL-10 has been identified as a correlate of 
susceptibility for tuberculosis and reactiva-
tion of TB disease

0
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Simulator input parameters that compose the vector of feature to personalize the digital patient. A biological description 

along with the values used to run the simulations are provided as well

Table 1 (continued)

# Parameter name Unit 
of measurement

Biological description Values set 
in the simulations

13 IFN1A pg/mL Human type I interferons (IFNs) are a large 
subgroup of interferon proteins that help 
regulate the activity of the immune system. 
The IFN-α proteins are produced mainly by 
plasmacytoid dendritic cells (pDCs). They are 
mainly involved in innate immunity against 
viral infection

0

14 IFN1B pg/mL Human type I interferons (IFNs) are a large 
subgroup of interferon proteins that help 
regulate the activity of the immune system. 
The IFN-β proteins are produced in large 
quantities by fibroblasts. They have antiviral 
activity that is involved mainly in innate 
immune response

0

15 IFNG pg/mL A proinflammatory cytokine primarily secreted 
by activated T cells and natural killer (NK) 
cells that promote macrophage activation, 
mediate antiviral and antibacterial immunity, 
enhance antigen presentation, orchestrate 
activation of the innate immune system, 
coordinate lymphocyte–endothelium 
interaction, regulate Th1/Th2 balance, and 
control cellular proliferation and apoptosis. It 
represents the clinical standard that establish 
the evidence of Mtb exposure and infection

0

16 TNF pg/mL N inflammatory cytokine produced chiefly 
by activated macrophages and many other 
cell types such as T helper cells, natural killer 
cells, neutrophils, mast cells, eosinophils, and 
neurons. Itplays a major role in the initial and 
long-term control of tuberculosis

0

17 Treg cells/µL T cells which have a role in regulating or sup-
pressing other cells in the immune system. 
Tregs control the immune response to self 
and antigens and help prevent autoimmune 
disease

68

18 LXA4 ng/mL A bioactive autacoid metabolite of arachidonic 
acid that displays both potent anti-inflamma-
tory and pro-resolving actions. In tubercu-
losis disease, it owns a pro-necrotic activity 
against infected alveolar macrophages

0

19 PGE2 ng/mL A lipid compounds called eicosanoids having 
several hormone-like effects in animals. It 
derives enzymatically from the fatty acid ara-
chidonic acid. In tuberculosis disease, it owns 
a pro-apoptotic activity against infected 
alveolar macrophages

0

20 VitaminD ng/mL It is considered an essential micronutrient 
involved in several biological processes 
such as endocrine metabolism and immune 
system activity, by modulating and inhibiting 
its activity in different ways. Its deficiency 
is associated with the risk of tuberculosis 
infection

25.8

21 AGE years A risk factor that should be considered for 
tuberculosis incidence and prognosis

35

22 BMI kg/m2 A key index for relating weight to height. BMI 
has been found correlated with both active 
and latent forms of tuberculosis

21
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treated with the combination of INH and two RUTI vaccine administrations, at differ-

ent timing. We took into account only drug-sensitive digital patients (i.e., not affected 

by MDR-TB). MTB infection peaks after two weeks from the starting of the simulation.

In order to show the effects of RUTI vaccination protocol complemented with the 

administration of INH on the host immune system, we tracked the dynamics of Alveolar 

Macrophages (AM), CD4 Th1, Interferon-gamma (IFN-γ), Cytotoxic T cells (TC), CD4 

Th17. In Figs. 2 and 3, the mean behavior (green line) and standard deviation (orange 

shaded region) of the biological entities taken into consideration are depicted. Untreated 

TB digital patients have been widely discussed in [13, 24]. Figure 2 shows the cellular 

dynamics where an initial challenge with a virulent strain of MTB is supposed to happen 

on day 15. Soon after, we simulated the injection of INH once a day for one month. Fig-

ure 2, panel A shows the dynamics of AM; here, we can observe a not negligible reduc-

tion of the average population of necrotic AM. In other words, the injection of INH 

allows a tissue recovery of the lung’s patient. Regarding cytotoxic CD8 T cells, Fig.  2, 

panel B shows no significant differences from the untreated cases. This is in good agree-

ment with clinical observations as INH antibiotic therapy does not affect immune sys-

tem behavior. Accordingly, panel C and panel E of Fig. 2 shows no Th1 cell activation and 

no IFN-γ presence [25].

Th17 cells are a subpopulation of helper T cells. Their production is stimulated by 

cytokines such as IL-6, IL-1, and IL-23, produced in response to extracellular bacteria, 

such as in tuberculosis [25]. They are involved in the recruitment of leukocytes to the 

infection site and have an essential role in the elimination of bacteria. Figure 2 panel D, 

depicts the increase of Th17 cells in response to MTB infection. After an initial burst, 

Th17 number gradually reduces as patients convert into latent tuberculosis [26].

Fig. 1 Web Graphic User Interface of UISS-TB. This figure depicts the GUI of UISS that allows the run of 

the simulations. The "Simulation’s Parameters" zone, on the left side of the figure represents the vector of 

features for the personalization of digital patients. The "Your Simulations" box, on the right side of the figure, 

depicts the list of all the simulations launched by the user. The simulations are classified in "running" or in 

"completed" status
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Figure  3 shows the second scenario in which the administration of RUTI vaccine is 

coupled with INH. As above, we kept the MTB challenge on day 15, followed by INH 

administration (once a day per one month). This time, one month after the end of the 

antibiotic treatment, an injection of 25 μg of RUTI vaccine was simulated.

Panel A, Fig. 3 depicts the dynamics of AM. In this case, one can see as RUTI sig-

nificantly reduces the AM necrotic population. According to literature, panel B of 

Fig. 3 highlights an increased activation of  CD8+ T cells. The diminution of  CD8+ T 

cells in the latent stage of the infection led to an increase in the bacterial load, which 

indicates that these cells are necessary for the long-term control of the disease [27]. 

This could suggest that a second RUTI administration could be beneficial to the MTB 

Fig. 2 Outcome of digital patients treated with INH. Green line shows the average trend of the considered 

cellular entities. The orange shaded area represents their standard deviation (SD + /−). a Depicts the 

dynamics of AM before and after the administration of INH; the antibiotic, administered accordingly to the 

clinical trial protocol, reveals a not negligible biological restore of the damaged AM. b The dynamics of CD8 T 

cells. d The dynamics of TH17 cells responding to bacterial infection. c and e show flat curves because INH is 

not supposed to stimulate immune response. Simulation time has been set to 365 days (1 years) and digital 

patients have been challenged with MTB at day 15
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eradication. Figure  3 panel C shows a considerable Th1 response that is also sup-

ported by a not negligible release of IFN-γ (panel E). There is also an increased acti-

vation of Th17 (panel D). Reassuming, the RUTI orchestrated immune response is in 

very good agreement with specialized literature [14].

Figure 4 shows the results of the second RUTI injection as reported in the clinical 

protocol design [28]. In comparison to the immune response obtained with one RUTI 

administration as previously shown in Fig. 3, here one notices a stronger  CD4+ Th1 

response (panel C) followed by an increased IFN- γ levels (panel E). Moreover, also 

Fig. 3 Outcome of digital patients treated with INH and RUTI vaccine. Green line shows the average trend 

of cell populations, while the orange shaded area represents the standard deviation. One month after the 

end of antibiotic treatment, RUTI vaccine was administered accordingly to the clinical trial design. a Depicts 

the dynamics of AM before and after the administration of INH and after the administration of RUTI. The 

combination of INH with RUTI allows a better recovery of infected AM population when compared to the 

one without RUTI injection. Substantial increase in levels of TC, Th1, Th17 and IFNG is observed (b–e). For all 

the biological scenarios, simulation time has been set to 365 days (1 years) and digital patient have been 

challenged with MTB at day 15
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 CD8+ T cell response (panel B) is positively triggered by the second administration of 

RUTI.

To assess if a different timing of a second RUTI injection could improve the overall 

immune response of the host against MTB, we simulated a later second injection time 

compared to the clinical trial protocol design (i.e., at day 200, about three months after 

the one set in the clinical trial). In Fig. 5, we report the in silico predictions of such a 

different timing of second RUTI administration. A negligible difference in the overall 

immune response driven by  CD4+ Th1 cells and  CD8+ T cells is observed. This suggests 

that the timing agreed in the clinical trial dossier corresponds to the optimal one.

Fig. 4 Outcome of digital patients treated with the second RUTI vaccine administration. Green line shows 

the average trend of cell populations, while the orange shaded area represents the standard deviation. 

One month after the end of antibiotic treatment, RUTI vaccine was administered accordingly to the clinical 

trial design followed by a second injection of RUTI (28 days after the first one). a The dynamics of AM that 

is comparable to the scenario observed after only one vaccine administration. Substantial increase in 

levels of TC, Th1, Th17 and IFNG is observed (b–e) compared to dynamics obtained with only one vaccine 

administration. For all the biological scenarios, simulation time has been set to 365 days (1 years) and digital 

patient have been challenged with MTB at day 15
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Conclusions

In silico trials are increasingly used to predict the effects of several types of inter-

ventional strategies and related clinical outcomes. In this context, the EC and Indian 

DBT funded project STriTuVaD aims to create a computational infrastructure that 

predicts the efficacy of antibiotic strategies when coupled with RUTI vaccine against 

M. tuberculosis. Here, we present a further step in UISS framework implementation 

toward the clinical validation of the platform. We found that the simulated MoA of 

RUTI and INH is in proper alignment with the double-blind, randomized, placebo-

controlled phase II clinical trial. To explore potential possibilities to increase the 

overall immune response against MTB, we simulated 100 digital patients treated with 

INH and two RUTI vaccine administrations varying the timing of the second one. In 

Fig. 5 UISS in silico predictions with different timing of a second RUTI vaccine administration. Green line 

shows the average trend of cell populations, while the orange shaded area represents the standard deviation. 

In comparison to the scenarios observed in Fig. 4, a negligible difference in the overall immune response 

driven by  CD4+ Th1 cells and  CD8+ T cells is observed
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silico results confirm that the overall immune response driven by  CD4+ Th1 cells and 

 CD8+ T cells is not influenced, suggesting that the timing agreed in the clinical trial 

protocol is optimal.

Availability and requirements

Project name UISS-TB.

Project home page https ://www.combi ne-group .org/softw are.

Operating system(s) Platform independent.

Programming language C and Python.

Other requirements none.

Any restrictions to use by non-academics not applicable.
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