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ABSTRACT

The plasma dynamics at frequencies comparable with collisional frequency between various species has to be described in

multi-fluid framework, where collisional interaction between particles is an important ingredient. In our study we will assume

that charged particles are strongly coupled, meaning that they form a single fluid that interacts with neutrals, therefore we

will employ a two-fluid model. Here we aim to investigate the evolutionary equation of slow sausage waves propagating in a

gravitationally stratified flux tube in the two-fluid solar atmosphere in a strongly ionised limit using an initial value analysis. Due

to the collisional interaction between massive particles (ions and neutrals) the governing equations are coupled. Solutions are

sought in the strongly ionised limit and the density ratio between neutrals and charged particles is a small parameter. This limit

is relevant to the upper part of the chromosphere. Our results show that slow sausage waves associated with charged particles

propagate such that their possible frequency is affected by a cut-off due to the gravitational stratification. In contrast, for neutral

acoustic waves the cut-off value applies on their wavelength and only small wavelength waves are able to propagate. Slow modes

associated to neutrals are driven by the collisional coupling with ions.

Key words: Sun: chromosphere– Sun:oscillations– Magnetohydrodynamics (MHD)

1 INTRODUCTION

One of the key characteristics of solar atmosphere is that in the

lower regions (photosphere and chromosphere) the plasma is par-

tially ionised, where neutral atoms, electrons and positively charged

ions can interact through short and long-range collisions. The ioni-

sation degree of the plasma depends mainly on temperature. Heinzel

et al. (2015) showed that in the case solar prominences, the ionisa-

tion degree also depends on density and pressure. Solar atmospheric

models such as the VAL (Vernazza et al. 1981) or FAL (Fontenla et

al. 1990) models predict a very low ionisation degree in the deep pho-

tosphere (where for every ion there are approximately 104 neutrals),

and increases with height due to the increase of temperature. The

different species of particles present in the plasma interact through

collisions and the frequency of the collisions also decreases with

height due to the decrease of density of particles with height (a quan-

titative description is presented in Section 2.). Although collisions

between various species are important for various aspects related

to partially ionised plasmas such as thermalisation of the plasma,

various ionisation/recombination processes, appearance of thermal

layers for shock waves in partially ionised plasmas, etc. (Shanmu-

gasundaram and Murty 1978, Mathers 1980, Terradas et al. 2015,

Martínez-Gómez et al. 2018, Ballai 2019, Kuzma et al. 2020), the

short-range collisions between neutrals and charged particles are im-

portant as only this physical mechanism ensures that neutrals are

a constituent part of the plasma. Given the large mass difference

★ E-mail: aalharbi8@sheffield.ac.uk

between electrons and ions, effective way for transferring energy

and momentum occurs only via collisions between ions and neu-

trals. The collisions between electrons and the ions/neutrals help in

the Maxwellisation of the electron population but is not affecting

considerably the energy and momentum of massive particles.

Unfortunately the characteristics of current ground-based and

space-borne observational facilities are not suitable for the direct

observation of waves with frequencies of the order of the collisional

frequencies in partially ionised plasmas, as these waves require a

time cadence that currently cannot be achieved. Nevertheless, waves

and instabilities in partially ionised plasmas together with their ef-

fects have been largely explored theoretically and numerically. For a

recent review on the progress of research on dynamical processes in

solar and astrophysical plasmas see Ballester et al. (2018).

The theoretical investigation of waves in partially ionised plasmas

under solar conditions has received recently an increased attention.

More and more studies started to take into account the realistic model

of a solar atmosphere, where the plasma is not hot enough to ensure

a full ionisation. We should mention here that the consideration of

partial ionisation effects depend on the range of frequencies we are

interested in. If the frequency of waves we plan to investigate is

much smaller than the collisional frequency of particles, the dynam-

ics can be described within the framework of magnetohydrodynamics

(MHD). Since current observational capabilities are mostly centered

onto this regime, the observation of waves outside the MHD regime

can be achieved only indirectly. Although the observation of waves is

still nearly impossible, several attempts have been made to evidence

the effect of partial ionisation in solar lower atmosphere. Due to an
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2 A. Alharbi et al.

imperfect collisional coupling between massive particles (ions and

neutrals), there is an imbalance in the velocity of these species and

this has been evidenced through a simultaneous measuring of the

Doppler shift in the Fe II ion and neutral Fe I lines over the same

volume of plasma in the sunspot penumbra (Khomenko et al. 2015).

Later, Khomenko et al. (2016) found non-negligible differences in

He I and Ca II velocities in solar prominences. Gilbert et al. (2007)

compared He I and H𝛼 data in multiple solar prominences in differ-

ent phases of their life cycle and detected the drainage effect across

the prominence magnetic field with different timescales for He and H

atom. Later, de la Cruz Rodrigez and Socas-Navarro (2011) have re-

ported misalignment in the visible direction of chromospheric fibrils

that were attributed to the large ambipolar diffusion, that is, when the

ion-neutral collisional frequency drops, the magnetic field can slip

through the neutral population. This observational result has been

later confirmed through numerical simulations by Martínez-Sykora

et al. (2016) using advanced radiative MHD simulations. Finally,

some observations have found evidence for higher frequency waves

with periods as short as 45 s (0.15 Hz) in spicules (Okamoto and De

Pontieu 2011). Transition region spectral lines often show significant

broadening beyond the thermal width of the order of 20 km s−1 in

exposure times as short as 4 s (De Pontieu et al. 2015). If this non-

thermal broadening were to be caused by waves, wave frequencies

could be significantly higher than 1 Hz.

The framework used to describe the dynamics of waves in partially

ionised plasmas depends on the frequency range of interest. For

wave frequencies that are of the order of the collisional frequency

between ions and neutrals we can employ a model where charged

and neutrals particles are treated as separate, but interacting, fluids.

Waves propagating in partially ionised plasmas differ qualitatively

and quantitatively from their counterpart in fully ionised plasmas.

First of all, the spectrum of possible waves is larger as now, in addition

to the ion-related modes, there are also acoustic modes associated to

neutrals.

The study of waves in inhomogeneous plasma is not an easy task

as inhomogeneities can change dramatically the property of waves.

The damping of Alfvén waves in gravitationally stratified plasmas

and their contribution to the heating of chromospheric plasma has

been studied by a number of authors. Leake et al. (2005) used a

single-fluid plasma approximation in the presence of Cowling resis-

tivity and they found a very clear frequency-dependent damping of

waves for chromospheric heights of 1000-2500 Km above the solar

surface. According to these authors Alfvén waves with frequencies

below 0.01 Hz are unaffected by dissipative effects and propagate

through the partially ionised plasma with little diffusion. In con-

trast, Alfvén waves with frequency above 0.6 Hz are completely

damped. The research in this topic has been extended later by Tu

and Song (2013), who carried out a numerical investigation of the

two-fluid approximation, where collisions between various species

(neutrals, electrons and positive ions) have been considered. The re-

sults of this analysis show that thanks to the density gradient, Alfvén

waves are partially reflected throughout the chromosphere and more

strongly at higher altitudes. Waves were observed to be damped in the

lower chromosphere dominantly through Joule dissipation, produc-

ing heating strong enough to balance the radiative loss for the quiet

chromosphere without invoking anomalous processes or turbulences.

These authors also found that there is an upper cutoff frequency, de-

pending on the background magnetic field, above which waves are

completely damped. For a magnetic field of 100 G, the determined

cut-off (or critical) frequency was found to be 0.12 Hz. On the other

hand the damping of Alfvén waves can also be used to infer key

plasma parameters by means of seismological techniques. For exam-

ple, recent observations by Kohutova et al. (2020) showed torsional

Alfvén waves propagating with a period of 89 s, an amplitude of 41

km s−1, and a damping time of 136 s. Using a single-fluid partially

ionised plasma model for prominences, Ballai (2020) employed the

observations by Kohutova et al. (2020) in conjunction with the dis-

persion relation for torsional Alfvén waves to diagnose the ionisation

degree of the plasma, and found that the neutral number density of

the plasma was 5.08 × 1016 m−3. A numerical analysis of the varia-

tion of the cut-off frequency with height has recently been made by

Wójcik et al. (2019) assuming a two-fluid plasma.

The properties of magnetoacoustic waves propagating in a two-

fluid homogeneous plasmas has been studied by a number of authors.

Zaqarashvili et al. (2011) and later Soler et al. (2013) have shown that

the collisional frequency between ions and neutrals can considerably

modify the behaviour and properties of waves. When applied to

chromospheric situations the study by these authors revealed that

wavelengths smaller than 103 m are affected by two-fluid effects

in the presence of strong magnetic fields. However, their approach

is an eigenvalue problem, meaning that the temporal evolution of

waves cannot be studied. Furthermore, they neglected gravitational

stratification, meaning that important effects such as the presence of

frequency cut-offs could not be studied. In the present investigation

we plan to address both of these shortcomings.

The paper is structured as follows: The physical assumptions and

the mathematical background necessary to carry out our research is

presented in Section 2. The evolutionary equations describing the

spatial and temporal evolution of slow sausage modes attached to

each species will be derived in Section 3. Solutions of these equa-

tions assuming a strong ionisation thermal equilibrium is obtained

in Section 4. The asymptotic solutions corresponding to large values

of time is obtained in Section 5 assuming a sinusoidal pulse driver

for typical solar chromospheric conditions. Finally, our results are

summarised and discussed in Section 6.

2 ASSUMPTIONS AND MATHEMATICAL BACKGROUND

Before we embark on describing the evolution of slow guided waves

in a gravitationally stratified plasma we need to make a few assump-

tions that will simplify our analysis. First of all we assume that during

the typical time-scales involved in wave description the plasma re-

mains in ionisation equilibrium, i.e. no additional ions are created

by ionisation or neutrals due to recombination. This assumption is

rather restrictive as typical time-scales associated to ionisation and

recombination often can be comparable to period of waves. A treat-

ment of waves in partially ionised non-equilibrium plasma can be

found in the study by Ballai (2019).

Waves will propagate in a vertically unbounded magnetic cylinder

and the magnetic field is parallel to the symmetry axis of the flux

tube in the positive 𝑧-direction. The environment of the flux tube is

non-magnetic. To simplify our analysis we will assume that the flux

tube of cross-sectional area 𝐴(𝑧, 𝑡) is thin, i.e. waves propagating

in the flux tube have wavelengths much larger than the radius of

the tube (also known as the slender tube approximation). In this

limit waves will not "sense" the boundary of waveguide. Due to

the gravitational stratification, the dispersion relation of slow waves

becomes𝜔2 ≈ 𝑘2𝑐2
𝑇
+𝜔2

𝑐 (Roberts and Webb 1978), where 𝑘 is wave

number, 𝑐𝑇 is cusp speed and 𝜔𝑐 is the cut-off frequency of waves

that depends on characteristic speeds and gravitational acceleration.

As a result, the frequency of waves is increased compared to the

unstratified case and waves become dispersive, which means that

waves with longer wavelength will propagate faster. In the opposite

MNRAS 000, 1–12 (2020)
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case, when the wavelength of waves is comparable (or smaller) to the

radius of the flux tube we are dealing with a thick flux tube, where

the properties of waves are considerably changed. The propagation

characteristics of slow sausage waves in a thick flux tube in a fully

ionised plasma has been investigated by Pardi et al. (2014).

Since we aim to study the propagation of longitudinal waves, we

can consider only the longitudinal velocity components of the species

involved in the problem.

We assume that the length scales of variables that describe the

dynamical and thermodynamical state of the plasma are much longer

than the scattering mean free path, so that the concept of fluid is appli-

cable. We are going to employ a two-fluid approximation where neu-

trals and charged species will interact through collisions. Although

the interaction between electrons and neutrals also takes place, we

are going to limit ourselves to the collisions between the massive

particles, i.e. ions and neutrals. For simplicity we are going to label

the charged species as "ions". Physical quantities related to this fluid

are labeled by an index i and the parameters of the neutral fluid will

be labelled by an index n. We should mention here that the charged

particles (ions and electrons) all have a common velocity since differ-

ences in the divergence of the ion and electron velocities would lead

to charge separation and strong electric fields opposing the charge

separation. see .

The system of equations describing the linear dynamics of the

two-fluid plasma (for details see, Khomenko et al. 2014) is given by

𝜕

𝜕𝑡
(𝜌0𝑖𝐴 + 𝜌𝑖𝐴0) +

𝜕

𝜕𝑧
(𝜌0𝑖𝐴0v𝑖) = 0, (1)

𝜕

𝜕𝑡
(𝜌0𝑛𝐴 + 𝜌𝑛𝐴0) +

𝜕

𝜕𝑧
(𝜌0𝑛𝐴0v𝑛) = 0, (2)

𝜌0𝑖
𝜕v𝑖

𝜕𝑡
+ 𝜕𝑝𝑖
𝜕𝑧

+ 𝜌𝑖𝑔 + 𝛼𝑖𝑛 (v𝑖 − v𝑛) = 0, (3)

𝜌0𝑛
𝜕v𝑛

𝜕𝑡
+ 𝜕𝑝𝑛
𝜕𝑧

+ 𝜌𝑛𝑔 + 𝛼𝑖𝑛 (v𝑛 − v𝑖) = 0, (4)

𝜕𝑝𝑖

𝜕𝑡
+ v𝑖

𝑑𝑝0𝑖

𝑑𝑧
= 𝑐2

𝑆𝑖

(
𝜕𝜌𝑖

𝜕𝑡
+ v𝑖

𝜕𝜌0𝑖

𝜕𝑧

)
, (5)

𝜕𝑝𝑛

𝜕𝑡
+ v𝑛

𝑑𝑝0𝑛

𝑑𝑧
= 𝑐2

𝑆𝑛

(
𝜕𝜌𝑛

𝜕𝑡
+ v𝑛

𝜕𝜌0𝑛

𝜕𝑧

)
. (6)

Mathematical details of the governing equations can be found in

earlier studies by Defouw (1976) and Herbold et al. (1985). The above

system of equations has to be supplemented by the two conditions

𝐵0𝐴 + 𝐵𝐴0 = 0, 𝑝𝑖 + 𝑝𝑛 + 𝐵0

𝜇0
𝐵 = 𝜋(𝑧, 𝑡) (7)

expressing the conservation (in a linearised way) of the magnetic flux,

and the total pressure at the boundaries of the flux tube. The quantities

with an index ’0’ denote equilibrium values. In the above equations

𝜌𝑖 , 𝑣𝑖 and 𝑝𝑖 are the density, longitudinal velocity component and

pressure of charged particles (ions and electrons), 𝜌𝑛, 𝑣𝑛 and 𝑝𝑛
are the corresponding quantities for neutral species, 𝑔 = 274 𝑚/𝑠2
the constant gravitational acceleration, 𝑐𝑆𝑖 = (𝛾𝑝0𝑖/𝜌0𝑖)1/2 is the

ion sound speed and 𝑐𝑆𝑛 = (𝛾𝑝0𝑛/𝜌0𝑛)1/2 is the neutral sound

speed and 𝛾 is ratio of specific heats that will be considered constant

(𝛾 = 5/3). In Equation (7) 𝐵0 and 𝐵 are the equilibrium and perturbed

magnetic field, 𝐴0 and 𝐴 are the equilibrium cross-section area of the

tube and the associated perturbation, while in the pressure balance

equation 𝜋(𝑧, 𝑡) is the external pressure, and 𝜇0 is the permeability

of free space. We should mention that, strictly speaking, the energy

conservation equations for the two species should have contained

a term that describe the energy lost due to the collisional friction

between particles, however, since this term is nonlinear (proportional

to the square of (v𝑖 − v𝑛), these will be neglected and the energy

conservation is described by an adiabatic equation written for each

fluid.

During the propagation of waves particles will undergo collisions

with other particles. Neglecting mutual collisions between particles

of the same type, the frictional coefficients between the colliding ions

and neutrals is 𝛼𝑖𝑛 and is given by

𝛼𝑖𝑛 = 𝜌𝑖𝜈𝑖𝑛 = 𝜌𝑛𝜈𝑛𝑖 , (8)

where 𝜈𝑖𝑛 and 𝜈𝑛𝑖 are the frequencies of ion-neutral and neutral-ions

collisions. In the above equation the frictional coefficient between

ions and neutrals is given by (Braginskii 1965)

𝛼𝑖𝑛 = 2𝑛𝑖𝑛𝑛𝑚𝑖𝜎𝑖𝑛

(
𝑘𝐵𝑇

𝜋𝑚𝑖

)1/2
, (9)

where 𝜎𝑖𝑛 = 5 × 10−19 m2 is the collisional cross-section (Vran-

jes and Krstic 2013), 𝑘𝐵 is the Boltzmann constant, 𝑚𝑖 is the ion

mass and 𝑛𝑖 and 𝑛𝑛 are the number density of ions and neutrals, re-

spectively. In the above calculations we assumed that we are dealing

with hydrogen plasma. Although normally the collisional frequen-

cies are also height dependent, we are going to treat these quantities

as constants and we are going to evaluate them for particular solar

parameters, at particular height.

The collisions between the massive particles in the system acts as

a dissipative term and waves will be expected to decay due to the

collisions. Using the standard atmospheric models it can be shown

that up to a height of approximately 2 Mm 𝜈𝑖𝑛 > 𝜈𝑛𝑖 , however,

after this height, this inequality reverses due to the decrease in the

number of neutrals thanks to the ionisation driven by the increase in

temperature.

Due to the gravitational stratification equilibrium quantities will

have a height-dependence. In a hydrostatic equilibrium the variation

of the pressure with height for the two constituent fluids is given by

𝑝0𝑖 (𝑧) = 𝑝0𝑖 (0)𝑒−𝛾𝑖 (𝑧) , 𝑝0𝑛 (𝑧) = 𝑝0𝑛 (0)𝑒−𝛾𝑛 (𝑧) .

The dimensionless quantities 𝛾𝑖 (𝑧) and 𝛾𝑛 (𝑧) are given by

𝛾𝑖 (𝑧) =
∫ 𝑧

0

1

𝐻𝑖 (𝑧′)
𝑑𝑧′, 𝛾𝑛 (𝑧) =

∫ 𝑧

0

1

𝐻𝑛 (𝑧′)
𝑑𝑧′,

where

𝐻𝑖 (𝑧) =
𝑅𝑇𝑖 (𝑧)
�̃�𝑖𝑔

, 𝐻𝑛 (𝑧) =
𝑅𝑇𝑛 (𝑧)
�̃�𝑛𝑔

are the gravitational pressure scale heights for ions and neutrals, 𝑅

is the gas constant, �̃�𝑖 and �̃�𝑛 are the mean atomic weights and 𝑇𝑖
and 𝑇𝑛 are the temperature of the ion and neutral fluid (such that

the mean translational kinetic energy or fluid particle in a frame

moving with the fluid is (3/2)𝑘𝐵𝑇𝑖 and (3/2)𝑘𝐵𝑇𝑛, respectively).

We should stress out that 𝑇𝑖 stands for the temperature of the charged

fluid, therefore it is the sum of the temperatures corresponding to ions

and electrons. For simplicity we assume that the plasma is isothermal,

meaning that the temperatures do not depend on height. As a result,

the scale-heights are also constant, so the height-variation of the two

pressures are simply given by

𝑝0𝑖 = 𝑝0𝑖 (0)𝑒−𝑧/𝐻𝑖 , 𝑝0𝑛 = 𝑝0𝑛 (0)𝑒−𝑧/𝐻𝑛 .

Using the ideal gas law the equilibrium densities of the two species

MNRAS 000, 1–12 (2020)
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also vary according to similar laws. One important implication of the

isothermal limit is that the sound speeds for the two species will be

constant and the two scale-heights will be simply 𝐻𝑖 = 𝑐
2
𝑆𝑖
/𝛾𝑔 and

𝐻𝑛 = 𝑐2
𝑆𝑛

/𝛾𝑔.

As a consequence of the variation of pressure and density with

height, the equilibrium is reached if the magnetic field and the mag-

netic flux tube’s cross section area vary with height according to (for

explanation see, e,g, Roberts and Webb 1978)

𝐵0 (𝑧) = 𝐵0 (0)𝑒−𝑧/2𝐻𝑖 , 𝐴0 (𝑧) = 𝐴0 (0)𝑒𝑧/2𝐻𝑖 .

With this particular choice of the magnetic field even the Alfvén

speed, defined as,

𝑣𝐴 =
𝐵0 (𝑧)

(𝜇0𝜌0𝑖 (𝑧))1/2
,

becomes also height-independent.

Our calculations will be further simplified by considering that tem-

poral changes in the environment (the plasma outside the magnetic

flux tube) take place over time scales that are much longer than any

characteristic times scales of interest occurring inside the flux tube

(very often this is also called the rigid boundary approximation). As

a result every term that contains a time derivative of the external

pressure, 𝜋(𝑧, 𝑡) will be neglected.

The propagation of slow waves in an unbounded plasma has been

investigated previously in great detail as an eigenvalue problem by

Zaqarashvili et al. (2011) and Soler et al. (2013) for varying colli-

sional rate between ions and neutrals. While in the collisionless limit

the two slow modes propagate with the ion cusp speed, and neu-

tral sound speed, respectively, in the collisional case the propagation

speed of slow waves become complex due to their interaction. In the

weakly ionised and very low plasma-beta regime these authors found

that the neutral slow waves are affected by a frequency cut-off, while

the slow mode associated to ions becomes the modified slow mode

𝜔2 ≈ 𝑘2
𝑐2
𝑆𝑖

+ 𝜒𝑐2
𝑆𝑛

1 + 𝜒 ,

where 𝜒 is defined as 𝜒 = 𝜌0𝑛/𝜌0𝑖 . When 𝜒 ≪ 1, the propagation

speed of ion slow waves becomes essentially 𝜔2 ≈ 𝑘2𝑐2
𝑆𝑖

.

Since we aim to analyze the spatial and temporal evolution of

waves, we will not discuss explicitly the role of collisions as in the

study by Soler et al. (2013), instead we will assume a fixed value

of the collisional frequency that is representative for the region of

the solar atmosphere where our analysis is valid. In our study we

will also assume that the parameter 𝜒 is much less than one and this

parameter can be used as an expansion parameter to simplify the

mathematics. Accordingly, the density ratio, 𝜒, can be written as

𝜒 =
𝜌0𝑛 (𝑧)
𝜌0𝑖 (𝑧)

=
𝜌0𝑛 (0)
𝜌0𝑖 (0)

exp

[
−𝑧

(
1

𝐻𝑛
− 1

𝐻𝑖

)]
= 𝜒0𝑒

−𝑧/ℎ . (10)

Clearly the condition 𝜒 ≪ 1 means not only that 𝜒0 ≪ 1, but

also that ℎ > 0, i.e. 𝐻𝑖 > 𝐻𝑛. This assumption is based on the

relative variation of the neutral density compared to the density of

ions with height according to the AL C7 atmospheric model (Avrett

and Loeser 2008). In Fig 1 we compare the predictions of the VAL

IIIC atmospheric model (Vernazza et al. 1981) shown by red line,

with the AL C7 model shown by the blue line. Clearly the two

models show a good similarity up to heights of about 2 Mm. The

large discrepancy following this height is due to more extensive set of

chromospheric observations. It is clear that, while in the photosphere

the density ratio can be even of the order of 104, for chromospheric

heights the density ratio is very small, and, therefore, our assumption

is justified.

Figure 1. The variation of the ratio of number densities of neutrals and ions

with height based on the VAL III C atmospheric model (Vernazza et al. 1981,

red line) and the AL c7 atmospheric model (Avrett and Loeser (2008, blue

line).

3 EVOLUTIONARY EQUATIONS

The governing Equations (1)–(6) together with the particular choice

of equilibrium parameters and the two conservation relations can

be reduced to a system of coupled differential equations for the

longitudinal velocity components of the two fluids of the form

𝜕2𝑣𝑖

𝜕𝑡2
− 𝑐2

𝑇

𝜕2𝑣𝑖

𝜕𝑧2
+ 𝛼1

𝜕𝑣𝑖

𝜕𝑧
+ 𝛼2𝑣𝑖 = 0, (11)

𝜕2𝑣𝑛

𝜕𝑡2
− 𝑐2

𝑆𝑛

𝜕2𝑣𝑛

𝜕𝑧2
+ 𝛼3

𝜕𝑣𝑛

𝜕𝑧
+ 𝛼4𝑣𝑛 + 𝜈𝑛𝑖

𝜕𝑣𝑛

𝜕𝑡
=

−
𝑐2
𝑆𝑛
𝑐2
𝑇

𝑣2
𝐴

𝜕2𝑣𝑖

𝜕𝑧2
+ 𝛼5

𝜕𝑣𝑖

𝜕𝑧
+ 𝛼6𝑣𝑖 , (12)

where 𝑐2
𝑇

= 𝑐2
𝑆𝑖
𝑣2
𝐴
/(𝑐2

𝑆𝑖
+ 𝑣2

𝐴
) is the cusp speed related to ions.

The above two relations describe the evolution of two slow magne-

toacoustic modes (the ion-acoustic mode propagating with the cusp

speed and neutral-acoustic mode propagating with the neutral sound

speed). We should note that due to the relative low number of neu-

trals ion-acoustic modes will propagate (to leading order) unaffected

by collisions, while the propagation of neutral-acoustic modes is

strongly affected by collisions with ions and their dynamical be-

haviour is driven by ions through the set of terms on the right-hand

side of Equation (12).

The coefficients that appear in the above two equations are given

by

𝛼1 =
𝑐2
𝑇

2𝐻𝑖
, 𝛼2 =

𝛾 − 1

𝛾2𝐻2
𝑖

[
𝑐2
𝑆𝑖 − 𝑐

2
𝑇 (1 − 𝛾/2)

]
, (13)

𝛼3 =

𝑐2
𝑆𝑛

𝐻𝑛

(
1 − 𝐻𝑛

2𝐻𝑖

)
, 𝛼4 =

𝑐2
𝑆𝑛

(𝛾 − 1)
2𝛾𝐻𝑛𝐻𝑖

, (14)

𝛼5 =

𝑐2
𝑆𝑛
𝑐2
𝑇
(𝛾 − 1)

𝛾𝐻𝑛𝑣
2
𝐴

(
1 − 𝐻𝑛

𝐻𝑖

)
, 𝛼6 =

𝑐2
𝑆𝑛
𝛼1

𝛾2𝐻𝑛𝑣
2
𝐴

(𝛾2−3𝛾+2). (15)
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Equations (11)–(12) describing the evolution of the two waves can

be brought into a simpler form by introducing the reduced function

for ions and neutrals of the form

𝑣𝑖 (𝑧, 𝑡) = 𝑄𝑖 (𝑧, 𝑡) exp(𝜆𝑖𝑧), 𝑣𝑛 (𝑧, 𝑡) = 𝑄𝑛 (𝑧, 𝑡) exp(𝜆𝑛𝑧).

As the quantities 𝜆𝑖 and 𝜆𝑛 can be arbitrary, we can choose their

values so that first-order derivatives with respect to the spatial coor-

dinate, 𝑧, vanish. Therefore, by choosing

𝜆𝑖 =
1

4𝐻𝑖
, 𝜆𝑛 =

1

4𝐻𝑖
− 1

2𝐻𝑛
, (16)

the evolutionary equations (11)–(12) can be represented as

𝜕2𝑄𝑖

𝜕𝑡2
− 𝑐2

𝑇

𝜕2𝑄𝑖

𝜕𝑧2
+ 𝜔2

𝑖𝑄𝑖 = 0, (17)

𝜕2𝑄𝑛

𝜕𝑡2
− 𝑐2

𝑆𝑛

𝜕2𝑄𝑛

𝜕𝑧2
+Ω

2
𝑛𝑄𝑛 + 𝜈𝑛𝑖

𝜕𝑄𝑛

𝜕𝑡
=

(
−
𝑐2
𝑆𝑛
𝑐2
𝑇

𝑣2
𝐴

𝜕2𝑄𝑖

𝜕𝑧2
+ 𝛿𝑄𝑖

)
exp

(
− 𝑧

2𝛾ℎ

)
, (18)

where now the coefficients 𝜔2
𝑖
, Ω2

𝑛 and 𝛿 are given by

𝜔2
𝑖 =

(
9

4
− 2

𝛾

)
𝜔2
𝐴𝑖 − 𝜔

2
𝐴𝑖

𝛽𝛾

2 + 𝛽𝛾

(
3

2
− 2

𝛾

)2

,

Ω
2
𝑛 =

𝑐2
𝑆𝑛

2𝑐2
𝑆𝑖

𝜔2
𝐴𝑖 + 𝜔

2
𝐴𝑛 +

𝑐2
𝑆𝑛

4𝛾𝐻𝑖𝐻𝑛
(𝛾 − 2),

and

𝛿 =
𝑐2
𝑆𝑛

𝑣2
𝐴
(2 + 𝛾𝛽)

[
𝜔2
𝐴𝑖

(
1

2
− 2

𝛾
+ 2

𝛾2

)
+

2𝑐2
𝑆𝑖

𝑐2
𝑆𝑛

𝜔2
𝐴𝑛

(
1 − 2

𝛾
+ 1

𝛾2

)
+

𝑐2
𝑆𝑖

𝐻𝑖𝐻𝑛

(
1

4
− 3

2𝛾
+ 1

𝛾2

)]
,

with 𝛽 = 2𝑐2
𝑆𝑖
/(𝛾v

2
𝐴
) being the plasma-beta parameter, and 𝜔𝐴𝑖 =

𝑐𝑆𝑖/(2𝐻𝑖) and𝜔𝐴𝑛 = 𝑐𝑆𝑛/(2𝐻𝑛) are the acoustics cut-off frequency

for ions and neutrals.

The significance of the quantity 𝜔𝑖 in Equation (17) becomes

clear once a normal mode analysis is applied to this equation and

consider that the function 𝑄𝑖 (𝑧, 𝑡) has a plane-wave dependence of

the form 𝑄𝑖 (𝑧, 𝑡) ∼ 𝑒𝑖 (𝑘𝑧−𝜔𝑡) . The resulting dispersion relation can

be rearranged into the form

𝑘2
=
𝜔2 − 𝜔2

𝑖

𝑐2
𝑇

. (19)

Propagating waves are possible only when the wavenumber, 𝑘 , is real

and this condition is satisfied if 𝑘2 > 0, i.e. 𝜔2 > 𝜔2
𝑖
. Therefore,

waves will propagate only if their frequencies are larger than the cut-

off value 𝜔𝑖 , so the stratified solar atmosphere acts as a frequency

filter, where only high frequency waves propagate. When 𝜔 < 𝜔𝑖

waves will be evanescent with an e-folding length of 𝑐𝑆𝑖/
√︃
𝜔2
𝑖
− 𝜔2.

The acoustic cut-off arises when ion-acoustic waves cannot propa-

gate vertically because the wavelength is comparable with the density

scale-height; consequently there is insufficient inertia on the low-

density side of a compression to resist the acceleration of plasma,

thereby cancelling too much of the pressure gradient to permit ad-

equate subsequent compression of the surroundings, essential for

causing the perturbation to propagate in a wave-like way. The dy-

namics operates on the vertical component of the motion, and is

most effective for motion that is purely vertical.

Equation (19) can also be written as

𝑑2𝑄𝑖

𝑑𝑧2
+
𝜔2 − 𝜔2

𝑖

𝑐2
𝑆𝑖

𝑄𝑖 = 0

meaning that propagating/evanescent waves correspond to

𝑑2𝑄𝑖/𝑑𝑧2 < 0 and 𝑑2𝑄𝑖/𝑑𝑧2 > 0, respectively.

A similar treatment for neutral-acoustic modes is not possible, and

we will return to this aspect later. We should note here that in the

strongly ionised limit the value of the ion cut-off frequency agrees

(qualitatively) with the cut-off frequency for a fully ionised plasma,

derived by, e.g. Rae and Roberts (1982).

The system of coupled equations (17)–(18) describe the propaga-

tion of ion-acoustic and neutral-acoustic wave in space and time. All

the coefficients that appear in homogeneous part of these equations

are constants. The two partial differential equations will be solved as

an initial value problem (IVP), where we aim to study the asymptotic

evolution of waves.

4 ASYMPTOTIC BEHAVIOUR OF GUIDED SLOW WAVES

In order to discuss the asymptotic behaviour of waves for large val-

ues of time we will need to solve the initial value problem associated

with the two evolutionary equations (17)–(18). To make analytical

progress we will assume that all species have the same temperature,

so that 𝑇𝑒 = 𝑇𝑖 = 𝑇𝑛 = 𝑇 . This assumption is in line with the physical

requirement that a system will tend towards a state of equipartition of

energy and uniform temperature that maximises the system’s entropy.

As a result, any local modification of temperature (and increase in

the thermal speed of particles) is smoothed out after a few collisional

times, i.e. over times that are smaller than the period of waves (very

often this time is called the equilibration time) and any modifica-

tions in the distribution of particles is reduced in time, leading to

a Maxwellian distribution. Since for the hydrogen plasma assumed

here the mass of ions and neutrals are nearly identical, ions rapidly

exchange energy with neutrals and tend to reach a thermal equilib-

rium with neutrals. Indeed, the amount of energy that is exchanged

between ions and neutrals can be at most 𝑚𝑖𝑚𝑛/(𝑚𝑖 + 𝑚𝑛)2 ≈ 0.25

times of their energy, making the process of thermalisation through

collision very effective. In contrast, during the collision between elec-

trons and hydrogen neutral atoms, electrons are able to transfer only

𝑚𝑒𝑚𝑛/(𝑚𝑒+𝑚𝑛)2 ≈ 5.4×10−4th part of their energy and it requires

approximately 1850 collisions to reach the equipartition of energy

between electrons and neutrals, and consequently, equality of their

temperature. For a𝑇 = 104 K plasma and a neutral number density of

𝑛𝑛 = 2 × 1015 m−3 the collisional frequency between electrons and

neutrals is approximately 39 s−1, meaning that in about 47 seconds

the electron and neutral population reach a thermal equilibrium.

Let us estimate the equilibration time between ions and neutrals. In

the absence of flows and other spatial inhomogeneities, the evolution

of the temperature is given by the energy equations written for the

two species

𝑑𝑇𝑖

𝑑𝑡
= 𝜈𝑖𝑛 (𝑇𝑛 − 𝑇𝑖),

𝑑𝑇𝑛

𝑑𝑡
= 𝜈𝑛𝑖 (𝑇𝑖 − 𝑇𝑛).

Assuming that the temperatures of the two species at the start of our
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investigation are𝑇𝑖 and𝑇𝑖 , the temporal evolution of the temperatures

with time (see Soler et al 2013) is given by

𝑇𝑖 = 𝑇 𝑓 − (𝑇𝑛 − 𝑇𝑖)
𝜈𝑖𝑛

𝜈𝑖𝑛 + 𝜈𝑛𝑖
𝑒−(𝜈𝑖𝑛+𝜈𝑛𝑖)𝑡 ,

𝑇𝑛 = 𝑇 𝑓 + (𝑇𝑛 − 𝑇𝑖)
𝜈𝑛𝑖

𝜈𝑖𝑛 + 𝜈𝑛𝑖
𝑒−(𝜈𝑖𝑛+𝜈𝑛𝑖)𝑡 ,

where

𝑇 𝑓 =
𝜈𝑖𝑛𝑇𝑛 + 𝜈𝑛𝑖𝑇𝑖
𝜈𝑖𝑛 + 𝜈𝑛𝑖

,

is the final temperature the two species will tend to through collision.

We can easily estimate the time (𝑡 𝑓 ) required for the two species to

reach 99% of the common temperature as

𝑡 𝑓 =
1

𝜈𝑛𝑖 (1 + 𝜈𝑖𝑛/𝜈𝑛𝑖)
ln

[
102 (𝑇𝑖 − 𝑇𝑛)

𝑇𝑖 + 𝑇𝑛𝜈𝑖𝑛/𝜈𝑛𝑖

]
.

Given the relationship between the two collisional frequencies we

can write 𝑡 𝑓 as

𝑡 𝑓 =
1

𝜈𝑛𝑖 (1 + 𝑛𝑛/𝑛𝑖)

[
ln 102 (𝑇𝑖 − 𝑇𝑛)

𝑇𝑖 + 𝑇𝑛𝑛𝑛/𝑛𝑖

]
.

Finally, taking into account that in the present study we deal with

strongly ionised plasma for which 𝑛𝑖 ≫ 𝑛𝑛, the above relation sim-

plifies to

𝑡 𝑓 ≈ 1

𝜈𝑛𝑖

[
4.6 + ln

(
1 − 𝑇𝑛

𝑇𝑖

)]
.

For an order of magnitude estimate let us consider that 𝑇𝑖 = 3𝑇𝑛,

and 𝜈𝑛𝑖 = 10 s−1. As a result, the time needed for the two species

to reach 99% of the thermal equilibrium is 0.4 seconds, i.e. thermal

equilibrium between the massive particles is settled, indeed, very

quickly. This conclusion is in line with the results obtained by earlier

studies (e.g. Zaqarashvili et al. 2011, Soler et al. 2013 and Oliver et

al. 2016).

As a consequence of the thermal equilibrium, the relationship

between the sound speeds associated with the two constituent fluids

becomes

𝑐2
𝑆𝑖 =

𝛾(𝑝0𝑖 + 𝑝0𝑒)
𝜌0𝑖

=
𝛾𝑘𝐵 (𝑇𝑖 + 𝑇𝑒)

𝑚𝑖
=

2𝛾𝑘𝐵𝑇𝑛

𝑚𝑛
=

2𝛾𝑝0𝑛

𝜌0𝑛
= 2𝑐2

𝑆𝑛 .

Using this result, the ratio of the propagation speed of waves associ-

ated to neutral and charged species takes the form

𝑐2
𝑆𝑛

𝑐2
𝑇

=

𝑐2
𝑆𝑛

𝑐2
𝑆𝑖

(
1 +

𝑐2
𝑆𝑖

𝑣2
𝐴

)
=

1

2

(
1 + 𝛾𝛽

2

)
≈ 1

2
, (20)

where we used the consideration that our investigation is valid for the

low plasma-beta case. The above result shows that the wave associ-

ated to charged particles propagates with a speed that is roughly twice

the propagation speed of neutral-acoustic mode. Another straightfor-

ward implication of the above assumption is that the gravitational

scale-height of ions (𝐻𝑖) is twice the scale height corresponding to

neutrals (𝐻𝑛), i.e. the density decrease of neutrals with height is

faster than for ions. In addition, the reduced scale-height, ℎ, defined

by Equation (10), becomes ℎ = 2𝐻𝑛.

Because the two modes always appear together the above consid-

eration raises an important aspect. Since the neutral acoustic modes

are trailing the ion acoustic modes, the former waves will propagate

in an environment that is already modified by the ion acoustic mode

and this materialises partly in a modified temperature and density

that results from the perturbations caused by the ion acoustic modes.

The passage of the ion acoustic mode will also modify the density of

ions, and through collisions, the density of neutrals will also be modi-

fied. However, in the present study we will assume that these changes

are insignificant and, therefore, will be neglected. It is likely that

the correctness of our assumption can be checked only by rigorous

numerical investigation.

4.1 Ion-acoustic modes

Let us recall that the evolutionary equation for the charged fluid was

obtained to be given by the Klein-Gordon equation

𝜕2𝑄𝑖

𝜕𝑡2
− 𝑐2

𝑇

𝜕2𝑄𝑖

𝜕𝑧2
+ 𝜔2

𝑖𝑄𝑖 = 0. (21)

We are going to consider the spatial positive domain and the solution

of the above equation will be sought subject to the initial conditions

𝑄𝑖 (𝑧, 0) = 𝜕𝑄𝑖 (𝑧, 0)/𝜕𝑡 = 0. In addition, we require that waves will

vanish at 𝑧 → ∞, i.e. 𝑄𝑖 (𝑧 → ∞, 𝑡) = 0.

The IVP problem can be studied by means of the Laplace trans-

form. Accordingly, we introduce the Laplace transform of the func-

tion 𝑄𝑖 (𝑧, 𝑡) as

Ψ𝑖 (𝑧, 𝑠) = L[𝑄𝑖 (𝑧, 𝑡] =
∫ ∞

0
𝑄𝑖 (𝑧, 𝑡)𝑒−𝑠𝑡 𝑑𝑡. (22)

As a result, the Klein-Gordon equation for ions reduces

𝑠2Ψ𝑖 (𝑧, 𝑠) − 𝑐2
𝑇

𝑑2

𝑑𝑧2
Ψ𝑖 (𝑧, 𝑠) + 𝜔2

𝑖Ψ𝑖 (𝑧, 𝑠) = 0, (23)

that has to be solved subject to the boundary condition Ψ𝑖 (𝑧 →
∞, 𝑠) = 0. The above equation can rearranged as

𝑑2

𝑑𝑧2
Ψ𝑖 (𝑧, 𝑠) −

𝑠2 + 𝜔2
𝑖

𝑐2
𝑇

Ψ𝑖 (𝑧, 𝑠) = 0, (24)

whose general solution can be simply written as

Ψ𝑖 (𝑧, 𝑠) = 𝐶1 exp

(
𝑧

𝑐𝑇

√︃
𝑠2 + 𝜔2

𝑖

)
+ 𝐶2 exp

(
− 𝑧

𝑐𝑇

√︃
𝑠2 + 𝜔2

𝑖

)
, (25)

where 𝐶1 and 𝐶2 are arbitrary constants. Clearly, the first term will

not satisfy the required boundary condition, therefore we choose

𝐶1 = 0. Let us consider that at 𝑧 = 0 the wave is driven by a function

𝑄𝑖 (0, 𝑡) = A0 (𝑡) and its Laplace transform is Ψ𝑖 (0, 𝑠) = 𝑎0 (𝑠).
After applying this condition to the general solution, we obtain

Ψ𝑖 (𝑧, 𝑠) = 𝑎0 (𝑠) exp
©«
−

√√√
𝑠2 + 𝜔2

𝑖

𝑐2
𝑇

𝑧
ª®¬
. (26)

Now, the function 𝑄𝑖 (𝑧, 𝑡) can be obtained by applying the inverse

Laplace transform to the function given by Equation (26). Since we

have to compute the inverse Laplace transform of a product, we

will use the convolution theorem. In finding the value of the inverse

Laplace transform we will closely follow the method outlined by

Sutmann et al. (1998).

In order to find the inverse Laplace transform of Equation (26) we

use the identity (Bateman and Erdélyi 1954)

L−1


𝑒
−𝑎

√︃
𝑠2+𝜔2

𝑖√︃
𝑠2 + 𝜔2

𝑖


=

{
𝐽0

(
𝜔𝑖

√
𝑡2 − 𝑎2

)
, for 𝑡 > 𝑎

0, for 0 < 𝑡 < 𝑎,
(27)

where 𝐽0 is the zero-th order Bessel function. Let us define the

function

𝐼 =
𝑒
−𝑎

√︃
𝑠2+𝜔2

𝑖√︃
𝑠2 + 𝜔2

𝑖

=

∫ ∞

𝑎
𝐽0

(
𝜔𝑖

√︁
𝑡2 − 𝑎2

)
𝑒−𝑠𝑡𝑑𝑡. (28)
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We differentiate both sides of Equation (28) with respect 𝑎, so that

𝑑𝐼

𝑑𝑎
=

−𝜔𝑖𝑎

∫ ∞

𝑎

𝐽
′
0

(
𝜔𝑖

√
𝑡2 − 𝑎2

)
√
𝑡2 − 𝑎2

𝑒−𝑠𝑡𝑑𝑡 − 𝑒−𝑎𝑠 = − exp

(
−𝑎

√︃
𝜔2
𝑖
+ 𝑠2

)
.

(29)

We can use the identity 𝐽
′
0
(𝑥) = −𝐽1 (𝑥), and substitute 𝑎 by 𝑡𝑖 = 𝑧/𝑐𝑇

to obtain

exp

(
−𝑡𝑖

√︃
𝜔2
𝑖
+ 𝑠2

)
= exp(−𝑠𝑡𝑖)−𝜔𝑖 𝑡𝑖

∫ ∞

𝑡𝑖

𝐽1

(
𝜔𝑖

√︃
𝑡2 − 𝑡2

𝑖

)
√︃
𝑡2 − 𝑡2

𝑖

𝑒−𝑠𝑡𝑑𝑡.

(30)

Now, introducing Equation (30) into Equation (26), we find that

Ψ𝑖 (𝑧, 𝑠) = 𝑎0 (𝑠) exp(−𝑠𝑡𝑖)−𝑎0 (𝑠)𝜔𝑖 𝑡𝑖

∫ ∞

𝑡𝑖

𝐽1

(
𝜔𝑖

√︃
𝑡2 − 𝑡2

𝑖

)
√︃
𝑡2 − 𝑡2

𝑖

𝑒−𝑠𝑡𝑑𝑡.

(31)

Note that the z-dependence of the above function is ensured through

the expression of 𝑡𝑖 , which was introduced to simplify the notation.

Let us define the function

𝑍𝑖 (𝑧, 𝑡) = −𝜔𝑖 𝑡𝑖

𝐽1

(
𝜔𝑖

√︃
𝑡2 − 𝑡2

𝑖

)
√︃
𝑡2 − 𝑡2

𝑖

𝐻 (𝑡 − 𝑡𝑖) , (32)

where the 𝐻 (𝑡 − 𝑡𝑖) is the Heaviside step function.

After applying the second shifting theorem to the first term on the

right-hand side of Equation (31), we obtain

𝑎0 (𝑠) exp(−𝑠𝑡𝑖) = L [A0 (𝑡 − 𝑡𝑖) 𝐻 (𝑡 − 𝑡𝑖)] . (33)

As a result, Equation (31) becomes

Ψ𝑖 (𝑧, 𝑠) = L [A0 (𝑡 − 𝑡𝑖)𝐻 (𝑡 − 𝑡𝑖)] + L [A0 (𝑡)𝑍𝑖 (𝑧, 𝑡)] . (34)

Using the convolution theorem, the second term in right-hand side

of above equation can be written as

L [A0 (𝑡)𝑍𝑖 (𝑧, 𝑡)] = L
[∫ 𝑡

0
A0 (𝑡 − 𝜏)𝑍𝑖 (𝑧, 𝜏)𝑑𝜏

]
. (35)

Since the original function 𝑄𝑖 (𝑧, 𝑡) can be determined as the inverse

Laplace transform of the function Ψ𝑖 (𝑧, 𝑠) given by Equation (34),

eventually we we obtain

𝑄𝑖 (𝑧, 𝑡) = A0 (𝑡 − 𝑡𝑖) 𝐻 (𝑡 − 𝑡𝑖) +
∫ 𝑡

0
A0 (𝑡 − 𝜏)𝑍𝑖 (𝑧, 𝜏)𝑑 𝜏. (36)

In the case of ion-acoustic modes the spatial and temporal evolution

of the reduced speed, 𝑄𝑖 (𝑧, 𝑡) is given by Equation (36). Given the

specific driver we have

A0 (𝑡 − 𝑡𝑖) = 𝑉0 [𝐻 (𝑡 − 𝑡𝑖) − 𝐻 (𝑡 − 𝑡𝑖 − 𝑃)]𝑒𝑖𝜔 (𝑡−𝑡𝑖) .

Since we are interested in the asymptotic behaviour of waves it is

clear that 𝑡 ≫ 𝑡𝑖 , which implies 𝑡 ≫ (𝑡𝑖 + 𝑃). As a result both

Heaviside functions become unity, and the first term of Equation

(36) becomes zero. Further, the second term of Equation (36) can be

written as

𝑄𝑖 (𝑧, 𝑡) = 𝑉0

∫ 𝑡

0
𝐻 (𝑡 − 𝜏)𝑒−𝑖𝜔 (𝑡−𝜏)𝑍𝑖 (𝑧, 𝜏)𝑑𝜏−

−𝑉0

∫ 𝑡

0
𝐻 (𝑡 − 𝜏 − 𝑃)𝑒−𝑖𝜔 (𝑡−𝜏)𝑍𝑖 (𝑧, 𝜏)𝑑𝜏.

It is clear that the first term cancels because all the values of 𝜏 have

to be in the interval (0, 𝑡), for which the Heaviside function is zero.

Using the Heaviside function, the reduced speed, 𝑄𝑖 can be written

as

𝑄𝑖 (𝑧, 𝑡) = −𝑉0

∫ 𝑡

𝑡−𝑃
𝑒−𝑖𝜔 (𝑡−𝜏)𝑍𝑖 (𝑧, 𝜏)𝑑𝜏.

In order to make analytical progress we will rewrite the convolutive

integral such that∫ 𝑡

𝑡−𝑃
. . . 𝑑𝜏 =

∫ ∞

𝑡−𝑃
. . . 𝑑𝜏 −

∫ ∞

𝑡
. . . 𝑑𝜏.

In order to estimate the value of these integrals we should keep in

mind that the asymptotic analysis is valid provided 𝑡 ≫ 𝑡𝑖 or 𝜏 ≫ 𝑡𝑖
for which the Bessel function 𝐽1 (𝑥) for large arguments can be written

as

𝐽1 (𝑥) ≈
2

√
𝜋𝑥

[
cos

(
𝑥 − 3𝜋

4

)
+ O

(
1

𝑥

)]
.

After some straightforward calculations (see Sutmann et al. 1998,

Appendix B) we eventually obtain

𝑄𝑖 (𝑧, 𝑡) = 𝑉0

√︂
2𝜔𝑖

𝜋

1

𝜔2 − 𝜔2
𝑖

2𝑡𝑖

𝑡3/2
sin

(
𝜔𝑖𝑃

2

)
×

[
𝜔𝑖 sin

(
𝜔𝑖 (𝑡 − 𝑃/2) −

3𝜋

4

)
− 𝑖𝜔 cos

(
𝜔𝑖 (𝑡 − 𝑃/2) −

3𝜋

4

)]
. (37)

Clearly this solution describes a wave whose transient part that oscil-

lates with the cut-off frequency, 𝜔𝑖 , but this decays in time as 𝑡−3/2.

As a result, an observer situated at a given height, 𝑧0, would observe

a damped slow wave propagating with the cut-off frequency 𝜔𝑖 and

free oscillations (the steady solution) are not present.

4.2 Neutral-acoustic modes

The equation that describes the spatial-temporal evolution of these

waves is given by Equation (18). It is clear that the evolution of these

waves (described by the left-hand side of Equation 18) is driven by

ions. In contrast to ions, where in the first order of approximation

the collisions with neutrals can be neglected, in the case of neutrals

the collisions with ions will play an essential role, and this effect is

described by the last term on the left-hand side of Equation (18). This

equation is an inhomogeneous partial differential equation and so-

lutions can be obtained by determining the complementary solution

and a particular solution that is driven by the form of the inhomo-

geneous term. The complementary solution can be obtained after

solving the equation

𝜕2𝑄𝑛

𝜕𝑡2
− 𝑐2

𝑆𝑛

𝜕2𝑄𝑛

𝜕𝑧2
+Ω

2
𝑛𝑄𝑛 + 𝜈𝑛𝑖

𝜕𝑄𝑛

𝜕𝑡
= 0. (38)

The above equation is the well-known telegrapher’s equation that

can be easily reduced to a Klein-Gordon equation. Accordingly, let

us introduce a new function so that 𝑄𝑛 (𝑧, 𝑡) = 𝑞𝑛 (𝑧, 𝑡)𝑒−𝜈𝑛𝑖 𝑡/2 As

a result the equation that describes the complementary solution of

neutral-acoustic modes becomes

𝜕2𝑞𝑛

𝜕𝑡2
− 𝑐2

𝑆𝑛

𝜕2𝑞𝑛

𝜕𝑧2
+

(
Ω

2
𝑛 −

𝜈2
𝑛𝑖

4

)
𝑞𝑛 = 0. (39)

It can be shown that the quantityΩ2
𝑛−𝜈2

𝑛𝑖
/4 is always negative. Again,

using a normal mode analysis similar to the method employed in the

MNRAS 000, 1–12 (2020)



8 A. Alharbi et al.

case of ion-acoustic modes, it becomes clear that neutral-acoustic

modes propagate with no cut-off.

Now, let us write the governing equation for the neutral-acoustic

mode in the form

𝜕2𝑞𝑛

𝜕𝑡2
− 𝑐2

𝑆𝑛

𝜕2𝑞𝑛

𝜕𝑧2
− 𝜔2

𝑛𝑞𝑛 =

=

(
−
𝑐2
𝑆𝑛
𝑐2
𝑇

𝑣2
𝐴

𝜕2𝑄𝑖

𝜕𝑧2
+ 𝜈𝑛𝑖

𝜕𝑄𝑖

𝜕𝑡
+ 𝛿𝑄𝑖

)
𝑒𝜈𝑛𝑖 𝑡/2𝑒−𝑧/4𝛾𝐻𝑛 , (40)

where 𝜔2
𝑛 = 𝜈2

𝑛𝑖
/4 − Ω

2
𝑛. Next, we apply the Laplace transform to

the above equation and denote the Laplace transform of the function

𝑞𝑛 as

Ψ𝑛 (𝑧, 𝑠) =
∫

𝑞𝑛 (𝑧, 𝑡)𝑒−𝑠𝑡 𝑑𝑡.

Using the expression of Ψ𝑖 (𝑧, 𝑠) given by Equation (26) we can write

the governing equation for neutrals as

𝜕2
Ψ𝑛

𝜕𝑧2
− 𝑠2 − 𝜔2

𝑛

𝑐2
𝑆𝑛

Ψ𝑛 = 𝑓 (𝑧, 𝑠), (41)

where, with the help of the shifting theorem, the inhomogeneous

part, 𝑓 (𝑧, 𝑠) is given by

𝑓 (𝑧, 𝑠) =
{
− 1

𝑣2
𝐴

[(
𝑠 − 𝜈𝑛𝑖

2

)2
+ 𝜔2

𝑖

]
+ 𝜈𝑛𝑖

𝑐2
𝑆𝑛

(
𝑠 − 𝜈𝑛𝑖

2

)
+ 𝛿

𝑐2
𝑆𝑛

}
×

𝑎0

(
𝑠 − 𝜈𝑛𝑖

2

)
𝑒𝑥𝑝

[
−𝑡𝑖

√︂(
𝑠 − 𝜈𝑛𝑖

2

)2
+ 𝜔2

𝑖
− 𝑧

4𝛾𝐻𝑛

]
. (42)

The solution of the homogeneous part of the Equation (41) that

satisfies the condition at infinity becomes

Ψ
ℎ𝑜𝑚
𝑛 = 𝐵1 exp

[
− 𝑧

𝑐𝑆𝑛

√︃
𝑠2 − 𝜔2

𝑛

]
, (43)

and the value of the constant 𝐵1 will be chosen such that its value

will be the Laplace transform of the driver at 𝑧 = 0. For simplicity

we will assume that the waves associated to both fluids are initiated

by the same driver, therefore we will write 𝐵1 = 𝑎0 (𝑠).
To find the inverse Laplace transform of the homogeneous solution

we use the identity (Bateman and Erdélyi 1954)

L−1


𝑒−𝑎

√
𝑠2−𝜔2

𝑛√︃
𝑠2 − 𝜔2

𝑛


=

{
𝐼0

(
𝜔𝑛

√
𝑡2 − 𝑎2

)
, for 𝑡 > 𝑎

0, for 0 < 𝑡 < 𝑎,

where 𝐼0 (𝑥) is the modified Bessel function of order zero. Now let

us define the function

𝐽 =
𝑒−𝑎

√
𝑠2−𝜔2

𝑛√︃
𝑠2 − 𝜔2

𝑛

=

∫ ∞

𝑎
𝐼0 (𝜔𝑛

√︁
𝑡2 − 𝑎2)𝑒−𝑠𝑡 𝑑𝑡. (44)

After differentiating the above function with respect to 𝑎, we obtain

𝑑𝐽

𝑑𝑎
= −𝑒−𝑎

√
𝑠2−𝜔2

𝑛 = −𝑎𝜔𝑛

∫ ∞

𝑎

𝐼 ′
0
(𝜔𝑛

√
𝑡2 − 𝑎2)

√
𝑡2 − 𝑎2

𝑒−𝑠𝑡 𝑑𝑡 − 𝑒−𝑎𝑠 ,

where dash denotes the derivative of the function 𝐼0 (𝑥) with respect

to its argument. Using the identity 𝐼 ′
0
(𝑥) = 𝐼1 (𝑥) and replacing 𝑎 by

𝑡𝑛 = 𝑧/𝑐𝑆𝑛 we obtain

exp

(
−𝑡𝑛

√︃
𝑠2 − 𝜔2

𝑛

)
= 𝜔𝑛𝑡𝑛

∫ ∞

𝑡𝑛

𝐼1 (𝜔𝑛

√︃
𝑡2 − 𝑡2𝑛)√︃

𝑡2 − 𝑡2𝑛
𝑒−𝑠𝑡𝑑𝑡 + 𝑒−𝑠𝑡𝑛 .

(45)

It can be easily shown that in the low beta approximation 𝑡𝑖 ≈ 𝑡𝑛/
√

2.

Let us define the function

𝑍𝑛 (𝑧, 𝑡) = 𝜔𝑛𝑡𝑛
𝐼1 (𝜔𝑛

√︃
𝑡2 − 𝑡2𝑛)√︃

𝑡2 − 𝑡2𝑛
𝐻 (𝑡 − 𝑡𝑛) .

As a result, the solution of the homogeneous part of the governing

equation for neutral-acoustic slow waves becomes

𝑞𝑛 (𝑧, 𝑠) = 𝑎0 (𝑠)𝑒−𝑠𝑡𝑛 + 𝑎0 (𝑠)L [𝑍𝑛 (𝑧, 𝑡)] .

After applying the inverse Laplace transform and the convolution

theorem, the solution becomes

𝑞𝑛 (𝑧, 𝑡) = A0 (𝑡 − 𝑡𝑛) 𝐻 (𝑡 − 𝑡𝑛) +
∫ 𝑡

0
A0 (𝑡 − 𝜏)𝑍𝑛 (𝑧, 𝜏) 𝑑𝜏. (46)

In order to determine the particular solution of the evolutionary

equation for neutrals, we will need to calculate the inverse Laplace

transform of the expression

𝐷 (𝑧, 𝑠) = 𝑎0

(
𝑠 − 𝜈𝑛𝑖

2

)
𝐾 (𝑠)𝑒−𝑧/4𝛾𝐻𝑛 exp

[
−𝑡𝑖

√︃
(𝑠 − 𝜈𝑛𝑖/2)2 + 𝜔2

𝑖

]
,

(47)

where the function 𝐾 (𝑠) is defined as

𝐾 (𝑠) =
− 𝛽𝛾

4

[(
𝑠 − 𝜈𝑛𝑖

2

)2
+ 𝜔2

𝑖

]
+ 𝜈𝑛𝑖

(
𝑠 − 𝜈𝑛𝑖

2

)
+ 𝛿

𝑠2 − 𝜔2
𝑛 − 𝑐2

𝑆𝑛

[
1

4𝛾𝐻𝑛
+ 1

𝑐𝑇

√︂(
𝑠 − 𝜈𝑛𝑖

2

)2
+ 𝜔2

𝑖

]2

The above relation shows that we will need to deal with the inverse

Laplace transform of a triple product, therefore we will use the triple

convolution formula. According to the standard definition if 𝐹 (𝑠),
𝐺 (𝑠) and 𝐻 (𝑠) are the Laplace transforms of the functions 𝑓 (𝑡), 𝑔(𝑡)
and ℎ(𝑡), then

L−1 [𝐹 (𝑠)𝐺 (𝑠)𝐻 (𝑠)] =
∫ 𝜏

0

[
𝑓 (𝑡 − 𝜏)

∫ 𝜏

0
𝑔(𝜏 − 𝜁)ℎ(𝜁)𝑑𝜁

]
𝑑𝜏.

Since the inverse Laplace transform of the exponential term in Equa-

tion (47) has already been obtained (see Equation 35), the only task

here will be to derive the inverse Laplace transform of the function

𝐾 (𝑠). This function has two simple poles at the zeros of the denom-

inator, therefore the inverse Laplace transform can be obtained as

the sum of the residues at the two poles. It is easy to see that the

denominator is singular at

Γ1,2 =
−𝜈𝑛𝑖 ± G

1 − 𝑔/2𝜔𝑖𝑐𝑇
, (48)

where

G =

[
𝜈2
𝑛𝑖 −

(
2 − 𝑔

𝜔𝑖𝑐𝑇

) (
Ω

2
𝑛 − 𝑔2

16𝑐2
𝑆𝑛

−
𝜔2
𝑖

2
− 𝜔𝑖𝑔

2𝑐𝑇

)]1/2
.

It can be shown that for typical chromospheric conditions G is real,

therefore both roots, Γ1,2, are real and negative. As a result, the

inverse Laplace transform of the function 𝐾 (𝑠) becomes

L−1 [𝐾 (𝑠)] = 𝑖𝜋 (1 − 𝑔/2𝜔𝑖𝑐𝑇 )
G 𝑒𝜈𝑛𝑖 𝑡/2

(
𝑦1𝑒

Γ1𝑡 − 𝑦2𝑒
Γ2𝑡

)
. (49)

with

𝑦 𝑗 = 𝛿 −
𝛽𝛾

4

(
𝜔2
𝑖 + Γ

2
𝑗

)
+ 𝜈𝑛𝑖Γ 𝑗 , 𝑗 = 1, 2.
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Taking into account the inverse Laplace transform of all terms that

appear in the expression of 𝐷 (𝑧, 𝑠) given by Equation (47) after a

lengthy, but straightforward calculation we can obtain the the partic-

ular solution of Equation (40). However, since the expression of the

whole particular solution is far too long and the expression of this

solution will not be used in the present form, we choose to give the

detailed solution once the asymptotic expression for large values of

time is derived.

The asymptotic solution of these equations refer to the case of large

values of time, i.e. for values of time for which 𝑡 ≫ 𝑧/𝑐𝑇 . Given

the relationship between the propagation speed of the two modes,

this condition includes the condition we impose for neutral-acoustic

modes.

4.3 Oscillations driven by a sinusoidal pulse

We choose to drive the system (both species) with a harmonic pulse

of the form A0 (𝑡) = 𝑉0𝑒
−𝑖𝜔𝑡 [𝐻 (𝑡) − 𝐻 (𝑡 − 𝑃)], where 𝑃 = 2𝜋/𝜔.

This driver acts for a duration 𝑃, after which is stopped. The driver

acts at 𝑧 = 0. In what follows we are going to discuss separately the

asymptotic solution for both species.

Now let us return to neutral acoustic modes, whose evolution-

ary equation is given by Equation (40). First, let us investigate

the asymptotic form of the homogeneous solution given by Equa-

tion (46). Again, assuming the same harmonic driver of the form

A0 (𝑡) = 𝑉0𝑒
−𝑖𝜔𝑡 [𝐻 (𝑡) − 𝐻 (𝑡 − 𝑃)] situated at 𝑧 = 0 we have

𝑞𝑛 (𝑧, 𝑡) = 𝑉0𝑒
−𝑖𝜔 (𝑡−𝑡𝑛) [𝐻 (𝑡 − 𝑡𝑛) − 𝐻 (𝑡 − 𝑃 − 𝑡𝑛)]+

+𝑉0

∫ 𝑡

0
𝐻 (𝑡 − 𝜏)𝑒−𝑖𝜔 (𝑡−𝜏)𝑍𝑛 (𝑧, 𝜏) 𝑑𝜏−

−𝑉0

∫ 𝑡

0
𝐻 (𝑡 − 𝜏 − 𝑃)𝑒−𝑖𝜔 (𝑡−𝜏)𝑍𝑛 (𝑧, 𝜏) 𝑑𝜏. (50)

Similar to the discussion presented in the case of ion-acoustic slow

modes the contributions of the first two terms of the above equation

are zero. As a result after taking into account the restriction imposed

by the Heaviside function, the homogeneous part of the equation of

𝑞𝑛 is given by

𝑞𝑛 (𝑧, 𝑡) = −𝑉0

∫ 𝑡

𝑡−𝑃
𝑒−𝑖𝜔 (𝑡−𝜏)𝑍𝑛 (𝑧, 𝜏) 𝑑𝜏.

Since we are investigating the asymptotic behaviour of waves for

large values of time, we can write that this corresponds to 𝜏 ≫ 𝑡𝑛,

which means that our equation reduces to

𝑞𝑛 (𝑧, 𝑡) = −𝑉0𝑒
−𝑖𝜔𝑡

∫ 𝑡

𝑡−𝑃

𝐼1 (𝜔𝑛𝜏)
𝜏

𝑒𝑖𝜔𝜏 𝑑𝜏. (51)

For large arguments the modified Bessel function can be written as

𝐼1 (𝜔𝑛𝜏) ≈
𝑒𝜔𝑛𝜏

(2𝜋𝜔𝑛𝜏)1/2
.

Therefore the evolutionary equation for the homogeneous part of the

governing equation for neutrals becomes

𝑞𝑛 (𝑧, 𝑡) = −𝑉0𝑒
−𝑖𝜔𝑡

√
2𝜋𝜔𝑛

∫ 𝑡

𝑡−𝑃

𝑒 (𝜔𝑛+𝑖𝜔)𝜏

𝜏3/2 𝑑𝜏. (52)

The integral in the above relation can be given approximately (see

Appendix A). As a result the evolution of the homogeneous part of

𝑞𝑛 (𝑧, 𝑡) becomes

𝑞𝑛 (𝑧, 𝑡) = − 𝑉0 (𝜔𝑛 − 𝑖𝜔)𝑒𝜔𝑛𝑡

√
2𝜋𝜔𝑛𝑡3/2 (𝜔2

𝑛 + 𝜔2)

[
1 − 𝑒 (𝜔𝑛+𝑖𝜔)𝑃

]
, (53)

where we used the approximation

1

(𝑡 − 𝑃)3/2
≈

(
1 + 3

2

𝑃

𝑡

)
1

𝑡3/2
=

1

𝑡3/2
+ O

(
𝑡−5/2

)
. (54)

Now taking into account the relationship between 𝑞𝑛 (𝑧, 𝑡) and

𝑄𝑛 (𝑧, 𝑡) we can find that the homogeneous solution of the evolu-

tionary equation for neutrals becomes

𝑄ℎ𝑜𝑚
𝑛 = −𝑉0

√︂
𝜔𝑛

2𝜋

𝜔𝑛 − 𝑖𝜔
𝜔2
𝑛 + 𝜔2

𝑒 (𝜔𝑛−𝜈𝑛𝑖/2)𝑡

𝑡3/2

[
1 − 𝑒−(𝜔𝑛+𝑖𝜔)𝑃

]
.

(55)

Since 𝜈𝑛𝑖/2 > 𝜔𝑛, it is clear that the above solution describes an

evanescent wave whose amplitude decays very rapidly due to colli-

sions.

Finally, using the technique presented earlier, the inverse Laplace

transform of the inhomogeneous part of Equation (47) that gives the

particular solution of Equation (40) is

𝑄𝑖𝑛ℎ
𝑛 (𝑧, 𝑡) = 𝐴2𝐴3𝑉0

𝑡3/2
×

[
(𝜔 sinΦ1 − 𝑖𝜔𝑖 cosΦ1)

(
𝑦1Γ1

Γ
2
1
+ 𝜔2

𝑖

− 𝑦2Γ2

Γ
2
2
+ 𝜔2

𝑖

)
−

−(𝜔 sinΦ2 − 𝑖𝜔𝑖 cosΦ2)
(
𝑦1Γ1𝑒

Γ1𝑃

Γ
2
1
+ 𝜔2

𝑖

− 𝑦2Γ2𝑒
Γ2𝑃

Γ
2
2
+ 𝜔2

𝑖

)
−

−𝜔𝑖 (𝜔 cosΦ1 − 𝑖𝜔𝑖 sinΦ1)
(

𝑦1

Γ
2
1
+ 𝜔2

𝑖

− 𝑦2

Γ
2
2
+ 𝜔2

𝑖

)
+

+𝜔𝑖 (𝜔 cosΦ2 − 𝑖𝜔𝑖 sinΦ2)
(
𝑦1𝑒

Γ1𝑃

Γ
2
1
+ 𝜔2

𝑖

− 𝑦2𝑒
Γ2𝑃

Γ
2
2
+ 𝜔2

𝑖

)]
(56)

where we used the notations

𝐴2 =
𝜋𝑒−𝑧/4𝛾𝐻𝑛 (1 − 𝑔/2𝜔𝑖𝑐𝑇 ) sin (𝜔𝑖𝑃/2)

G ,

𝐴3 =

√︂
2𝜔𝑖

𝜋

2

𝜔2 − 𝜔2
𝑖

𝑡𝑖 ,

Φ1 = 𝜔𝑖

(
𝑡 − 𝑃

2

)
− 3𝜋

4
, Φ𝑖 = 𝜔𝑖

(
𝑡 − 3𝑃

2

)
− 3𝜋

4
.

In contrast to the homogeneous solution, the particular solution shows

a decaying oscillatory motion with the cut-off frequency of ions. This

behaviour is a consequence of the coupling between neutrals and ions,

where ions provide the oscillatory background for neutrals and the

oscillatory behaviour of neutrals is driven by ions via collisions.

5 APPLICATION TO SOLAR ATMOSPHERE

In what follows we are going to analyse our results assuming typical

solar chromsopheric values for density and temperature. For mag-

netic field we assume a field strength of 10 G throughout all our

investigations.

In order to estimate key parameters that are important for our cal-

culations we are going to consider that the plasma has a temperature

of 𝑇 = 104 K and the number densities of ions and neutrals are
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𝑛𝑖 = 2 × 1015 m−3 and 𝑛𝑛 = 2 × 1013 m−3. With these parameters

we can estimate that the characteristic speeds will be 𝑐𝑆𝑖 = 16.6 km

s−1, 𝑐𝑆𝑛 = 11.7 km s−1 and 𝑣𝐴 = 450 km s−1, which would result

in a plasma- 𝛽 = 1.7 × 10−3 and a cusp speed on the charged fluid

𝑐𝑇 = 15.58 km s−1. For the given density and temperature values the

collisional frequency between neutrals and ions can be determined

with the help of Equations (8)–(9) and results in 𝜈𝑛𝑖 = 10.48 s−1.

Finally, the gravitational scale-heights connected to ions and neutrals

in thermal equilibrium become 𝐻𝑖 = 2𝐻𝑛 = 0.5 Mm

Our analysis showed that ion-acoustic modes propagate in the strat-

ified plasma such that their frequency is affected by a cut-off value.

Using the definition of this quantity given by Eq. (17) we obtain

that for the representative temperature we have chosen, 𝜔𝑖 ≈ 0.015

Hz and it varies as 𝑇−1/2 ( we should mention here that the value

of the cut-off we would obtain for a fully ionised plasma for the

same values of temperature and magnetic field, would be almost

identical with the above value thanks to the strongly ionised limit

employed by us). In addition, the variation of the cut-off frequency

with respect to plasma-beta shows a very weak dependence. It is

interesting to note that Leake et al. (2005) found that Alfvén waves

have a cut-off frequency of 0.6 Hz. As we proved earlier in Sec-

tion 4, neutral-acoustic modes propagate with no cut-off frequency,

however employing a normal mode analysis (i.e. assume that per-

turbations are proportional to the exponential factor 𝑒𝑖 (𝑘𝑧−𝜔𝑡) the

homogeneous part of Eq. (40) reduces to 𝜔2
= 𝑘2𝑐2

𝑆𝑛
− 𝜔2

𝑛, so the

requirement of propagating wave (𝜔2 > 0) means that in the case of

neutral-acoustic waves the condition 𝑘 > 𝜔𝑛/𝑐𝑆𝑛 ≈ 𝜈𝑛𝑖/2𝑐𝑆𝑛 has

to be satisfied (here the stratification effects are much smaller). Since

𝜔𝑛 depends on collisional frequency, the wave-number cut-off will

be influenced by collisions. For the values of characteristic speeds

and collisional frequency determined earlier neutral-acoustic waves

will propagate provided their wavenumber is larger than 5 × 10−4

m−1, or their wavelength is shorter than 1.25 × 104 m. Clearly, such

small wavelengths are impossible to observe with the current ob-

servational facilities. That is why observations can detect only one

mode (connected to the charged species), while the neutral-acoustic

modes remain sub-resolution modes. Such condition connected to

wavenumbers is not imposed on ion-acoustic modes, for these waves

the only restriction remains that their frequency has to be larger than

the cut-off frequency 𝜔𝑖 .

If the above conditions are not satisfied, neutral-acoustic modes

are becoming non-propagating entropy modes, i.e. modes whose

frequency is purely imaginary. In the case of these modes all per-

turbations are zero, except density and temperature perturbations in

such a way that the pressure perturbation is constant. Entropy mode

own their existence to the collisions of neutrals with ions in strongly

ionised limit and they play important role in the development and

evolution of turbulences in the presence of small spatial scales (see,

e.g. Lithwick and Goldreich, Soler et al. 2013).

Now let us return to the study of the temporal evolution of the two

waves. For that we are going to fix the value of height and study the

temporal evolution of the reduced velocity for the two waves.

In Fig. 2 we plot the temporal evolution of neutral-acoustic (solid

line) and ion-acoustic (dashed line) slow mode at a given height

(𝑧 = 4 Mm) as given by the real parts of Eqs. (37) and (56). Due

to the coupling between the two species, both waves oscillate with

the same frequency 𝜔𝑖 . It clear that the neutral-acoustic mode has

a larger amplitude and decays slower than the corresponding ion-

acoustic modes. The two modes are excited at the 𝑧 = 0 level with

the driving frequency 𝜔 = 0.1 Hz. Since the lifetime of the driver is

limited (here chosen to be 𝑃 = 20𝜋 s), the free oscillations associated

with the two species are absent, instead of both slow modes attenuate.

Figure 2. The temporal evolution of neutral-acoustic (solid lines) and ion-

acoustic (dashed lines) modes at 𝑧 = 4 Mm. The slow sausage modes as-

sociated with the two species is driven by a sinusoidal pulse of lifetime 𝑃.

Both slow modes oscillate with the ion cut-off frequency, 𝜔𝑖 . For an observer

situated at the observational height of 4 Mm, wave-like behaviour will be

observable only after the delay time 𝑡𝑖 = 𝑧/𝑐𝑇 . The delay time is shown here

as a horizontal straight line.

However, we should keep in mind that this attenuation is not due to

physical damping (here collisions), instead it is due to dispersion and

expansion of the cross section of the magnetic flux tube.

6 CONCLUSIONS

Our study was devoted to the investigation of the temporal and spa-

tial evolution of slow sausage waves propagating in an expanding

magnetic flux tube in a gravitationally stratified atmosphere. The

plasma temperatures are typical for the solar chromosphere, where

the ionisation degree of the plasma is high, nevertheless the plasma

is not fully ionised. Given the very different concentration of neutrals

and charged species, the ratio between neutral and charged density is

very small and this ratio was used as a small parameter in deriving

the evolutionary equation for waves. The plasma was assumed to be

isothermal, which implies that all characteristic speeds are constant

quantities.

The evolutionary equation for slow sausage waves associated with

the two species was derived in the linear limit. While the equation

for waves associated with the charged particles is described by a

Klein-Gordon equation, for neutrals this becomes the telegrapher’s

equation. Given the plasmas’s high degree of ionisation the collisions

have different role for the two species. For ions the collision with

neutrals is just a secondary effect (and proportional to the density

ratio between neutrals and ions). As a result the equation for ions

(in the leading order) is not affected by collisions. In contrast, the

equation for the neutrals species is strongly affected by the collisions

between neutrals and ions, causing a strong decay of waves. While the

ion-related waves propagate with a cut-off frequency, neutral sausage

modes propagate with no frequency cut-off thanks to the collisions

between species. In contrast, propagating slow waves associated to

neutrals are possible only for wavelengths that are shorter than 12.5

km, that is they are small wavelength waves.

The evolutionary equations have been solved as an initial value

problem, imposing a oscillatory pulse driver and an atmosphere that
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is unbounded in the 𝑧 direction. We considered the situation when the

pulse has already passed through the atmosphere (i.e. we performed

an asymptotic analysis valid for 𝑡 >> 𝑧/𝑐𝑇), which implies that an

observer would just observe the wake left behind the pulse. This wake

oscillates with the cut-off frequency of the ion population. In other

words, steady oscillations are excluded, and the system will oscillate

with the transient part of the solution that decays as 𝑡−3/2. This result

is similar to the findings of Kalkofen et al. (1994) and Sutmann et al.

(1998).

Slow sausage waves associated with neutrals propagate with no

cut-off but given the high degree of coupling with ions, these will

impose on neutrals the same behaviour, i.e. the transient solution

of neutral slow wave oscillate with the same ion-related cut-off fre-

quency and show the same temporal damping pattern as in the case

of ions. It is very likely that in strongly ionised plasmas these waves

will have a very rapid decay, even in the absence of the simplifi-

cations we imposed to the employed model. That would mean that

any possible observation of these waves has to be carried out in an

environment where the ionisation degree is moderate. The presence

of the cut-off frequency for ion-acoustic waves also implies that for a

driving frequency smaller than the cut-off frequency, the ion-acoustic

mode becomes evanescent (exponentially decaying), while the slow

waves associated with neutrals will still propagate unaffected. This

has large ranging consequences for observation of waves in the solar

atmosphere. Finally we should mention that when oscillations are

driven by a sinusoidal pulse, whose frequency is identical with the

ion cut-off frequency, the slow sausage modes associated to the two

species will not propagate as these are free oscillations (for details

see, e.g. Sutmann et al. 1998).

Any attempt to describe wave propagation in a different plasma

and field environments would require a detailed numerical analysis

of the coupled system of charged particles and neutrals
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APPENDIX A: EVALUATION OF THE INTEGRAL IN

EQUATION (52)

The value of the integral that is given in Equation (52) can be given

in approximate form for large values of 𝜏. The integral we have to

estimate is

𝑅(𝑧, 𝑡) =
∫ 𝑡

𝑡−𝑃

𝑒 (𝜔𝑛+𝑖𝜔)𝑡

𝜏3/2 𝑑𝜏. (A1)

Using integration by parts we have

𝑅(𝑧, 𝑡) = 1

𝜔𝑛 + 𝑖𝜔
𝑒 (𝜔𝑛+𝑖𝜔)𝜏

𝜏3/2

�����
𝑡

𝑡−𝑃
+ 3

2(𝜔𝑛 + 𝑖𝜔

∫ 𝑡

𝑡−𝑃

𝑒 (𝜔𝑛+𝑖𝜔)𝑡

𝜏5/2 𝑑𝜏 =

=
1

𝜔𝑛 + 𝑖𝜔
𝑒 (𝜔𝑛+𝑖𝜔)𝜏

𝜏3/2

[
1 + 3

2(𝜔𝑛 + 𝑖𝜔)𝜏

] 𝑡
𝑡−𝑃

+

15

4(𝜔𝑛 + 𝑖𝜔)2

∫ 𝑡

𝑡−𝑃

𝑒 (𝜔𝑛+𝑖𝜔)𝑡

𝜏7/2 𝑑𝜏.

The above relation can be re-arranged into∫ 𝑡

𝑡−𝑃

𝑒 (𝜔𝑛+𝑖𝜔)𝑡

𝜏3/2

(
1 − 15

2𝜏(𝜔𝑛 + 𝑖𝜔)

)
𝑑𝜏 =
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1

𝜔𝑛 + 𝑖𝜔
𝑒 (𝜔𝑛+𝑖𝜔)𝜏

𝜏3/2

[
1 + 3

2(𝜔𝑛 + 𝑖𝜔)𝜏

] 𝑡
𝑡−𝑃

.

It is clear that for large values of 𝜏 the second terms in the two brackets

are of the order of O(𝜏−1) and therefore, they can be neglected. As a

result, using the approximation (54) the integral 𝑅(𝑧, 𝑡) can be given

as as

𝑅(𝑧, 𝑡) ≈ 𝑒 (𝜔𝑛+𝑖𝜔)𝑡

𝑡3/2 (𝜔𝑛 + 𝑖𝜔)

[
1 − 𝑒−(𝜔𝑛+𝑖𝜔)𝑃

]
. (A2)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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