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RESEARCH ARTICLE Open Access

Evaluation of survival extrapolation in
immuno-oncology using multiple
pre-planned data cuts: learnings to aid in
model selection
Ash Bullement1, Anna Willis2, Amerah Amin3, Michael Schlichting4, Anthony James Hatswell1,5 and Murtuza Bharmal6*

Abstract

Background: Due to limited duration of follow up in clinical trials of cancer treatments, estimates of lifetime

survival benefits are typically derived using statistical extrapolation methods. To justify the method used, a range of

approaches have been proposed including statistical goodness-of-fit tests and comparing estimates against a

previous data cut (i.e. interim data collected). In this study, we extend these approaches by presenting a range of

extrapolations fitted to four pre-planned data cuts from the JAVELIN Merkel 200 (JM200) trial. By comparing

different estimates of survival and goodness-of-fit as JM200 data mature, we undertook an iterative process of

fitting and re-fitting survival models to retrospectively identify early indications of likely long-term survival.

Methods: Standard and spline-based parametric models were fitted to overall survival data from each JM200 data

cut. Goodness-of-fit was determined using an assessment of the estimated hazard function, information theory-

based methods and objective comparisons of estimation accuracy. Best-fitting extrapolations were compared to

establish which one provided the most accurate estimation, and how statistical goodness-of-fit differed.

Results: Spline-based models provided the closest fit to the final JM200 data cut, though all extrapolation methods

based on the earliest data cut underestimated the ‘true’ long-term survival (difference in restricted mean survival

time [RMST] at 36 months: − 1.1 to − 0.5 months). Goodness-of-fit scores illustrated that an increasingly flexible

model was favored as data matured. Given an early data cut, a more flexible model better aligned with clinical

expectations could be reasonably justified using a range of metrics, including RMST and goodness-of-fit scores

(which were typically within a 2-point range of the statistically ‘best-fitting’ model).

Conclusions: Survival estimates from the spline-based models are more aligned with clinical expectation and provided a

better fit to the JM200 data, despite not exhibiting the definitively ‘best’ statistical goodness-of-fit. Longer-term data are

required to further validate extrapolations, though this study illustrates the importance of clinical plausibility when selecting

the most appropriate model. In addition, hazard-based plots and goodness-of-fit tests from multiple data cuts present useful

approaches to identify when a more flexible model may be advantageous.
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Trial registration: JAVELIN Merkel 200 was registered with ClinicalTrials.gov as NCT02155647 on June 4, 2014.
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Background
Immuno-oncology treatments aim to exploit the body’s

immune system to target and kill cancer cells [1]. Different

‘immunotherapy’ classes have been studied in a range of

cancers, though perhaps one of the most notable advances

in contemporary medicine has been the development of

immune-checkpoint inhibitors [1–3]. Immune-checkpoint

inhibitors were first licensed for use in melanoma,

followed by a number of other cancers including non-

small-cell lung cancer, renal cell carcinoma and urothelial

carcinoma [4]. More recent approvals have included the

use of immune-checkpoint inhibitors in rare cancers, such

as microsatellite instability-high or mismatch repair defi-

cient solid tumors [4].

Clinical trials facilitate the collection of data regarding

the safety and efficacy of the intervention(s) under study

however data collection is subject to a number of limita-

tions. These include the number and characteristics of

patients recruited, the generalizability of the study design

to clinical practice, and the duration over which data are

collected. The latter of these limitations (known as ad-

ministrative censoring) plays a key role when establish-

ing the clinical- and cost-effectiveness of interventions.

There is a growing trend in accelerated or conditional

approvals and breakthrough designations being granted

by the Food and Drugs Administration (FDA) and the

European Medicines Agency (EMA) meaning it is more

often the case that interim analyses are used to inform

regulatory submissions, which are subsequently updated

as further data are collected [5, 6].

Long-term outcomes are typically uncertain at the

time of both regulatory and reimbursement assessment.

Survival extrapolation is often used to estimate longer-

term outcomes in support of reimbursement applica-

tions, which typically consider outcomes over a patient’s

lifetime, however parametric estimates of survival (per-

mitting inspection of both short- and long-term survival)

have also factored into regulatory decisions [7, 8]. Estab-

lishing a robust estimate of OS for patients treated with

immune-checkpoint inhibitors is of increased import-

ance versus conventional systemic anticancer therapies,

as a substantial proportion of the treatment benefit is

anticipated to manifest in the longer term (i.e. beyond

the duration follow-up typically available at the time of

regulatory or reimbursement assessment).

Guidance for undertaking survival analysis of patient-

level data is available from a number of sources; includ-

ing the commonly-cited National Institute for Health

and Care Excellence (NICE) Decision Support Unit

(DSU) Technical Support Document (TSD) 14 [9–16].

TSD14 offers practical, transparent guidance for under-

taking survival analysis regardless of therapeutic area

and/or the mechanistic properties of interventions being

assessed. Within TSD14, it is noted that the most popu-

lar types of survival extrapolation models submitted for

review by NICE are parametric survival models (PSMs),

which are commonly used internationally [9, 16–18].

PSMs assume the underlying survivor function may be

represented by a statistical distribution; ranging in both

complexity and flexibility, which may be compared using

standard statistical tests. PSMs do not require any spe-

cific assumptions to be fitted, though the appropriate-

ness of a specific PSM for a given data set may be

determined through an interrogation of the patient-level

data; hence PSMs are a popular choice of extrapolation

method to inform submissions of evidence to regulatory

and reimbursement agencies.

In this study, we present a range of PSMs to predict

OS beyond the observed period in a case study clinical

trial (JAVELIN Merkel 200 [JM200] of avelumab [Baven-

cio®] for patients with metastatic Merkel cell carcinoma

[mMCC], NCT02155647) [19]. PSMs were fitted to four

pre-planned published trial data cuts in order to estab-

lish how predictions changed over time, and assess the

accuracy of initial projections versus data later made

available. By re-fitting and testing the accuracy of model

predictions, it is possible to retrospectively identify

emergent evidence of likely long-term survival outcomes

and, by extension, inform best modelling practice.

Methods

Motivating example

The motivating example used in this study was the

single-arm (i.e. uncontrolled), Phase II JM200 trial of

avelumab for the treatment of mMCC. Including the

data submitted to the FDA, a total of four distinct pre-

planned data cuts from Part A of the JM200 trial (con-

ducted in treatment-experienced mMCC) have been

published, providing information regarding the evolving

pattern of OS as data from the trial mature. Within the

context of this study, each data cut refers to the mini-

mum follow-up data available for all patients that are

still being followed up for OS within the study – e.g. a

“12-month” data cut refers to the interim data collected

up until all patients had been followed up until at least

12 months (though some patients may have been
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followed up for longer). The term “pre-planned interim

analysis” has also been used to describe different data

cuts in other studies.

Data from JM200 offer a unique opportunity to retro-

spectively assess the accuracy of survival projections over

a number of data cuts, particularly when acknowledging

that at the time data from JM200 were published, sur-

vival outcomes for patients with mMCC receiving stand-

ard care were poor (median OS of approximately 5.3

months for patients with distant mMCC following

second-line chemotherapy in Europe) [20–22]. Conse-

quently, little was known around the likely long-term

outcomes associated with avelumab treatment in an

mMCC population. The key features of these data cuts

are summarized in Table 1.

Assessment of data

Patient-level data from each data cut were assessed fol-

lowing guidance from TSD14, from which suitable PSMs

were identified for fitting. TSD14 recommends the use

of hazard-based plots to inform appropriate model selec-

tion. As data from the (single-arm) JM200 trial are only

available for patients receiving avelumab, some aspects

of TSD14 are irrelevant (e.g. testing for proportional

hazards between multiple treatment groups).

All analyses were performed using the statistical soft-

ware R [27]. The package ‘muhaz’ was used to produce

smoothed hazard estimates to aid selection of appropri-

ate PSMs. Smoothed hazard plots provide an illustration

of how the estimated hazard of death changes over time,

allowing for inference to be made around which PSMs

would be expected to provide a good fit to the data, and

thus yield plausible survival estimates. PSMs were

rejected where the smoothed hazard plots demonstrated

a clear violation of the model functional form – for ex-

ample, were the smoothed hazard plot to demonstrate a

monotonically-increasing pattern of hazards over time,

the exponential model (which assumes a constant hazard

rate) would be rejected.

Empirical hazard plots (e.g. number of events per

month) have been considered in a previous study as an

alternative representation of the estimated hazard func-

tion (where time is considered on a continuous scale),

however these plots would have limited use to inform

appropriate model selection within the context of the

JM200 trial due to its small sample size (n = 88) [28].

This is because there will be several periods over which

the hazard of death would be estimated as zero as no

events may have occurred within a given timeframe.

Smoothed hazard plots are not affected by this issue to

the same extent, hence were preferred for this study.

Fitted models

The focus of this study was on the use of PSMs that do

not require implicit or explicit assumptions regarding

the patient population, disease area, or therapeutic class

of the intervention. As such, two different types of PSMs

were fitted: [1] standard PSMs, and [2] Royston and Par-

mar spline-based PSMs [29]. The R package ‘flexsurv’

was used to fit both standard and spline-based PSMs

[30]. Other modelling approaches (such as cure-based or

mixture models) were not considered as these require

the estimation and/or specification of mixing weights or

cure probabilities. No specific parametric modelling ap-

proaches were pre-specified in the JM200 study proto-

col, and so while each of the modelling approaches may

be considered post-hoc analyses, this is not unusual with

the context of survival extrapolation.

The standard PSMs considered were the exponential,

Weibull, Gompertz, lognormal, log-logistic, and general-

ized gamma, in line with guidance from TSD14. These

PSMs are commonly used as the range of candidate

PSMs in economic evaluations of cancer interventions.

As discussed previously, the exponential PSM assumes a

constant hazard rate over time, whereas both the

Weibull and Gompertz PSMs assume a monotonically

increasing or decreasing hazard rate over time (exclud-

ing the special case of the Weibull wherein the shape

parameter = 1, in which case it is equivalent to the expo-

nential PSM). The lognormal, log-logistic, and general-

ized gamma models do not assume a monotonic hazard

rate over time, and as such are able to reflect turning

points in the underlying hazard function. TSD14 pro-

vides a more detailed summary of each of the standard

PSMs.

Spline-based PSMs use natural, cubic, piecewise poly-

nomials to smooth between sections of a transformation

of the baseline survivor function.1 The number of sec-

tions is based on a specified number of ‘knots’ (equiva-

lent to cut-points), and the fit within each section is

based on a selected functional form. A detailed explan-

ation of spline-based PSMs is provided by Royston and

Table 1 Data cuts from Part A of the JAVELIN Merkel 200 clinical trial

Label Database lock Minimum patient follow-up Source(s)

12mo September 3, 2016 12 months Kaufman et al., (2018) [23]

18mo March 24, 2017 18 months D’Angelo et al., (2018) [24]

24mo September 26, 2017 24 months Nghiem et al., (2018) [25]

36mo September 14, 2018 36 months D’Angelo et al., (2020) [26]
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Parmar (2002) [29]; though to summarize, Royston and

Parmar suggest the use of these flexible parameteriza-

tions to better reflect the “behavior” of the hazard rate

over time.

In our study, we fitted spline-based PSMs assuming

functional forms that are extensions of the Weibull, log-

logistic and log-normal standard PSMs – henceforth re-

ferred to as hazard, odds, or normal spline-based PSMs,

respectively. The models were fitted with the same

intention as per the standard PSMs – that is, to provide

a parametric estimate of the survivor function over time.

The spline-based PSMs were fitted with 1, 2, or 3 in-

ternal knots, considered to provide a sufficiently broad

number of alternative models to choose between, avoid-

ing the use of more than 3 knots (equivalent to more

than 4 degrees of freedom) as the output may be un-

stable [29]. Knot locations were selected according to

the percentiles of the log-uncensored survival times (as

previous research has shown the determination of knot

locations does not appear critical for good fit) [31, 32].

Based on the selection of PSMs deemed appropriate

(following the assessment of the underlying hazard func-

tion), a comparison of PSMs was undertaken to deter-

mine those providing the ‘best fit’ to the trial data. The

determination of best-fitting models is (to an extent)

subjective, and so a range of methods were explored

covering statistical goodness-of-fit and prediction accur-

acy independent of model complexity.

Statistical goodness of fit

Four statistical goodness-of-fit scores were considered,

described in turn within Table 2, as well as the un-

adjusted maximized log-likelihood. The maximized log-

likelihood was considered as a simplistic representation

of the model providing the best fit to the data, without

any penalty considered with regards to the complexity of

the model fitted. For comparison to other measures of

statistical fit, the maximized log-likelihood was multi-

plied by − 2 (henceforth termed −2LL). It is noted that

within TSD14 that the use of the −2LL statistic should

only be considered when comparing nested models [9].

The presentation of the −2LL statistic is therefore pro-

vided primarily for context, such that the relative penal-

ties for complexity of other statistical goodness-of-fit

scores may be inferred.

Akaike and Bayesian information criteria (AIC and

BIC, respectively) were calculated, which are well docu-

mented in published literature, and described in detail

within TSD14 [9]. Due to the relatively-small sample size

of JM200, a corrected version of the AIC (AICc) was also

considered – literature suggested the AICc may be rele-

vant to consider when the ratio of the sample size and

number of model parameters is < 40 (in our example,

this would apply for PSMs with 3 or more parameters).

Finally, the Hannan–Quinn information criterion (HQC)

was calculated; which has been cited in a number of

studies to date, yet received little attention within the

context of PSMs [33, 34]. Within the context of this

study (where n = 88), the HQC considers a penalty for

model complexity between the AIC and BIC – the per-

parameter penalty is approximately 3.0 for the HQC,

versus 2.0 and 4.5 for the AIC and BIC, respectively.

Prediction accuracy

Previous studies which have attempted to assess the pre-

diction accuracy of PSMs within the context of cancer

immunotherapy have considered a range of techniques.

Ouwens et al. considered a combination of statistical

goodness-of-fit and area-under-the-curve estimates [28].

Bullement et al. presented a range of point estimates at

specific time points relative to the maturity of data from

each study [35].

For completeness, two summary statistics were consid-

ered: [1] the Kaplan-Meier (KM) versus modelled point-

estimate of survival, and [2] the restricted-mean survival

time (RMST) derived via area-under-the-curve (for the

KM versus predicted survival). Point-estimates provide a

simple representation of modelled survival accuracy at

specific timepoints. The RMST has previously been pro-

posed as an alternative to the conventional hazard ratio

used in the design of randomized controlled trials with a

time-to-event outcome, and is broadly aligned with the

expected outcome of economic modelling (i.e. if survival

curves are used to inform a cost-effectiveness analysis,

the estimation of life-years is based on an area-under-

the-curve calculation) [36].

Summary statistics were considered at key timepoints

relating to the maturity of each data cut. The minimum

and maximum follow-up time for each patient was con-

sidered for each data cut, as well as the mid-point between

these times. The resultant timepoints corresponded to

1Natural (or ‘restricted’) splines limit the estimation of the model
within the boundary knots (as extending beyond these boundaries is
generally understood to lead to a poorer fit). Cubic splines consider a
polynomial of order 3 – the smallest order which allows an inflexion
in the transformation of the survivor function.

Table 2 Measures of statistical goodness-of-fit

Acronym Full name Formula

−2LL −2 ×maximised log − likelihood −2LL = 2 log(L)

AIC Akaike information criterion AIC = 2k − 2 log(L)

AICc Akaike information
criterion (corrected)

AICc ¼ 2k−2 logðLÞ þ 2k2þ2k
n−k−1

HQC Hannan – Quinn information
criterion

HQC = 2klog(log(n)) − 2
log (L)

BIC Bayesian information criterion BIC = log(n)k − 2 log(L)

Key: k Number of model parameters; L Maximized likelihood function; log

Natural logarithm; n Number of data points (sample size)
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(approximately) 6-monthly intervals from 12 to 48

months. Estimated survival at 36months is of particular

importance as this is the latest point in time for which the

KM estimate of survival may be considered fixed due to

all living patients having been followed up for at least 36

months.

In addition to these objective measures of prediction

accuracy, a visual assessment of PSM fit was also consid-

ered. For simplicity, the most notable estimates are pro-

vided within this article, and an exhaustive presentation

of each model is provided as supplementary material.

Results
Assessment of data

The available data from each of the four data cuts of the

JM200 trial are presented as KM curves Fig. 1. Over

time a plateau in the OS curve has emerged, indicating

that the specification of a PSM incapable of reflecting

time-varying hazards is unlikely to yield a good fit to the

available data, and consequently would not be expected

to provide a plausible extrapolation. Of particular note is

the number of patients at risk for each data cut at spe-

cific points in time – while estimates of 2.5-year (30-

month) OS for the two latest data cuts were within 2%

of each other (34.5 and 33.4%, for the 24- and 36-month

data cuts, respectively); the number of patients at risk at

this time in the later data cut is noticeably larger (n = 8

versus n = 28).

The smoothed hazard plots produced for each data

cut are provided in Fig. 2. As expected, the plots for each

data cut exhibit a non-constant hazard rate over time.

Further to this, the hazard function appears to be non-

monotonic (i.e. the hazard appears to increase and then

decrease). Based on this assessment, the lognormal, log-

logistic and generalized gamma PSMs would be expected

to provide a reasonable fit to the data, as would the

spline-based PSMs. However, the exponential, Weibull,

and Gompertz PSMs are unlikely to provide a plausible

OS extrapolation, due to the relative inflexibility of these

models; and were therefore not considered further.

Statistical goodness of fit

The statistical goodness-of-fit scores for each of the

PSMs are presented in Table 3. Unsurprisingly, the non-

penalized −2LL score demonstrated a clear preference

for the more flexible 3-knot spline-based PSMs across

all four data cuts, given that these models have the most

parameters and thus may be considered to have the

greatest freedom to best fit to data. The standard lognor-

mal PSM was shown to have the lowest goodness-of-fit

scores of all PSMs fitted to the 12- and 18-month data

cuts. Other PSMs shown to provide a good fit were the

log-logistic, 1-knot hazard, and 1-knot odds models.

Each of the four goodness-of-fit criteria (AIC, BIC,

AICc, and HQC, which trade-off model fit and complex-

ity) were generally in agreement, though the AIC (which

Fig. 1 Overall survival data from Part A of the JAVELIN Merkel 200 clinical trial. Key: mFU, minimum follow-up; mo, month(s)
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has the lowest penalty for model complexity) was shown

to exhibit an ‘earlier’ preference (with regards to com-

paring scores across the four data cuts) for a spline-

based PSM (the second-best AIC from the 12- and 18-

month data cuts was for the 1-knot odds PSM). In the

latest (36-month) data cut, the preferred PSM measured

by all four criteria was the 1-knot hazard spline. Notably,

even some of the 2- and 3-knot spline-based PSMs

yielded a better statistical goodness-of-fit than the log-

normal PSM fitted to the 36-month data cut (which was

considered the best-fitting PSM in the earlier data cuts).

Prediction accuracy

To compare the prediction accuracy of models of differ-

ing complexity over each data cut, the lognormal, log-

logistic, 1-knot odds, and 1-knot normal PSMs were se-

lected for consideration. These models were selected

owing to their statistical goodness-of-fit scores, as well

as the fact that the odds and normal spline-based PSM

are extensions to the log-logistic and log-normal stand-

ard PSMs, respectively. These models are provided for

each data cut in Fig. 3 for a timeframe of 5 years.

Visual inspection of the PSMs fitted to each data cut

demonstrates increasingly greater estimates of longer-

term OS, which is unsurprising as the maturing data

from JM200 show an increasingly clearer plateau in the

KM curve. In addition, a comparison of the best fitting

standard and spline-based PSMs for each data cut show

spline-based PSMs consistently provide estimates closer

to the ‘true’ OS, although both under-estimate OS as

demonstrated in the 36-month data cut.

An excerpt of the prediction accuracy results based on

the summary statistics are provided in Table 4 (complete

results are provided in the supplementary appendix).

When comparing PSM fits from the three earlier data

cuts to the KM curve for the latest data-cut, it may be

inferred that none of the models (standard or spline-

based) provided an estimate of 3-year survival greater

than or equal to the ‘true’ value of approximately 32.1%.

The closest fit was achieved using the 24-month data

cut by the 3-knot hazard spline (31.7%). The model fit-

ted to the 12-month data cut which yielded the closest

estimates to 36-month survival was the 1-knot odds

spline-based PSM (25.5%). These findings conflict with

the output of the statistical goodness-of-fit statistics,

which suggest the spline-based PSMs may over-fit to the

data.

Based on the earlier two data cuts, the modelled and

KM-estimated RMST values are broadly comparable

taken at the maximum follow-up time for each data cut

(of the ‘best fitting’ models, the largest under-estimate

was 0.3 months). However, when comparing the same

models with the latest (36-month) KM curve, the spline-

based models provided a closer fit (spline-based models

Fig. 2 Smoothed hazard plots from Part A of the JAVELIN Merkel 200 clinical trial. Note: Owing to the sample size of JAVELIN Merkel 200 Part A

(n = 88 patients), the max.time argument required by the muhaz function was set to the minimum follow-up time for each data cut.

Consequently, the smoothed hazard estimate for each data cut is presented within this figure for a limited time period
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Table 3 Statistical goodness-of-fit scores of fitted models

Statistic Model 12mo mFU 18mo mFU 24mo mFU 36mo mFU

-2LogL Log-logistic 375.3 429.4 453.5 483.0

Log-normal 373.7 427.5 451.3 480.5

Gen Gamma 373.3 426.5 448.7 475.0

1-knot Hazard 373.3 426.5 448.0 471.9

1-knot Odds 373.3 426.3 447.8 472.5

1-knot Normal 373.4 426.6 448.8 474.2

2-knot Hazard 373.4 426.5 447.4 470.8

2-knot Odds 373.3 426.3 447.3 471.3

2-knot Normal 373.2 426.2 (2) 447.2 471.1

3-knot Hazard 372.7 (3) 426.4 446.6 (2) 469.6 (1)

3-knot Odds 372.5 (2) 426.3 (3) 446.7 (3) 469.9 (3)

3-knot Normal 372.2 (1) 426.1 (1) 446.6 (1) 469.8 (2)

AIC Log-logistic 379.3 433.4 457.5 487.0

Log-normal 377.7 (1) 431.5 (1) 455.3 484.5

Gen Gamma 379.3 432.5 454.7 (3) 481.0

1-knot Hazard 379.3 (3) 432.5 (3) 454.0 (2) 477.9 (1)

1-knot Odds 379.3 (2) 432.3 (2) 453.8 (1) 478.5 (2)

1-knot Normal 379.4 432.6 454.8 480.2

2-knot Hazard 381.4 434.5 455.4 478.8 (3)

2-knot Odds 381.3 434.3 455.3 479.3

2-knot Normal 381.2 434.2 455.2 479.1

3-knot Hazard 382.7 436.4 456.6 479.6

3-knot Odds 382.5 436.3 456.7 479.9

3-knot Normal 382.2 436.1 456.6 479.8

AICc Log-logistic 379.4 (2) 433.5 457.6 487.2

Log-normal 377.8 (1) 431.7 (1) 455.5 484.7

Gen Gamma 379.6 432.8 455.0 (3) 481.3

1-knot Hazard 379.6 432.8 (3) 454.3 (2) 478.2 (1)

1-knot Odds 379.5 (3) 432.6 (2) 454.1 (1) 478.8 (2)

1-knot Normal 379.6 432.9 455.0 480.5

2-knot Hazard 381.9 434.9 455.9 479.3 (3)

2-knot Odds 381.8 434.8 455.8 479.7

2-knot Normal 381.7 434.7 455.7 479.6

3-knot Hazard 383.4 437.2 457.3 480.3

3-knot Odds 383.2 437.0 457.4 480.6

3-knot Normal 382.9 436.8 457.3 480.6

HQC Log-logistic 381.3 (2) 435.4 (3) 459.5 489.0

Log-normal 379.7 (1) 433.5 (1) 457.3 (3) 486.5

Gen Gamma 382.3 435.5 457.7 484.0

1-knot Hazard 382.3 435.5 457.0 (2) 480.9 (1)

1-knot Odds 382.3 (3) 435.3 (2) 456.8 (1) 481.5 (2)

1-knot Normal 382.4 435.6 457.8 483.2

2-knot Hazard 385.4 438.5 459.4 482.8 (3)

2-knot Odds 385.3 438.3 459.3 483.2
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Table 3 Statistical goodness-of-fit scores of fitted models (Continued)

Statistic Model 12mo mFU 18mo mFU 24mo mFU 36mo mFU

2-knot Normal 385.2 438.2 459.2 483.1

3-knot Hazard 387.7 441.4 461.6 484.6

3-knot Odds 387.4 441.3 461.7 484.9

3-knot Normal 387.2 441.1 461.6 484.8

BIC Log-logistic 384.2 (2) 438.4 (2) 462.4 492.0

Log-normal 382.7 (1) 436.5 (1) 460.3 (1) 489.5

Gen Gamma 386.8 440.0 462.1 488.4

1-knot Hazard 386.7 440.0 461.4 (3) 485.3 (1)

1-knot Odds 386.7 (3) 439.7 (3) 461.2 (2) 485.9 (2)

1-knot Normal 386.8 440.0 462.2 487.7 (3)

2-knot Hazard 391.3 444.4 465.3 488.7

2-knot Odds 391.2 444.2 465.2 489.2

2-knot Normal 391.1 444.1 465.1 489.0

3-knot Hazard 395.1 448.8 469.0 492.0

3-knot Odds 394.8 448.7 469.1 492.3

3-knot Normal 394.6 448.5 469.0 492.2

Key: AIC Akaike information criterion; AICc Akaike information criterion (corrected); BIC Bayesian information criterion; Hannan–Quinn information criterion; L

Maximized likelihood function; log Natural logarithm; mFU Minimum follow up; mo Month(s)

Note: For each of the scores presented above, a lower value indicates a better statistical goodness-of-fit. The “best” fitting model (i.e. the model with the lowest

score) is denoted with “(1)” after the score, and is shaded in dark grey. Models with ranks 2 and 3 are formatted similarly

Fig. 3 Fitted models from Part A of the JAVELIN Merkel 200 clinical trial. Notes: A, 12-month data cut; B, 18-month data cut; C, 24-month data

cut; D, 36-month data cut. Key: k, knot(s); KM, Kaplan-Meier; n, normal; o, odds.
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under-estimated 36-month RMST [17.5 months] by 0.4–

0.5 months, versus 0.5–1.2 months for the standard para-

metric models). For the 24-month data cut, the standard

parametric models over-estimated RMST by 0.2–0.4

months, whereas for the 36-month data cut, the stand-

ard parametric models over-estimated RMST by as

much as 0.9 months.

Based upon the original 12-month data cut, each of

the PSMs predicted 12-month survival within 1% of the

‘true’ value. Estimated 24-month survival ranged from

30.2% (log-logistic) to 34.0% (1-knot odds spline),

whereas the ‘true’ value (revealed in later data cuts) was

35.8% (with a preliminary estimate from the 12-month

data cut of 38.4%). The log-logistic and 1-knot odds

spline models based on the 12-month data cut both pro-

vided similar statistical goodness-of-fit scores (AIC and

BIC scores within 2 points of each other). Therefore,

based on the clinical expectation of a survival plateau,

similar statistical goodness-of-fit scores, and the

prediction accuracy results based on the summary statis-

tics presented, it may be reasonable to select the 1-knot

odds spline model. In later data cuts, this model was

shown to provide an under-estimate of survival, yet min-

imized the under-estimation of survival versus all other

options fitted based on the 12-month data cut (including

the log-logistic).

Discussion

This study presents an application and subsequent

validation of parametric survival modelling of multiple

pre-planned data cuts, using data from a case study

of avelumab for mMCC. Four data cuts were utilized

to demonstrate how initial projections were affected

when refitted with more complete data. While stand-

ard PSMs had the best statistical goodness-of-fit score

in earlier data cuts (determined from all four formal

goodness-of-fit criteria presented in our study); for

later data cuts, more flexible spline-based PSMs

Table 4 Prediction accuracy key findings

Data
cut

Model Criteria for model
selection

Prediction accuracy (months)

PE RMST

Fitted (earlier) data cut Latest (36-mo) data cut Fitted (earlier) data cut Latest (36-mo) data cut

12-mo KM estimates 51.8 32.1 8.7 17.5

12-mo Log-normal Best AIC, BIC −0.3 −10.2 −0.2 −0.9

12-mo Log-logistic Lowest RMST, PE −0.7 −11.5 −0.2 −1.2

12-mo 1-knot Odds Highest RMST, PE −0.8 −6.6 −0.3 −0.5

18-mo KM estimates 39.9 32.1 11.3 17.5

18-mo Log-normal Best AIC, BIC + 1.1 −8.7 + 0.0 −0.5

18-mo Log-logistic Lowest RMST, PE + 0.0 −9.8 − 0.0 − 0.8

18-mo 1-knot Odds Highest RMST + 1.2 −5.1 − 0.2 − 0.4

18-mo 3-knot Odds Highest PE + 1.1 −4.8 −0.2 − 0.4

24-mo KM estimates 35.8 32.1 13.5 17.5

24-mo 1-knot Odds Best AIC + 1.2 −2.0 + 0.0 + 0.0

24-mo Log-normal Best BIC −0.1 −6.0 + 0.4 + 0.1

24-mo Log-logistic Lowest RMST, PE −1.6 −7.4 + 0.2 −0.3

24-mo Gen Gamma Highest RMST + 1.2 −2.7 + 0.2 + 0.1

24-mo 3-knot Hazard Highest PE + 0.9 −0.4 −0.1 − 0.1

36-mo KM estimates 32.1 32.1 17.5 17.5

36-mo 1-knot Hazard Best AIC, BIC, highest PE + 1.4 + 1.4 + 0.2 + 0.2

36-mo 3-knot Hazard Lowest RMST + 0.9 + 0.9 −0.1 −0.1

36-mo Log-normal Highest RMST −2.3 − 2.3 + 0.9 + 0.9

36-mo Log-logistic Lowest PE −4.1 −4.1 + 0.4 + 0.4

Key: AIC Akaike’s information criterion; BIC Bayesian information criterion; Gen Generalized; mo Month(s); PE Point estimate; RMST Restricted mean survival time

Note: Negative values indicate that the model underestimates survival, whereas positive values indicate that the model overestimates survival. ‘Fitted’ refers to

the data cut from which the models were fitted (i.e. the data cut stated within the left-hand column), and so a comparison is made between a model fitted to a

given data cut and the Kaplan-Meier curve for this same data cut. ‘Latest’ refers to the 36-month data cut, and so a comparison is made between a model fitted

to the specified data cut (which may be earlier) and the Kaplan-Meier curve for the 36-month data cut. Models were included in this table if one or more of the

following criteria were met: (1) the model provided the ‘best’ AIC or BIC score, (2) the model provided either the ‘highest’ or ‘lowest’ estimate of RMST at 36

months, or (3) the model provided either the ‘highest’ or ‘lowest’ PE of survival at 36months. Where RMST estimates were tied (to the nearest 0.1 month), the

model with the lowest AIC or BIC was included here. Full prediction accuracy results are provided within the supplementary material
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provided the ‘best’ scores, as well as a more accurate

estimation of the pattern of survival over time. A

broader view of statistical goodness-of-fit scores

therefore appears critical in determining the best-

fitting model.

To date, a number of studies have attempted to estab-

lish the prediction accuracy of extrapolation methods

used for immune-checkpoint inhibitors. Gibson et al.,

(2017) validated the extrapolation of spline-based PSMs

to predict progression-free survival for advanced melan-

oma patients treated with ipilimumab, nivolumab, or the

combination of the two treatments enrolled within the

CheckMate 067 trial using external data from patients

treated with ipilimumab monotherapy [37]. Bullement

et al., (2019) also performed a validation of survival

extrapolation techniques in advanced melanoma, using

re-created data from two data cuts of the pivotal ipilimu-

mab CA184–024 trial [38]. Ouwens et al., (2019) ex-

plored a broad range of extrapolation methods using

data for patients with non-small-cell lung cancer from

the ATLANTIC trial of durvalumab [28].

Within the context of our case study, Lanitis et al.,

(2019) presented a range of alternative extrapolation ap-

proaches, including landmark analyses based on re-

sponse and progression status [39]. Due to data

availability at the time of analysis, each of these studies

were conducted using only two data cuts (i.e. one data

cut for estimation, and a second for validation). As the

majority of studies have been conducted in melanoma, it

is unclear whether or not the findings are generalizable

to other cancer types, particularly as the possibility of

long-term survival for melanoma patients was estab-

lished prior to the introduction of immune-checkpoint

inhibitors – historical estimates of 10-year survival for

Stage IV melanoma patients ranged from 7 to 20%

(dependent on metastatic site) [40, 41].

This study makes use of four formal, pre-planned data

cuts from the same registrational trial. The availability of

several data cuts from the same study allows for a more

in-depth assessment of appropriate PSM fits versus pre-

vious studies wherein only one additional data cut is

usually available, without the need to generalize across

different studies (e.g. by comparing to registry and/or

historical control data). By comparing the PSMs and

corresponding statistical goodness-of-fit scores across

each data cut, an emergent picture may be ascertained

regarding which PSM could be reasonably selected.

When fitting the PSMs, published guidance NICE

DSU TSD14 was followed, and a systematic approach to

appropriate model selection was adopted. In addition to

standard models, spline-based PSMs were also fitted to

provide a broad range of survival estimates. While to

date these models have not been used extensively, previ-

ous studies have highlighted the potential role of flexible

PSMs (including spline-based PSMs) within the context

of complex hazard functions (which may be due to a

combination of the disease area, mechanistic properties

of the intervention, or clinical trial study design) [28, 32,

38, 39]. In addition to exploring a range of extrapolation

methods, this study illustrates the value of assessing the

available trial data via hazard plots in order to inform

appropriate model selection. The use of hazard plots

and/or other diagnostic plots is advocated in available

guidance (including TSD14), though these plots are

rarely used to their full potential [9].

Used in combination with hazard-based plots, the po-

tential importance of understanding and interpreting

statistical goodness-of-fit scores was highlighted by our

study. Where goodness-of-fit scores disagree and/or dif-

ferent PSMs exhibit scores within close proximity to one

another, it may be useful to explore further why this is

the case (and thus infer if there is a clear reason to favor

one model or score over the other). Burnham and An-

derson (2002) highlight a ‘rule of thumb’ concerning the

AIC, which states that if the difference between the best

and an alternative PSM is ≤2 points, there is “substantial

empirical support” for the alternative, poorer-fitting

PSM (and so this model should not necessarily be

rejected based on the AIC alone) [34]. Hilbe (2011) of-

fers a slightly different rule of thumb, noting that if the

difference is ≤2.5 points there is “no difference” in the

models; and if the difference is ≤6.0 points, the alterna-

tive PSM should only be rejected if the sample size n >

256 [42].

In our motivating example, the sample size was n =

88, and the lognormal PSM was preferred for the two

earlier data cuts. However, there was emergent evi-

dence of the next best-fitting model (1-knot odds

spline-based PSM) providing a reasonable fit, and a

potentially more accurate estimate of survival. The

difference in AIC for the models was approximately

1.6, illustrating the importance of looking beyond the

best-fitting model, should evidence be available to

suggest doing so (in our example, this may be based

on the more accurate estimate of the RMST up until

24 months). While potentially challenging to interpret

while data are maturing, we believe the interpretation

of statistical goodness-of-fit scores is currently an under-

used tool that may help aid selection of appropriate models

outside of simply choosing the model with the lowest score.

However, statistical goodness-of-fit scores only reflect the

goodness-of-fit within the observed period, and so should

not be considered as a comprehensive representation of

overall model fit.

Further to the notion of statistical goodness-of-fit scores

potentially being an underused tool in model selection,

the choice of statistical fit score to inform model selection

is seldom discussed. Literature notes that both the BIC
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and HQC are not true estimators of Kullback–Leibler

(KL) divergence (which is essentially a measure of how

one probability distribution [in our case, the distribution

of survival times estimated via a PSM] is different from

another), and are instead focused upon the selection of

the ‘true’ model which exists and is within the set of fitted

PSMs being considered [34]. Conversely, the AIC and

AICc are focused upon the identification of the model that

minimizes the KL divergence of the model and the ‘true’

underlying function being estimated (for which the ‘true’

model does not necessarily exist) [34].

While a relatively subtle difference in model inter-

pretation, given the context of our motivating ex-

ample (that is, increasingly maturing data cuts which

are expected to gradually reveal a more accurate esti-

mate of the underlying survivor function), it would

seem more appropriate to consider goodness-of-fit

scores that do not require the assumption of a ‘true’

model existing and being present within a set of

models to choose between. More specifically, simple

parametric models fitted to preliminary data cuts

might not consider specific characteristics of the ‘true’

survival pattern that is impacted by the maturity of

data, delayed treatment effects, the potential for long-

term survivors, and other relevant real-world aspects.

We recommend the choice of goodness-of-fit score to

inform model selection should therefore be deter-

mined within the context of the underlying decision

problem to ascertain which score(s) may be most ap-

propriate under specific circumstances. Alternatively,

consideration of a broad range of scores may aid

model selection (including the lesser-used HQC,

which like the AIC exhibited a preference for the 1-

knot odds spline based on the 24-month data cut, yet

the BIC did not), given that it is often the case that

only AIC and BIC are considered in submission to

NICE (based on TSD14 guidance) [9].

The importance of appropriate survival extrapolation

is particularly highlighted within the context of HTA, as

noted within NICE TSD 14: “different methods have

varying functional forms and are likely to result in differ-

ent survival estimates, with the differences potentially

large – particularly when a substantial amount of ex-

trapolation is required” [9]. A model under-estimating

RMST by approximately 1 month would translate to an

under-estimate in life-years gained of 0.08, equivalent to

approximately 0.06 (undiscounted) QALYs (assuming a

utility value of 0.71 per the published cost-utility analysis

of avelumab in mMCC) [43]. Though a seemingly small

decrease in QALYs gained, were this decrement applied

to the published base-case cost-utility results, the incre-

mental cost-effectiveness ratio (ICER) would increase by

approximately £1000. The ICER would increase further

were the extrapolated portion of the curve also

considered to under-estimate survival markedly (as may

be expected given the under-estimate of the RMST).

NICE TSD 14 comments further on the difficulty in

justifying the plausibility of the extrapolated portion of

the survival model chosen, noting that this is likely to

greatly influential on the estimated mean survival. It is

recommended that model choice is based on the use of

external data sources, biological plausibility, or clinical

expert opinion. In the context of our motivating ex-

ample, no external data sources were available to inform

model selection, and so clinical expert opinion and bio-

logical plausibility have increased importance when

selecting between alternative models.

Furthermore, we focused solely on the use of bio-

logical plausibility and clinical expert opinion as a means

of selecting from a suite of models that had already been

fitted (as opposed to factoring this information within

the model fitting itself) – models that make use of exter-

nal information within the model fitting process may

also be important to consider, though were beyond the

scope of our research question. An example of such ap-

proaches includes the relative survival framework, for

which Dickman and Coviello (2015) present several

worked examples within the context of population-based

cancer registries [44]. Using this approach cause-specific

survival is estimated relative to a comparable group from

the general population. While this approach may yield

improved estimates of survival, the data requirements

are increased (through the need to specify a comparable

group) and longer-term cause-specific hazards may still

be difficult to estimate.

There are a number of alternative extrapolation

methods that were not considered within our study.

Lanitis et al. considered alternative models based on

separating the population and/or survival outcomes

based on intermediate outcome assessment (i.e. pro-

gression or response) [39]. Othus et al., (2017)

demonstrated the potential role of mixture-cure mod-

elling, wherein a proportion of patients are expected

to be ‘statistically-cured’, and are subject to a hazard

of death per the age- and sex-adjusted general popu-

lation [45]. In addition to mixture-cure models,

Ouwens et al., (2019) note the potential role of other

mixture models (which do not assume a ‘cured’ frac-

tion) and Lanitis et al. presented landmark analyses

that may improve prediction accuracy) [28, 39]. While

these techniques may yield reasonable extrapolations,

the focus of our study was on the use of purely para-

metric approaches such that any differences in fit

and/or long-term estimation may be considered as a

factor of the model selected (and not any other deci-

sions, such as the existence of distinct patient groups,

or clinically-relevant timepoints). Furthermore, statis-

tical goodness-of-fit scores should not be compared
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for models which utilize different sources of external

information (such as background mortality rates),

hence the omission of these models within our study

allows for a valid comparison of statistical goodness-

of-fit scores.

Data from the JM200 trial allow for a comparison of

PSM projection accuracy up to at least 36 months (per

the minimum follow-up time for patients in the latest

data cut), beyond which extrapolations remain. Obtain-

ing repeated data cuts from clinical trials is subject to

practical limitations, and so while further data collection

is necessary to truly determine the most plausible ex-

trapolation technique within this case study, we may

never truly be able to validate the entire projection of

OS. Plans for the publication of repeated data cuts

should be specified within the design of clinical trials

with survival-based endpoints where possible, in order

to further understand how patterns of survival may

change over time.

Conclusions

The findings of the study show that while more flexible

models (such as spline-based PSMs) may offer sub-

optimal statistical goodness-of-fit scores in early data

cuts (due to the penalties applied for model complexity),

they may be able to more accurately reflect emergent

complex hazard functions, provide estimate more closely

aligned with biological plausibility/ clinical expert opin-

ion, and consequently yield more credible longer-term

survival estimates. As such, a thorough exploration of

PSMs outside of the standard six PSMs is encouraged

where complex hazard functions are expected, as well as

a detailed exploration of statistical goodness-of-fit scores

and their interpretation.

While data from the JM200 trial are specific to mMCC

patients treated with avelumab, the implications of the

analysis performed using our motivating example may

be useful more broadly when choosing between alterna-

tive survival extrapolation methods – that is, further in-

spection of statistical goodness-of-fit scores specifically

may aid understanding of the likely pattern of survival as

interim data mature. We urge the preferred selection of

survival extrapolation to be based on a multitude of fac-

tors including statistical goodness-of-fit, visual fit, bio-

logical plausibility, hazard plots and other relevant

diagnostic plots, and encourage the use of multiple data

cuts (both earlier and later) and clinical expert opinion

to select and validate extrapolations where possible.
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