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Resumo

Nos últimos anos, os VANTs (Veículos Aéreos Não Tripulados) têm se tornado cada

vez mais populares no setor agrícola, promovendo e possibilitando o monitoramento de

imagens aéreas tanto no contexto cientíĄco, quanto no de negócios. Imagens capturadas

por VANTs são fundamentais para práticas de agricultura de precisão, pois permitem a

realização de atividades que lidam com imagens de baixa ou média altitude. O cenário

da área plantada pode mudar drasticamente ao longo do tempo devido ao aparecimento

de erosões, falhas de plantio, morte e ressecamento de parte da cultura, intervenções de

animais, etc. Assim, o processo de detecção das linhas de plantio é de grande importância

para o planejamento da colheita, controle de custos de produção, contagem de plantas,

correção de falhas de semeadura, irrigação eĄciente, entre outros. Além disso, a infor-

mação de geolocalização das linhas detectadas permite o uso de maquinários autônomos e

um melhor planejamento de aplicação de insumos, reduzindo custos e a agressão ao meio

ambiente. Neste trabalho, abordamos o problema de segmentação e detecção de linhas de

plantio de cana-de-açúcar em imagens de VANTs. Primeiro, experimentamos uma abor-

dagem baseada em Algoritmo Genético (AG) e Otsu para produzir imagens binarizadas.

Posteriormente, devido a alguns motivos, incluindo a relevância recente da Segmentação

Semântica, seus níveis de abstração e os resultados inviáveis obtidos com AG, estudamos

e propusemos uma nova abordagem baseada em Semantic Segmentation Network (SSN)

em duas etapas. Primeiro, usamos uma SSN para segmentar as imagens, classiĄcando

suas regiões como linhas de plantio ou como solo não plantado. Em seguida, utilizamos a

transformada de Radon para reconstruir e melhorar as linhas já segmentadas, tornando-

as mais uniformes ou agrupando fragmentos de linhas e plantas soltas. Comparamos

nossos resultados com segmentações feitas manualmente por especialistas e os resultados

demonstram a eĄciência e a viabilidade de nossa abordagem para a tarefa proposta.

Palavras-chave: Linhas de Plantio, Cana-de-açúcar, Segmentação, CNN, VANT, Trans-

formada de Radon.
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Abstract

In recent years, UAVs (Unmanned Aerial Vehicles) have become increasingly popular in

the agricultural sector, promoting and enabling the application of aerial image monitoring

in both scientiĄc and business contexts. Images captured by UAVs are fundamental

for precision farming practices, as they allow activities that deal with low and medium

altitude images. After the effective sowing, the scenario of the planted area may change

drastically over time due to the appearance of erosion, gaps, death and drying of part

of the crop, animal interventions, etc. Thus, the process of detecting the crop rows

is strongly important for planning the harvest, estimating the use of inputs, control of

costs of production, plant stand counts, early correction of sowing failures, more-efficient

watering, etc. In addition, the geolocation information of the detected lines allows the

use of autonomous machinery and a better application of inputs, reducing Ąnancial costs

and the aggression to the environment. In this work we address the problem of detection

and segmentation of sugarcane crop lines using UAV imagery. First, we experimented

an approach based on Genetic Algorithm (GA) associated with Otsu method to produce

binarized images. Then, due to some reasons including the recent relevance of Semantic

Segmentation in the literature, its levels of abstraction, and the non-feasible results of

Otsu associated with GA, we proposed a new approach based on SSN divided in two

steps. First, we use a Convolutional Neural Network (CNN) to automatically segment

the images, classifying their regions as crop lines or as non-planted soil. Then, we use

the Radon transform to reconstruct and improve the already segmented lines, making

them more uniform or grouping fragments of lines and loose plants belonging to the same

planting line. We compare our results with segmentation performed manually by experts

and the results demonstrate the efficiency and feasibility of our approach to the proposed

task.

Keywords: Crop-row, Sugarcane, Segmentation, CNN, UAV, Radon Transform.
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Chapter 1

Introduction

Sugarcane is one of the most planted cultures in the planet. Its planting practice and

mechanization are the development tendency of the modern agro-industry (UCHIMIYA;

SPAUNHORST, 2020). Brazil is the largest producer of sugarcane in the world. The

country registered an area around 10,123.5 million hectares (Mha) of land planted with

the crop in the 2018/2019 harvest. This area includes Ąelds meant for both sugar and

ethanol production (LIMA et al., 2020).

The main destination for ethanol is the biofuel industry supplying the Brazilian vehicle

Ćeet with the mixture of anhydrous ethanol for gasoline and for the engines with Ćex

fuel technology which make up an increasingly emerging market in Brazil and worldwide

(LIMA et al., 2020). As expected, Brazil is also the largest producer of sugarcane ethanol

worldwide and this production is expected to have a substantial increase in the coming

years as the sugarcane ethanol sector contributes signiĄcantly to the national economy

(BRINKMAN et al., 2018).

Despite all the economic beneĄts that sugarcane and other crop cultures bring, the

massive expansion of agriculture also leads to some social and ecological issues. Some of

them due to drastic deforestation, social conĆicts, land disputes and the degradation of the

environment caused by the spread of pesticides and agricultural inputs. A great ally for

helping solving some of these problems is the Precision Agriculture (PA) (MCBRATNEY

et al., 2005; MILELLA; REINA; NIELSEN, 2018).

PA is a modern concept for managing agricultural activities and it has been increas-

ingly adopted by producers in several countries. This concept is associated with research,

information gathering, and the use of various technologies to analyze and monitor the

conditions of planted areas in a more precise and efficient way. It is based on observation,

measurement, monitoring, and rapid decision making in the face of the variability that

planting crops can present (LINDBLOM et al., 2017).

The main objective of the research in the Ąeld of PA is to deĄne a support system

for the necessary decisions aiming at a better management of the crop to optimize the

use of resources and inputs, while increasing the Ąnancial return (MCBRATNEY et al.,
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2005; MILELLA; REINA; NIELSEN, 2018). More recently, research in this area has

had a major positive impact on the growth of agricultural production (REN et al., 2020).

Methodologies for improving seed quality, more efficient irrigation systems and soil quality

control are just a few examples of the techniques that beneĄt from this research (JR;

DAUGHTRY, 2018).

Technological advances in the use of unmanned aerial vehicles (UAVs) have also opened

up new opportunities in the PA sector. This type of equipment allows for more effective

monitoring and greater agility in cultivation. Sensors coupled to an UAV are able to collect

large amounts of information about the plantation. In addition, they enable more frequent

data collections and less cloud interference due to their lower Ćight altitude (SILVA et al.,

2017; SOARES; ABDALA; ESCARPINATI, 2018; SOUZA; ESCARPINATI; ABDALA,

2018; FUENTES-PEÑAILILLO et al., 2018). The use of UAVs has also fostered the

development of new and more efficient digital image processing techniques to analyze im-

ages acquired by their sensors (SILVA et al., 2017; SOARES; ABDALA; ESCARPINATI,

2018; SOUZA; ESCARPINATI; ABDALA, 2018). Most of these techniques aim to es-

timate the growth of the crop or to identify other important agronomic characteristics,

such as nitrogen stress, water stress, new diseases, known pests and vegetation indexes.

After the initial planning and effective sowing, the scenario of the planted area may

change over time due to the appearance of failures, erosion, death, and drying of part

of the plantation, tipping of plants, animal interventions, among others. This makes

the identiĄcation of crop lines, and how they are arranged in a region, an important

task within PA. With this information, it is possible, for example, to better plan the

application of inputs, thus reducing Ąnancial costs and the aggression to the environment.

Recently, Convolutional Neural Networks (CNNs) have emerged as a powerful ap-

proach to computer vision tasks. Its use has been widespread in the most diverse areas

of research and it has presented relevant results in applications of classiĄcation, object

detection, and facial recognition (LIU et al., 2020; SIMONYAN; ZISSERMAN, 2014;

KANG et al., 2014). They have, for example, been used with great success in identifying

pests in agricultural environments of complex soil structures (CHENG et al., 2017), in the

detection of weeds (FERREIRA et al., 2017), detection of plant diseases (FERENTINOS,

2018) and even in the detection of Ćowers (DIAS; TABB; MEDEIROS, 2018).

In this work we address the problem of crop line detection and segmentation in aerial

images of sugarcane plantations obtained by UAVs. First, we experimented an approach

based on Genetic Algorithm associated with Otsu method to produce binarized images

that were then reconstructed using a Radon transform. Then, due to some reasons includ-

ing the recent relevance of Semantic Segmentation in the literature, its levels of abstrac-

tion, and the non-feasible results of Otsu associated with GA, we studied and proposed

a new automatic segmentation approach based on SSN consisting in two steps. First, we

use a Convolutional Neural Network (CNN) to segment the planted area into regions of
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crop lines (region of interest) and unplanted soil (background). Then, we use a reĄne-

ment process which aims to reconstruct and to improve the previous detected lines. This

is performed in order to make the detected crop lines more uniform and to connect line

fragments and isolated plants that originally belonged to the same crop line.

The remainder of this dissertation is organized as follows: In the chapter 2 we describe

the fundamental concepts relevant to the understanding of the working. In the chapter

3 we present a review of the related architecture and the state of the art in detecting

crop lines. In chapter 4 we describe our methodology, showing the datasets as well as the

techniques used in the proposed approach. In the chapter 5 we show our experiments and

obtained results and Ąnally, the chapter 6 concludes this dissertation.

1.1 Motivation

The identiĄcation of crop lines, and how they are arranged in the planted area, in

low and medium altitude images obtained by Unmanned Aerial Vehicle (UAV) is an

important problem within PA. The lower cost of obtaining images by the UAV also allows

farmers to monitor them more frequently. This is important because after the initial

planning and effective sowing, the scenario of the planted area may change over time,

such as the appearance of failures, erosion, death and drying of part of the plantation,

tipping of plants, animal interventions, among others. Thus, this process of detecting

the lines is important for planning the harvest, estimating the use of inputs, controlling

costs, estimating production, counting plants and early correction of sowing failures. In

addition, the geolocation information of the crop allows a better planning of application of

inputs, thus reducing Ąnancial costs and less aggression to the environment as sugarcane

represents a great percentage of all plantation crop worldwide.

Another important point is the fact that the harvest may come from autonomous

vehicles and machinery. The geolocation of the crop-rows are crucial for these machines

to drive themselves through the Ąeld. Plus, additional information such as which parts of

the crop-row have gaps help the machinery to know which parts of the row do not need

to receive inputs, suppressing their spread and thus saving money and, more importantly,

lessening the degradation of the environment as some of theses substances can be harmful.

Figure 1 shows an example of sugarcane crop where the crop lines were detected by an

expert. Also, the exact location of the line can minimize the stump trampling and soil

compaction in the seedling zone done by the own machinery. In the beneath layer we can

see the image captured by the UAV. In the above layer we can see the segments of the

crop lines. The green segments represent the part of the line where there is plants and the

gaps of the line are described in different colors depending on the extension of the gap.

The red color segments represent small gaps. Orange represents the medium segments.

The yellow, large gaps.
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1.3 Hypothesis

This research explores basically two hypotheses:

1. An effective binarization can be obtained from a two-class trained CNN. This

segmentation is effective in sugarcane crops producing a result of quality when

compared with binarization performed manually by experts.

2. Using the binarized output images from the CNN, it is possible to perform a Radon

transform to achieve a reĄnement process that targets the reconstruction (gap Ąlling)

and enhancement of the previous detected lines. This is performed in order to make

the detected crop lines more uniform and to link row fragments and isolated plant

areas that originally belonged together.

1.4 Contributions

The main contributions of this work are :

❏ Development of a CNN training capable of classifying crop images in two classes

(crop rows and background) generating binarized images. The efficient binarization

can reduce drastically the cost of the post-processing step.

❏ Development of a framework that receives sugarcane crop images, binarize them

using the CNN already trained and then perform a post-processing step based on

Radon transform to perform a reĄnement process reconstructing and enhancing the

lines making them more uniform and to linking row fragments that are supposed to

belong together at the same line/row.

1.5 Thesis Organization

The remainder of this dissertation is organized as follows:

❏ In Chapter 2 we present the concepts of PA, image segmentation, remote sensing

as well as some techniques important to the understanding of the work;

❏ In chapter 3 we describe some of relevant state of the art works;

❏ Chapter 4 states the methodology of this project, including the image acquisition

process and the datasets used, a description of our Ąrst approach based on genetic

algorithm, and Ąnally our prime approach based on semantic segmentation to bina-

rize images, as well as the post-processing step to reconstruct lines and the metrics

used for the work evaluation;



1.5. Thesis Organization 21

❏ Chapter 5 describes the experimental results obtained for each dataset. Discussions

and comparisons between the results obtained by GA and CNN as well as the results

obtained by the Radon transform.

❏ Finally, in Chapter 6 we present the conclusions of this research work, its results,

contributions and future work.
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Chapter 2

Fundamentals

2.1 Precision Agriculture

It is indisputable that the positive economic impacts that agriculture cause locally

and globally are enormous. However the massive expansion of agriculture also has led

to some social conĆicts, land disputes, as well as some serious ecological issues. Drastic

deforestation, such as soil erosion and pollution, water scarcity, are usually caused by

the overuse of pesticides and other chemical inputs (LI et al., 2020). Consequently,

technological advances in the agricultural context have been crucial to promote sustainable

solutions in Ąeld productivity, economical farm incomes, more security in the food section

and general economic growth (LI et al., 2020), as well as reducing agricultural harmful

impacts in the environment.

One solution for helping solving some of these problems is to implement advanced

agricultural technologies, and the precision agriculture technologies are some of the most

important of them (MCBRATNEY et al., 2005; MILELLA; REINA; NIELSEN, 2018)

as they enable the more precise use of agricultural inputs (LI et al., 2020). Hence, it

is clear that PA is a great ally for increasing efficiency, productivity and proĄtability

in Ąeld operations, enhancing food security, and minimizing the unintended impacts of

overuse of inputs on agricultural production systems and affecting positively the envi-

ronment (LI et al., 2020). One example of PA equipment developed for farm man-

agement and tasks such as high precision positioning systems, levelling, and precision

seeding/fertilizer/irrigation/harvesting can bee seen in Figure 3.

The main objective of the researching in the Ąeld of PA is to deĄne a support system

for the necessary decisions aiming at a better management of the crop to optimize the

use of resources and inputs, while increasing the Ąnancial return (MCBRATNEY et al.,

2005; MILELLA; REINA; NIELSEN, 2018). More recently, research in this area has

had a major positive impact on the growth of agricultural production (REN et al., 2020).

Methodologies for improving seed quality, more efficient irrigation systems and soil quality

control are just a few more examples of the techniques that beneĄt from research in
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their lower Ćight altitude (SILVA et al., 2017; SOARES; ABDALA; ESCARPINATI,

2018; SOUZA; ESCARPINATI; ABDALA, 2018; FUENTES-PEÑAILILLO et al., 2018).

The use of UAVs has also fostered the development of new and more efficient digital

image processing techniques to analyze images acquired by their sensors (SILVA et al.,

2017; SOARES; ABDALA; ESCARPINATI, 2018; SOUZA; ESCARPINATI; ABDALA,

2018). In addition, most of these techniques aim to estimate the growth of the crop

or to identify other important agronomic characteristics, such as nitrogen stress, water

stress, new diseases, known pests and VI. In the next section the UAV technology is more

explored and explained.

2.2 Unmanned Aerial Vehicles

The unmanned aerial vehicles, popularly known as UAVs, are vehicles capable of Ćying

medium and low altitudes with no need of a on-board pilot. Commonly, the Ćight mission

of UAV is pre-deĄned; however a pilot can also control it through remote teleoperation

commands from the ground (RADOGLOU-GRAMMATIKIS et al., 2020). There are

many kinds of UAVs and they can be categorized in many different ways. A way to

classify them is by their type of wing: rotary and Ąxed (RADOGLOU-GRAMMATIKIS

et al., 2020). Some examples of rotary-wing UAVs, a more common type commonly known

as ŚdronesŠ, can be seen in Figure 4, while some examples of Ąxed-wing UAVs are shown

in Figure 5.

Even though the Ąrst UAV equipments were developed for primarily military opera-

tions, the fast evolution of technologies such as imaging sensors, Inertial Measurements

Unit (IMU) (MIRZAEI; ROUMELIOTIS, 2008), synthetic aperture radar (CHAN; KOO,

2008) and Global Navigation Satellite Systems (GNSS) (DOW; NEILAN; RIZOS, 2009)

resulted in the development of nonmilitary UAVs fostering the development of multi-

ple areas, such as PA, geomatics, logistics and infrastructure monitoring (RADOGLOU-

GRAMMATIKIS et al., 2020).

UAVs are important for understanding crop and soil variability as it is one of the

oldest challenges faced by agriculture and researches in PA (LAGACHERIE; MCBRAT-

NEY, 2006). The use of this technology is strongly increasing not only in the agricultural

but in all as they are able to perform some air operations that manned airborne may

struggle to do or are not feasible such as regular crop and soil analysis (RADOGLOU-

GRAMMATIKIS et al., 2020). Their use even leads to economic savings and environ-

mental welfare, also reducing the need of a human pilot in the air, thus reducing the risk

of human lives according to (OUTAY; MENGASH; ADNAN, 2020). The authors also

highlight that the drones market (considering the commercial and the civilian ones) is

growing at a compound rate of 19%.

The Association for Unmanned Vehicle Systems International (AUVSI) in its economic
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Figure 7 Ű Example of sugarcane crop seen from above. This image was taken by the
unmanned aerial vehicle (UAV) shown in Figure 6.

2.3 Convolutional neural network

Convolutional neural networks have been showing relevant results in computer vision

applications in the last years (LIU et al., 2020). Their use has been widespread in the

most diverse areas of research and it has presented relevant results in applications of clas-

siĄcation, object detection, image recognition, target classiĄcation and facial recognition

(LIU et al., 2020; LIN; SHEN, 2018). They have, for example, been used with great suc-

cess to identify pests in agricultural environments of complex soil structures (CHENG et

al., 2017), in the detection of weeds (FERREIRA et al., 2017), detection of plant diseases

(FERENTINOS, 2018) and even in the detection of Ćowers (DIAS; TABB; MEDEIROS,

2018).

This machine learning method is a trainable multi-layer network structure composed

by stacks of other convolution neural networks. The basic structure of a CNN normally

includes two layers. The Ąrst one, the convolutional layer, is the feature-extraction layer

where the input of each neuron connects to the local acceptance domain of the previous

layer and extract the local feature. The second common layer is the feature-mapping or

fully connected layer that assumes that each computing layer of the network represents

multiple feature maps, each of these maps is considered a plane, and the weights of all

the neurons in each plane are equal (LIN; SHEN, 2018). Each of the these layers can be
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that are normally black and white (VERMA; PARIHAR, 2017). These two values labels

the regions of the image as regions of interest and background (SEZGIN; SANKUR, 2004).

There are several ways to perform the binarization, but the simplest technique is the

use of a threshold value to classify the pixels of the source image based on that value.

All pixels with values greater than this threshold are deĄned as white or intensity 255,

and all other pixels will receive an intensity value of 0 or black. The threshold value in a

binarization can be set based on the region of the image or globally (VERMA; PARIHAR,

2017). One of the most common approaches to calculate a threshold is through the use of

Otsu method. This algorithm basically assumes that the image has two classes of pixels

following a bi-modal histogram (background and foreground). Then, the ideal threshold

is reached by separating the two classes so that the combined intra-class variation is

minimized (OTSU, 1979). Usually, Ąnding a single correct threshold that satisfactorily

represents the entire image can be quite difficult or even impossible. Thus, applying local

thresholds to smaller regions of the image may be the best option (GONZALEZ; WOODS,

2000).

2.4.2 Semantic Segmentation

Another segmentation technique that has shown great efficacy is the semantic seg-

mentation method (NEMOTO et al., 2020). It can be deĄned as the act of classifying

each pixel of an image into a class (BRAS et al., 2020). Semantic segmentation is one

of the most important tasks in machine learning and computer vision. This technique

has been used with success in many applications, namely: autonomous driving, medi-

cal diagnosing, image editing, among others (FENG et al., 2020; STAN; THOMPSON;

VOORHEES, 2020; BRAS et al., 2020). Its relevance has been increasingly growing in

the last years due the resumption of convolution neural networks and its fast development

(KRIZHEVSKY; SUTSKEVER; HINTON, 2012; HE et al., 2016).

Convolutional neural networks (CNNs) have received great attention, among other

machine learning and semantic segmentation techniques. Nonetheless, unlike traditional

machine learning methods, a CNN does not demand manual feature extraction on an

image, as it automatically incorporates feature extraction engineering into the training

steps. Features are extracted in convolutional layers, while the classiĄcation process is

performed in the fully connected layers based on the feature values. CNNs were initially

applied for object recognition (KRIZHEVSKY; SUTSKEVER; HINTON, 2012); lately, a

range of semantic segmentation works in the literature are based on Fully Convolutional

Network (FCN), which, according to (LONG; SHELHAMER; DARRELL, 2015).

An FCN is a network composed of only convolutional layers and it can be applied to

semantic segmentation training (NEMOTO et al., 2020). It arose from the CNN con-

cept (LONG; SHELHAMER; DARRELL, 2014) and replaces the fully connected layer

with convolution layer to support arbitrary input sizes (SANG; ZHOU; ZHAO, 2020).
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Despite the impressive advances these networks have made, there are still two main chal-

lenges associated with this task to be worked out. The Ąrst one is how to correctly capture

rich contextual information and features to determining confusing classes. The second

one is related to how to accurately recover feature map resolution to improve spatial

performance (SANG; ZHOU; ZHAO, 2020). Figure 11 shows an example of a semantic

segmentation process performed in some images, their results, as well as their classiĄ-

cations and respective percentage score per segment/label. In the sequence we explain

three of the most used semantic segmentation networks (U-net, PSPNet and LinkNet).

We chose these networks due to the great results they have been showing in literature.

Further explanation regarding CNNs is provided in section 2.3

2.4.2.1 U-net

U-net was initially proposed by (RONNEBERGER; FISCHER; BROX, 2015) for tasks

that needed precise segmentation, but had few examples available for training, such as

medical images. It consists of two main segments: contracting and expanding paths,

giving to the network the shape of an ŞUŤ, which justiĄes its name.

The contracting path consists of the repeated application of blocks of two 3 × 3 con-

volution layers (each followed by a ReLU unit) and a 2 × 2 max-polling layer. After

each block, the number of Ąlters doubles so that the network can learn the more complex

structures.

In the expanding path, each block consists of two 3 × 3 convolution layers (each

followed by a ReLU unit) and a 2 × 2 up convolution layer. It also concatenates the

high-resolution features maps from the respective step of the contracting path in order

to ensure the proper reconstruction of the image. After each block, the number of Ąlters

halves. This is necessary due to the loss of the border region in each convolution.

Both contracting and expanding path present the same number of blocks. After ex-

panding path, the resulting feature map passes through a 3 × 3 convolution layer where

the number of feature maps is equal to the number of classes in the segmented image.

2.4.2.2 PSPNet

The Pyramid Scene Parsing Network (PSPNet) (ZHAO et al., 2017) has as its fun-

damental principle the use of global information from the image by extracting context

information in each scene. Its architecture consists of a fully convolutional network, be-

ing the ResNet (HE et al., 2016) used in (ZHAO et al., 2017). From the feature map,

four pooling layers of different sizes are applied, thus generating four feature sub-maps.

Subsequently, the network applies a 1×1 convolution to reduce the mapsŠ dimensionality,

which are enlarged through a bilinear interpolation to return to the size of the original

feature map. Finally, the feature maps are concatenated and a convolution is applied to

obtain the prediction map.
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2.5 Genetic Algorithm

Introduced by John Holland in 1960, a genetic algorithm (GA) is a heuristic inspired by

Charles DarwinŠs theory of natural evolution. This algorithm reĆect the process of natural

selection where the Ąttest individuals are selected for reproduction in order to produce

offspring of the next generation. Genetic Algorithms are commonly used to generate high-

quality solutions to optimization and search problems by relying on bio-inspired operators

such as mutation, crossover and selection (MITCHELL, 1996).

A genetic algorithm starts with an initial population of individuals, where each one is

assumed to be a solution to the problem to be solved. Each possible solution is represented

as a chromosome 𝑔(𝑖)j, where 𝑖 = 1, . . . , 𝑁 is the 𝑖-th gene of an individual 𝑗, 𝑗 = 1, . . . , 𝑀 ,

of a population of 𝑀 individuals.

Then, a Ątness function 𝑓 is applied to determine how an individual 𝑗 Ąts in the

relation. Each individual will have a Ątness score 𝑓(𝑗) in the end and this score will be

used to determine the probability of that individual being selected for reproduction, where

individuals containing high Ątness have more chance to be selected. At the selection stage,

the Ąttest individuals pass their genes (parameters) to the next generation. Two pairs of

parent-individuals, 𝐴 and 𝐵, are selected based on their Ątness scores, 𝑓(𝐴) and 𝑓(𝐵),

and have their parameters combined through a process called Crossover. This process is

one of the most signiĄcant phase in a genetic algorithm. A crossover point 𝑝, 1 < 𝑝 < 𝑁 ,

is randomly picked from within the parameters for each pair of parents to be mated. The

genes of the parents, 𝐴 and 𝐵, are combined in order to produce two new individuals, 𝐶

and 𝐷, called offspring:

𝑔C = [𝑔(1)A, . . . , 𝑔(𝑝)A, 𝑔(𝑝 + 1)B, . . . , 𝑔(𝑁)B] (1)

𝑔D = [𝑔(1)B, . . . , 𝑔(𝑝)B, 𝑔(𝑝 + 1)A, . . . , 𝑔(𝑁)A] (2)

In certain individuals of offspring, some of their genes can be subjected to a mutation with

a low random probability, 𝑟. This implies that some of the genes in the chromosome 𝑔(𝑖)j

that represents the individual can have its value modiĄed. A mutation occurs to maintain

diversity within the population and to prevent premature convergence of the population.

The mutation depends on how the gene is used to represent the data. For binary genes,

selected genes may have their bits Ćipped. For non-binary genes, for example, a unit

Gaussian distributed random value can be added to the gene.

Finally, the algorithm terminates if the population converges to a solution, i.e., the

population does not produce offspring signiĄcantly different from the previous generation.

When it occurs, it can be said that the genetic algorithm has provided a set of solutions

to the problem (EIBEN; SMITH, 2003).

In our work, we propose to use a genetic algorithm (GA) to estimate the best pa-

rameters of a kernel mask used to segment crop lines. We opted for this algorithm as

it presents a large range of application in several areas. For example, GA is used to
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select optimal parameter values for image defogging algorithms, a technique commonly

used to correct image degradation produced by many outdoor working systems (GUO;

PENG; TANG, 2016). A modiĄed genetic algorithm (HEMANTH; ANITHA, 2019) is

proposed to minimize the random nature of conventional GA. The authors proposed this

modiĄcation aiming to improve medical image classiĄcation, more speciĄcally, the classi-

Ącation of abnormal brain images from four different classes. This modiĄcation presented

promising results and achieve 98% accuracy in the given problem. In (GHOSH et al.,

2016), GA is used for prostate automatic segmentation on pelvic images. The authors

propose a framework where GA evaluates candidate contours by combining representa-

tions of learned information (e.g., known shapes and local properties). Visual analysis of

the three dimensional segmentation indicates that GA is a feasible approach for pelvic

CT and MRI image segmentation.

2.6 Hough Transform

The Hough Transform (HT) was introduced and patented by P.V.C. Hough in 1962

(HOUGH, 1962). The primary original application of this technique was to detect lines

and arcs in the area of physics, more speciĄcally in particle detectors photographs. How-

ever, along the years various approaches have been used not only to improve this tech-

nique, but also to propose new applications for it (BELTRAMETTI; ROBBIANO, 2012).

Despite its initial use, in the last years, this technique has been extended to identifying

positions of arbitrary shapes being mostly used for DIP and image analysis, especially

for the detection of simple curves such as lines, circles (BELTRAMETTI; ROBBIANO,

2012) and ellipses (KHADANGA; JAIN, 2020).

As said, this technique is capable of detecting arbitrary images shapes. However, the

parametrized description of the shape in question must be given (BELTRAMETTI; ROB-

BIANO, 2012). Despite the great results in performing linear detection, it has been stated

that this technique requires a huge memory use and it has a considerable computational

complexity (EL HAJJOUJI et al., 2020).

In the last years, in particular in problems of recognition of special shapes in medical

and astronomical images, much effort has been made to apply the above described pro-

cedure to the detection of more complicated objects, in particular special algebraic plane

and space curves (BELTRAMETTI; ROBBIANO, 2012).

HT is a technique that aims feature extraction (DUDA; HART, 1972) and the mech-

anism behind this method uses a ŞvotingŤ process to Ąnd imperfect objects contours

encountered in the image that represent the class of shapes described in the parametrized

description (KHADANGA; JAIN, 2020). The voting scheme is carried out to obtain

the values in the parameter space that represent the line with more probability to exist.

Concurrently, when the shape aimed to be detected is a straight line, the process, also
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e

𝑥 = 𝑥′ cos ã ⊗ 𝑦′ sin ã (8)

𝑦 = 𝑥′ sin ã + 𝑦′ cos ã (9)

Denoted by the operator ℜ, the Radon transform is mathematically deĄned as:

𝑝φ(𝑥′) = ℜ[𝑓(𝑥, 𝑦)] (10)

=
∫︁

∞

⊗∞

∫︁
∞

⊗∞

𝑓(𝑥, 𝑦)Ó(𝑥 cos ã + 𝑦 sin ã ⊗ 𝑥′)𝑑𝑥𝑑𝑦 (11)

=
∫︁

inf

⊗ inf

𝑓(𝑥′ cos ã ⊗ 𝑦′ sin ã, 𝑥′ sin ã + 𝑦′ cos ã)𝑑𝑦′ (12)

Since the one-dimensional projection of the 𝑓(𝑥, 𝑦) function at the ã angle is deĄned

as 𝑝φ(𝑥′), the Radon transform calculates the integral of a two-dimensional image on the

axis 𝑦′.
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Chapter 3

Related Work

As already mentioned in this dissertation, the popularization of UAVs has been en-

abling authors to address many existing problems in agriculture. One of these problems

is to accurately identify existing crop lines in a region and, consequently, its geolocation,

arrangement, as well as how failures and gaps are distributed in the Ąeld. Literature

presents some existing approaches to address this problem, many of them are commonly

based on the Hough transform (HT) (HOUGH, 1962), which is widely used in problems

involving the detection of known objects, such as straight lines and circles (ILLING-

WORTH; KITTLER, 1988; HASSANEIN et al., 2015). Nonetheless, other techniques in

the state of the art have also been used to study problems similar to the one exposed

in this work. Hence, in the remainder of this chapter, we will discuss some of classical

approaches that have been taken mostly based on HT technique as well as some new and

very interesting approaches applied to similar problems that, by the way, also use CNN

as our work.

3.1 Hough Transform

Considering the imaging processing techniques available, the Hough transform (HOUGH,

1962) Ągures as an initial clear choice to detect crop lines. As presented in (ILLING-

WORTH; KITTLER, 1988) this technique is widely used to identify Ąxed parameterized

shapes formed by points on images. The basic Hough transform works well for straight

lines and circles, but it can also be used to Ąnd arbitrary shapes (BALLARD, 1981). How-

ever it has the disadvantage of requiring that the object shape to be known in advance,

which limits its application. Nonetheless, a number of solutions were proposed using the

Hough transform as basis.

Some authors along the years have presented adaptations of the Hough transform

to deal with images captured by cameras attached to tractors, such as (LEEMANS;

DESTAIN, 2006). In this work a row localization method was proposed using an adap-

tation of the HT. This approach works on video sequences captured on ground level by













3.2. Otsu Method 47

Figure 20 Ű Proposed image processing method architecture. Extracted from (GARCÍA-
SANTILLÁN et al., 2018).
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root rot that, despite being related to another culture crop, it gives us a great overview

of the state of the art in terms of modern technology and techniques applied in the Ąeld

and alternative approaches.

The work in (VIDOVIC; CUPEC; HOCENSKI, 2016) also uses ExG index to segment

images under perspective projection. It combines image evidence and prior knowledge

of the geometric structure of the crop using a dynamic programming technique. This is

performed to detect regular patterns related to the appearance of crop rows, both straight

and curved. This method is used as base algorithm in (BASSO; FREITAS, 2020), where

an entire guiding system for spraying UAVs is proposed. The idea is to identify the crop

rows during the UAV Ćight and to use this information to generate the driving parameters

sent to the Ćight controller. The authors claim that their approach is able to deal with

curved crop rows by dividing the curves into segments of straight line.

In (MONTALVO et al., 2012) yet another method of crop row identiĄcation is pre-

sented. It was devised to work on crops with high incidence of weeds and with camera

mounted on ground vehicles. According to the authors the image processing of this work

consists of three main stages: image segmentation, double thresholding based on the

OtsuŠs method, and crop row detection. The image segmentation is based on the applica-

tion of a VI, the double thresholding handles the separation between weeds and crops and

the crop row detection applies least squares linear regression for line adjustment. Also,

in (MONTALVO et al., 2013), the authors explore another technique based on image

segmentation procedures that works independently of the loss of greenness. First, they

perform a combination of vegetation indices and apply a Ąrst Otsu thresholding. Then,

they select black pixels and apply a second Otsu thresholding. Lastly, the histogram

obtained from pixels belonging to the background and masked plants is thresholded by

applying a last stage of Otsu. However, the main focus of these works falls on the image

processing task, since the crop row identiĄcation became trivial due the fact that only

straight lines are expected.

A different approach (SOUZA; ESCARPINATI; ABDALA, 2018) was used for images

of sugar cane and coffee taken on low altitude (≡100m). They assumed the images

are well segmented and, from a cloud of points representing the plants in a Ąeld they

subdivided such points into lines representing the true plantation rows. The proposed

algorithm is a two-fold process. First the points were subdivided into preliminary lines

by a procedure inspired in the formulation of hierarchical clustering. Afterward the lines

are pruned to correct for imprecisions introduced by Ąeld speciĄcities and the image pre-

processing. They achieved good results, but the total dependence of the segmentation

process represents a real problem for the algorithm.
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3.5 Final Considerations

In general, most of the works in the current literature still focus on straight lines

based on the HT technique (HASSANEIN et al., 2015). One of the problems with the

use of the Hough transform is that the shape of the detected object must be previously

known and described, which limits its application. In general, the crop lines can have

irregular shapes as they follow the terrain, thus creating curves and non-uniform shapes.

To circumvent this deĄciency, other possibilities have been explored. However, most of

these approaches either require processing of a crop line at a time, or focusing on plant

counting, or even focus on different crop cultures. In sugarcane crops, for example, its is

common that plants of different lines intersect to each-other, which impairs the detection

and correct reconstruction of the line.
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Chapter 4

Methodology

4.1 Datasets

To evaluate the proposed methodology we used four test images of different sizes.

These images are mosaics of aerial images that represent areas of sugar cane cultivation

and that contain planting lines of different ages and widths. These images were acquired

using an eBee SenseFly mapping drone. We used a senseFly S.O.D.A. camera of 1in

Sensor, 5472 × 3648 pixel resolution and RGB lens F/2.8-11, 10.6 mm. Each pixel in the

image represents 5𝑐𝑚 of ground (Ground sample distance - GSD - of 0.053 meters).

Figure 24 shows a preview of the four test images used in the experiments (named

Dataset A, B, C, and D, respectively). It is important to notice that each image has the

crop lines of its entire region segmented by an expert, as illustrated in Figure 25. Note

that the rows can vary in width depending on the age of the crop and the level of success

of the planting process.

Figure 24 Ű Test images used to evaluate our approach and their respective sizes: (a)
11180 × 8449; (b) 19833 × 30255; (c) 17497 × 10771; (d) 16677 × 24181.





4.2. Segmentation using Genetic Algorithm 55

4.1.1 Evaluation metrics

For the evaluation step, we compared the binary images resulting from our segmen-

tation process with the crop line markings provided by an expert. For this comparison

we used the Dice Similarity Coefficient (DSC), a common index of segmentation accuracy

that measures how similar two binary images are.

Given two images, 𝐴 and 𝐵, Dice coefficient measures the intersection of the objects

present in the images, as described in Equation 13. The result from this equation is the

similarity 𝐷, 0 ⊘ 𝐷 ⊘ 1, where the more the value 𝐷 is close to 1, the more similar the

images 𝐴 and 𝐵 are (González Sánchez et al., 2020).

𝐷 = 2
♣𝐴 ∩ 𝐵♣

♣𝐴♣ + ♣𝐵♣
(13)

Also, for the SSN approach, the Jaccard Similarity Coefficient (JSC) (also known as

Intersection over Union) was used as a loss function in the training process. This measure

is highly recommended for segmentation problems where there are unbalanced classes.

The Jaccard Loss between two images 𝐴 and 𝐵 is deĄned as:

𝐽(𝐴, 𝐵) = 1 ⊗
♣𝐴 ∩ 𝐵♣

♣𝐴 ∪ 𝐵♣
= 1 ⊗

♣𝐴 ∩ 𝐵♣

♣𝐴♣ + ♣𝐵♣ ⊗ ♣𝐴 ∩ 𝐵♣
(14)

In addition, DSC is quite similar to JSC. In fact, it is possible to make a conversion

from DSC to JSC as described in Equation 15 and vice versa (Equation 16).

𝐽 =
𝐷

2 ⊗ 𝐷
(15)

𝐷 =
2𝐽

𝐽 + 1
(16)

4.2 Segmentation using Genetic Algorithm

Crop lines may vary in width depending of the age of the crop and how successful the

planting process was. Nevertheless, crop lines frequently show a greenish appearance in

contrast to the reddish presence of the soil.

Our Ąrst approach was creating and experimenting a method based on GA. Instead

of using color segmentation methods and different color space, such as Hue, Saturation,

Value (HSV), our Ąrst hypothesis was that it is possible to optimize a 3 × 3 × 3 kernel

mask so that its convolution combines the local characteristics of the RGB channels of the

image into a single gray scale image 𝑆, which could latter be segmented using a simple

and automatic threshold selection method, such as Otsu. To accomplish that we used a

genetic algorithm to optimize the 27 Ćoating point values for the 3 × 3 × 3 kernel mask.

The genetic algorithm ran for 2700 generations, using a population size of 200 individuals.

We used mutation rate of 0.05 and crossover rate of 0.8.
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learning and computer vision and it has been used with success in many applications,

including autonomous driving. Its relevance has been increasingly growing in the last years

due the resumption of convolution neural networks and its fast development, producing

the named Semantic Segmentation Networks (SSN). As better stated in Section 2.4.2,

these networks aim to assign semantic labels accurately to each pixel of an image. Thus,

in the proposed approach, the binarization is performed by using a network trained with

a dataset referenced by two classes (crop rows and background). An unclassiĄed image is

introduced into the CNN in order to generate an output binarized image, where each of

the two color values represents the classiĄcation of pixels based on these two classes.

In addition, it is important to state that while the Genetic Algorithm technique was

able to work over only one type of feature: reddish and greenish color tones to produce

a kernel Ąlter, Semantic Segmentation manages to extract several other different levels of

abstraction, each of these levels focusing on a different type of feature, such as border,

texture, etc. This is a very important aspect as depending on the stage of the after-

cut, dry leaves and ratoon is present in the soil between the crop-rows, confounding the

contrast between plants and the soil interfering in the computational analysis process.

Thus, as this color contrast may be compromised, a GA based method, in this case,

has a disadvantage and that is one of the reasons why we decided to go for the SSN

approach, even though the two methods being trained with both cane plant and cane

ratoon datasets.

Yet, as previously stated, Otsu global binarization method does not perform well to

segment crop lines as they present different local features due to the age and width of

the crop line. Also, the Otsu method picking a local threshold to perform binarization is

not a feasible option. As the CNN approach does not depend on Otsu as the GA based

approach did, this is another reason why we chose to follow the Semantic Segmentation

path in our research.

For this approach, we used the same datasets previewed in Figure 24. For each image,

we cropped the mosaic into pieces of 256 × 256 pixels size, with a stride of 256 pixels.

If the cropped area does not contain at least 80% of useful information (i.e., pixels with

values other than zero), the sample is discarded. After cropping, datasets A, B, C, and

D contained a total of, respectively, 678, 3291, 1550 and 2162 images.

In this work, we evaluated U-net, LinkNet, and PSPNet semantic neural networks

for the segmentation in aerial crop images. We replaced the encoder of each network

by the VGG16 pre-trained with ImageNet weights (SIMONYAN; ZISSERMAN, 2014)

due to its high performance in feature extraction in precision agriculture applications

(FAWAKHERJI et al., 2019). The basics of these networks was explored in section 2.4.2

and the use of this networks in our new approach is described in the next section (4.3.1).
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4.3.1 Proposed Approach

Our approach to perform automatic segmentation of crop lines consists of two steps.

First, we use a Convolutional Neural Network to segment the image into crop lines (region

of interest) and soil (background). To accomplish that we evaluated three segmentation

networks: Unet, LinkNet and PSPNet. For all of them we used VGG16 structure (pre-

trained with the ImageNet) to extract the feature maps. Figure 28 shows the architecture

of the segmentation networks used. Each network was trained with all the images ex-

tracted from the dataset. Each image has a corresponding binarized image provided by

an expert extracted from the binarized mosaic using the same pixel coordinates, so that

the networks could learn which part of the image corresponded to the Ąrst class (crop-

row) and which part corresponded to the other class that represents the background (soil,

weed or ratton depending on the phase of the crop, region and image).

Figure 28 Ű Architectures used for semantic segmentation. Adapted from
(YAKUBOVSKIY, 2019).

In an ideal crop, only the segmentation step should be sufficient to obtain the crop

lines accurately. However, in the vast majority of cases, there are external factors that

may affect the results. Among these factors are sowing failures (i.e., absence of plants

in a section of the line), weed plants (which in the segmentation process will be treated

as plants) and plants that are outside the crop row. An example of these problems are

shown in Figure 29.

Thus, to improve the segmentation obtained, we used a reĄnement step, which aims to

reconstruct and to improve the previous segmented lines by making them more uniform

or linking line fragments and loose plants that belong to the same crop line. For this new

approach we also used the Radon transform (Section 4.4) to reconstruct the line obtained

during the segmentation step to coincide with the one marked by the expert, as shown in

Figure 30.
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Figure 29 Ű Example of problems encountered after the segmentation step: (a) Original
image; (b) Planting lines provided by an expert; (c) Image after segmentation.

4.4 Line Reconstruction and Refinement

After the binarization process, we needed to reconstruct and improve the already

segmented lines. Our aim was to reconnect fragments of crop lines and loose plants that

were supposed to belong together and have been separated by failures in the seeding

process or in the segmentation step. Also, we aimed to make the crop lines more uniform

and smooth, cutting false connection between parallel crop rows.

For this step, we used the Radon transform method. First, we compute the Radon

transform from a given input image in order to obtain the orientation angle of the image

(Figure 30b). Using this orientation angle it is possible to analyse how the pixels which

compose the detected areas are distributed along the image and to detected the center

of each crop line in the image (Figure 30c). Then, by using the orientation angle of the

image and the center of each crop line we were able to reconstruct the crop lines with the

same constant width as used by the expert, as shown in Figure 30d.
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Figure 30 Ű Proposed scheme for crop line reconstruction using Radon transform: (a) In-
put image; (b) Matrix obtained with the Radon transform. The red dot
represents the location of the maximum point and the orientation angle of
the input image; (c) Radon transform obtained for the image orientation an-
gle (red line in (b)). Each peak of the curve corresponds to the center of a
line in the input image; (d) Reconstruction of the lines using the orientation
angle and the peaks of the Radon transform for that angle.
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Experimental Results

As previously mentioned, in the Ąrst stages of this research we experimented with a

Genetic Algorithm based approach. Then, due to some reasons including the relevance

of Semantic Segmentation in the recent literature, its levels of abstraction, and the non-

feasible results of Otsu associated with GA, we decided to study and proposed a new

approach based on CNN to accomplish the binarizartion. In this chapter, we better

describe experimental results for each of the two approaches including the crop line re-

Ąnement and reconstruction performed in both approaches by the Radon transform. In

the end, we synthesize and discuss the results and differences of our test approaches.

5.1 Segmentation using Generic Algorithm

Since Genetic Algorithm is stochastic, results may be different at independent runs. To

address this important issue, we Ąrst investigated the convergence of the genetic algorithm

through a cross-validation scheme. To accomplish that, we split all 35 training images

into 5-folds and we used the images in the training folds as input for the genetic algorithm

to compute the kernel mask. As for the Ątness function, the GA aimed to search for the

kernel mask that maximized the average Dice coefficient of the images in the current

training folds.

Figure 31 shows the average Dice coefficient obtained by each image using the 5 kernel

mask computed by GA. We must emphasize that, instead of using the images in their

respective test fold, we evaluated each kernel in all images in order to have a better

estimation of the result. Different kernel mask results in similar segmentation in terms of

Dice coefficient. However, it does not mean that the 5 kernel mask present the same set

of values, but that they produce similar segmentation results.

Figure 32 presents some examples of segmented areas obtained at different sections

of the evaluated crop maps. It is important to notice that the crop lines segmented by

experts did not follow exactly the width of each crop line (Figure 32b). Instead, these

images contain uniform lines marking the location of each crop line. Moreover, the expert
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Figure 31 Ű Average Dice coefficient and standard deviation for different images for 5
different GA kernel masks.

also marked regions where the crop line should exist, even though there is not any plant

there. Since these markings do not follow the natural width of the crop lines, an error

is expected when comparing the segmentation provided by an expert with the results

obtained by our approach.

We noticed that the application of the convolution kernel resulted in an image that

is mostly black and white. Although other gray levels are present in the image, their

frequency are not signiĄcant and could compromise the use of a Global Otsu threshold.

This explain the poor segmentation obtained in Figure 32d. The same is true when using

a manually deĄned threshold. Although faster than using the Otsu method, it is not

possible to set a user deĄned global threshold that achieves good results for all evaluated

images, as shown in Figure 33. As a result, depending on the threshold value used, some

crop lines may be missed while we improve the detection of other crop lines (Figure 32c).

One must consider that global binarization may not be the best approach to segment

crop line as they present different local features due to the age and width of the crop

line. In order to investigate such matter we applied Otsu algorithm locally on the images.

To accomplish that we used a square window of 𝑊 × 𝑊 pixels size and we moved this

window along the image using different values of stride, 𝑆. We used ŞOR operatorŤ to

combine all local binarizations into a single one binary image. Figure 34 shows that local

analysis improves the Dice coefficient obtained by Otsu binarizaton in all conĄgurations

evaluated. In general, small windows present better results as they enable Otsu method

to capture the local features with more precision, thus providing a better binarization and

a higher Dice coefficient, as shown in Figure 32e.

Although the use of local Otsu improves the detection of crop lines (Figure 32e),

we noticed that crop lines which are parallels to each other are sometimes connected by

regions incorrectly detected as crop lines. Moreover, the detected line presents an irregular

width which compromises the comparison with the expertŠs segmentation.

Since the orientation angle of the image is a local feature, we evaluated this approach
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Figure 33 Ű Dice coefficient for various global threshold values.

Figure 34 Ű Dice coefficient obtained using Global Otsu and Local Otsu for different com-
binations of Window 𝑊 and Stride 𝑆.

Figure 35 Ű Dice coefficient obtained for the line reconstruction for different combinations
of Window 𝑊 and Stride 𝑆.
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5.2 Semantic Segmentation

Initially, we applied the semantic segmentation networks to the images obtained in each

dataset. To accomplish that we adjusted the input size of the networks to 256 × 256 × 3

(YAKUBOVSKIY, 2019) and each network has been trained for 50 epochs using the Adam

optimizer with a 0.001 learning rate. As loss function, we used the Jaccard-loss (BEERS

et al., 2019). We also used simple data augmentation methods, such as rotation (up to

∘180◇), translation (up to ∘20𝑝𝑥), scaling (up to ∘7%), and shearing, during the training

step to prevent overĄtting. To guarantee a correct validation process, a validation step

was implemented using K-fold, with 𝐾 = 10. For the training, we used only dataset A to

train and validate the network. Figure 38 and Table 1 show the average results obtained

by each network.

Segmentation Network Dice Coefficient
VGG16 - LinkNet 0.90 ± 0.0062
VGG16 - PSPNet 0.88 ± 0.0075
VGG16 - Unet 0.87 ± 0.0113

Table 1 Ű Segmentation results obtained with the application of the segmentation net-
works in Dataset A.

Results show that LinkNet obtained the best result for the Dice coefficient when

segmenting crop lines in the images. Besides, this network was also the one that showed

the least variation among test folds. Due to its consistent result in the plant detection

process, we chose LinkNet as the standard network for the segmentation stage. We restore

the weights that generated the best result during the training of the LinkNet and we used

them to evaluate other datasets (B, C, and D). Table 2 shows the results obtained for

datasets B, C, and D.

Dataset Dice Coefficient
A 0.90 ± 0.0062
B 0.80 ± 0.0702
C 0.84 ± 0.0724
D 0.86 ± 0.0588

Table 2 Ű Result obtained with the application of the LinkNet network trained in dataset
A to segment other datasets.

We noticed a slight worsening of the LinkNet result when applied to other datasets.

The decrease in the Dice coefficient depends on the dataset evaluated. However, it is

possible to notice that the average Dice coefficient is superior to 0.80 in all datasets. A

possible explanation for this behavior lies in the fact that crop lines can vary in width

depending on the age of the crop and how the planting process was successful, as illustrated

in Figure 25.
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constant Dice coefficient when compared to Genetic Algorithm results. Certainly, this is

due to the fact that in our approach GA was able to work over only one type of feature

(reddish and greenish color tones to produce a kernel Ąlter). Depending on the crop, dry

leaves, weed and ratoon may be present between the crop-rows, compromising the reddish

contrast between plants and the background. Thus, as the Semantic Segmentation based

technique manages to extract several other different levels of abstraction it tends to be

more capable of operating well in different stages of the crop regardless of color contrast.

Yet, the experiments with Genetic Algorithm method did not show good segmentation

results according to the Dice evaluation metric when associated with a global Otsu tech-

nique. It is undeniable that a local Otsu analysis improves the Dice coefficient obtained.

Small windows present better results as they enable Otsu method to better capture the

features with more precision. However, the general results did not reach even 0.78, while

LinkNet shows average Dice results from 0.80 to 0.86 in tested datasets that were not

part of the training, reaching 0.90 when tested with the training dataset.
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Chapter 6

Conclusion

In this work, we presented a methodology to segment crop lines from UAV images.

First, we experimented an approach based on Genetic Algorithm associated with Otsu

method to produce binarized images that were then reconstructed using Radon transform.

Then, due to some reasons including the recent relevance of Semantic Segmentation in the

literature, its levels of abstraction, and the non-feasible results of Otsu associated with

GA, we studied and proposed a new approach based on SSN. This new approach uses a

Convolutional Neural Network to perform the segmentation step. Among the networks

evaluated, the one that stands is LinkNet presenting the best results to segment crop lines,

obtaining a higher and much more consistent Dice coefficient for the datasets evaluated.

Which is extremely positive despite the fact that this method requires a larger number of

images for the training process. We also proposed a line reconstruction approach based

on the Radon transform for this technique testing some variation Ąlters. Although the

crop row reconstruction sometimes producing a slight decrease in the Dice coefficient, it

enables us to improve the segmentation results by connecting fragments of crop lines and

by Ąlling segmentation errors caused by missing plants, thus indicating that our approach

is a feasible solution to segment crop lines in images.

6.1 Main Contributions

The main contributions of this work are: the development of a CNN training capable

of classifying crop images in two classes (crop-rows and background) generating binarized

images, as this efficient segmentation reduces drastically the cost of the post-processing

step; and also the development of a framework that receives sugarcane crop images,

binarize them using the CNN already trained and then perform a post-processing step

based on Radon transform to achieve a reĄnement process reconstructing and enhancing

the lines, making them more uniform and linking row fragments that are supposed to

belong together at the same line/row.

In addition, the process of detecting the crop lines in an effective and concise way is
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strongly for important for PA, specially planning the harvests, inputs usage, estimating

of production, counting plants, early correction of sowing failures. In addition, the geolo-

cation information of the detected crop rows lessens the waste of inputs, the harm to the

environment and Ąnancial costs. Also, it allows autonomous machinery guidance through

the crop,

Finally, sugarcane represents a great percentage of all crops worldwide and also it is

a semi-perennial crop, which means that it can be harvested annually for several years

without replanting. Thus, the correct and effective detection and frequent maintenance

over the years can bring a huge economic impact for producers and, consequently, their

countries.

6.2 Contributions in Bibliographic Production

❏ The following papers are strongly connected to the research presented in this dis-

sertation. They were submitted for their respective journals and are currently in

phase of analysis:

– SILVA, R. R.; ESCARPINATI, M. C. and BACKES, A. R. Sugarcane Crop

Line Detection From UAV Images Using Genetic Algorithm and Radon Trans-

form. Submitted to Signal, Image and Video Processing manuscript.

– SILVA, R. R.; DIAS JR., J. D.; ESCARPINATI, M. C. and BACKES, A.

R. Detection of sugarcane crop line from UAV images using Semantic Seg-

mentation and Radon Transform. Submitted to Computers and Electronics in

Agriculture.

❏ The study of CNNs done for this research also allowed us to work in other problems

related to computer vision. Hence, our following paper was recently published:

– SILVA, R. R.; BRITO, L. F. A.; ALBERTINI, M. K.; NASCIMENTO, M. Z.

and BACKES, A. R. Using CNNs for Quality Assessment of No-Reference and

Full-Reference Compressed-Video Frames. In: XVI WORKSHOP DE VISÃO

COMPUTACIONAL, 2020, Uberlândia. Anais do 16◇ Workshop de Visão

Computacional, 2020.

❏ Furthermore, it is worth mentioning that this work is currently running for the

Prêmio Mercosul de Ciência e Tecnologia (Mercosur Science and Technology Award):

– SILVA, R. R.; DIAS JR., J. D.; ESCARPINATI, M. C. and BACKES, A.

R. Detecção de linha de plantio de cana de açúcar a partir de imagens de

VANT usando Segmentação Semântica e Transformada de Radon. Submitted

to Prêmio Mercosul de Ciência e Tecnologia Ű edição 2020.
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6.3 Future Work

The results obtained by this work demonstrate the good performance obtained by the

proposed approach and motivate new lines of investigation, such as: evaluation of datasets

of different cultures besides sugar cane; explore how mosaic alignment techniques interfere

in the result; explore the use of other sensors in association with the images to produce

better results; study new methods to enhance crop reconstruction of regions with highly-

curved lines.
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