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ABSTRACT 

Forecasting the Prices of Cryptocurrencies using a Novel Parameter Optimization of VARIMA 

Models 

by Alexander Barrett 

 

This work is a comparative study of different univariate and multivariate time series predictive 

models as applied to Bitcoin, other cryptocurrencies, and other related financial time series data. 

ARIMA models, long regarded as the gold standard of univariate financial time series prediction 

due to both its flexibility and simplicity, are used a baseline for prediction. Given the highly 

correlative nature amongst different cryptocurrencies, this work aims to show the benefit of 

forecasting with multivariate time series models—primarily focusing on a novel parameter 

optimization of VARIMA models outlined in this paper. 

These models are trained on 3 years of historical data, aggregated from different cryptocurrency 

exchanges by Coinmarketcap.com, which includes: daily average prices and trading volume. 

Historical time series data of traditional market data, including the stock Nvidia, the de facto 

leading manufacture of gaming GPU’s, is also analyzed in conjunction with cryptocurrency 

prices, as gaming GPU’s have played a significant role in solving the profitable SHA256 hashing 

problems associated with cryptocurrency mining and have seen equivalently correlated investor 

attention as a result. Models are trained on this historical data using moving window subsets, with 

window lengths of 100, 200, and 300 days and forecasting 1 day into the future. Validation of this 

prediction against the actually price from that day are done with following metrics: Directional 

Forecasting (DF), Mean Absolute Error (MAE), and Mean Squared Error (MSE).  
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 1 Bitcoin and Other Cryptocurrencies 

1.1 Introduction to Bitcoin 

A truly remarkable thing is that Bitcoin has both inextricably taken the financial and tech worlds 

by storm while simultaneously remaining entrenched in an air mystery to most people as to what 

it actually is. At its core, Bitcoin is nothing more than a digital ledger for a currency that bears its 

same name. Simple enough. However, the mathematical and cryptographic technology behind 

securely maintaining this ledger is what makes Bitcoin novel, particularly, the ability to do so 

without the seeming requirement of a trusted third party. Much like the U.S. Dollar and other fiat 

currencies digitally maintained by banks, Bitcoin is not backed by anything in the physical 

world—it only has value because people believe it has value. This allows Bitcoin share some 

commonalities between both currencies and commodities, which we will explore more in this 

chapter. 

1.2 Protocol Overview 

How does Bitcoin work? There exists a network of computers all running the same Bitcoin 

protocol software throughout the world. All of these computers “agree” on which Bitcoin 

account has how much of the currency according to its underlying algorithm.  

The algorithm behind this agreement is what is referred to as the “Blockchain.” Each 

metaphorical block in this chain, contains the digital transcript of transactions between individual 

Bitcoin accounts. Here, individual transactions between accounts employee the traditional usage 

of public-private key encryption (although here, is actualized through elliptic curves rather than 
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the more commonly used RSA). These blocks are published serially, one after another—on 

average, every 10 minutes. This time delay is actually by design, and provides adequate time for 

the publication of this block to disseminate throughout this network work of computers and 

officially “cement” as the agreed upon block of transactions before the next one is published. 

The time delay of publishing this block is accomplished by requiring a published block to 

contain a solution to computationally difficult to solve math problem based off encoded 

information uniquely tied to the previous block—specifically this is done by brute forcing inputs 

to the SHA256 hashing function so that the output has a minimum leading number of 0’s.  

Finally, to determine which account has how much of the digital coin, every computer in the 

network, simply traverses through all of the transactions of this blockchain since the beginning 

of time to see which account each Bitcoin (or portion of a Bitcoin) points to. 

Since solving the aforementioned hashing problems is both computationally expensive (literally 

as well, in terms of the electricity used) and is a necessary role in the blockchain protocol, its 

execution must be incentivized. This is accomplished by granting Bitcoins themselves as a 

reward to those in the network who successfully solve the problem associated with a block—this 

is referred to as “mining a block”. This is the mechanism behind how all bitcoins are created. It 

should be noted that the work involved in successfully mining a block is so computationally 

difficult that it would be infeasible for a single individual in the network to mine the block alone 

in a reasonable amount of time; therefore, the work (and Bitcoin reward) is distributed over a 

collection of users in a “mining pool.” There are many mining pools competing against one 

another in hopes of being the pool who successfully solves the block first to reap the reward. 
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The logistics involved in mining these blocks is of particular interest to this work because 

gaming GPU’s have proven to be the most ubiquitous piece of hardware for performing the 

computations involved.  Nvidia, the de facto leading manufacture of gaming GPU’s, is also 

analyzed in conjunction with cryptocurrency prices, as gaming GPU’s have played a significant 

role in solving the profitable SHA256 hashing problems associated with cryptocurrency mining 

and have seen equivalently correlated investor attention as a result. 

1.3 Other Cryptocurrencies 

With the success and popularity of the first cryptocurrency, Bitcoin, there are now well over a 

hundred other cryptocurrencies, many built on top the same technology, some using slight 

variations, and others using completely different protocols. This section will list several of the 

leading cryptocurrencies ordered by their market capitalization (marketcap—how much total 

value of the currency is in existence) and provide a brief description of their protocol/relationship 

to Bitcoin (descriptions and marketcaps sourced from coinmarketcap.com). The time series data 

of the daily prices and trading volumes for these cryptocurrencies will be discussed and used in 

modeling in later sections. Although there are differences between the machinery of how these 

cryptocurrencies are maintained, their time series of daily prices can all be modeled with same 

methods. 

1.3.1 Ethereum (ETH) 

“Ethereum is a decentralized open-source blockchain system that features its own 

cryptocurrency, Ether. ETH works as a platform for numerous other cryptocurrencies, as well as 

for the execution of decentralized smart contracts. Smart contracts are computer programs that 

automatically execute the actions necessary to fulfill an agreement between several parties on the 
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internet. The average time it takes to mine an Ethereum block is around 13-15 seconds.” 

Marketcap in December 2020: ~$67 Billion (coinmarketcap.com). 

1.3.2 RIPPLE (XRP)  

“XRP is the currency that runs on a digital payment platform called RippleNet, which is on top 

of an open source distributed ledger database called XRP Ledger (not based on blockchain). The 

RippleNet payment platform is a real-time gross settlement system that aims to enable instant 

monetary transactions globally—you can actually use any currency to transact on the platform. 

The XRP Ledger processes transactions roughly every 3-5 seconds.” Marketcap in December 

2020: ~$22 Billion (coinmarketcap.com).  

1.3.3 Tether (USDT) 

“USDT is a stable-value cryptocurrency that mirrors the price of the U.S. dollar, issued by a 

Hong Kong-based company Tether. The token’s peg to the USD is achieved via maintaining a 

sum of dollars in reserves that is equal to the number of USDT in circulation. Originally 

launched in 2014 as a Realcoin, a second-layer cryptocurrency token build on top of Bitcoin’s 

blockchain through the use of the Omni platform. It was later updated to work on the Ethereum, 

EOS, Tron, Algorand, and OMG blockchains. The stated purpose of ISDT is to combine the 

unrestricted nature of cryptocurrencies –which can be sent between users without a trusted third-

party intermediary –with the stable value of the US dollar.” Marketcap in December 2020: ~$20 

Billion (coinmarketcap.com). 
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1.3.4 Litecoin (LTC) 

“The Litecoin currency was based on the Bitcoin protocol, but it differs in terms of the hashing 

algorithm used, hard cap, block transaction times and a few other factors. Litecoin Differs from 

Bitcoin in its prioritization of transaction confirmation speed, which is about 2.5 minutes per 

block.” Marketcap in December 2020: ~$5 Billion (coinmarketcap.com). 

1.3.5 Bitcoin Cash (BCH) 

“In 2017, the Bitcoin project and its community split in two over concerns about Bitcoin’s 

scalability. The result was a hark fork which created Bitcoin Cash, a new cryptocurrency 

considered by supporters to be the legitimate continuation of the Bitcoin. All Bitcoin holders at 

the time of the fork (block 478,558) automatically became owners of Bitcoin Cash. Unlike 

Bitcoin, the Bitcoin Cash block size was increased from 1MB to 8MB, which means Bitcoin 

Cash can now handle significantly more transactions per second.” Marketcap in December 2020: 

~$5 Billion (coinmarketcap.com). 

1.3.6 Chainlink (LINK) 

“Chainlink is a decentralized oracle network which aims to connect smart contracts with data 

from the real world. It held an ICO in September 2017, raising $32 million, with a total supply of 

1 billion LINK tokens. LINK, the cryptocurrency native to the Chainlink decentralized oracle 

network, is used to pay node operators. Since the Chainlink network has a reputation system (not 

proof of work), node providers that have a large amount of LINK can bet rewarded with larger 

contracts, while a failure to deliver accurate information results in a deduction of tokens.” 

Marketcap in December 2020: ~$5 Billion (coinmarketcap.com). 
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1.3.7 Cardano (ADA) 

“Cardano is a proof-of-stake blockchain platform. The ADA token is designed to ensure that 

owners can participate in the operation of the network. Because of this, those who hold the 

cryptocurrency have the right to vote on any proposed changes to the software. Cardano is one of 

the biggest blockchains to successfully use a proof-of-stake consensus mechanism, which is less 

energy intensive that the proof-of-work algorithm relied upon by Bitcoin.” Marketcap in 

December of 2020: ~ $4.7 Billion (coinmarketcap.com). 

1.3.8 Binance Coin (BNB) 

“BNB was initially launched on the Ethereum network with a total supply capped at 200 million 

coins, and 100 million BNBs offered in the ICO. However, in April 2019, with the launch of the 

Binance Chain Mainnet, are now no longer hosted on Ethereum. You cannot mine BNB as you 

would a proof-of-work cryptocurrency, since the Binance Blockchain uses BFT consensus 

mechanism. Instead, there are validators that earn from securing the network by validating 

blocks.” Marketcap in December 2020: ~ $4.1Billion (coinmarketcap.com). 

1.3.9 Monero (XMR) 

“Monero’s goal is to allow transactions to take place privately and with anonymity. Even though 

it’s commonly thought that BTC can conceal a person’s identity, it’s often easy to trace 

payments back to their original source because blockchains are transparent. However, XMR is 

designed to obscure senders and recipients alike through the use of cryptography.” Marketcap in 

December 2020: ~$2.7 Billion (coinmarketcap.com). 

 



 

7 

 

1.3.10 Dogecoin (DOGE) 

“Dogecoin is based on the popular “doge” internet meme and features a Shiba Inu on its logo. 

Was Forked from Litecoin in 2013. Dogecoin’s creators envisaged it as a fun, light-hearted 

cryptocurrency that would have greater appeal beyond the core Bitcoin audience, since it was 

based on a dog meme. The cryptocurrency has a block time of 1 minute, and unlike Bitcoin, the 

supply is uncapped, which means that there is no limit to the number of Dogecoins that can be 

mined.” Marketcap in December 2020: ~ $410 Million (coinmarketcap.com). 

1.4 Similarities and Differences Between Other Financial Data 

Unlike tradition stocks, cryptocurrencies are traded at all hours of the day and the exchanges they 

are traded on do not close for holidays or weekends.  Cryptocurrencies in general also behavior 

more similarly to traditional fiat currencies (like the USD) as they are primarily designed to 

purchase goods and services.
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 2 Univariate Time Series Analysis 

In this section, we not only introduce some fundamental concepts on time series, but we also 

uncover few core ideas that seem to be crucial in understanding of modeling time series. Among 

many other interesting concepts, we will take a tour over stochastic processes and their related 

moments, the auto-correlation and partial auto-correlation. We then investigate financial time 

series and the stylized facts they exhibit. Finally, we will conduct an empirical study of a 

financial stock to shed light onto few of their behaviors. 

2.1 Introduction 

Loosely speaking, a time series is identified to an ordered set of observation that have been 

collected through equally spaced time intervals. In this era of data deluge, time series are 

ubiquitous and touch at every domain. Almost every human activity is in one way or another 

confronted the extensive use of time series. From pure science to engineering, from medicine to 

social sciences, from industry to academia; it is almost difficult, if not impossible, to not find at 

least one variable that is not measured sequentially through time. For example, in physics time 

series arises quite often when studying very dynamical complex systems. In engineering, 

electricians are always engaged to better understand time-dependent aspects of power flow for 

long time in a fixed interval of time period. In medicine, doctors daily or weekly conduct interval 

measurements of some patients’ blood. In social sciences, the population growth rates is yearly 

measure to be able to prescribe some recommendations for the future. In finance and economics, 

the daily, weekly and monthly prices of stocks are constantly under investigations for better 

investment plans. In the industry world, some scientists tirelessly observe the time evolution of 
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the densities of plasma. Due to the very intense presence of time series in our daily life, 

understanding and modeling has been attracting various communities of researchers and 

practitioners,  

Depending on the data collection method, time series are divided between two grand classes; 

some are discrete and others are continuous. In discrete case, the data is recorded in evenly 

spaced time intervals, meanwhile in the continuous case where the measurement is randomly 

conducted through time.  

Without loss of generality, the principal motivation behind studying time series are to: 1-) have a 

well-defined understanding of the mechanism that generates the series, 2-) understand the 

underlying structure of the series, 3-) be able to foresee the future dynamics of the series via the 

computation of possible future values of the series, and 4-) enable us control the system that 

produce the series, Wei (2006).  

To respond to the first two motives as cited above, great efforts have been brought to effective 

actions, which led to the results that “It is said that time series exhibit very complex structures 

made up of four major components: trend, cyclic, seasonal and irregular”. 

2.1.1 Trend Component 

The trend displayed by a time series is the long-term general direction or movement taken by the 

series in a duration longer than a year. It often refers to historical changes in the observed 

historical data of a series. Also, it strongly suggests a view about the future dynamics of a time 

series. A trend can be linear, quadratic or exponential. A series with a linearly increasing long 
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term trend is said to have a positive trend, whereas a linearly decreasing long term trend 

indicates a negative trend.  

In the case neither of these two cases is apparent, the series is generally called to be stationary 

around the mean. More details about stationary series will be given later on.  

2.1.2 Cyclic Component 

The cyclic component of time series is defined as the long-term oscillations around the mean of 

the series. In general, such features are prominent in financial and economic data. They usually 

describe the successive expansion and contraction of a given business or the economy as a 

whole. Precisely, they inform about the well be of the business or the economic system under 

investigation. One should be aware that the cycles and their lengths are business dependent. 

Nevertheless, empirical observations have demonstrated that, cycles generally take place every 

over two years. 

2.1.3 Seasonal Component 

With time series, the seasonal variations are regular events of same lengths that occur constantly 

during the period of time (year, month, semester, quarter). They are short terms movements that 

are related to some seasonal factors. For example, it is a lapalissade that most of gift shops live a 

remarkable increase in sell around Christmas time. seasonal variations in a series are generally 

caused are: climate and weather conditions, customs, traditional habits, etc Adhikari and 

Agrawal (2013). 
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2.1.4 Irregular Component 

This component of a series is obtained after removing its cyclic and seasonal components. This 

allows to say that the irregular component of a series is assumed to be captured neither by the 

seasonal nor the cyclic component of the series. In point of fact, it corresponds to the unexpected 

shocks that occur in a time series. It occurs randomly and gives to time series their unpredictable 

characteristic. Furthermore, due to the irregular component of time series data, they are 

mathematically modeled as random variables.  

Without prejudice a time series is described to be an additive or a multiplicative combination of 

the four components mentioned above. In mathematical notation, this is usually written as  

 

    TS(t) = T + C + S + I     (1) 

or 

    TS(t) = T ∗ C ∗ S ∗ I     (2)  

 

wherein eq(1) describes the additive relationship between a given time series and its various 

components; and eq(2) represents the multiplicative one. In each of the two equations TS(t), 

indicates the observed value of the series at the instant t , and T, C, S, and I respectively stand for 

the trend, cyclic, seasonal and irregular components of the series under study. The key 

assumption that holds the additive model is the four components that comprise a time series are 

independent from each other. This could be supported by the mathematical equation that 
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formulates the model as expressed above. Such a model may be appropriate if an increase or a 

decrease in the values of the series does not lead to a change of the amplitude of the seasonal 

effects. In other terms, if the magnitude of the seasonal effects of the series does not depend on 

the magnitude of the values obtained by the series. Oppositely, the multiplicative model assumes 

that the four components of the series are not imperatively independent. In a certain sense, one 

component can affect another. Thus, it common to hear that a multiplicative model may be well 

suited if the seasonal effects depend on the magnitude of the values achieved by the series.  

In addition to these components, the complex structure of time series has to do with the fact that 

any of the observed value of the series at time t is affected by its values at time t - 1. This results 

in the concept of auto-correlation or serial correlation in time series data.  

The concept of auto-correlation in time series data dictates the necessity of considerable attention 

while dealing with time series data. Hence, over the past decennials consequential efforts have 

been spent by researchers for the development of efficient approaches to improve our 

understanding of time series. As a result, the birth of “Time series analysis took place”.  

Time series analysis is the harmonious use of a set of statistical techniques on time series data in 

order to improve our knowledge and strengthen our understanding on a given data. The purpose 

is to achieve four principal objectives as follows:  

▪ Data compression - aims at providing a reduced representation of the data  

▪ Explanatory - aims at getting insights to the data. This can be done by using many 

techniques such as conducting univariate (for the presence of any seasonal and cyclic 

components) and bivariate studies of the variables present in the data in order to detect any 

significant relationship between them.  
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▪ Signal Processing - refers to extracting the signal from impurities(noise). This enhances us 

to communicate on the data. It frequently involves some mathematical transformations or 

manipulations on the collected data. In the process of extracting signals, some do it in time 

domain and others in frequency domain. The preeminent examples of such techniques are 

Wavelets and Fourier Analyses.  

▪ Prediction or forecasting - consists at building a reliable model that can be used to tell 

something about the dynamics of the series in a future horizon considering what happened 

in the past. Precisely stated, it is the use of a mathematical or computer model to predict 

future values of the series based on some historical data.  

▪ Meanwhile, the main goal of time series analysis is not only to develop, but to also provide 

mathematical models that allow to achieve plausible representations for sample data 

Shumway and Stoffer (2017). A fundamental part of time series analysis is the prediction, 

which tries to learn from the past in order to take a jump in the future. In time series Later 

on, a great amount of time will be spent on in the context of the market of stocks.  

More well formed information about techniques to analyze time series can be found in 

Anderson (1976), Li and McLeod (1986).  

 

2.2 Mathematical Background 

In what follows, let us consider a stochastic process, {Xt: t = ±1, ±2, ...} to model a given time 

series. For simplicity’s sake, let us assume that we are dealing with one dimensional and 

discrete-time stochastic process whose probability distribution is determined by the set of 

distribution of all finite collected values of all the Xs. As learned from undergraduate probability 

class, the joint distribution of all those random variables is generally. 
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2.2.1 Descriptive Statistic 

For such a process, let’s define the mean function as 

( ) ( ), 1, 2,...x tt E X tP = = r r      (3)   
 

Where at every single time step t, μX represents the expected value of our process which takes 

different values at different moments. One routinely comes across the expected value of a 

stochastic process being called as the first moment when it is referred a random variable. Also 

known as the first moment, it measures the central location the data under investigation. The 

second moment or variance of any stochastic process (or any other random variable) is expressed 

as  

    ( )22 ( ) ( ) ( )X t t xt Var X E X tV Pª º= = −¬ ¼    (4)  

 

This quantity gives information on the spread or the variability of the data. In practice, the first 

and second moments are enough to describe any normal distribution. For complex data with 

complicated distributions, one should think of using higher order moments to summarize the 

shape of distribution of the data.  

The skewness of the process, known as the third moment, is one of the higher order moments 

that are extensively used for complex data distributions. It is specified by  

    
( )3

3

( )
( )

t x

t

E X t
skew X

P

V

ª º−¬ ¼=    (5)  
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It measures the symmetry of the distribution of the process or the random variable with respect to 

its mean. Symmetric distributions have zero skewness, while distributions with a long tail in the 

positive x-axis direction have positive skewness and those with a long tail in the negative x-axis 

direction have negative skewness.  

Following is the Kurtosis, known as the fourth moment 

    
( )4

4

( )
( )

t X

t

E X t
kurt X

P

V

ª º−¬ ¼=    (6) 

It tells us about the behavior of the tail of the distribution of a given process or random variable 

X. It measures the flatness of a distribution. If Kurt(X)=3, we say that the process is normally 

distributed. Whenever Kurt(X) > 3 or Kurt(X) - 3 > 0, we talk of the existence of an excess 

kurtosis or positive kurtosis. In this case, we say that the distribution of X has a tail fatter than 

that of the normal distribution. Such a distribution is referred to as “leptokurtic”. On the other 

hand, a distribution that has negative kurtosis displays short tail. In such a case, the distribution 

is referred to as “platykurtic”.  

In toto, the third and fourth moments are used to measure the extent of asymmetry and tail 

thickness.  

Of course, as mentioned above, the mean and variance are important quantities in the study of 

time series. However, it remains true that other quantities are needed for complex distributions. 

Other concepts that plays key role in time series study is those of the auto − covariance and 

auto − correlation. Before we dive into those concepts, let us review some mathematical 
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notions in probability theories and statistics. Consider that we have two random variables X, and 

Y.  

2.2.2 Covariance 

The covariance between X, and Y is a quantitative measure of the joint variability between X, and 

Y defined by .  

> @( ) > @( )( , ) cov( , )X Y X Y E X E X Y E YJ ª º= = − −¬ ¼ ( )( )X YE X YP P= − −ª º¬ ¼  (7) 

The above mathematical equation can be interpreted as the measure of the interaction effects 

between the deviation of the two variables from their respective expected values. In other terms, 

it can be seen as a quantitative measure of how much each of the variable deviates from their 

own mean and from the mean of the other variable as well. This is to say that the two variables 

simultaneously go above or below their expected values, then the covariance assumes positive 

values. On the other hand, the covariance is said to be negative if one the variables jumps up 

above its expected mean while the other variable jumps down its expected value. Thus, it can be 

stated that the behavior of the two variables with respect their means, guides the tendency of the 

linear relationship that relates them.  

2.2.3 Correlation 

The covariance, as just defined, is quite cumbersome to be interpreted since the magnitude of the 

covariance depends with fidelity on the variables. To palliate to this drawback, it is common to 

encounter the use of correlation coefficient.  
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Correlation is the normalized version of the covariance. It is obtained by dividing the covariance 

between two variables X, and Y by the product of the standard deviations of the two variables. 

Mathematically, it is expressed by  

  ( , ) ( , )X Y Corr X YU =
( , )

( ) ( )
Cov X Y

Var x Var Y
=

( , )
( , ) ( , )

X Y
X X Y Y
J

J J
=  

     where γ(X,X) = Var(X), and γ(Y,Y) = Var(Y)  

The values of the correlation lay in the interval [-1,1]. When ( , )X YU  is 1 or -1, we say that that 

there is a strong dependence between the two variables. In contrast, we say that there is no linear 

relationship between them, if ρ assumes the zero value. In such a scenario, we formally say that 

X and X are uncorrelated.  

A discussion about the mathematics surrounding time series will not be complete by omitting or 

disregarding stationarity of time series data since it is an extremely useful concept to time series 

analysis.  

2.2.4 Stationarity  

Now that we have covered some basic aspects of stochastic process or random variables, we are 

in a better shape to talk about stationarity in time series.  

In the most intuitive sense, a process {Xt} is said to be stationary if the probabilistic laws that 

governs its behaviors do not change over time Maindonald (2009). As, at the basic level, it is a 

common practice to describe a stochastic process in terms of the first four moments, a process 

could be said to be stationary if its stationary statistical properties such as mean, variance, auto-
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correlation, etc. do not change over time. Mathematically speaking, this can be expressed as 

E[Xt] = E[Xt−k], Var[Xt] = Var[Xt−k],and γt,t−k = γ0,k. Such a stationary is known under the name of 

weak stationarity. Thus, it can be stated that for a weakly stationary process Xt the following 

conditions Brockwell and Davis (2016):  

(i) μX(t) = μ, a constant that is independent of t  

(ii) σX
2 (t) = σ, a constant that is independent of t  

(iii) γX(t + k) = γX(k) := γX(k,0), independent of t for each lag k 

It results from eq(iii) that the covariance function, γX, of a stationary time series Xt solemnly 

depends on the  

lag k Brockwell and Davis (2016). 

At the mercy of eq(ii) and eq(13), we can express the autocovariance function (ACVF) of a 

given process {Xt} at a certain lag k as  

 ( ) ( )X k kJ J= ( , )t t kCov X X += ( )( )t t kE X XP P+= − −ª º¬ ¼ ( ) 2
t t kE X X P+= −  (9) 

From eq(9), one can see that if k = 0, we have γ(0) = E(X2
t) - μ = Var(Xt). 

From eq(8) and eq(9) with the setting X = Y, we have to the autocorrelation function (ACF) of 

{Xt} at lag k defined as  

 ( ) ( )X k kU U= ( )
(0)

X

X

kJ
J

=
( )
(0)
kJ

J
= ( , )t t kCorr X X +=     (10) 

The auto-correlation function (ACF) at lag k overflows with great proprieties Garg and Wang 

(2005): 1-) It allows to measure the correlation between a series with a shifted copy of itself as a 
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function of the lag k. Sated otherwise, it aims at measuring the dependence of values of the series 

that are k time points apart from each other. 2-) It is an even function, which means that 

measuring the similarity between Xt and Xt+k is the same as between Xt−k and Xt. 3-) The auto-

correlation function has its maximum magnitude lag k = 0, that is abs(ρ(k)) ≤ ρ(0) ∀ k .  

Later, we will learn more details about auto-correlation, also known as serial correlation.  

On the probabilistic ground, the equivalent definition of a stationary process refers to a process 

whose joint distribution of Xt1 , Xt2 , Xt3 , ..., Xtn is the same as the one for Xt1−k , Xt2−k , Xt3−k , ..., Xtn−k for 

any time choices t1, t1,...,tn and for any time choice in the past denoted by lag k. In this scenario, 

we talk about strict stationarity.  

On the statistical ground, Hipel and co-researchers introduce a stationary process as a form of 

statistical equilibrium since the statistical properties do not depend on time, Hipel and McLeod 

(1994).  

For a better understanding of those complex mathematical concepts as developed earlier, let us 

take a look at their sample analogues. To do so, let us assume that we have a set of observed data 

sample {xt} where t is between 1 and some integer T, of a stochastic process Xt. The 

corresponding statistical measures defined above are called sample statistics. They are 

recognized as :  

     
1

1 T

x i
t

x x
T
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=

= = ¦      (11) 
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    (14) 

One should note that the statistical quantities in eqs(11,12,13,14) with the hat sign on top are 

nothing more than the values in eq(3,4,5,6) but within a smaller sample size setting. They 

represent the sample estimates of the corresponding population quantity. In precise terms, eq(11) 

computes the sample mean, which is the sample estimate of the expected value of the population. 

It aims to measure the distribution of the sample data. Eq(12) shows the sample estimate of the 

population variance. It indicates how spread the sample data are around the sample mean. In 

eq(13), we have the sample estimate of the population skweness. This helps investigate how 

symmetric the sample distribution is. Lastly, eq(14) demonstrates how to compute the sample 

estimate of the population kurtosis. With this quantity, we try to measure the fatness of the 

sample distribution.  

Obtaining the quantities computed in eq-11,12,13,14 is of great importance as they equip one 

with necessary tools, at least at the basic level, to make some statistical inference about the 

structure of a random variable with the utilization of some observations of the given variable.  

The sample analogue of the auto-covariance function, known as the sample autocovariance 

function (SACF), is defined by  
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    ( )( )1

1
( ) ,

n k
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k n x x x x n k nJ
−

−
+

=

= − − − � �¦    (15) 

The associated sample autocorrelation function (SACF) is expressed as:  

    ( )( ) ,
(0)
kk n k nJU

J
= − � �      (16) 

SACF, in time series, plays a capital role be it in assessing the dependence in the data or in 

selecting a model an adequate model that best fits a given set of observations. For For a 

stationary process, SACF will provide us with an estimate of the ACF. This estimates guide one 

to the choice of the adequate model among many others.  

While analyzing or modeling time series data, it is common practice to assume the processes 

generating time series being stationary. Such a simplification comes with multiple advantages. 

First of all, stationary processes are much easier to deal with since the complexity of the 

mathematics that is involved is considerably reduced. Second, with stationary processes, it easier 

to predict that their statistical properties in future time will not be much different from the ones 

they had in the past time. Third, with some sample records, it is untroublesome to achieve 

reliable inferences about the structure of the process. All in all, in order to design an adequate 

model that aspires to achieve better forecasting tasks, it is almost indispensable to have an 

underlying time structure that is stationary Adhikari and Agrawal (2013).  

However, one should be aware that, in nature, time series data such as in finance and economics, 

are found to be non-stationary. They either exhibit either trend or seasonality. To detect those 

non-stationary features in time series data, one can rely on visual and mathematical techniques. 
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The first technique aims at searching for any non-stationary behavior such as trends and cycles 

via graphical representation and visualization tools, while the second one uses rigorous tests. 

Among many others, the most prominent is the one proposed Duckey and Fuller Cochrane 

(2005).  

Face to non-stationary time series, steps must be taken to make them stationary. In actuality, this 

is achieved through mathematical transformations. To achieve stationary series, researchers and 

practitioners routinely use the differencing method. In some situations, the logarithmic 

transformation is found to be useful in making time series stationary. This transformation is 

generally used whenever the series displays a highly skewed distribution. In general, the 

logarithmic transformation is also used whenever the series displays higher levels. Since more 

variation is seen with series with higher levels, applying the logarithmic transformation to the 

data provides us with a new series with constant variance over time Shumway and Stoffer 

(2017). It is quite frequent also to see a two-step approach to make a series stationary. The 

logarithmic is applied first, followed by the differencing operation. Such a technique is generally 

used whenever we are dealing with series that is evolving through time in the exponential 

fashion Shumway and Stoffer (2017).  

In addition, parametric families of data transformation are used to remedy to the non-stationarity 

issues present in time series. Among those families, the one that has received popularity is the 

Box-Cox power transformations that are defined as:  
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The first equation of the system operates in three steps. First, each value of the data is taken to 

the power λ. Second, each of the transformed value is shifted by subtracting 1. Third, the 

obtained values are rescaled by divided them by λ. The rescaling aims at making h(x,λ) 

converges to log x when λ goes to 0.  

Different values for λ lead to different transformations. More details about the effects of λ can be 

found in the research paper produced by Ruppert Ruppert (2004). It shall be noted that one of the 

major conditions for using Box-Cox’s power transformation is to have positive data values. In 

the case negative or zero values are present in the data, they should be shifted by adding a 

positive constant value before applying Box-Cox’s power transformation.  

 

2.3 Time Series Modeling and Forecasting 

Now that we have we got the grip on time series, we can start with the forecasting stage, the 

heart of time series and time series analysis.  

2.3.1 Time Series Modeling 

Time series modeling is one of the key steps in the process of analyzing time series. It is a 

pervasive practice that consists of fitting a suitable model to a given time series in order to 

understand the underlying structure of a time series. Constructing time series models traces its 

roots back Yule, who in 1927 wrote one of his famous papers that analyses the sunspot Yule 

(1927). For many, this was likely the starting point of time series modeling, which furthered to 

the takeoff of the whole theory of linear auto-regressive models. In its turn, linear auto-regressive 

models in its concepts and structure facilitated the rapid bloom of non-linear time series models.  
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In one way or another, modeling time series comprises steps that require selecting a suitable 

model for the data with the intent of giving a better explanation of the series based on theoretical 

foundations and mathematical reasons. This is done by fitting either a single model or a class of 

models to a given time series data, which leads to the estimation of the parameters that constitute 

the model(s). In the case of one single model, the estimated parameters are then used to presage 

the behavior of the series in the future. In the case we have a class of models that are fitted into 

the data, the one that outputs estimated parameters with less errors is chosen for predicting the 

next values of the series.  

In general, the resulting method should support few rules and principles. A suitable model must 

fulfill some criteria Frohn (1995):  

▪ capable of well capturing the generating process 

▪ theoretical soundness 

▪ reliable parameter estimation 

▪ simplicity  

Lately, the principle of simplicity(model parsimony) of time series model has received an 

increasing awareness. In the process of building a time series model, the principal of parsimony 

supports that one should keep the model as simple as possible Chatfield (1996), Zhang (2007), 

Zhang (2003), Adhikari and Agrawal (2013). By making the model simple, we mean to reduce 

the number of possible parameters that are needed to capture the underlying structure of the data. 

In doing so, one should be very careful as a model that is too simple might not have the full 

capacity to decrypt the most fundamental look of the series. Such scenario is knwon as 

underfitting. The opposite of underfitting overfitting, which occurs in the presence of very 

complex models. Complex models have the tendency to easily learn from noises which can have 
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serious impacts on prediction accuracy of the model. Consequently, one should always aim at 

finding a middle ground between parameters that result in underfitted and those that give 

overfitted models.  

2.3.2 Time Series Forecasting 

Forecasting is a step with a major importance in time series analysis. It is a practice that 

involves discovering a solid pattern in a given historical data(past values of a series) that aims to 

be used for extrapolating the values of the series in the future. Put in an other way, suppose that 

we have a given observed sample data {x1,x1,...,xT } of a stochastic process {Xt}, and we are 

tasked with knowing the future values of Xt at a certain time point j. Let us look at few examples 

before drawing a general formula that responds to all the the cases.  

Given {x1 ,x1 ,...,xT }, i.e based on all the available information up to time T, we aim to know the 

value xT +1 . This is denoted by  

    E(xT +1 |xT ,xT −1 ,...,x1 ) 

Similarly, after knowing xT+1, the next value of the series, xT+2 is found via  

    E(xT +2 |xT +1 ,xT ,...,x1 ) 

Iteratively, the value at time j is determined by  

    ( )1 2 1| , ,...,T j T j T jE x x x x+ + − + −  

We learn from the above expressions that a new foretasted value of a series not only depend on 

the past values of the series, but also on past forecast errors. The use of the past observations of 



 

26 

the series is to be able to develop a mathematical model that optimally captures the underlying 

structure of the generating process Adhikari and Agrawal (2013), Zhang (2007), Park (1999) . 

Once an optimal model is found, it can be used for prediction of future events.  

Forecast methods can come into three types:  

▪ Judgmental forecasting - is a forecasting type that mainly depends on the judgment, 

intuition, emotion, apprehension, comprehension and the degree of anticipation of the 

forecasters. Judgmental forecasting is a widely used when the forecasters do not hold much 

information about the process, i.e. enough historical data, or when the forecaster has record 

on conducting such an activity, or the environment is relatively stable Kavanagh and 

Williams (2014), Lawrence et al. (2006). With this forecasting method, it is quite a difficult 

task to best address the human component of judgmental forecasting. This comes as major 

weakness of this method since it involves substantial risks to the accuracy of the prediction. 

However, researchers have provided that the accuracy of can be improved if the forecasters 

have considerable amount of domain knowledge and more historical data are available 

Lawrence et al. (2006).  

▪ Univariate forecasting - refers to the forecasting of a univariate time series, which is given 

as a single column of observed numbers. With this type forecasting method, the forecasted 

values depend on the actual and some past values of the actual series itself that is being 

investigated, the one being predicted. This method relies on some past values of the series, 

one or more mathematical or statistical models that well capture the dynamics of the data 

generating process. The adopted model is then used to predict reasonable. Univariate 

forecast methods are more reliable if sufficient amount of observed data is available. 

Unlike Judgmental forecast methods which are rooted is judgment, one of the advantages 

of univariate forecasting methods is that the resulting predicted values are more or less 

accurate since they results from a rational study or rigorous analysis of pertinent patterns in 

the data. However, univariate time series analysis has also been panned as it comprises of 

studying a single variable while not taking into consideration some interesting aspects 

found in real world data such as causes or relationships. For example, in finance and 
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investment portfolio construction, it will be always wise to look at relationships or 

correlation among different stocks before putting them together. This leads us to the 

concept of portfolio diversification, which will, later, be discussed.  

▪ Multivariate forecasting- is used in situations where there is more than one-time dependent 

variables. In such a case, forecasters not only care about the past values of each variable 

but also on the dependence between the variables present in the study. That is, the patterns 

and relationships between the existing variables in a data set are used to predict the future 

values of each of the variables. It provides a tool to predict the effects of a small change in 

one variable on the others. In general, univariate time series analysis is first conducted. 

Then, knowledge and understanding gathered from univariate serves as a precursor to 

multivariate study. Since taking into consideration the dependency of all the variables is at 

the center of multivariate time series forecasting, this gives a considerable advantage over 

univariate time series forecasting. However, the latter forecasting method is exposed to 

more complication such as the increasing number of parameters and the identifiability 

problem Tsay (2013). Tsay in his multivariate time series analysis book proposed a cascade 

of techniques and models in order to address some eventual undesirable outcomes while 

dealing with data with multivariate time series Tsay (2013).  

▪ Regardless of the forecasting method that is used, many researchers consider that the main 

objective of forecasting is to study the dynamical structure of processes. A group of people 

achieve this objective by using emotion. Another group does it by studying the variables 

individually.The third group of people proceed in studying the relationship between 

variables, but also in understanding whether or not they are dynamically interconnected.  
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 3 ARIMA 

3.1 Introduction 

As mentioned earlier, financial stocks and the predictions of their prices play an important role in 

today’s economy. Due to asymmetrical behaviors and numerous uncertainties, stock price 

prediction remains one of the most challenging activities in financial forecasting Dong et al. 

(2017). Thus, constructing efficiently functioning and predictive models for stock prices has 

been of great interest to researchers. Especially, investors have been interested in such models 

for better investment decisions, effective strategies, higher profits and minimal risks Ariyo et al. 

(2014). As a result, we are witnessing an unprecedented proliferation of financial models among 

which autoregressive moving average (ARMA) has gained notoriety in financial forecasting 

Siami-Namini et al. (2018) due to its flexibility and capability in representing different types of 

time series Chen et al. (2014). As reported earlier and in literature, time-series data exhibit two 

major problems: linearity and nonstationarity. These represent serious challenges to the 

utilization of ARMA across areas in while dealing with real-word time series. Despite its 

popularity and success, ARMA has faced the same critiques Chen et al. (2014). In this regard, 

autoregressive integrated moving average(ARIMA) models have been proposed to overcome 

some major weaknesses and flaws of ARMA models.  

ARIMA models constitute a class of mathematical models for analyzing autocorrelation in 

temporal data and making predictions based on past behaviors of a given process. Conceptually, 

an ARIMA model is the combination of an autoregressive(AR) process and a moving 

average(MA) process. The AR process assumes that the value achieved by a variable at a given 



 

29 

time t is achieved via a linear combination of its lag values, whereas the MA process takes an 

observation as the linear regression of the residual errors. Such a concept was first introduced by 

Yule, Slutsky, Walker and Yaglom Chen et al. (2014). In ARIMA models, making non-

stationary time series stationary is considered. As stated earlier, stationarity can be induced in a 

non-stationary data via a variety of mathematical transformations, of which differencing is 

accepted to be the most common technique. The main advantage of differencing is to eliminate 

the influences of the trend from the data Chen et al. (2014).  

3.2 Mathematical Background 

Let us assume that we are dealing with a time series defined by a stochastic process {Xt}. 

ARIMA models are presented as a combination of Autoregressive (AR) process and Moving 

Average (MA) to achieve a mixed models that captures the dynamics of the series Xt.  

▪ Autoregressive (AR) - A regression model that supposes that the value of a process at a 

given t might be expressed as a linear combination of the previous values of the process up 

to time t and some random errors. To this end, it shows the the dependencies between an 

observed value and previously observed values. A process that is expressed Xt = αXt−1 + εt 

assumes that today’s value of the process is its yesterday’s value multiplied by a certain 

constant plus 1 the stochastic error at that time. Such process is named as an AR model of 

order 1,AR(1) . More generally, an AR model of p is given by : 

 

 

𝑋𝑡 = 𝑐 + 𝛼1𝑋𝑡−1 +  𝛼2𝑋𝑡−2 + ⋯ + 𝛼𝑝𝑋𝑡−𝑝 + 𝜀𝑡  

= 𝑐 + ∑ 𝑋𝑡−𝑖

𝑝

𝑖=1

+ 𝛼𝑡 

=  𝑐 + ∑ 𝛼𝑖𝐵𝑖
𝑝

𝑖=1
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 wherein Xt represents the stationary process under study, c is constant, a specific αi denotes 

autocorrelation coefficient at lag i, and εt goes as N(0,σε
2). The first equality of eq(1) gives 

the extended form of the formula, the second equality is a compacted version, and the third 

equation is an equivalent expression that uses the backshift operator B. The simplest 

autoregressive process is AR(0). With such a model, there is no dependence between the 

terms.  

 

▪ Integrated (I) - Indicates the differencing of the original time series data. It is to replace an 

observed value by the difference between that value and the immediate data value. The 

motivation behind this is to transform a nonstationary process to a stationary one. A non-

stationary data can be differenced more than once to achieve stationarity. For example, 

first-differencing a time series conduces to the removal of the trend components of the 

series; twice differencing will remove the quadratic trend. Alternatively, the first difference 

can be written as ∇Xt = Xt - Xt−1. The second difference is ∇(∇Xt) = ∇2Xt = (Xt - Xt−1) - (Xt−1 - 

Xt−2) = Xt - 2Xt−1 + Xt−2. With ARIMA models, over-differencing and under-differencing can 

lead to serious problems.  

 

▪ Moving Average (MA) - A modeling technique that consider the dependency between the 

observed data and the residuals errors obtained from fitting a moving average model to 

previous observations. A first-order moving-average process, written as MA(1), has the 

general equation Xt = μ + θ0εt + θεt−1. The qth order moving average model, denoted by 

MA(q) is :  

 

 

 

 

𝑋𝑡 =  µ + 𝜀𝑡 + ɵ1𝜀𝑡−1 + ⋯ + ɵ𝑞𝑋𝑞 + 𝜀𝑡−𝑞  

      =  µ + 𝜀𝑡 + ∑ ɵ𝑖

𝑞

𝑖=1

𝜀𝑡−1  



 

31 

     =   µ + µ𝑡 + ∑ ɵ𝑖

𝑞

𝑖=1

𝐵𝑖𝜀𝑡 

In eq(2), μ indicates the expectation of the Xt. In general, μ is assumed to be equal to zero. 

For any i, θi denotes the coefficients of the model, εt is assumed to be N(0,σε
2).  

The combination of AR(p) and MA(q) builds an ARIMA model of order (p,q), which 

models the time series as :  

𝑋𝑡 = 𝑐 + ∑ 𝛼𝑖𝐵𝑖𝑋𝑡 +  𝜀𝑡 + ∑ ɵ𝑖𝐵𝑖𝜀𝑡

𝑞

𝑖=1

𝑝

𝑖=1

 

Where for any i, αi and θi are non-zero coefficients.  

The ARIMA modeling approach, commonly known as Box and Jenkins methods, involves three 

main stages. The first step is for model identification, which consists of guessing an eventual 

model that is assumed to be the model that fits the data the best. The chosen model can be an 

AR, MA, or ARIMA model. One way to choose the appropriate model is by examining the 

graphs of ACF and PACF functions Mishra and Desai (2005). Without of loss of generality, 

ACF function identifies the appropriate lag q, whereas PACF function helps find the appropriate 

lag p in an ARIMA model. For an AR(p) model, the ACF function progressively declines in from 

its highest value at lag p while its PACF function abruptly after lag p. On the other hand, the 

ACF function of an MA(q) abruptly cuts off after lag q, whereas its PCAF function declines in 

geometric progression from its highest value at lag q.  

Another way is to construct an array of ARIMA models, where each model is defined by a 

specific (p, d, q) model. Iteratively, each of the models is fitted to the series. Finally, the model 
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with that gives the minimum Akaike Information Criterion (AIC) is selected as the best-fit model 

Faruk (2010).  

The second stage of the ARIMA modeling is the parameter estimation. This consists of 

estimating the coefficients present in the model. In recent times, various estimations techniques 

have been proposed including method of moments, least squares estimation, and maximum 

likelihood methods Cryer and Kellet (1991). Introduced in 1887 by Pafnuty Chebyshev, the 

method of moments is an estimation technique that relies on the translation of well known 

information about a given population to a sample of the population. Fundamentally, the method 

moment is an estimation method that is associated with the law of large numbers. The main idea 

is to express the sample moments and equate them to their theoretical corresponding Cryer and 

Kellet (1991). A common use of the method of moments is to estimate a stationary process mean 

by a sample mean Cryer and Kellet (1991). The main advantage of such an estimation method 

lies in its simplicity. However, with the method of moments, the chance to get inaccurate 

estimations is very high mostly with small sized-samples. In addition, the method does not 

consider all the information in the data, which can lead to the violation of the sufficiency 

principle.  

The Least Square Method (LSM) method is a technique that attempts to estimate the parameters 

of a model by minimizing the squared discrepancies between observed data and their expected 

values Time et al.. LSM is considered as the oldest and most popular technique in modern 

statistics. One of its main advantages is that it is an optimization that allows us to achieve 

optimal estimators. Another of its advantages is that it deals well with complex models, scenarios 

where it is generally difficult to obtain very optimal estimators. However, LSM is highly 
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criticized for being sensitive to outliers and having the tendency to often overfit. Also, LSM 

suffers from working only around the first and second moments. In other terms, LSM also does 

not take into consideration all the information in the data.  

The Maximum Likelihood Estimation (MLE) is a statistical method for estimating unknown 

parameters of a given modern based with respect to some given observations. MLE attempts to 

find the parameter values that maximize the likelihood of attaining the available observed data 

given the parameters. Unlike the above-cited methods, MLE takes all of the information in the 

data in how it operates. Other advantages of MLE are its ability to have lower variance than 

other methods and the fact that it is a method that is statistically well understood. One major 

disadvantage of MLE is that it is computationally expensive.  

The last stage of the Box-Jenkins methodology is the diagnostic checking, which aims at 

checking the adequacy of a statistical model. In the diagnostic checking, the central motive is to 

find a superior model based on some fixed purposes. To obtain a dream model, notable 

mathematical, computational and empirical techniques have been proposed by academicians and 

practitioners. For this purpose, numerous kinds of Diagnostic of Goodness fit exist according to 

the motive behind the analysis of the residuals, purpose, and need of having it. Regardless of the 

objectives, with appropriate models, the residuals should not display any traceable patterns. As 

such, there should not be any correlation structure in the residuals. Thus, to check on the 

independence on the independence of the noise in a given model, many techniques have been 

deployed. Some rely on the graphical representation of the residuals and other focus on the plot 

of the residual autocorrelation and partial autocorrelation at a certain number of lags. The first 

method checks on the plot of the residuals over time to see whether or not the appropriate model 
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has been found. For an appropriate model, the residuals are expected to be quasi-evenly 

distributed around the horizontal axis fixed at zero.  

With the second method the residuals of the fitted model are investigated with the ACF plots. In 

this, the ACF versus lags is plotted. Such a plot displays some dotted horizontal lines which 

denote the interval 1 𝑇⁄  +/- 1.96 1
√𝑇⁄  where 1.96 is the critical value at 5% level. Any 

autocorrelation value that falls outside this interval is considered to be statistically significantly 

different from zero at the 5% fixed level.  

This technique reveals if there is any autocorrelation structure remaining in the residuals. For an 

adequate model, all the autocorrelations for the residuals are expected to be insignificant. In the 

case the residual autocorrelations are significant, one needs to try a different model.  

Though these techniques have gained some popularity due to their simplicity, it is important to 

stretch on the fact they can deliver misleading results. The major downside of using them is that 

they only display the significance at the individual level but not jointly. Stated otherwise, though 

investigating residual correlations at individual lags, it is wiser to have means that allow us to 

take into consideration their magnitude as a group. The interest of this thinking resides in the fact 

it is always possible to have residual autocorrelations that are moderate, even more close their 

critical values, but as a group they might high chance to explode Cryer and Kellet (1991)  

To address this issue, the desire of developing more robust diagnostics tests based on the auto-

correlation with theoretical justification has been continuously fulfilled.  
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3.3 Literature Review 

Over the years, ARIMA models have been applied in a wide range of disciplines and areas. An 

intensive review of the literature shows that:  

In Dong et al. (2017), Yichen et al. present an extensive process of building a financial predictive 

model by using the ARIMA model on Apple data. The authors found that in the short-run 

forecast, ARIMA has all the abilities to compete with many other predictive models. Thus, it can 

be used as a good tool for making investment decisions.  

In Edward (2016), Aloysius et al. forecast stock prices in the automobile sector. For, the 

historical prices of 4 different companies were collected for 8 years. The forecasting models 

ARMAs were deployed to forecast the stock prices. The collected data were partitioned 70-40, 

where 70% of the data were used as teacher data and 40% of them as student data. They found 

that ARIMA(1,1, 0) fits the 8 time series data the best. Also, they found a prediction accuracy 

that is higher than 75%.  

In Mondal et al. (2014), a study of the effectiveness of the ARIMA models in foresting stock 

prices is conducted. In this study fifty-six (56) stocks from 6 sectors in the Indian market of 

stocks were used. The chosen sectors are information technology (IT), infrastructure, bank, 

automobile, power, fast-moving consumer goods (FMCG) and steel. Twenty-three months of 

historical price data were collected to conduct the empirical study. Numerous ARIMA models 

were constructed by choosing an array of values for the parameters that define an ARIMA 

model. The best model that fits the most each of the series was performed by using the Akaike 

Information Criterion(AIC).  
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As result, the authors found that a high performance of the ARIMA model no matter what the 

sector is. An intersector performance comparison indicated that the ARIMA model attained high 

accuracy in FMCG than any other sector, whereas it performed poorly in the automobile sector.  

In Ozturk and Ozturk (2018), Suat et al. foretasted the energy consumption of Turkey via the 

deployment of the ARIMA models. In this study, 45 years (1975-2015) of coil, oil, natural gas, 

renewable, and total enery consumption data were collected. It was found that a single absolute 

model does not exist and the ARIMA models are purely and simply data-driven models. They 

indicated that ARIMA(1, 1, 1), ARIMA(0, 1, 0), ARIMA(0, 0, 0), ARIMA(1, 1, 0), and ARIMA(0, 

1, 2) best fit coal consumption, oil consumption, natural gas consumption, renewable energy 

consumption and total energy consumption data respectively. They further predicted an increase 

of the consumption of coal, oil, natural gas, renewable energy and total energy by 4.87%, 3.92 

%, 4.39 %, 1.64 % and 4.20 % respectively in the next 25 years.  

ARIMA models have been involved in some comparative studies: 

In Siami-Namini et al. (2018), a comparison of the accuracy of ARIMA and Long Short-Term 

Memory (LSTM)-based algorithm in forecasting time series data. It was empirically noticed that 

the LSTM-based model outperformed the ARIMA statistical model. The authors reported an 

improvement of the accuracy by 85% by LSTM compared to ARIMA. This result prompted the 

authors to advocate the superiority of deep learning based-model algorithms over statistical 

models in the forecasting of economic and financial data.  

In Karakoyun and Cibikdiken (2018), the accuracy and the power of the statistical ARIMA 

models are compared to those of the LSTM, in finding suitable time series models for Bitcoin 

prices in predicting the Bitcoin for the next 30 days. The chosen models and algorithms were 
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deployed and tested on the Bitcoin prices from April 28, 2013, and October 29, 2017. Of these 

data, 1646 daily Bitcoin prices were used as teacher data. In their modeling process, it was found 

that ARIMA(4, 2, 1) is the best ARIMA model that optimally fits the data. With the utilization of 

different accuracy test results such as MAPE, RMSE, MAE, and MPE, it was empirically found 

that LSTM outperformed the well the widely used ARIMA models in the prediction of time 

series data.  

In Navares et al. (2018), Navares et al. examined the predicting daily hospital admissions in 

Madrid. The goal of the project was to provide the best technique, in terms of accuracy, in 

predicting the admissions to hospitals due to circulatory and respiratory diseases one day-ahead. 

For, an array of predictive models including a statistical model (ARIMA), two machine learning 

models such as Random Forest and (RF), and Gradient Boosting Machines (GBM), and 

Artificial Neural Networks (ANN) were trained and tested. Concerning the accuracy, the authors 

found that we found that ARIMA models and the ANN over-perform random forests and 

gradient boosting machines.  

Window Size  Accuracy  
25  48.90%  
50  50.33%  
75  54.04%  
100  48.84%  
125  48.86%  
175  51.75 %  
200  53.765%  
300  54.731  

Table 3-1. Mean of the Directional Forecast 
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Notwithstanding the great success of ARIMA models, they still have some limitations. The 

model assumes constant variance through real-world financial data exhibits non-constant 

volatility Petric ̆a et al. (2016). Another assumption that considerably goes against ARIMA 

models is the fact they rely on the white noise terms to be IID or t-distributed Hamilton (1994) 

Damsleth and El-Shaarawi (1989).  

3.4 Motivating Example 

In the hope of examining the performance of ARIMA model, we conducted a series of 

experiments on financial data. For the sake of coherence, let us consider the same AMAZON 

time series data as used above.  

The historical daily price of the stock was extracted from March 9th 2010 to March 9th 2020, 

having 2514 observations. The forecasting is based on rolling window or look back days 

methods Hyndman (2014). The rolling window forecasting method takes place in three main 

steps. Firstly, a window size should be chosen and fixed. Secondly, the chosen window is used to 

extract the subset of data that will serve for training the model. is continuously side by a unit 

index. This window size helps to choose the subset of the data that is going to be used for 

training the model. Thirdly, the next data point is predicted, i.e the one-step forecast is computed 

on the rest of the data. Fourthly, this sliding window continues till reach the end of the data.  

As illustrated graphically below, consider a one-dimensional array where each cell contains a 

datum of the time series and window of size 3. With rolling window forecasting method, the far 

we go down in the series, the less impact the first few observations will have on the predicted 

values. Hence, one can notice the reduction in size of the first few observations in our graphical 

illustration, Figure 3-1.  
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                        Figure 3-1. Rolling Window Forecasting 

 

 

Several variations of rolling forecast methods have been proposed including one-step forecasts 

without re-estimation, multi-step forecasts without re-estimation and multi-step forecasts with re-

estimation Hyndman (2014), Siami-Namini et al. (2018). The popularity of the rolling window 

techniques resides in their ability to assess the stability of statistical models over time Zivot and 

Wang (2007).  

To analyze the accuracy of the deployed ARIMA models, several trials were conducted to see 

how they are able to capture thy dynamics of the chosen stocks. In this process, 8 window (25, 

50, 75, 100, 125, 175, 200 and 300) sizes were chosen for the performance analysis. The 

accuracy of the prediction was measured by using the notion of Directional Forecasting (DF) 

instead of some of the conventional techniques such as Root Mean Square(RMSE), Mean 

Absolute Error (MAE), and Mean Square Error (MSE), which have been extensively used in 

evaluating the forecasting ability of modern predictive models. The core pitfalls of these methods 

is that they just allow to measure how far off the predicted price is from the actual one. In other 

terms, they just inform about the size of the forecasting error. In Leitch and Tanner (1991), the 

authors strongly believe support that the conventional metrics, which rely on the size of the 

forecast errors, do not have any systematic relationship to profits Leitch and Tanner (1991). They 

furthermore support that these metrics might be inappropriate since they only refer to point 

forecast, which is linked to the notion of how closeness of the forecasted value to the real value 

of the series under investigation at a given time. These result in the increasing use of DF since it 



 

40 

mostly captures the future movements of a financial instrument or a market of stocks. St ́adn ́ık et 

al. (2013) indicate that DF has recently been the focus of interest of investment companies, 

individual investors, banks and other financial market participants. In Leitch and Tanner (1991), 

the authors, via an explicit discussion and an in-depth analysis of the profitability of economic 

factors empirically, demonstrated the strong relationship between profit of an investment with 

DF. They also showed a more significant relationship between profit and DF than between profit 

and traditional accuracy metrics. This being said, it should be noted that the use of DF in 

literature remains limited. The reduced number of publications using DF in financial forecasting 

is explained by the challenges that professionals encounter when they try to implement 

appropriate techniques to test for directional forecasting. However, the Pesaran and 

Timmermann has been recently gained popularity for being one of the most commonly used 

techniques in testing for directional forecasting Pesaran and Timmermann (1992).  

Table 3-1 displays the effects of the window size on the directional forecasting. Computing the 

rate of being in the same direction as the market, it appears to find an optimal window size for a 

better performance of the ARIMA models on financial time series. In addition, the overall 

performances seem to not be favorable to the simple deployment of the ARIMA models in 

forecasting financial stocks. For Naylor et al. (1972), the poor performance of ARIMA models in 

predicting stock price may presumably due to the fact that they : 1- do not have any explanatory 

power; 2- are rooted into any economic theory; 3- are more smoothing techniques than economic 

models. Lately, it has also advocated that prediction accuracy of numerous models solely 

depends on the nature of the historical data under investigation Mendes et al. (2009). To 

overcome the poor performance of ARIMA models, it has been recently suggested to either use 

exogenous or explanatory variables, or their cointegration of the two types of variables Mendes 
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et al. (2009), Naylor et al. (1972). Also, it has been proposed to combine ARIMA and dynamic 

models to better capture the dynamics of data generating process that produces a given time 

series Naylor et al. (1972).  

To get deeper understanding of the dynamic and the structure of the historical price of the 

AMAZON stock, we decided to conduct a rolling window analysis of the chosen time series, 

where the window size equal to 100. Such a size, arguably considered as a larger size in term of 

rolling window, was chosen for the sake of better estimates. This, since it is known that longer 

rolling window sizes tend to yield smoother values than the ones obtained via the utilization of 

shorter sizes.  

For each of the sub-sampled data continuously obtained from rolling the window, the iterative 

Box-Jenkins methodology is employed. The optimal model is obtained with the help of Akaike 

information criterion (AIC). For each of the rolling window, the parameters of the optimal model 

is then extracted. Table 3-2 shows the frequency distribution of the ARIMA models based on 

rolling window of size 100 on the historical price of AMAZON stock. The table indicates that 

the top 5 preeminent models are (0,1,0), (1,0,0), (0,0,0), (1,1,0) and (2,0,0). One surprising point 

is to see the appearance of the ARIMA(0,0,0) models among the most dominating models. Such a 

feature appeals to the unpredictability of the stock price, a theory that has been advocated by 

many researchers as discussed earlier. Another surprising point is the non appearance of the 

ARIMA(1,0,1) and ARIMA(1,1,1), models that have been lately discussed in ARIMA modeling.  

 

 

 



 

42 

 

 

 

 

 

 

 

 

    

 

 

 

 

Table 3-2. Frequency Distribution of ARIMA(p,d,q) Models 

 

 

 

 

 

 

p  d  q  counts  rates  
0  1  0  1067548  26.3 %  
1  0  0  71683  17.7 %  
0  0  0  47665  11.8 %  
1  1  0  28628  7.1 %  
2  0  0  24034  5.9 %  
0  2  0  22506  5.6 %  
2  2  0  16240  4.0 %  
0  3  0  12941  3.2 %  
2  1  0  10003  2.5 %  
3  0  0  9387  2.3 %  
0  4  0  7878  1.9 %  
0  5  0  7757  1.9 %  
1  2  0  7407  1.8 %  
4  0  0  5728  1.4 %  
3  2  0  5368  1.3 %  
2  3  0  5432  1.3 %  
5  0  0  4215  1.0 %  
1  3  0  3793  0.9 %  
1  4  0  3086  0.8 %  
3  1  0  2829  0.7 %  
4  1  0  1934  0.5 %  
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 4 Multivariate Time Series Analysis 
and VARMA 

4.1 Introduction 

Regularly, financial and economic decisions are taken by simultaneously considering many 

interrelated factors or variables. As a result, the desire to properly study such a complex scenario 

has grown among financial deciders, economic advisors and policy-makers. In this process, 

multivariate Statistical Analysis (MVSA) came into the picture as the champion of statistically 

analyzing of many variables at once Long (2013). Roughly speaking, MVSA is an umbrella term 

representing a set of statistical theory and methods for analyzing these multivariate or vector of 

variables. More often than not, some variables are simultaneously collected in discrete and 

equally spaced time fashion over a long period of time. Variables of this kind are named as 

multivariate time series. Multivariate time series are important to numerous fields Wan et al. 

(2019), e.g areology Lajevardi and Minaei-Bidgoli (2008), meteorology Simmonds et al. (2017), 

finance Wu et al. (2013) and transportation Yu et al. (2017). In jointly studying variables or 

phenomena of this nature, multivariate time series analysis (MVTSA) has been the most solicited 

approach. Implicitly to its name, MVTSA can be seen as a branch of MVSA that specifically 

deals with dependent data Tsay (2013).  

Typically, a multivariate time series is of high dimension and exhibit various types of 

dependence of including temporal and cross-sectional ones Zhao et al. (2018). Temporal 

dependence concerns each individual series of the multivariate time series while cross-sectional 

dependence across all the univariate series Zhao et al. (2018). With the large number of involved 
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unknown parameters, the correlation and statistical dependence between different univariate 

series, MVTSA introduces more complexity and challenges than its univariate counterpart 

Beukelman and Brunner (2015), Tsay (2013). Nevertheless, MVTSA remains a very interesting 

subject since it aims to Tsay (2013): 1-) understand the relationships between the different 

variables that are in the study, 2-) study the dynamic relationships between the variables, 3-) 

provide prediction of the variables and 4-) improve the accuracy of prediction as this could be 

valuable in decision-making.  

4.2 Mathematical Background 

Let us consider Xt = (X1t, X2t, ..., Xkt)’ be a multivariate time series of dimension k or a vector of k 

time series . In this vector representation, each Xit represents a single time series which was 

lengthy studied earlier. At each point time δ, the observed value of the multivariate time series Xδ 

is defined by the values realized by each of the variables  

Xiδ, i = 1, 2,..., k. For the sake of simplicity and mathematical purposes, it is often convenient to 

agree that each of the component series is on their own a random variable, where the subscript i 

denotes the position occupied by a specific series in the vector of series and t represents the time 

at which the measurement has been made.  

As with the univariate case, stationarity is a vital condition in modeling multivariate time series 

simultaneously. In such a case, the notion of stationarity was earlier defined to with respect to 

some of the statistical features (mean, variance, auto-correlation and partial auto-correlation) of 

the process under investigation. Extending this approach to multivariate time series allows one to 

say that the stationarity of a vector Xt of time series data requires its mean vector, correlation 

matrix function and partial autocorrelation function be time invariant Beukelman and Brunner 
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(2015). Thus, the k- dimensional time series Xt is said to be weakly stationary if its unconditional 

mean and variance finite and constant through time, and that the cross-covariance between two 

component series at different time steps only depends on the difference between two time steps. 

Mathematically speaking, this could be expressed as follows :  

•𝐸(𝑋𝑡) =  µ <  ∞ ∀ 𝑡 
•𝛤0 = 𝐶𝑜𝑣(𝑋𝑡) = 𝐸[(𝑋𝑡 − µ)(𝑋𝑡 −  µ)′] <  ∞ ∀ 𝑡 
• 𝛤ℎ =  𝐶𝑜𝑣(𝑋ℎ) = 𝐸[(𝑋𝑡 − µ)(𝑋𝑡−ℎ −  µ)′] <  ∞ ∀ 𝑡, ℎ 

Where μ denotes a vector of length k composed of the mean of each of the component series, 

Cov(Xt) a kxk covariance matrix, and Cov(Xh) the cross-covariance at a certain lag h.  

Cross-Covariance is another fundamental concept in multivariate time series analysis. Just as 

with univariate time series, the linear dynamic dependence is also measured by the cross-

covariance matrix of a multivariate time series. With high-dimensional time series, the 

autocovariances of lag h does not obey the symmetry property unlike in the univariate case Tsay 

(2013). Thus, to find the cross-covariance of lag -h, it suffices to take the transpose of the cross-

covariance at lag h. This could be succinctly expressed by Γh = Γ′
−h. Hence, one can state that the 

cross-covariance is not symmetric at a lag h > 0.  

Last but not least, Cross-Correlation is also an important concept with high-dimensional time 

series. In MVTSA, the most commonly used method for checking whether two or more time 

series much up with each other is cross-correlation. This technique is generally used to measure 

the correlation between a given univariate time series and the lagged copies of others composing 

a high dimensional time series. For a stationary multivariate time series Xt, the lag-0 correlation 

matrix is expressed as follows:  
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      𝜌0 = 𝐷−1𝛤0𝐷−1 

where D represents the kxk diagonal matrix whose entries represent the standard deviation of Xi,t, 

for i = 1,2,... k. For series i and j, we have  

𝜌𝑖,𝑗(0) =  
𝐶𝑜𝑣(𝑋𝑖,𝑡, 𝑋𝑗,𝑡)

𝜎𝑖,𝑡𝜎𝑗,𝑡
 

From the above equation, it is obvious that ρi,j(0) is the same as ρj,i(0). For any i, ρi,i = 1. This results 

in ρ0 being a symmetric matrix with entries in the principal diagonal being equal to 1 with off-

diagonal elements describing the instantaneous correlations between all the univariate time series 

that constitute the high-dimensional series Xt.  

At any other lag h > 0, the cross-correlation matrix can be defined as : 

      

𝜌ℎ =  𝐷−1𝛤ℎ𝐷−1 

Thus, at a given time t the correlation coefficient between two series Xi,t and Xj,t−h is defined as: 

       

𝜌𝑖,𝑗(0) =  
𝐶𝑜𝑣(𝑋𝑖,𝑡 −  𝑋𝑗,𝑡−ℎ)

𝜎𝑖,𝑡𝜎𝑗,𝑡
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Since ρi,j(h) and ρj,i(h) represent different linear dependence measurements and Γh = Γ′
−h, it can be 

deduce that ρh = ρ′
−h. In short, one can say that the cross-correlation does not hold the symmetry 

property at a lag h > 0.  

Two more important aspects of multivariate time series analysis are linearity and invertibility. 

More details about these aspects are in given in Tsay (2013), Hosking (1980), and Hosking 

(1981).  

4.3 Literature Review 

As much the rapid advent of supercomputers has opened a corridor to a significant data 

explosion and the eventual related “curse of dimensionality”, as much they offered specialized 

technical skills and equipment such as multivariate analysis to better forecast financial aspects 

Kumar and Ganesalingam (2001). This attempt to predict a multivariate time series comes down 

to enhancing the forecasting accuracy for each univariate time series component of the high-

dimensional dataset. More formally, suppose that we have a multi-dimensional series Xt = (X1t, 

X2t, ..., Xkt)’. For a given horizon h, the aim is to predict the values that could be attained by the 

process in the future, Xt+h. For example, suppose that some historical data that up to a certain 

time point T, said X1, X2, ... XT were generated and we would like to predict XT+1. Once XT+1, we 

use all the information up to T+1 to predict XT+2. This process keeps rolling till reaching the end 

of the multivariate time series. Tsay mathematically expressed this concept as Tsay (2013) :  

     

𝑋̂𝑡+ℎ = 𝑔(𝑋𝑇+ℎ−1, 𝑋𝑇+ℎ−2, … , 𝑋1) 
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In recent literature, various statistical models and machine learning algorithms have been 

deployed and utilized for multivariate time series modeling and forecasting. In Kumar and 

Ganesalingam (2001), a detection of financial distress via the use of multivariate analysis was 

conducted. For that matter, the stocks(from 1986 to 1991) of seventy-one(71) firms were 

extracted from the Autralian stock exchange and 10 financial ratios such as return on equity after 

extraordinary and abnormal(ROE), Debt to Asset before revaluation after Intangibles, long term 

debt to asset after intangibles and before revaluation, Current Ratio, Acide test Ratio, Return on 

assets after intangibles and before revaluation, Net profit margin, Earnings before Interest and 

Tax assets after intangibles and before revaluation, Operation Income to Operating assets before 

revaluations and after intangibles and Liquid ratio were used in order to determine which 

companies should be considered for investments. Multivariate techniques such as principal 

component analysis, factor analysis, discriminant analysis and cluster analysis were utilized. As 

results, factors that could be potentially used as measures of profitable companies were found. In 

addition, some operational indexes and techniques for grouping companies were indicated for 

future decision-making processes.  

In medicine, Spencer et al. adopted a multivariate time series approach to modeling and 

forecasting demand in the emergency department (ED) Jones et al. (2009). The aim of this study 

was to study the existence of eventual relationships between key resources in ED and the 

inpatient hospital in order to develop multivariate forecasting models. As such, 2006 hourly data 

were collected from three different hospitals. In this process, numerous multivariate models were 

constructed and compared to a univariate benchmark model. As results, the authors found that 

vector autoregressive (VAR) models capture more the dynamics of demand in the ED and the 

inpatient hospital at different locations. They also noticed that for larger forecast horizons, VAR 
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models, compared with classic univariate time series models, provide better forecasting 

accuracies of ED census. Similar results were demonstrated in forecasting the demands for 

diagnostic resources. Despite these encouraging results, the authors remain skeptical about 

adopting these forecasts in real clinical settings. As such, the authors advocate more robust 

analytical methods such as queuing theory, optimization and simulation modeling for the 

implementation of better decision support avenues when it comes down to clinical staffing, real-

time monitoring and forecasting.  

Andreoni and Postorino (2006) conducted a multivariate approach in forecasting air transport 

demand. In the study, the authors provided a comparison between univariate and ARIMAX 

models. It was found that univariate models do a better job in fitting the data than the ARIMAX 

model mostly in peak times. The authors also found that the forecasting performance of 

univariate models depends on the stability of the boundary conditions. They further noticed that 

those shortcomings from univariate models can be corrected by multivariate models. However, 

the authors support that it is not possible to assert that univariate models are better than 

multivariate models and vice versa.  

In Kanchymalay et al. (2017) a multivariate time series analysis on nine time series data was 

carried out. The historical monthly closing price from January 1987 to February 2017 of crude 

palm oil (CPO) price, sunflower oil price, olive oil price, rapeseed oil price, coconut oil price, 

peanut oil price, soybean oil price and West Texas Intermediate(WTI) crude oil spot price as 

well as the Exchange rates of US dollar to Malaysian Ringgit were used. Strong correlation 

between CPO price and the prices of some vegetable oils such as soybean oil, sunflower oil, 

rapeseed oil, coconut oil and peanut oil was reported. In contrast a negative correlation 
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coefficient between CPO and exchange rate was found. Such a result shows that an increase in 

the exchange rate causes a decrease in the price of CPO. Whereas a high correlation between 

crude oil was obtained. Thus, it was agreed that the above mentioned highly correlated vegetable 

oils with CPO as well as crude oil price to be the best predictors for CPO price. In addition, 

Multi-Layer-Perceptron (MLP) with two hidden layers, Support vector regression (SVR) with 

Sequential minimal optimization (SMO), and the Holt Winters exponential smoothing algorithm 

were deployed to forecast the monthly CPO price. The forecasting horizon was five months. On 

one hand, MLP and SMO achieved better forecasting accuracy than Holt Winters. On the other 

hand, SMO achieved higher predictive accuracy than MLP.  

4.4 Multivariate Models 

In recent times, developing methodologies that could enable researchers and finance practitioners 

to learn interconnected relations among multiple time series has been an open question Hu et al. 

(2019). Therefore, a myriad of multivariate time series forecasting models and associated 

variations have been proposed in literature. Due to the plethora of models proposed since the 

wake of multivariate time series analysis, it would be unreasonable to try to investigate all the 

extant varieties. As a result, we have decided to examine two models such as Vector 

Autoregressive Moving Average (VARMA) and Multivariate Singular Spectrum Analysis 

(MSSA). The choice of the first class of models mainly resides in their popularity among the 

most commonly used linear models in finance literature. The rationale behind the choice of the 

second models stemmed from the rarity the so-called techniques in literature.  

Below is a short description of the models that have selected for this study.  
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4.4.1 The VARMA Model 

Before any discussion about the vector AutoRegressive Model(VARMA), it seems opportune to 

first glance at the Vector AutoRegressive(VAR) model. A good understanding of the VAR 

models will enable us gaze upon VARMA models, which is noting more than the combination of 

VAR and VMA models equipped with some mathematical concepts and constraints. The 

operating mode of VARMA models is to leverage strengths of VAR and VMA models.  

Virtually, VAR models have been accepted as linear multivariate time-series models that have 

the ability and the ease to capture the joint dynamics of multiple time series Miranda-Agrippino 

and Ricco (2019). VAR models operate as an extension of the univariate autoregressive models 

to multivariate time series settings. VAR models were first Introduced by the macro-

econometrician Christopher Sims Sims (1980) to jointly analyze, model, and understand  

the causal relations between multivariate macroeconomic variables. At an elementary level, the 

theory with VAR is just an extension of the theory of univariate time series data. In the basic 

structural form of the VAR models, each of the variable is expressed as a linear combination of 

not only their own previous values, but also of the previous values present in a k-dimensional 

vector of time series. As part of offering an illustrative example in order to support this 

description of VAR models, suppose that we have a multivariate time series made of three (k = 

3) univariate time series such the weekly average weekly house prices in California, New York, 

and Hawaii. Let us denote those prices at a given time t as PrCat,1, PrNyt,2, and PrHat,3. A VAR 

model of order 1 in the three defined variables can be written as follows:  

   {
𝑃𝑟𝐶𝑎𝑡,1 = 𝐶1 + 𝛼1,1𝑃𝑟𝐶𝑎𝑡−1,1 + 𝛼1,2𝑃𝑟𝑁𝑦𝑡−1,2 + 𝛼1,3𝑃𝑟𝐻𝑎𝑡−1,3 + 𝜀𝑡,1
𝑃𝑟𝑁𝑦𝑡,2 = 𝐶2 + 𝛼2,1𝑃𝑟𝐶𝑎𝑡−1,1 + 𝛼2,2𝑃𝑟𝑁𝑦𝑡−1,2 + 𝛼2,3𝑃𝑟𝐻𝑎𝑡−1,3 + 𝜀𝑡,2
𝑃𝑟𝐻𝑎𝑡,3 = 𝐶3 + 𝛼3,1𝑃𝑟𝐶𝑎𝑡−1,1 + 𝛼3,2𝑃𝑟𝑁𝑦𝑡−1,2 + 𝛼1,3𝑃𝑟𝐻𝑎𝑡−1,3 + 𝜀𝑡,3

       (4) 
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The above system of equations is a system of three equations where the average weekly house 

prices in Ca, NY and Hawaii are respectively explained by the first, second and third equations. 

The concerned system of equations teach us that the instantaneous observed value of each 

variable explicitly depends on its own previous values as well as the previous values of the other 

variables. An interesting feature of this system of equation is that all of the explained variables 

share the same explanatory variables.  

Using matrix multiplication one can express an equivalent of the system of equations as :  

  [
𝑃𝑟𝐶𝑎𝑡,1
𝑃𝑟𝑁𝑦𝑡,2
𝑃𝑟𝐻𝑎𝑡,3

]= [
𝐶1
𝐶2
𝐶3

] [
𝛼1,1 𝛼1,2 𝛼1,3
𝛼2,1 𝛼2,2 𝛼2,3
𝛼3,1 𝛼3,2 𝛼3,3

] [
𝑃𝑟𝐶𝑎𝑡−1,1
𝑃𝑟𝑁𝑦𝑡−1,2
𝑃𝑟𝐻𝑎𝑡−1,3

] + [
𝜀1
𝜀2
𝜀3

]        (5) 

A generalized expression of a VAR model with lag p on a multivariate time series  

Xt = (X1t, X2t, ..., Xkt)’ can be obtained as :  

    

                    𝑿𝑡 = 𝑐 + 𝐴1𝑿𝑡−1 + 𝐴2𝑿𝑡−2 + ⋯ + 𝐴𝑝𝑿𝑡−𝑝 + 𝜺𝑡  (6) 

Where for any τ ,Xτ, c and εt are k x 1 matrices, and for any I, Ai  represents a k x k matrix. Note 

that εt is independently and identically distributed.  

This scenario is described as k-variable VAR model of order p, where the first p lags of each 

variable composing the high-dimensional multivariate time series are used as predictors. By 

extension of the VAR(1) case, one can explicitly say that we are dealing with a system of k 

equations, where each of the equations describes a variable as a linear function of not only its 

past previous p values, but also with the p lagged values of the other variables. In VAR 
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modeling, selecting the optimal lag p is of major importance. A lag p value larger than what is 

needed in the model can result in serious consequences on the computational aspects of the 

model, and the decision-making process as well. On one hand, any unit increment of the lag p 

leads to the reduction of the degree of freedom by the square of the total number of variables 

present in the system Vayej (2012), Fackler and Krieger (1986). Also, a p value larger than what 

is needed can lead to the deployment of an over-fitted model. On the other hand, a p value 

smaller than the required value can be source of producing an under-fitted model. Thus, a 

reasonable choice for the order of VAR models is crucial. In general, such a choice is made 

based on some defined selection criteria. In this process, numerous lag p values are tested and 

the one that minimizes the chosen selection criteria is maintained. According to Tia et. al, in this 

matter, the ultimate goal is to be able find a model with few possible estimated parameters while 

having the power to capture the dynamic interactions between different economic variables Tiao 

and Tsay (1983). Yet, it is widely accepted that inference in VAR models strongly depends on 

the choice of the lag-length Karlssony (1997), Gredenhoff and Karlsson (1999). In recent years, 

various lag-length selections procedures, including Akaike (AIC), Schwarz-Bayesian (BIC) and 

Hannan-Quinn (HQ), have been proposed and tested Gredenhoff and Karlsson (1999), Akaike 

(1969), Hatemi-J and S. Hacker (2009). For example, in the presence seasonal time series data, 

Brandt et al. proposed some simple techniques for selecting the lag val Brandt and Williams 

(2006). Detailed information on the use of model selection criteria in VAR models can be found 

in Lu ̈tkepohl (2013).  

As a forecasting algorithm that is mostly utilized when two or more time series influence 

interactively, VAR models have gained popularity by delivering good forecasting results. Given 
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some past observations up to a t - 1, one can then forecast the next value that is likely to be 

attained by the process. This can be formulated as  

  

            𝑿𝑡|𝑡−1 = 𝐸(𝑿𝑡|𝑿𝑡−1, 𝑿𝑡−2, … ) =  𝐴1𝑿𝑡−1 + 𝐴2𝑿𝑡−2 + ⋯ + 𝐴𝑝𝑿𝑡−𝑝        (7) 

Eq(7) can be accepted as a linear regression over the lags of the multivariate process. As with 

any normal regression, the involved matrix-coefficients have to be estimated. Given this one day 

(h = 1) ahead forecasting approach, one can recursively forecasts the possible value that could be 

obtained by the process for larger horizons (h > 1). It is widely believed that it is eq(6) that 

constitutes the starting point in deriving more variants of the VARMA models.  

VAR models are full of advantages. One of their main advantages over many univariate 

statistical models is their easy implementation, which in fact, explains their wide applications 

while studying economic variables. Another advantage of VAR models is the facility of its 

specification stage, which solely depends only on one lag order. Taking in a vector of variables, 

which interact linearly not only with their own current and lagged values, and the current and the 

lagged values of the remaining time series in the k-dimensional data set, is another advantage of 

VAR models . The easy estimation of the coefficients involved in the modeling where every 

variable is explained by the same explanatory variables is also a key primary advantage to VAR 

models.  

Despite their success and wild deployment in finance and economic related studies, VAR models 

undergo varieties of criticisms. At the very early stage of their acceptance, critics were quick to 

note that VAR models suffer from not being able to capture the underlying structure of the 
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economy. Hence, its unpopularity in the development and making of economic policy 

prescriptions. Another pitfall of the VAR models is that they are not suitable for establishing the 

relationship between a group of variables and their shocks at different time periods Vayej (2012). 

Lu ̈tkepohl and Poskitt (1996) report that due to some theoretical reasons, VAR models are not 

the best models to rely on. In Lu ̈tkepohl and Poskitt (1991), the authors reported that VAR 

models are not generally closed under under marginalization and temporal aggregation. Also, it 

is conventionally accepted that VAR models are not closed under linear mathematical 

transformations. For example, suppose that a vector of variables that follow a VAR process. 

Nothing reassures that a subvector of the original vector will also follow a VAR process. As a 

consequence, the necessity of having other models that are potentially capable of overcoming 

some of shortcomings associated with the use of VAR models seemed to be essential.  

VARMA models are such models! VARMA models originated from early seminal work by 

Quenouille, Quenouille and Quenouille (1957). The point of VARMA models is to propose 

another way of representing the data generator process(GDP) of a set of time series as 

parsimonious as possible. The principal objectives of VARMA models is to leverage past history 

via combining past observations and previous errors in a given system. In this context, a 

multidimensional series Xt = (X1t, X2t, ..., Xkt)’ is said to have a VARMA(p,q) representation if it 

follows the mathematical specification :  

                𝑿𝑡 =  ∑ 𝛷𝑖𝑿𝑡−𝑖 +  𝜀𝑡 − ∑ 𝛩𝑗𝜀𝑡−𝑗
𝑞
𝑗=1 , 𝑡 𝑖𝑛  𝕫𝑝

𝑖=1            (8) 

where Xt is k x 1, ∀ i, Φi and Θj denote k x k matrices , εt is as before a zero mean white noise 

containing (ε1t, ε2t, ..., εkt)’, 

In the multivariate stationary time series case, the preceding equation could be rewritten as  
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    𝛷(𝐿) =  𝜣(𝐿)𝜺𝒕           (9) 

where Φ(L) = Φ0 - Φ1L - ... - ΦpLp and Θ(L) = Θ0 - Θ1L - ... - ΘpLp represent the VAR and MA 

operators and for any i, Φi, and Θi respectively denote the auto-regressive and moving-average 

parameter matrices. The involved operator matrices are not identified or not unique Elliott and 

Timmermann (2013).  

Since being deployed by the pioneers, VARMA models have been studied, revised or criticized 

by many researchers Hannan (1969), Wilson (1973), Box et al. (1979), Tiao and Box (1981). 

Athanasopoulos et al. (2012) supported that VARMA models can be seen as a corollary to the 

well known notion of Wold’s decomposition for multivariate time series. Sargent et. al 

concluded the existence of a strong link between linearized dynamics stochastic general 

equilibrium (LSDE) models and VARMA ones Sargent et al. (2005). With time and the 

devotional literature of the period, a public perception that VARMA models appears to be 

preferable in obtaining a parsimonious representation of some types of data has been vastly 

forged. Wilson et al. (2001) utilized a VARMA(1,1) model on seven daily US dollar term rates 

to show that it is possible to extend methods based on conditional independence graphs may be 

to structural VARMA models . Kascha and Mertens (2009) reported a comparative study 

between structural vector autoregression and VARMA models. They noticed a better 

performance of the VARMA face to VAR models. They furthered compared VARMA-based 

models and state space representations of the input data. They found a poor performance of the 

two classes of models. Model identification, which is an important step in modeling multivariate 

time series with VARMA, was extensively studied by Boubacar Mainassara (2012), Levitt et al. 

(2011), Hurvich and Tsai (1989). Kascha (2012).  
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After the great success of Arima models, many believed that an adequate representation of the 

data generated process of a vector series could be obtained via a simple extension of the 

univariate ARIMA models and its time series goodness-of-fit diagnostic test to multivariate 

cases. This actually came out to be a very naive approach that ended up facing numerous 

challenges. The first challenge resides in the identification stage of the VARMA models. As 

mentioned earlier, the standard representation of the VARMA models presented in eq(7) is not 

unique. It appears that this makes the determination of the orders of VARMA models a little bite 

cumbersome. In addition, this non-uniqueness leads to complication in the specification and 

estimation stages since cosntant statistical estimation require impose on a unique representation 

of a GDP Elliott and Timmermann (2013). Additional requirements and restrictions on the AR 

ad MA operators are then needed in order to ensure a unique representation Dufour and Pelletier 

(2008). In response to this situation, procedures have been proposed to identify VARMA models 

Dufour and Pelletier (2008), Athanasopoulos and Vahid (2008), Athanasopoulos et al. (2012), 

Tiao and Tsay (1989), Deistler and Hannan (1988). Based on this development, it has been 

concluded that the straight generalization of the ARMA models might not lead to an identified 

representation Dufour and Pelletier (2008), Lu ̈tkepohl (2013).  

As in the univariate case, adopting procedures for specifying and estimating cointegrated 

VARMA models is also a vital step in the multivariate case. However, it shall be noted that there 

is not a universally accepted strategy to specify the orders of VARMA Models. In reflecting on 

the success of the corresponding stage with Ljung-Box approach in univariate case, the first 

attempt to find the orders of the composing models was to use the autocorrelation, partial 

autocorrelation and cross-correlation functions. In record time, it turned out this procedure was 

dotted with difficulties in the multivariate settings. For instance, it becomes more difficult to 
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detect the values of p and q when we are dealing with more than two time series Vayej (2012), 

Lu ̈tkepohl and Poskitt (1996). With time numerous specification techniques have been adopted 

and deployed depending on different representations of Vayej (2012), Yap and Reinsel (1995), 

Dufour and Pelletier (2008), Kascha and Trenkler (2011). Rich discussions about different 

specification procedures could also be found in Hanan (1970), Hanan (1976), Akaike (1974). 

Recently, a significant amount of efforts has been devoted to structural specification of VARMA 

models. The technique of structural specification aims at finding the underlying structure of a 

vector of time series in order to find a well-defined VARMA model that can be easily identified 

Tsay (2013). As of now, two main approaches exist for structural specification of multivariate 

time series. The first method, known as Kronecker index approach, seeks to find the maximum 

order of the AR and MA for each of the univariate time series. The second method or the concept 

of canonical correlation analysis infers information from cross-covariance matrices. They both 

try to overcome the difficulty of identifiability as mentioned earlier Tsay (2013). More 

information about structural specification of VARMA models could be found in Tsay (2013), 

Elliott and Timmermann (2013).  

Upon the estimation of the coefficients of VARMA models, the exact and the conditional 

likelihood methods have been solicited Tsay (2013). However, in recent times, the use of 

maximum likelihood has been much more advocated mostly with small sample sizes. With times 

numerous variations of maximum likelihood techniques have been proposed to better suit the 

idea around VARMA models Dias and Kapetanios (2014), Hannan and Rissanen (1982), 

Doukhan et al. (1995), Dufour and Pelletier (2008). Nevertheless, it is worth noting that the 

maximum likelihood estimation still suffers from various numerical challenges Kascha and 

Ravazzolo (2010).  
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As with the univariate case, model checking is also an essential step of the VARMA modeling. 

In order to check for the adequacy of fitted a vector of ARMA models, numerous techniques 

have been recently proposed. Nevertheless, the multivariate extension of the portmanteau tests 

has been the most commonly used. The popular adoption of the multivariate version of the 

portmanteau tests was first introduced in 1974 by Chiturri Chitturi (1974). In 1980, Hosking 

generalized the procedure by using a relaxed definition of the concept of multivariate 

autocorrelations Hosking (1980). In 1981, Li et al, via a simulation study proposed a modified 

version of the portmanteau tests that performs better than the original test in small sample 

settings Li and McLeod (1981). In the same year, Hosking (1981) demonstrated that there is an 

equivalence relation between the different forms of the portmanteau statistic. In 1995, Ling et al, 

developed a new portmanteau statistic based of the sum of squared residual autocorrelations 

instead of the residual or the squared residual as usually done Li and McLeod (1981). In 2005, a 

close similarity between the portmanteau tests for VARMA and VAR models Lu ̈tkepohl (2005). 

In 2007, Francq et al proposed a multivariate portmanteau diagnostic test which only requires the 

innovations to be uncorrelated instead of independently and identically distributed Francq and 

Ra ̈ıssi (2007).  

Just like in the univariate case, model checking is a very important stage in modeling vectors of 

time series. In checking VARMA models, the aim is to find a technique that enables one have an 

adequate, or at least, a very acceptable representation of the DGP that generates the vector of 

series. For the purposes, many tools have been suggested including the well-known t- and F-

tests. Afterwards, much attention was given to the techniques that  
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emphasize on measuring the magnitude of residuals obtained from fitting a chosen model. In the 

same carping vain as univariate time series, many model adequacy checking methodologies that 

mostly focus on vector of residuals have been proposed in literature. The null hypothesis of such 

tests is the autocorrelation functions of all the series composing the multivariate series must not 

have values that are statistically significant after a certain lag. The associated alternative 

hypothesis is that at least one of the series is not white noise. These lags could either be chosen 

by the user or via a criterion selection as discussed earlier. In the multivariate context, the well 

known Ljung-Box statistic test at a fixed lag s could be expressed as Johansen (1995): 

 

                           𝐿𝐵(𝑠) = 𝑇(𝑇 + 2) ∑ 1
𝑇−𝐽

𝑡𝑟[𝐶̂0𝑗𝐶̂00
−1𝐶̂0𝑗

′ 𝐶̂00
−1]𝑛

𝑗=1                                       (10) 

where 𝐶̂0𝑗 =  𝑇−1 ∑ 𝜀𝑡̂ 𝜀𝑡̂−𝑗
′𝑇

𝑡=𝑗+1  denotes the sample size and tr() is the trace operator . 

Conventionally, It is has been proven and accepted that under the null hypothesis, such a test 

statistic follows a chi-square probability distribution with k2(m − p − q) degrees of freedom where 

k, m, p, q indicate the how many univariate time series composes the set of variables, the number 

of lags, the order of vector autoregressive part of the model and that of the moving average, 

respectively.  

In high-dimensional time series analysis, the generalized versions of the portmanteau statistics 

have gained considerable appeal and attention. Nevertheless, its utilization should be carefully 

done mostly in the context of cointegration Sperling and Baum (2001). Another pitfall of the 

multivariate portmanteau statistics, mostly the one defined in eq(10) is that the fitted model 
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turned to be inadequate with very large LB values Vayej (2012). Box et al. (2015) proposed that 

such a shortcoming could be fixed by imposing some extra constraints on the parameters.  

Even with a vector of time series, forecasting remains an integral part of the modeling efforts and 

also of great benefits. Without loss of generality, the principal objective of multivariate time 

studies is to determine the possible future values that could be assumed by the DGP that is under 

investigation. Since VARMA contains a moving average part, and under the condition of white 

noise process, the future forecasted values could easily be obtained from the pure VAR process. 

For illustrative purposes, suppose that all the parameters of the VARMA models are known and 

that we possess some available and important information(I) up to time a certain time h denoted 

Ih , the one day prediction is obtained via Tsay (2013) :  

𝑿ℎ(1) = 𝐸(𝑿𝒕|𝐼ℎ) =  𝛷0 +  ∑ 𝛷𝑖

𝑃

𝑖=1

𝑿ℎ+𝑖−1 −  ∑ 𝛩𝑗𝜀ℎ+1−𝑗

𝑞

𝑗=1

                            (11) 

where the forecasting error is defined by 

𝑒ℎ(1) =  𝑿ℎ+1 − 𝑿ℎ(1) =  𝜀ℎ+1                    (12) 

 

Iteratively, the τ-step ahead prediction could be formulated as proposed by Tsay (2013): 

  𝐸(𝑿ℎ+𝜏|𝐼ℎ)= {
𝑿ℎ+𝜏, if τ ≤ 0
𝑿ℎ(𝜏), if τ > 0               (13) 

with the additional assumption that  

 𝐸(𝜀ℎ+𝜏|𝐼ℎ) =  {𝜀ℎ+𝜏, if τ ≤ 0 
0,   if τ > 0                (14) 
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There has been a growing interest in examining the forecasting power VARMA models in many 

areas, particularly in financial time series analysis. However, few research papers that outline the 

deployment of VARMA models on vectors that contains more than 3 univariate variables are 

available. In a mathematically involved discussion, Tsay demonstrated that stationary VARMA 

models are suited for short term-predictions while in their long term predictions are just the 

sample mean Tsay (2013). Dias and Kapetanios (2014) by adopting the Iterative Least 

Squares(IOLS) methodology as estimation procedure discovered a better prediction accuracy 

than VAR and AR(1).  

4.4.2 VARIMA 

As with ARIMA models, the ‘I’ in VARIMA stands for Integrated—where the integrated value, 

I, indicates the number of times the given time series the VARMA model is trained on needs to be 

differenced in order for the time series to become stationary. However, since for VARMA models 

the time series its trained on is multivariate, I is a 1xk dimensional vector where k is the 

dimensionality of the multivariate time series, containing the number of times each individual 

univariate time series needs to be differenced for the multivariate time series to be stationary. 

Although there seems to be good intuitive reasons to have each of the values of I be equal to the 

max of the each of the individual time series necessary differences, since this would keep each 

individual univariate time series on the same scale, this is not necessarily a required course of 

action—VARMA models capitalize off cross correlation between each time series, so if uneven 

differencing results in higher cross correlation this would be preferential to uniform over 

differencing of all time series. Although when dealing with similar univariate time series data, this 

is likely a moot point in that the most likely differencing across each univariate time series that 
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would result in both multivariate stationarity and maximized cross correlation would be uniform 

differencing. 
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 5 Parameter optimization and 
prediction of VARIMA 

In this section I will propose a fully automated VARIMA model section algorithm. I have also 

implemented this algorithm in an R package I have created, “auto_varima”, that I plan to publish 

to the R repository CRAN. The package is also written to take advantage of multithreading to 

support working with large, time intensive training sets. I will later apply this proposed algorithm 

to forecasting Bitcoin and other cryptocurrency data using this package. The functions in this 

package currently only support bivariate VARIMA models, but this will be updated to include 

higher dimensionality VARIMA models in the future. 

5.1 Data Preprocessing 
 

▪ First each of the individual k univariate time series are each scaled by subtracting their 

mean and dividing by their variance (this is done to avoid numerical non-convergence of 

implementation of parameter estimation of the VARMA model). 

▪ Next the 1xk dimensional vector, I, is determined, and each of the k univariate time series 

is differenced according to Ii . In the bivariate case, we will difference each of the 

univariate time series Xit will first be differenced by Ii and then separately differenced by 

max(I),  if corr( diff(X1t,I1) , diff(X2t,I2) ) < corr( diff(X1t,max(I)) , diff(X2t,max(I)) ) then 

both I1,I2=: max(I) . 
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5.2 Model Parameter Estimation 

The AR and MA order, p and q, of the VARIMA model are determined by iteratively training 

VARMA models on all combinations of p and q (within a fixed range) and selecting the one 

the particular pair that results in lowest AIC. 

5.3 Model Forecasting 

Forecasting is done 1 time unit into the future with maximum likelihood estimation. Standard 

Errors of the forecast error are also used to forecast 80% and 95% prediction intervals around 

the forecast. 

5.4 Data Postprocessing 

Each univariate time series prediction is first undifferenced Ii times (values from the original 

undifferenced time series are required to do this). Then, unscaled by first multiplying by the 

original variance divided by during preprocessing and then adding the original mean 

subtracted during preprocessing. The standard errors for predicting one time point into the 

future remain the same if the time series data is differenced or undifferenced, so standard 

errors only need to be multiplied by the original scaling variance. From here, the prediction 

intervals can be created from these new standard errors in the typical way. 
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 6 Principal Component Analysis (PCA) 

Often, in this period of deluge of data we are inundated with datasets composed of thousands 

even millions of features. Unfortunately, having training datasets comes with numerous serious 

consequences. First, it makes some tasks include exploration and visualization more difficult to 

be completed. Second, it makes the training process extremely slow. Third, with many features, 

statistical models and machine learning algorithms become more complex. As a result, they 

could overfit the training dataset and poorly perform on unseen data. This scenario is generally 

referred to as “the curse of dimensionality”.  

To palliate to this disagreeable scenario, a battery of solutions has been proposed. One easier 

solution that has been adopted to overcome the curse of dimensionality is considerably increase 

the size of the training set to reach a sufficient density of training instances Geron (2017). This is 

problematic the number of instances required to reach a given density grows exceptionally with 

the number of dimensions Geron (2017). Another solution to the curse of dimensionality, which is 

in fact the most widely used, is the dimensionality reduction. Dimensionality reduction is a 

mathematical transformation that is applied to a higher dimensional data for the purpose of 

obtaining a reduced representation of the original data, while the statistical information remains 

preserved. Without loss of generality, the dimension of the reduced representation indicates the 

required minimum number of parameters to account for the observed properties of the data Maaten 

(2009), Fukunaga (1990). Such a technique comes with a plethoric number of advantages. The top 

benefit of dimensionality reduction is its ability to mitigates the curse of dimensionality and other 

undesired properties of high-dimensional space Maaten et al. (2009). Dimensionality reduction 
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techniques applied to a dataset takes of the multicollinearity present in the dataset by removing 

redundant features. Not only does dimensionality reduction speeds up the training portion of the 

learning process, but it also helps gets insights into the dataset via visualization. For example, 

reducing a very high dimensional dataset to two features allows one to have a graphical 

representation in 2-D plane.  

In short, Dimensionality reduction consists of reducing the number of features present in the 

dataset, while preserving as much variability as possible. It can be done by a) selecting features, 

or b) creating a new set of features, where each of the new feature represents a combination of 

the original features in the dataset.  

In a) a transformation of the original features is performed. The goal of this technique is to 

transform the original features to a small set of features. It results in a smaller but richer set of 

features that keeps much of the underlying information. For example, one can merge a set of 

highly correlated of features into one feature that can represent a characteristic of a given 

observation. Feature extraction has proven records to be useful in numerous research areas 

including image processing Yang et al. (2008), Kumar et al. (2014), Choras (2007), in time series 

analysis Olszewski (2001), Zhang (2005), Fulcher and Jones (2017), and in medicine 

Karpagachelvi et al. (2010), Acharya et al. (2019). 

In b) a low-dimensional representation of the original data, previously in higher dimension, is 

constructed. The obtained representation provides as much of the variance in the data as possible. 

This is done by finding a linear basis of reduced dimensionality for the data, in which the amount 

of variance in the data is maximal Maaten et al. (2009). 
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b) can be achieved by either using linear or nonlinear transformations. If the data is linearly 

separable, the linear transformations work well. In this case, different classes are obtained by just 

drawing a simple line or a hyperplane to subdivide a dataset. In contrary, if the data display 

complex structures or is not separable by a line or a hyperplane, one is better off with a nonlinear 

transformation. 

In recent times, numerous linear and nonlinear transformation for reduction of dimensionality 

have been proposed Maaten et al. (2009), Burges (2005), Lee and Verleysen (2007), Johnson et 

al. (2007). For the sake of this work, let us focus on the Principal Component Analysis (PCA), 

by far the most popular technique for dimensionality reduction.  

PCA is one of the oldest and most widely used dimensionality reduction techniques Maaten et al. 

(2009). Standard PCA reduces the number of features by using a linear progression while 

preserving as much variability as possible. The elements of the reduced feature set are called 

principal component. By “preserving as much variability as possible”, one means to find a 

smaller set of features where each of the newly constructed feature is a linear combination of 

those in the original set Maaten et al. (2009). In addition, the reduced set of features successively 

maximize the variance and while remaining uncorrelated with each other Maaten et al. (2009). 

This tells two things: a. PCA tends to explain the variance-covariance structure of a set of 

variables in terms of a linear combination of these variables, 2.  the total variability in a dataset 

can be approximately reproduced by a small set of principal components. If so, suppose that or 

dataset is 𝑿𝑛,𝑝, where n represents the number of observations and p the number of features. The 

principal component analysis reduces the dataset to 𝑿𝑛,𝑘, where still represents the number of 

observations, and k designates the number of principal components with k < p. The obtained 
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principal components often reveal details and relationships that were not previously seen or 

obvious.  

Let us see what principal component analysis means in the framework of mathematics. For this, 

we will literally refer to Johnson et al. (2007). 

Suppose that our above mentioned 𝐗𝑛,𝑝 has 𝑋1, 𝑋2, … , 𝑋𝑝 features. Algebraically, the principal 

components are linear combination of the p variables present in the original dataset. 

Geometrically, these principal components form a new coordinate system that is obtained by a 

series of rotations of the p variables. In the new coordinate system, 𝑋1, 𝑋2, … , 𝑋𝑝 will not only be 

the coordinate axes, but they will represent the axes that account for the largest amounts of 

variability.  

Let us define 𝐗′ = [𝑋1, 𝑋2, … , 𝑋𝑝] , with covariance matrix 𝜮, and eigenvalues 𝜆1  ≥  𝜆2 ≥

 …  ≥  𝜆𝑝. Consider the following equations that represent a set of linear combinations 

                                𝑌1 =  𝐚𝟏
′ 𝐗 =  𝑎11𝑋1  + 𝑎12 𝑋12  + … + 𝑎1𝑝 𝑋1   

𝑌2 =  𝐚𝟐
′ 𝐗 =  𝑎21𝑋1  + 𝑎22 𝑋12 + . . . + 𝑎2𝑝 𝑋1 

              . 

              . 

              . 

        𝑌𝑝 =  𝐚𝐩
′ 𝐗 =  𝑎𝑝1𝑋1  +  𝑎𝑝2 𝑋12 + . . . + 𝑎𝑝𝑝 𝑋𝑝 
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From undergraduate statistics classes, one can express the variance of each of the 𝑌𝑖 as: 

𝑣𝑎𝑟(𝑌𝑖) =  𝐚𝒊
′𝚺𝐚𝒊 , 𝒊 =  1,2, . . .  , 𝑝   

                                            𝑪𝒐𝒗(𝒀𝒊, 𝒀𝒌) =  𝐚𝒊
′𝚺𝐚𝒊,𝒌, 𝑘 =  1,2, . . . , 𝑝 

The 𝑌𝑖𝑠 represent the uncorrelated principal components, where the first principal component is 

the linear combination 𝐚𝟏
′ 𝐗 that maximizes 𝑣𝑎𝑟(𝐚𝟏

′ 𝐗) subject to the constraint 𝐚𝟏
′ 𝐚𝟏 = 𝟏, and the 

second principal component is the linear combination 𝐚𝟐
′ 𝐗  that maximizes 𝑣𝑎𝑟(𝐚𝟐

′ 𝐗) subject to 

the constraint  𝐚𝟐
′ 𝐚𝟐 = 𝟏 and 𝐶𝑜𝑣(𝐚𝟏

′ 𝐗, 𝐚𝟐
′ 𝐗) = 0, ….. This continues up the ith principal 

component that is the linear combination 𝐚𝒊
′𝐗 that maximizes 𝑣𝑎𝑟(𝐚𝒊

′𝐗) subject to 𝐚𝒊
′𝐚𝐢 = 𝟏 and 

𝐶𝑜𝑣(𝐚𝒊
′𝐗, 𝐚𝐤

′ 𝐗) = 0 for k < i. 

For any principal component i, the contribution of the associated principal component is found 

by  

𝜆𝑖

∑ 𝜆𝑖
𝑝
𝑖=1
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 7 Forecasting Cryptocurrencies with 
auto_varima R Package  

7.1 Training Data 

I looked at 3 years of data for both financial time series and cryptocurrencies from November 1st, 

2017 to November 1st, 2020. Trading volumes and daily prices were used for the following 

cryptocurrencies: Bitcoin, Ethereum, Ripple, Tether, Litecoin, Bitcoin Cash, Chainlink, Cardano, 

Binance Coin, Monero, Dogecoin. Since cryptocurrency exchanges are open 24/7, closing prices 

are defined as the last price of the day. Data was collected from the site coinmarketcap.com, 

which aggregates prices over multiple exchanges.  

Trading volumes and daily prices were also acquired for the for: the S&P 500 (GSPC), Dow Jones 

Industrial Average (DJI), NASDAQ Composite (IXIC), and NVIDA (NVDA) stock. This data was 

obtained from Yahoo Finance. However, since the stock market does not trade on holidays or 

weekends, there are missing data point during the given 3-year period. To resolve this, I put the 

stock market data on the same time scale as cryptocurrencies by interpolating the missing values 

with cubic splines. 

While this work does make predictions on several cryptocurrencies, it is primarily concerned with 

the ability to forecast Bitcoin. To aid in this effort, I performed PCA on a matrix containing 

columns of all other time series besides Bitcoin, and took the first principal component (pc1) of 

the result to be used as an additional time series (specifically for bivariate forecasting of Bitcoin). 
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Bitcoin daily price and daily volume time series were paired with the remaining time series (and 

each other)—resulting in a total of 59 unique bivariate pairs. 

7.2 Moving Window Forecasting 

A moving window was used to validate each of the bivariate time series pairs. Both auto 

parameter tuning ARIMA and VARIMA models were applied on a subset of data points (for 

each univariate time series and bivariate pair respectively), collecting several measures for later 

use, as well as predicting one day into the future. This subset or window, is then moved forward 

by 1 day, training another model. This process is repeated until you predict the last value in the 

dataset (note, since these are auto tuning models, each window might have different parameter 

values that the previous window). Due to the computation time constraint, only combinations of 

p and q each in the 0-2 range were for the VARIMA models.   

The values collected per window were as follows: forecasted mean, Ljung-Box test p-values for 

lags 10, 24, and n/2, AR order p, MA order q, difference order d, standard error of the forecast 

error, correlation of differenced training data, correlation of undifferenced training data. The 

correlation value collected for bivariate pairs was taken to be the cross-correlation, whereas in 

the univariate time series windows for ARIMA, it was taken to be the autocorrelation). 

After each model is trained and forecasted on each window, the forecasted values are compared 

to actual values and captured the following validation metrics/relevant statistics: Directional 

Forecasting Accuracy (dir_acc), Mean Absolute Error (MAE), Mean Squared Error (MSE), 

proportion of absolute value of undifferenced correlation of training data above .3 (cor), 

proportion of absolute value of differenced correlation of training data above .3 (corD), 

proportion of Ljung-Box p-values of residuals above .05 for lags 10, 24, and training length 
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halved (pv10, pv24, pvH), proportion of original training data points within forecasted 

confidence interval (CI). 
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 8 Results 

Validation metrics and statistics were collected for ARIMA and VARIMA models on multiple 

training window lengths of 100, 200, and 300 days. For tables 8-2 through 8-10, the rows with 

the best DF accuracy and MAE are highlighted in blue and yellow respectively (and in pink if 

one row has the best of both). In each of these tables, the relative variance (RV) which we are 

taking to be the variance of the mean scaled time series, is provided to denote the amount of 

variation in each time series.  Within the results tables, the time series name mentioned on the 

right-hand side of the title is the predicted time series in question for both ARIMA and 

VARIMA, where in the case of VARIMA, the other time series name on the left-hand side is a 

part of the bivariate pair. RV refers to the relative variance, which I define as the variance 

performed on the mean scaled timeseries. The time series graphs in this section are only for the 

last 200 days of the moving window for the 3-year period so that we can see the results visually 

in finer detail. 

8.1 Total Model Runtimes  
 

All model variations were run on 35 i9 Virtual Cores in parallel; the runtimes and total number 

of trained models are denoted in table 8-1. 
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             Table 8-1. Model Runtimes 

 

 

  

 

8.2 Bitcoin-Cryptocurrency Bivariate Pairs 

This section will provide analysis and explanation for the results of each of the model types and 

training lengths run, exploring the relationships between initial cross correlations of bivariate 

time series pairs and their resulting validation metrics. As there are hundreds of graphs and tables 

and there is significant overlap in the result findings, detailed analysis will be provided for few 

bivariate pairs of interest, and summarized for the remaining results. The remainder of the graphs 

and tables not examined in this section will be included in the appendix. 

    Figure 8-1. Undifferenced CCF, BIT-BNB Vol.       Figure 8-2. Differenced CCF, BIT-BNB Vol.  

  

 

 

 

 

Model/Training Length Runtime Number of Trained Models 
  arima 100 .6 hours 14,955 
  arima 200 1.3 hours 13,455 
  arima 300 2.1 hours 11,955 
varima 100 14 hours 58,823 
varima 200 24 hours 52,923 
varima 300 33 hours 47,023 
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Figures, 8-1 and 8-2 show the cross correlations of undifferenced and differenced time series 

pairs respectively across different lags, where negative lags indicate the first mentioned time 

series leads the second by the given lag, and positive lags indicate the second time series 

mentioned leading the first by the given lag indicated. Each time series’ difference order is the 

necessary number of times differenced to make the time series stationary.  

While the undifferenced time series of Bitcoin and Bitcoin Trading Volume in Figure 8-1 

initially shows promise of having moderate cross correlation above .3 at lag 1, this result is not 

necessarily indicative of a meaningful relationship between the two time series, as cross 

correlations for non-stationary time series are spurious. After differencing to achieve stationarity, 

we see in Figure 8-2 that the resulting cross correlation is fairly low, consistently hovering 

around .05. This can further be seen when looking at the validation metrics for the prediction of 

Bitcoin using Bitcoin Trading Volume in Table 8-2 below, as the proportion of differenced cross 

correlations for each individual window above .3 is also low. This low cross correlation results in 

the overall best performing model in terms of both directional accuracy and mean absolute error 

to be an ARIMA model with a training length of 200, highlighting that there is no benefit in 

using the Bitcoin Volume time series as a predictor with VARIMA.   

Table 8-2. Validation Metrics, BIT Vol. Predicts BIT 
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Figure 8-3 below shows the last 200 days of prediction of Bitcoin and Bitcoin Volume using 

VARIMA model of training length 200. The darker points are the actual values and the lighter 

colored points are the predicted values (values are mean scaled to allow both time series to 

appear on the same graph). You can also visually see the much higher RV of Bitcoin Volume 

over Bitcoin. 

Figure 8-3 VARIMA-200 Prediction, BIT-BIT Vol. 

 

 

 

 

 

 

 

 

 

Unlike the previous example however, when looking at the cross correlations of Bitcoin and 

Litecoin shown below in Figures 8-4 and 8-5, we can see that both the undifferenced and 

differenced pairs have strong correlation above .5 . This higher cross correlation can also be seen 

in Table 8-3, showing 100 percent of differenced cross correlations for individual windows above 
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.03. These high cross correlation’s impact on the models’ results can further be seen in table 8-3, 

where the forecast accuracy of the best model is now VARIMA. 

Figure 8-4. Undifferenced CCF, BIT-LTC.                 Figure 8-5. Differenced CCF, BIT-LTC  

 

 

 

 

 

 

Table 8-3. Validation Metrics, LTC Predicts BIT 

 

 

 

 

Although there is a slight advantage with VARIMA over ARIMA when predicting Bitcoin with 

the bivariate pair, we can see in Table 8-4 this is not the case when trying to predict Litecoin with 

the same pair. 
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Table 8-4. Validation Metrics, BIT Predicts LTC 

 

 

 

 

In Table 8-4 and Figure 8-6, we note that the RV is higher for Litecoin than Bitcoin, an observation 

that we will see is a common theme among the other non-Bitcoin cryptocurrencies as well. This 

observation helps underline the stability that Bitcoin has relative to other cryptocurrencies. It 

should be noted that even though Bitcoin’s time series shown in Figure 8-6 and 8-7 is of the same 

time period, they will look different as the scales are different due to the time series they are each 

paired with. 
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Figure 8-6. VARIMA-300 Prediction, BIT-LTC 

 

 

 

 

 

 

 

Figure 8-7, shows the period and pairs forecasted with ARIMA-200 models for a comparison. 

Here, we can observe subtle differences in the forecasted values for each time series. 

Figure 8-7. ARIMA-200 Prediction, BIT-LTC 
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Similar to the Bitcoin-Litecoin bivariate pair, the Bitcoin-Ethereum bivariate pair presented in 

Tables 8-5 and 8-6 also has significant cross correlations of the differenced and undifferenced 

training data, with the best model for directional forecast accuracy being VARIMA for forecasting 

Bitcoin and ARIMA for forecasting Ethereum. This is another common theme for other 

cryptocurrencies paired with Bitcoin—predicting Bitcoin sees advantages when using VARIMA 

but predicting the cryptocurrency it is paired with does not. 

Table 8-5. Validation Metrics, ETH Predicts BIT  

 

 

 

 

Table 8-6. Validation Metrics, BIT Predicts ETH 
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Note that most of the proportion of p-values above .05 in these and previous tables denoted in the 

pv10, pv24, pvH columns, fall below the 95 percent threshold we would normally expect of strong 

models, indicating that the majority of the windows have low autocorrelation among the residuals. 

While this could be interpreted as poor model fitting, it is also likely due to the high type-I error 

associated medium to larger lags of the Ljung-Box test. The proportion of the original data within 

the forecasted 95 percent confidence interval (ci) hovers near .95 for these and the previous tables, 

as they should. This is also typical of all the bivariate pairs. We can visually see this in  

Figures 8-8 and 8-9, which show the 95 percent confidence intervals of Bitcoin and Ethereum 

plotted against their original values for the last 200 hundred days. 

  Figure 8-8. Predicting Bitcoin 95% CI with VARIMA  
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Figure 8-9. Predicting Ethereum 95% CI with VARIMA 

 

 

 

 

 

 

 

 

 

Below in Figure 8-10, we can see the cross correlations of Bitcoin and XRP shows promise in the 

undifferenced data peaking at lag -19, which is further supported by the cross correlations of the 

differenced data in Figure 8-11.  

 

 

 

 



 

84 

    Figure 8-10. Undifferenced CCF, BIT-XRP        Figure 8-11. Differenced CCF, BIT-XRP 

 

 

 

 

 

 

Having Bitcoin lead XRP by a lag of 19 above can prove useful for forecasting into the future of 

XRP. Stated another way, this implies Bitcoin’s price on a given day would have moderate 

correlation with XRP’s price 19 days into the future. However, when we examine Figure 8-11 

more closely, we see that the highest correlation after differencing is at lag 0. This is something 

that is common among most of the cryptocurrencies when paired with Bitcoin. This point is further 

illustrated in Figure 8-12 below, showing that the strongest correlation clearly hovers around lag 

0, as both time series’ peaks and valley, despite being of different magnitudes, overlap almost 

perfectly. 
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    Figure 8-12. VARIMA-300 Prediction, BIT-XRP 

 

We can see the success of using VARIMA forecasting Bitcoin with this pair in Table 8-7 below.  

Table 8-7. Validation Metrics, XRP Predicts BIT 
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8.3 Bitcoin-Financial Data/Other Bivariate Pairs 

Predicting bivariate time series of Bitcoin paired with other financial data has proven less 

amenable to using VARIMA models than pairing Bitcoin with other cryptocurrencies. In Chapter 

1, we had initially hypothesized about a potential strong relationship between Bitcoin prices and 

Nvidia Stock due to the intertwined nature of blockchain technology with the GPU manufacturer; 

however, as with some of cryptocurrencies pairs, after differencing, cross correlations no longer 

exhibit the same significant magnitude and the resulting VARIMA predictions perform worse than 

ARIMA, as shown in Tables 8-8 and 8-9 below. 

Figure 8-13. Undifferenced CCF, BIT-NVDA              Figure 8-14. Differenced CCF, BIT-NVDA 
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Table 8-8. Validation Metrics, NVDA Predicts BIT 

 

 

 

 

Table 8-9. Validation Metrics, BIT Predicts NVDA 

 

 

 

 

This lackluster performance of VARIMA compared to ARIMA is also observable for Bitcoin 

paired with the engineered principal component, as shown in Table 8-10 below. 

Table 8-10. Validation Metrics, pc1 Predicts BIT 
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This trend continues for the other financial related time series (DJI, GSPC, IXIC) when paired 

with Bitcoin as well.  

Graphs and tables containing model results for all bivariate pairs provided in the appendix for 

additional reading on pg. 100. 
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 9 Conclusions and Future Work 

ARIMA models with a 200-length training window performed the best overall, having the most 

pairs with highest directional forecast accuracy as well as the lowest MAE. However, VARIMA 

with 200, 300 training length often had higher forecast accuracy when the cross correlations 

were high. These high correlations were mainly seen when pairing Bitcoin with other 

cryptocurrencies, whereas bivariate pairs containing trading volumes and other financial data 

performed worse for VARIMA than ARIMA. 

Overall, all 6 of the model variations of training length/model type performed very similarly 

across the board for all bivariate pairs, with consistently solid results above 70 percent 

directional forecast accuracy. For directional forecasting to be a worthwhile avenue for investing, 

the accuracy needs to be above 55 percent in order to have glimmer of profitability, which all 6 

model variations handily surpass. Several different ML methods presented in a recent paper for 

forecasting Bitcoin, have only reported DFs in 50 and 60 percent range by comparison Mudassir 

et al. (2020). 

However, an unfortunate concession of the VARIMA models used is that they take significantly 

longer to train than the ARIMA models with what appears to be marginal gain. One potential 

avenue for the future to boost VARIMA’s forecasting accuracy would be to iterate throughout all 

combinations of p and q in range 0 through 3 rather than 0 through 2, which could produce new 

VARIMA models with a lower AIC. However, this would considerably increase the already 

substantial runtime of VARIMA. Training on tri-variate time series models from different 
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cryptocurrencies also could improve results. Again, this would significantly increase the runtime 

of model training.  

Another possibility for improvement would be to make use of high lagged cross correlations, 

where one time series leads another. This will give the ability to offset one time series by the 

number of lagged days with the highest cross-correlation. Not only will this increase the 

correlation when training models, which VARIMA models capitalize on, but by offsetting it will 

also make use of data that correlates well with the future. I have included the cross-correlation 

plots for each time series pair for reference in the appendix (as well as plots for the forecasted 

CI’s and forecasted means). 

Another thing to consider when assessing the marginal improvement of VARIMA over ARIMA 

is that the process of differencing before model training strips away a considerable amount of 

information of the original time series. This loss of information several limits any improvements 

that VARMA models can capitalize on. One alternative to differencing to achieve stationarity 

would be to check for cointegration within the multidimensional time series, choosing only to 

difference if no cointegration exists. This could be potentially promising as others have recent 

published that there exists cointegration amongst different cryptocurrencies Göttfert et al. (2019). 

However, like the previous considerations, this would also considerably increase the training 

time involved. Using GARCH models moving forward would also allow each model to consider 

the volatility of each time series to use as an additional variable for prediction. While this work 

focused solely on one day forecast, a next step moving forward would be to build on these results 

to do long term forecasting of Bitcoin and other cryptocurrencies. 
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Appendices 

Appendix A. Graphs and Plots 

The following sub sections contain model validation tables and plots for cross-

correlations, forecasted confidence intervals for VARIMA, and forecasted means for 

ARIMA and VARIMA. 

A.1 Validation Tables 
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A.2 Cross-Correlation Plots 

If the lag is negative, the first mentioned time series leads (predicts) the second one 

according to the lag. If the lag is positive, the second one leads the first by the given lag. 

First are the ccf plots for undifferenced data followed by differenced data. For the 

differenced graphs, each time series is differenced prior by the smallest value that would 

make it stationary.  
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A.2.1 Undifferenced CCF 
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A.2.2 Differenced CCF 
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A.3 Forecasted VARIMA Confidence Intervals 
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A.4 Forecasted means for ARIMA and VARIMA 
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