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Identification of Sero-Diagnostic 
Antigens for the Early Diagnosis of 
Johne’s Disease using MAP Protein 
Microarrays
Lingling Li1,2,8, John P. Bannantine  3,8, Joseph J. Campo  4,8, Arlo Randall4, Yrjo T. Grohn5, 
Megan A. Schilling2,6, Robab Katani  2,6,7, Jessica Radzio-Basu2,7, Laurel Easterling2,6 & 
Vivek Kapur2,6,7*

Considerable effort has been directed toward controlling Johne’s disease (JD), a chronic granulomatous 
intestinal inflammatory disease caused by Mycobacterium avium subsp. paratuberculosis (MAP) in cattle 
and other ruminants. However, progress in controlling the spread of MAP infection has been impeded 
by the lack of reliable diagnostic tests that can identify animals early in the infection process and help 
break the transmission chain. To identify reliable antigens for early diagnosis of MAP infection, we 
constructed a MAP protein array with 868 purified recombinant MAP proteins, and screened a total of 
180 well-characterized serum samples from cows assigned to 4 groups based on previous serological 
and fecal test results: negative low exposure (NL, n = 30); negative high exposure (NH, n = 30); fecal-
positive, ELISA-negative (F + E−, n = 60); and both fecal- and ELISA-positive (F + E+, n = 60). The 
analyses identified a total of 49 candidate antigens in the NH, F + E−, and F + E+ with reactivity 
compared with the NL group (p < 0.01), a majority of which have not been previously identified. While 
some of the antigens were identified as reactive in only one of the groups, others showed reactivity in 
multiple groups, including NH (n = 28), F + E− (n = 26), and F + E+ (n = 17) groups. Using combinations 
of top reactive antigens in each group, the results reveal sensitivities of 60.0%, 73.3%, and 81.7% in the 
NH, F + E−, and F + E+, respectively at 90% specificity, suggesting that early detection of infection in 
animals may be possible and enable better opportunities to reduce within herd transmission that may 
be otherwise missed by traditional serological assays that are biased towards more heavily infected 
animals. Together, the results suggest that several of the novel candidate antigens identified in this 
study, particularly those that were reactive in the NH and F + E− groups, have potential utility for the 
early sero-diagnosis of MAP infection.

Mycobacterium avium subspecies paratuberculosis (MAP) is the etiological agent of Johne’s disease (JD), a severe 
chronic intestinal inflammatory disease in ruminants and other animal species1. The disease is characterized by 
a long incubation period prior to manifestation of clinical signs, and subclinically infected animals represent a 
source of transmission to uninfected animals. MAP infection has a high prevalence in dairy herds in the US, 
as reported in 2007, at least 68% of US dairy farms were infected with MAP based on fecal and environmental 
sampling2, resulting in more than $200 million in annual losses to the dairy industry3. Efforts to control JD have 
been focused on reducing the transmission of MAP from infected cattle to uninfected young calves and removal 
of infected cattle (culling) from the herds4. Although it is well-recognized that the early identification of MAP 
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infection is critical to prevent the spread of JD in herds, current diagnostic tests have a low sensitivity for detec-
tion of subclinical MAP infection.

Detection of MAP infection has been hampered in fecal tests for animals that show latent or intermittent shed-
ding5, and serological tests, such as ELISA have shown low sensitivity in both low and moderate shedders, with 
only 26% testing positive with the currently available ELISA tests6. In order to develop more sensitive diagnostic 
tests, efforts have been focused on the discovery of novel antigens from MAP proteomic analyses, since the com-
plete genome sequence was published7. A number of antigens have been characterized previously from cell wall 
associated proteins8; secreted MAP proteins9; proteins that respond to stress10; as well as MAP culture filtrate11 
and cell extraction12. However, compared with the whole MAP proteome, only a small portion of proteins have 
been investigated, and for many studies, there were a limited number of well-characterized serum or milk samples 
used for evaluation.

To obviate the issues associated with this piecemeal approach to antigen discovery, we recently conducted 
a study using 180 well-characterized serum samples from cows to probe the whole proteome microarray from 
Mycobacterium tuberculosis (MTB)13. In the MTB array study, the cows were divided to 4 groups based on fecal 
(culture and PCR) and serum/milk ELISA tests: cows that were tested negative for both fecal and serum/milk 
ELISA and from JD-free farms (NL– Negative Low Exposure); those that were tested negative for both, but were 
from farms with existing JD (NH– Negative High Exposure); those that were fecal test positive and ELISA neg-
ative (F + E−); and those that were both fecal and ELISA tests positive (F + E+). With the NL group providing 
the baseline reference, a total of 47 MAP orthologs were identified from the NH, F + E−, and F + E+ groups as 
candidate antigens. The majority of candidate antigens, especially in the NH and F + E− groups, had not been 
previously recognized, indicating the MTB protein microarray approach had considerable utility for detection of 
MAP infection, especially during the early stages of MAP infection. However, there are limitations of the MTB 
array for MAP antigen discovery, including antigens for which there are no orthologs in the MTB proteome 
(unique MAP antigens), or MAP antigens that had low identity with their MTB orthologs13.

In order to overcome these limitations, we here report the development of a novel recombinant MAP protein 
array and the screening of sera from cows representing different stages of infection. The analyses identified several 
novel antigens that are recognized by cattle during various stages of MAP infection, including during the early 
stages that are currently difficult to diagnose using traditional approaches. Together, the results of our studies 
show that the use of MAP protein arrays has considerably expanded the pool of candidate antigens for the early 
detection of MAP-infected animals.

Materials and Methods
All experiments and experimental protocols were performed in accordance with the relevant ethical animal care 
guidelines and regulations as per protocols approved by the Pennsylvania State University’s Institutional Animal 
Care and Use Committee (IACUC) protocol numbers 34625 and 43309.

Bovine serum samples. The milk and serum samples were selected from the Johne’s Disease Integrated 
Program (JDIP, http://mycobacterialdiseases.org) diagnostic standards sample collection (samples were collected 
between August 2011 and February 2012). All samples have been previously analyzed using fecal culture and 
ELISA analysis for the detection of MAP (https://scholarsphere.psu.edu/concern/generic_works/hhm50ts37m).

The serum and milk were collected from cows housed California, Georgia, Minnesota, and Pennsylvania 
from 11 dairy farms with herd sizes ranging from 138 to 1400. The prevalence within each farm of JD ranged 
from 0–19.63%. All herds were tested for bovine TB and all were found negative14. As part of the integrated 
program, each cow was tested multiple times to assess the level of MAP present, including fecal culture, liquid 
culture (2 methods), acid fast staining, PCR detection, and ELISA, as described previously14. The 180 serum 
samples selected for this study, stratified into 4 groups: fecal and ELISA negative from JD-free herds (NL, n = 30), 
fecal and ELISA negative from infected herds (NH, n = 30), fecal positive and ELISA negative (F + E−, n = 60), 
and fecal positive and ELISA positive (F + E+, n = 60). The metadata associated with each of these cows can be 
accessed at: https://scholarsphere.psu.edu/concern/generic_works/hhm50ts37m. A summary of the farms and 
characteristics of the farms are in Supplemental Table 1. The samples were selected based on three different strata: 
the four different groups; ensuring representation of different dairy herds; and selecting the highest scores for 
PCR and ELISA tests to avoid selection of borderline or suspect positive samples.

Preparation of recombinant proteins. Full-length coding sequences of each gene corresponding to 
the individual recombinant MAP proteins tagged with maltose binding protein (MBP) were amplified from 
the MAP K-10 genome with the restriction sites for XbaI and HindIII located in the 5′ and 3′ primers, respec-
tively. The multi-gene fusion proteins were chemically synthesized and cloned in a similar manner. The ligation 
protocols were carried out overnight at 4 °C and transformed into E. coli DH5α and selected for on LB plates 
containing 0.10 mg/ml ampicillin. The ampicillin-resistant colonies were screen by PCR and DNA sequencing, 
as previously described15. The MBP-tagged recombinant proteins were overexpressed in culture using 0.3 mM 
isopropyl-B-d-thiogalactopyranoside (Sigma Chemical Company, St. Louis, MO). The cells were then harvested, 
re-suspended, put through one freeze-thaw cycle, and sonicated. The resulting crude extract was purified using 
amylose resin affinity chromatography, as previously described14,15. Purified proteins were eluted, and the most 
concentrated fractions were dialyzed with three exchanges of PBS at 4 °C. The purified protein was stored at −20 °C 
and assessed by a modified Lowry assay with a bovine serum albumin (BSA) standard. The recombinant proteins 
were also evaluated using the GelCode blue (Pierce Biotechnology Inc., Rockford IL)-stained SDS-PAGE gels.

https://doi.org/10.1038/s41598-019-53973-x
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Microarray fabrication and probing. The MAP recombinant protein microarray fabrication and prob-
ing were performed at Antigen Discovery Inc. (ADI, Irvine, CA). A total of 868 purified MAP recombinant 
proteins were normalized to the concentration of 0.1–0.2 mg/ml before the array fabrication, with 64% of pro-
tein in the range of 0.1–0.2 mg/ml, 12% in the range of 0.05–0.09 mg/ml, and 24% were lower than 0.05 mg/ml. 
Normalized recombinant proteins and a reference protein MBP-LacZ were printed as single spots on a custom 
8-pad nitrocellulose-coated Oncyte Avid slide (Grace Bio-Labs, Bend, OR) using an Omni Grid 100 microarray 
printer (Digilabs, Inc., Marlborough, MA) in 1 × 4 sub-array format, with each subarray comprising 18 × 18 
spots16. The slides were rehydrated and blocked with Blocking Buffer (Main Manufacturing, Stanford, ME) for 
30 minutes prior to incubating with diluted (1:200) serum samples at 4 °C overnight with gentle agitation. A bioti-
nylated anti-bovine IgG secondary antibody (Jackson ImmunoResearch, West Grove, PA) and incubation with 
Surelight-P3 fluorochrome conjugated to streptavidin (Columbia Biosciences, Columbia, NY) were used to detect 
bound IgG antibodies. The dried slides were read with a Genepix 4300 A microarray scanner (Molecular Devices, 
San Diego, CA) that was calibrated daily. Fluorescence intensity for each spot was quantified using the GenePix 
Pro software as described previously16.

Analysis of intensity data. Intensity data were analyzed using an automated pipeline developed at ADI and 
implemented in R (www.r-project.org) as described in detail in Li et al., 2017a. Briefly, spot measurements, nor-
malizing for background intensities, were converted into a data matrix, quality checks were performed, and data 
was inspected for the presence of systematic effects and biases. Next, the dataset was log2 transformed, the median 
of the MAP-lacZ control spots were calculated, and the sample specific MBP-lacZ control medians subtracted. 
The antibody breadth score is the count of reactive antigens and they were compared using Poisson regression. 
Statistical analyses, both parametric and non-parametric tests, were performed to examine between-group differ-
ences. In the case of complex datasets, multivariate linear regression or linear mixed models with random effects 
for longitudinal data were performed. P-value adjustments for false discovery rates were also performed17.

Of the 868 recombinant MAP proteins spotted on the arrays, about 10% represented extracellular proteins, 
40% membrane proteins, and 50% intracellular proteins as per predictions of subcellular localization18. A total of 
661 proteins were recognized on the array as reactive proteins based on the intensities that measured 10% above 
the threshold, including 548 with a concentration ≥0.1 mg/ml and 113 with a protein concentration <0.1 mg/ml. 
Of the 207 proteins not reactive on the MAP array, 202 proteins were at a concentration <0.1 mg/ml, and only 
5 were at a concentration of >0.1 mg/ml, and the association between protein concentration (≥0.1 vs <0.1 mg/
ml) at slide fabrication and reactivity of spots was significant (p < 0.0001; Fisher’s exact and Chi-square tests), 
suggesting that non-reactive proteins in the MAP protein array were associated with a low concentration of the 
proteins as opposed to their true reactivity status.

Significantly reactive antigens were identified from 661 reactive proteins if an antigen met the following inclu-
sion criteria: (1) Higher mean intensities in the NH, F + E−, and F + E+ groups when compared with that in the 
NL group using t test and Wilcoxon rank sum test with p < 0.01. The p-value adjustment was made for multiple 
tests; for instance, for set 1, NL vs. NH; set 2, NL vs. F + E−; set 3, NL vs. F + E+, p < 0.0167 was considered as 
significant with Bonferroni’s correction as an adjustment; (2) Odds ratio (OR) in any one of the NH, F + E−, and 
F + E+ groups differed from that in the NL group (Supplementary Table S2); and, (3) AUC from the Receiver 
Operating Characteristic (ROC) curve was ≥0.7. Exceptions were made for antigens that only met criteria 1 and 
2 but not 3 only if they were found to be reactive during our previous studies16.

Statistical analyses. Logistic models were fitted using PROC LOGISTIC in SAS (version 9.2, 2009; SAS 
Institute Inc., Cary, NC) to examine the normalized intensities between the different antigens. Each antigen was 
included in the model and all models included basic information about the cow (lactation number, day-in-milk, 
herd size, etc.). Each non-baseline category was compared to the baseline category using the generalized logit 
function and the output included an odds ratio and 95% confidence interval for each antigen. Sensitivity and 
specificity for each antigen in the multiplex assays were generated using a Receiver Operating Characteristic 
(ROC) curve from the ROCR package in R (https://www.R-project.org/). Hierarchical clustering was performed 
using the pvclust package in R19.

Results
Screening antigens using a MAP protein microarray. To identify strong antigens in MAP that could 
distinguish healthy dairy cows (NL) from those at early (NH), middle (F + E−) and late (F + E+) stages of Johne’s 
disease, we constructed a MAP protein array comprising 868 purified recombinant proteins. A total of 661 reac-
tive MAP proteins were identified using this protein array on 180 serum samples from 11 dairy farms based on 
intensity thresholds described in the methods section. Of these proteins, 585 (88.5%) were recognized in all 4 
stratified health status groups, and 38 (5.7%) were recognized only in one of the 4 groups (8 in NL, 12 in NH, 9 in 
F + E−, and 9 in F + E+), with the remaining 38 recognized by either 2 or 3 groups (Fig. 1A).

We next compared the reactivity data from the MAP array with our previous analysis of MAP seroreactive 
proteins using an MTB protein microarray corresponding to about 3,900 ORFs16,20. Of the 868 recombinant MAP 
proteins in this study, 682 had orthologs represented on the MTB array (Fig. 1B), of which a total 661 and 740 
reactive proteins were recognized in MAP and MTB protein arrays (Fig. 1C, top figure), with 109 proteins shared 
between the two arrays (Fig. 1C, bottom figure). Of particular note, the majority of reactive proteins identified in 
this study were not recognized from the previous MTB protein array study, indicating that the MAP protein array 
has greatly expanded the pool of reactive proteins.

Fourty-nine antigens are detected during early, middle and late stage disease. Based on the 
serological reactivity criteria described in the methods, a total of 49 antigens were identified across the NH, 
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F + E−, and F + E+ groups. Serum reactivity to these 49 proteins were clustered based on their odds ratio values 
in each group (Fig. 2, Table S2). There were 18, 11, and 5 antigens identified only in the NH, F + E−, and F + E+ 
groups, respectively with the remaining antigens shared among 2 or 3 groups (Fig. 3). Functional descriptions of 
the 49 proteins are listed in Table S3. Most of the proteins (84%) have orthologs in MTB with an identity of 32% 
to 98% and 8 hypothetical proteins have no orthologs in MTB. The functional classification of these candidate 
antigens are found in the Supplemental Text, Section A.

Early stage antigens. There was a total of 28 antigens identified in the NH group (Fig. 4A), including 18 
unique to this group and 10 shared with others (3 with F + E−, and 7 with both F + E− and F + E+ groups). 
For the 18 antigens that were reactive only in the NH group, the mean intensities were higher than that for the 
F + E− and F + E+ groups, suggesting that these antigens are recognized only during early infection, but not as 
disease progresses. The functional classifications of these candidate antigens are found in the Supplemental Text, 
Section B.

Of the top 5 reactive antigens in the NH group based on the AUC, odds ratios, and predicted sensitivity and 
specificity, two antigens (MAP0433c and MAP1968) were reactive only in the NH group, whereas the other 3 
(MAP 2447c, MAP2187c, and MAP2609) also showed reactivity in the other two groups (F + E− and F + E+).

The results show that at a specificity >0.95 (0.967) for the cutoff from the ROC curve, the sensitivity of indi-
vidual antigens was low, ranging from 0.133 to 0.367. However, data show that when two, three and four antigens 
are combined, the sensitivity is increased from the highest individual sensitivity of 0.367 to 0.600 with a four 
antigen combination (Fig. 4B). However, there was no increase in sensitivity when 5 antigens are combined, but 
there is a loss of specificity for the 5-antigen combination (0.867) as compared with the 4 (0.900).

Similar to the results of our recent MTB protein array study16, the reactivity of the samples in the NL and NH 
groups were different from each other, suggesting that exposure to animals that may be shedding in the herd may 
increase sero-reactivity to certain MAP proteins. For instance, when the mean intensities in the NL and NH were 
used as a reference to compare the intensities in the F + E− and F + E+ groups, the number of antigens identified 
in these groups reduced from 26 (with NL as reference) to 8 (with NH as reference) in the F + E− groups and 
from 17 to 11 in the F + E+ group (Fig. 4C).

Middle stage antigens. There was a total of 26 antigens identified in the F + E− group, including 11 unique 
to this group and 15 shared with the NH, F + E+, or both (Supplementary Table S3, Fig. 5A). The functional clas-
sification of these candidate antigens are found in the Supplemental Text, Section C. A total of 12 antigens were 

Figure 1. Reactive MAP proteins identified in this study and comparison of MAP and MTB protein array 
results. (A) Venn diagram at 10% threshold shows MAP antigen hit number distribution of all 4 groups: 
negative low exposure (NL), negative high exposure (NH), fecal positive & ELISA negative (F + E−), and 
fecal positive & ELISA positive (F + E+). (B) Orthologs between MAP and MTB arrays. Left circle represents 
MTB array containing 3,900 MTB proteins and right circle represents MAP array containing 868 proteins. 
The overlap region indicates orthologs between the two arrays. (C) Comparison of reactive proteins between 
MAP and MTB protein arrays. Top: number of reactive and non-reactive proteins in MTB and MAP arrays. 
Solid squares represent reactive proteins and twill squares represent non-reactive proteins. Bottom: red circle 
represents MTB reactive proteins and blue circle represents MAP reactive proteins. Overlap region represents 
reactive proteins identified by both arrays.

https://doi.org/10.1038/s41598-019-53973-x
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excluded from the list of reactive antigens in the F + E− because of low mean intensity (<0.4; Supplementary 
Table S4). Among these, mean intensities in the NL group were all below 0, while mean intensities in the F + E− 
group ranged from below 0 to 0.24 with a median of 0.04. The most parsimonious hypothesis for the low observed 
intensity is likely to be a low concentration of spotted protein (all were <0.09 mg/ml, and four were <0.05 mg/ml). 
However, it is noteworthy that two of the significantly reactive antigens in the F + E−, MAP0920 and MAP1782c, 
showed strong reactivity despite having a low concentration (<0.05 mg/ml) of protein spotted on the array, sug-
gesting that highly immunoreactive proteins may have strong signals even at very low concentration of antigens.

Both MAP2187c and MAP2447c were among the 5 most reactive antigens in the F + E− group and the NH 
group. The other three antigens were shared with other groups, MAP1986 shared with the NH, MAP3540 with 
the F + E+, and MAP2497c with both NH and F + E− group. Similar to the NH group, the sensitivities of indi-
vidual antigens were low (0.15 to 0.367) but the combination of 4 antigens increased the sensitivity to 0.733 at a 
specificity of 0.9 (Fig. 5B). ROC curves of 5 top antigens are presented in Fig. 5C.

There were a total 17 antigens identified as reactive in the F + E+ group, including 12 that were shared with 
other groups (5 with F + E− and 7 with both NH and F + E−), and the remaining 5 antigens were identified as 

Figure 2. Patterns of serum reactivity to 49 MAP proteins with their odds ratios. Odd ratios differed 
significantly compared with that in the NL group. The heatmap shows reactivity from 4 groups to each of the 49 
proteins. Each column represents one protein, odds ratios are visualized as a color spectrum. The heatmap was 
generated using the ComplexHeatmap package in R. The clustering was performed using the pvclust package 
with multiscale bootstrap resampling. Arguments passed to the pvclust command for the hierarchical clustering 
method (method.hclust) was “median” and for the distance method (method.dist) was “maximum”.

Figure 3. Venn diagram of 49 antigens identified in all three disease groups. The diagram shows antigen hit 
number distribution of all 3 groups: NH (green), F + E− (blue), and F + E+ (red). The three ellipses show 
the total number of hits from the 3 groups. Numbers indicate unique antigens identified in each group (non-
overlapping areas) and shared antigens among groups (overlapping areas). Thirty four percent of antigens are 
shared among groups.

https://doi.org/10.1038/s41598-019-53973-x
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reactive only with the F + E+ group (Supplementary Table S3, Fig. 6A). The functional classification of these 
candidate antigens are found in the Supplementary Text, Section D.

Late stage antigens. Among the top 5 reactive antigens in the F + E+ group, MAP2942c and MAP3531c 
were identified only in this group, whereas MAP1960, MAP2497c and MAP2609 were shared with other groups. 
The sensitivity of individual antigens was higher than in the other two groups, ranging from 0.200 to 0.583. By 
combining the top 5 antigens, the sensitivity increased to 0.783 at a specificity of 0.867 (Fig. 6B). Considering 
all combinations of antigens, the results show that if MAP1960 is replaced by MAP1651c, predicted sensitivity 
increases to 0.817 with the 5- antigen combination, and specificity increases to 0.900, even though when consid-
ered individually, MAP1960 had a higher AUC value (Fig. 6C).

The multi-protein fusions MAP2942c-MAP1569 and MAP2609 + 2121c + 2942c + 1272c were identified 
among the significantly reactive antigens in the F + E+ group, each of which has previously been identified as 
reactive when used as individual antigens in previous studies21–24. Compared with their corresponding individual 
proteins for sensitivity and AUC values, the fusion protein MAP2942c-MAP1569 had a higher AUC compared 
with each of the individual proteins (Fig. 7A), but the sensitivity (at 0.9 specificity) was lower than for either 
MAP2942c (0.233 vs 0.533) or MAP1569 (0.233 vs 0.383) alone. Of the other tetra-fusion protein MAP2609 + 2
121c + 2942c + 1272c, two antigens (MAP2609 and MAP2942c) were identified as reactive in the current study, 
while MAP2121c and MAP1272c were not (Fig. 7B). The tetra-fusion showed sensitivity and an AUC value 
slightly higher than MAP2609, however, it had a much higher background intensity compared to MAP2609 
(mean intensity 2.26 in fusion vs 0.52 in MAP2609 in the NL group, p < 0.0001). Consequently, the ratio of mean 
intensity (F + E+/NL) for the fusion protein was lower than in MAP2609, (4.8 vs 1.6). Based on the above prelim-
inary analyses, the fusion proteins represented in the current investigation did not show obvious advantages over 
individual proteins, perhaps due to the higher background that will require further optimization, and hence were 
not included in the top 5 antigens in the F + E+ group.

Discussion
The aim of this study was to identify reactive antigens at different stages of Johne’s disease. We demonstrate that 
there is a dynamic humoral immune response as Johne’s disease progresses in the dairy cow. Using a novel MAP 
protein array and a well-characterized serum sample bank, we identified 661 seroreactive MAP antigens, a major-
ity of which did not show significantly increased reactivity in the NH, F + E−, and F + E+ groups as compared 

Figure 4. Antigens identified from the NH group. (A) The mean IgG reactivity to antigens was compared 
between the NH and NL mean intensity among 28 antigens. Corresponding p value (Wilcoxon test, −log10 of p 
value) to each antigen is shown in grey line on the secondary y axis. (B) Sensitivity of top 5 proteins at specificity 
0.967 and sensitivity/specificity for combined antigens. (C) Different profiles of comparison of infected groups 
with NL and NH as a reference. Upper: number of significantly reactive proteins identified in F + E− group in 
comparison with NL (left circle) and NH (right). Bottom: number of significantly reactive proteins identified in 
F + E+ group in comparison with NL (left circle) and NH (right).

https://doi.org/10.1038/s41598-019-53973-x


7Scientific RepoRtS |         (2019) 9:17573  | https://doi.org/10.1038/s41598-019-53973-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 5. Antigens identified from the F + E− group. (A) The mean IgG reactivity to antigens (M ± SE) was 
compared between the F + E− and NL group. Corresponding p value (Wilcoxon test, −log10 of p value) to 
each antigen is shown in red line on the secondary y axis (B) Sensitivity of top 5 proteins at specificity 0.967 and 
sensitivity/specificity for combined antigens. (C) ROC curves for top 5 antigens in the F + E−.

Figure 6. Antigens identified from the F + E+ group. (A) The mean intensities to antigens (M ± SE) was 
compared between the F + E+ and NL group. (B) Sensitivity of top 5 proteins at specificity 0.967 and sensitivity/
specificity for the combined antigens. (C) ROC curves for the top 5 antigens in the F + E+.
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with that of the NL group. These results, consistent with data from previous studies16, suggest that if animals in the 
NL group are most likely to be considered as truly negative, there is significant “background” or cross-reactivity 
of MAP proteins with serum from cattle that are presumed to be unexposed or uninfected with MAP. While the 
provenance of this “background” or “cross-reactivity” is unknown and might include exposure to environmental 
or other mycobacteria (including other members of the ubiquitous Mycobacterium avium complex), or a lack 
of specificity of the assay format, or some such combinations of these or other factors, the results highlight the 
importance of the need for rigorous and robust statistical analyses along with well-stratified sample sets for the 
identification of antigens of sero-diagnostic importance for MAP in cattle.

The lack of a gold standard diagnostic test has been a major limitation for the development of sensitive diag-
nostic tests for MAP infection. In particular, the reliance on fecal assays, whether PCR- or culture-based, that 
are limited in sensitivity because of both biological (for eg., due to intermittent shedding during early infection) 
and technical reasons (for eg., loss of nucleic acid or inactivation of MAP during extraction or decontamination) 
represents a real conundrum since they may not accurately reflect the infection status of the animal. To obviate 
some of these challenges, Bayesian approaches have been developed25; however, to our knowledge, these have 
not been applied to extant commercial serological assays, perhaps, in-part, due to the nature of the crude antigen 
preparation that has a greater likelihood to cross-react with environmental bacteria and hence cut-off values are 
established to favor specificity thereby decreasing sensitivity.

Similar to what was observed with the earlier MTB arrays, serological reactivity to antigens in the NH group 
significantly differed from the reactivity in the NL group. Cows in both groups were negative for MAP at the 
time of sample collection based on the observed negative ELISA assays and very low apparent infection rates as 
determine by fecal tests, however, the farms included in the NH group had previously infected animals. To fur-
ther define the apparent increase in sero-reactivity among negative cows, we compared the two different ELISA 
methods used in this study, ELISA IDEXX and ParaChek, using serum from negative animals in uninfected 
(n = 195 in NL) and infected farms (n = 216 in NH), as well as with infected cows from infected farms (n = 159 in 
F + E− and n = 98 in F + E+; Supplemental Table S2, Fig. 1B). With the ParaChek ELISA, a significantly higher 
OD value was noted for the F + E+ group and no difference was observed between the NH and F + E− groups 
compared to the NL (p > 0.05). With the IDEXX ELISA, the mean OD values were significantly higher in the 
F + E+ group compared to the other 3 groups as well as in the NH and F + E− groups compared to the NL group 
(p < 0.001). However, importantly, there was no significant difference in reactivity between the NH and F + E− 
group. In contrast, using the NH as a reference, as compared to the NL group as a reference, greatly reduces 
the antigens identified in the F + E− and F + E+ groups, which is consistent with the observation with IDEXX 
ELISA that mean OD in the F + E− group was significantly higher than that in the NL, but not in the NH group 
(Supplemental Table S2, Fig. 2).

To begin to identify factors that may contribute to the increased sero-reactivity in the NH group, fecal shed-
ding patterns of animals in the NL farms (Farm A and G) were compared with infected animals (Supplemental 
Table S2, Fig. 2A). In brief, there are two primary observed differences between the NL and the infected farms. 
First, the detection rate for positive fecal samples in uninfected Farms A and G was low, ranging from 2.5% 

Figure 7. Comparison of fusion proteins with corresponding individual proteins. (A) Sensitivity (at specificity 
0.9) and AUC of fusion protein MAP2942c-MAP1569 were compared with individual proteins MAP2942c and 
MAP2569. (B) Sensitivity and AUC of fusion protein MAP2609 + 2121c + 2942c&1272c were compared with 4 
corresponding individual proteins.
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to 7.7%, as compared with a fecal positivity range of 25.0% to 98.3% in infected farms (P < 0.05). Second, the 
observed levels of MAP fecal shedding were low in cows with positive fecal tests from the NL Farms A and G, 
with none of the animals classified as a “high” shedder. In contrast, each of the infected farms had animals that 
were considered to be “high” shedders (2.3% to 20.0% of tested animals on the farms). In all cows with positive 
fecal tests, high shedders accounted for 6% to 38% in infected farms in this study. Previous studies have shown 
that the primary routes of MAP transmission within herds are from dam-to-daughter26, calf-to-calf27, as well as 
to naïve young animals and adults from other infected adults5. Based on simulation modeling of the transmission 
dynamics and persistence of MAP on commercial dairy farms, it has been suggested that high-shedding adults 
serve as the predominant contributor to the on-farm transmission of MAP28. Hence, it is tempting to speculate 
that animals within the NH group, although negative, were likely exposed to MAP-infected cows and may have 
been either early in infection (or were intermittent shedders that were missed during the sampling) or had recov-
ered from a transient MAP infection and hence their fecal samples were found to be “negative”. Hence, serological 
reactivity to specific recombinant MAP proteins in the NH group is consistent with the hypothesis that these 
antigens may represent markers for early MAP infection or exposure, and it will be important for future investiga-
tions to rigorously test this hypothesis with well-designed studies of experimental and natural infections in cattle.

The current studies with MAP protein arrays identified 49 reactive antigens as potential serodiagnostic anti-
gens for MAP infection. Importantly, the majority of these antigens were not recognized in previous investiga-
tions using MTB protein or smaller MAP protein arrays9,16,21, and have therefore greatly expanded the number 
of candidate antigens for the early (NH and F + E− groups) sero-diagnosis of MAP infections and highlight the 
fact that despite the similarity in protein sequences between MAP and MTB, the use of homologous proteins in 
studies such as these is critical.

Despite the fact that the majority of antigens identified in this study were previously unrecognized, several 
(n = 7) of these were, and showed increased sero-reactivity in infected animals in a manner consistent with 
our current observations. For instance, the secreted protein, MAP26099, was identified as a significantly reac-
tive antigen in the F + E+ group in our previous MTB protein microarray study16, and when used in a novel 
multiplex-bead based immunoassay format14, antibody activity to MAP2609 was recognized in both F + E− and 
F + E+ groups. Our current study found that MAP2609 is recognized in all three groups, suggesting that this 
antigen may be immunoreactive from early through late infection. Other antigens previously discovered to be 
immunoreactive or of potential diagnostic utility include MAP3527 (pep A) that was identified as reactive in the 
NH group in this study and also recognized in a previous study of naturally infected cattle21. Similarly, MAP2158, 
MAP2195, and MAP4147 that were observed to be immunoreactive in the F + E− group in the current study 
were also found to be immunoreactive in previous studies using previous immunoblotting and ELISA based 
approaches12,15,29. For instance, MAP2158 was recognized by sera from experimentally MAP-infected cows, but 
not by sera from M. avium subsp. avium and M. bovis infected animals, suggesting that this may represent an 
antigen specific to MAP29, and MAP4147 was recognized by sera from MAP-infected sheep in immunoblotting 
(though not in ELISA)12. In addition, MAP2942 and MAP3531 that were found to be reactive to sera from ani-
mals in the F + E+ group in the current study, were also recognized by sera from MAP infected cows in previous 
studies9,21. Of particular note, MAP2609 and MAP2942c, both secreted proteins, and recently identified as the 
most reactive antigens in the F + E+ group in the MTB protein array study16 and also further confirmed in our 
recent multiplex-bead based immunoassays14, were both reactive in the F + E+ group as well as in the F + E− 
group in both serum and milk samples, confirming their potential utility as diagnostic antigens. MAP3531, a 
secreted fibronectin binding protein (Antigen 85C) has also been evaluated in several previous studies where 
reactivity in the infected group was higher but not significantly different from the control22, however other studies 
have found it to be significantly (P < 0.05) more reactive with ELISA21 or immunoblotting29 based assays. Other 
candidate proteins such as MAP2705 and MAP2764 that were not identified as significantly reactive antigens 
in the current investigation, were also previously found to not differ in reactivity between groups in previous 
studies29,30.

It is noteworthy as well that several recombinant MAP proteins, including MAP0334, MAP0435c, MAP4056c, 
and MAP1204 + MAP1272c that have been previously recognized as reactive in infected animals were not seen 
to be differentially reactive in our current studies with MAP arrays10–12,29. Although p-values were < 0.05 in group 
comparison in this MAP array study, MAP0334 and MAP0435c were not identified as candidate antigens since 
their p-values were > 0.01 and they also had relatively low AUCs (<0.7). MAP1204 was recognized by sera from 
experimentally infected cows in the previous study29, but MAP1204 + MAP1272c was not included in candidate 
antigens since the odds ratio did not differ from the NL group although with a p-value for comparison of mean 
intensity <0.01.

The results showed that MAP4056c, a secreted protein, was previously identified from MAP culture filtrate 
and shown to be recognized by infected cows11, but was not included in our final list of candidates due to an over-
all low mean intensity even though it satisfied the selection criteria based on p-values, OR, and AUC, suggesting 
that further validation of the utility of this antigen for MAP diagnosis may be warranted. A total of 12 proteins, 
including MAP4056c, were similarly excluded from the final list of candidates since they had mean reactivities 
lower than 0.4 despite satisfying the inclusion criteria for p-value, OR, and AUC (Table S4: low intensity). One 
reason for this may be that the protein concentrations during array fabrication for each of these 12 proteins was 
lower than 0.1 mg/ml, and hence, may simply have been excluded for technical reasons since the data reveal a sig-
nificant association between protein concentration and mean intensity for concentrations >0.1 mg/ml (p < 0.01; 
Fisher’s exact test and 2 × 2 contingency tables). Interestingly however, the data also show that low input protein 
concentration may not be the only reason for low reactivity since amongst 49 identified proteins (mean intensity 
>0.4 in at least in one group), 8 proteins with low protein concentration at printing (<0.05 mg/ml) were iden-
tified as highly reactive. For instance, even though MAP3531c had printing concentration <0.05 mg/ml, it had 
a high mean intensity in the F + E+ group (1.95; median 1.38) compared with low observed values in the NL, 
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NH, and F + E− groups, suggesting that at least some antigens may exhibit strong immunoreactivity even at low 
concentrations. In general, however, the results highlight the potential confounding role of low input protein con-
centrations, and hence antigens that are excluded as not significantly reactive, might instead be “false negatives” 
and require additional investigations.

For further validation of the most promising antigen candidates, the 5 most reactive antigens were selected 
from each group, giving a total of 11 antigens including 3 secreted proteins, 1 lipoprotein, 1 conserved membrane 
protein and 6 predicted proteins, of which 5 are extracellular, 3 are membrane-bound, and 3 are cytoplasmic. 
The subcellular localization of bacterial antigens affects both accessibility by the immune response and antibody 
reactivity20. Although extracellular proteins only comprise about 0.5% of the proteome, they are more frequently 
recognized during the infection as observed in patients with active TB infection in the MTB proteome array 
study20. The results of our current studies showing that 5 out of 11 (45.5%) top candidates were extracellular 
proteins is consistent with the general observation that extra-cellular proteins are more likely to be identified as 
sero-reactive.

It is widely recognized that the next generation diagnostics for the detection of early MAP infection requires 
the identification of antigens that provide high sensitivity without compromising specificity. Although there is a 
slight reduction in the sensitivity in the heavily infected group (previously described with a sensitivity of 1 with 
the traditional ELISA) the use of the next generation of diagnostics will provide better management due to early 
detection of MAP-infection. This should improve the ability to detect animals in early stages of clinical infection 
and reduce within herd transmission or the introduction of animals that may be otherwise missed by traditional 
serological assays. When considered as individual antigens, the sensitivity of the top candidates was relatively low 
at a specificity cut-off of >0.950. Hence, we tested if antigen combinations might be used to increase the sensitivity 
to detect infection without compromising the specificity (Figs. 4B and 5B, 6B). The results show increasing levels 
of sensitivity with increased numbers of antigens in combination (sensitivity = 4-antigen>3-antigen>2-antigen 
combinations). However, increasing the antigen number to 5 did not provide a sensitivity benefit, suggesting that 
beyond a certain relatively small threshold number, no additional sensitivity gains might be expected without 
compromising specificity. Taken together, the results show that 3- or 4-antigen combinations displayed higher 
sensitivity without loss of specificity.

It appears that several of the candidate antigens identified in this study, particularly those that were differen-
tially reactive in the NH and F + E− groups, may have potential utility for the early detection of MAP infection 
and may serve as the foundation for the next generation of well-defined serological tests for JD particularly when 
used in multiplex and high-throughput formats. One such commonly used high-throughput diagnostic technique 
with high sensitivity and specificity is the fluorescent bead-based multiplex immunoassay that has previously 
been successfully applied for serological diagnosis of human and animals infected by bacterial pathogens includ-
ing Borrelia burgdorferi, Chlamydia trachomatis, Streptococcus pneumoniae, and Haemophilus influenzae31–33. This 
format has been recently adapted for MAP diagnosis14 based on antigens identified with MTB protein arrays16, 
and showed considerable promise with greater sensitivity for early detection of MAP-infected animals compared 
with conventional ELISAs. Interestingly, we show that antigens such as MAP2942c that are classified as serore-
active only in the F + E+ group with both MTB and MAP protein arrays, appear to show increased serological 
reactivity in both the F + E+ and F + E− groups when used in the multiplex-bead based assay format, suggesting 
that this assay format may provide additional advantages for the detection of early MAP infection in cattle.

The results of our studies are consistent with the observation that the nature of the immune response is 
dependent on the stage of infection, and that certain antigens that may be expressed and hence immunoreactive 
during early infection may or may not be immunoreactive at later stages. Hence, whether an animal is merely 
exposed (and becomes immunoreactive but not productively infected), infected – either latently or actively, dis-
eased, or perhaps recovered from infection or disease, may be reflected in the constellation of antigens that are 
expressed and immunoreactive. Hence, it is axiomatic that assays be fit-for-purpose, and that assays that may 
be best suited to identify animals later during infection and thereby focused on reducing loss from disease, may 
indeed be different from assays that are best suited to identify animals early – before they become infectious – so 
as to drive towards elimination of infection in a farm or region.

Overall, the results with the protein microarrays are consistent with the hypothesis that specific antigens are 
likely differentially recognized by the immune system during the exposure, infection, disease continuum, and 
may serve as suitable biomarkers for the early detection of animals that are exposed and likely infected. Taken 
together, the results of our investigations suggest that MAP protein arrays have considerable utility in contrib-
uting to the discovery of novel antigens for the early detection of MAP infection in cattle, as well as provide a 
framework for future investigations to validate promising candidate antigens identified in this study, particularly 
in the NH and F + E− groups, with multiplex bead-based or similar high sensitivity immunoassays.
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