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Condensed Abstract  
 
Climate is changing globally and its impacts can arise at different levels of biological organization; yet, cross-level consequences of 
climate change are still poorly understood. Designing effective environmental management and adaptation plans requires implemen-
tation of mechanistic models that span the biological hierarchy. Because biological systems are inherently complex and dynamic in 
nature, dealing with complexities efficiently necessitates simplification of systems or approximation of relevant processes, but there 
is little consensus on mathematical approaches to scale from genes to populations. Here we present an effort that aims to bring to-
gether groups that often do not interact, but that are essential to illuminating the complexities of life: empirical scientists and mathe-
matical modelers, spanning levels of biological organization from genomes to organisms to populations. Through interplay between 
theory, models, and data, we aim to facilitate the generation of a new synthesis and a conceptual framework for biology across levels. 
 
1. Predicting impacts of climate change from genomes to 
phenomes to populations  
 

Climate is changing at a global scale with extreme 
weather events (Rahmstorf and Coumou 2011), shifts in sea-
sonality and precipitation patterns, and an overall increase in 
the mean and variance of temperatures as some of the more 
noticeable consequences (Houghton et al. 2001). These envi-
ronmental changes can compromise organismal fitness 
through changes in species phenologies and mismatches with 
their resources (Parmesan and Yohe 2003), as well as potential 
intraspecific mismatches during reproductive periods (Wil-
liams et al. 2017). Furthermore, extreme weather patterns can 
increase stress levels which can lead to decreased disease re-
sistance and reduced fitness (Wingfield et al. 2011), poten-
tially jeopardizing population viability and long-term persis-
tence of many species. 

Impacts of climate change can arise at different levels of 
biological organization, either simultaneously or sequentially 
(Woodward et al. 2010), with different ramifications and feed-
backs across levels. Most available information, or that which 
is being gathered, is specific to levels spanning genomes to 
individuals over relatively short time-frames; yet, we are in-
terested in how populations respond to altered conditions, if 
and how they adapt, and how adaptation influences persis-
tence across long time scales. We are even less aware of the 
potential cascading feedbacks from populations to individu-
als and genomes and how these connections, either direct or 
indirect, can buffer or accelerate adverse impacts of a chang-
ing environment on species or populations. There is a need to 
have a mechanistic understanding of nested and non-nested 
hierarchies (Allen and Starr 2017), i.e. of the bidirectional con-
nections from genotypes to populations in sufficient detail so 
that relevant feedbacks are captured (Evans et al. 2013). Un-
derstanding connectivities and feedbacks is crucial to the de-
sign of effective management plans to mitigate the impacts of 
climate change on populations. 
 

2. Dealing with complexities across levels of biological or-
ganization 
 

Biological systems are inherently complex and dynamic 
in nature. Developing models to represent these systems has 
traditionally focused on defined levels, driven by specific 
needs and questions. For example, human health applications 
have been the main driver of novel developments in whole 
cell modeling. The model of a Mycoplasma genitalium cell real-
istically accounts for different cellular processes, including 
DNA decay and repair, gene transcription and translation, 
metabolism, decay and recycling of RNA, and formation of 
the dividing rings (Karr et al. 2012). Even though this model 
is represented as a unit, it is comprised of 28 separate modules 
that use different mathematical approaches that are linked to 
represent the whole cell. By extension, scaling up from cells 
to populations might require numerous additional modules, 
making the mathematical connection between genes and pop-
ulations incredibly complex. 

Mathematically, complex models can be formulated to 
include multiple scales of biological processes and organiza-
tion in the context of multiscale modeling. For example, in 
pharmaceutical research and chemical risk assessment, phys-
iologically based pharmaco-toxicokinetic (PBPK) models are 
used to predict the absorption, distribution, metabolism and 
elimination of chemicals (e.g. drugs and environmental toxi-
cants) in humans and wildlife. In short, PBPK models predict 
organ and tissue concentrations based on a given chemical ex-
posure (Gibaldi and Perrier 1982). Multiscale models that uti-
lize a PBPK framework as a means of integrating processes 
across scales include: liver metabolism of acetaminophen in 
humans to predict variability of effects among different 
groups of individuals (Sluka et al. 2016); models of the hypo-
thalamic-pituitary-gonadal axis to predict the effect of endo-
crine active chemicals on fish reproductive end points (Mur-
phy et al. 2005, Li et al. 2011, Gillies et al. 2016), and recent 
efforts to link across scales for endocrine-active chemicals on  
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rainbow trout reproduction leading to population-level effects 
(Forbes et al. 2019). In addition to a longer history of modeling 
animal nutrition (Baldwin and Sainz 1995), efforts are being 
made to model physiology, such as what is being done in the 
fields of stress physiology (Romero et al. 2015, Del Giudice et 
al. 2018) and metabolic organization (Jusup et al. 2017). Critical 
to the success of these efforts is the availability of data to pa-
rameterize the models. In order to maintain biologically plausi-
ble values, the availability of data will ultimately limit the com-
plexity and predictive power of the models. 

Although population-level processes clearly emerge 
from individual-level processes that themselves depend on 
physiology, cells, and gene expression, ecological research on 
populations and species interactions such as competition, pre-
dation, and mutualism, has traditionally ignored lower levels 
of organization. Furthermore, most models of ecological dy-
namics regard populations as homogeneous compartments 
expressed as states in differential equations that allow for an-
alytical solutions of equilibria and mathematical tractability. 
With the realization that population composition and struc-
ture influences population dynamics, more structured mod-
els started emerging (Caswell 2001, Hastings et al. 2018). 
These included models representing population structure in 
several designated groups (e.g. age-or stage-based matrix 
models) and models representing each individual in the pop-
ulation (e.g. individual-based models) (Grimm and Railsback 
2005). Increases in computational power and more flexible 
modeling approaches are now opening doors to permit rep-
resentation of hierarchies by including various processes and 
mechanisms at the levels of cells and tissues. 

Still, to further our understanding and mitigation of im-
pacts of a changing environment, we need to find ways of 
dealing with complexities efficiently, by simplifying systems 
or approximating relevant processes (Evans et al. 2013). When 
considering the processes that will be included in a model’s 
mathematical formulation, having clarity on the model’s pur-
pose is essential. That is, characteristic spatial and temporal 
scales may need to be considered in order to simplify equa-
tions and “prune” processes that are not essential contribu-
tors to model output/prediction(s). One example of a coher-
ent scientific framework, based on a set of mechanistic models 
describing energy acquisition and allocation, is the Dynamic 
Energy Budget (DEB) theory (Kooijman 2010, Jusup et al. 
2017). Originally developed to better quantify impacts of 
chemicals on species physiology and life history, DEB models 
are applied to understand and predict biological responses to 
various environmental factors (Galic and Forbes 2017), in-
cluding temperature and resource availability (Kearney and 
Porter 2009, Jusup et al. 2017). As the currencies in DEB theory 
are mass and energy, this framework provides a natural link 
between suborganismal, organismal, population, and ecosys-
tem processes and has often been applied for understanding 
how impacts of stressors on individual organisms translate 
into impacts at higher levels (Nisbet et al. 2000, Martin et al. 
2013, Galic et al. 2017). 

However, there is little consensus on mathematical ap-
proaches to scale from genes to populations. Key unanswered 
questions include: Do all levels of organization need to be 
modeled explicitly, or can some levels be condensed for sim-
plicity and tractability? If they are all included, does each 
level need to be addressed with the same degree of detail? Do 
we need to consider all of the genes and the genome architec-
ture, or can we focus on a subset? Are there any modules that 
can be treated as universal, such that cross-species variation 
or evolution can be ignored? 

3. The role of microevolution and plasticity in shaping ge-
nomes and phenomes 
 

Fundamental to understanding organismal responses 
to environmental change through time is to understand the 
roles of evolution and phenotypic plasticity in altering organ-
ism performance in response to stressors. While phenotypic 
plasticity is an individual characteristic, microevolution refers 
to genotypic changes at the population level. Interactions be-
tween environmental change and genotypes distributed 
within a population can occur both upstream and down-
stream of phenotypic changes that can be measured as physi-
ological or biochemical specializations of individuals (Dia-
mond and Martin 2016). The linkage between genotype and 
phenotype within the context of environmental perturbation 
can be experimentally tracked via reaction norms. A reaction 
norm encompasses a typical response (or plastic range of re-
sponses) to environmental variation by a single genotype 
(Houston and McNamara 1992, Gotthard and Nylin 1995). Re-
action norms are particularly useful in comparisons of closely 
related populations and may be a key feature of modeling the 
range of available responses for (sub)populations and ulti-
mately their fate in the face of changing environments. 

De facto, each parameter used in models addressing 
processes from genes to populations reflects an organism’s 
phenotype and thus is subject to evolution and also may have 
plastic characteristics (DeLong et al. 2016). Predicting changes 
in these parameters is thus critical to using multi-scale models 
to capture responses to climate change. Evolutionary ap-
proaches such as quantitative genetics link mean trait change 
to population dynamics but treat genes and their expression 
across levels of organization as a black box (Lande 1976, 
Abrams et al. 1993). Alternatively, population genetics fo-
cuses on the change in allele frequencies at specific sets of 
genes, but treats the emergence of phenotypes from geno-
types as black boxes (Messer et al. 2016). More recent ap-
proaches such as Gillespie Eco-evolutionary Models (GEMs) 
integrate demographic stochasticity and genetic drift with 
quantitative genetics in a community context (DeLong and 
Gibert 2016), but still do not account for all of the steps lead-
ing from genes to populations. Although data remain scarce 
(for mammals, in particular), it is now possible to tease apart 
the driving forces of phenotypic plasticity versus microevolu-
tionary changes on responses to environmental variability 
(Boutin and Lane 2014). It is critical to recognize that scaling 
up from genes to populations likely requires taking into ac-
count changes in genes through time. 
 
4. Collaborative developments across communities of ex-
perts 
 

Tackling any big challenge, especially that of expected 
and unexpected future changes in climate patterns and con-
sequences for local biota, will require connecting experts 
across disciplines. The scientific community tends to operate 
in silos of expertise; for instance, in biological research it is 
still rare for teams of researchers to span more than two levels 
of biological organization. It is even more uncommon to in-
clude mathematical or theoretical biologists into such efforts 
from the beginning (but see e.g. Forbes et al. 2017). It is evi-
dent that collective intelligence supersedes that of individual 
scientists (Woolley et al. 2010), and the need for more inter-
disciplinary research collaborations has been voiced by the 
scientific community (Schwenk et al. 2009, Mykles et al. 2010). 



Galica, Hindle, DeLong, Watanabe, Forbes, and Buck in Ecological Modelling 406 (2019) 80–83. 
doi: https://doi.org/10.1016/j.ecolmodel.2019.05.014. Copyright 2019, Elsevier. Used by permission. 

80 

 
 
 
Figure 1. The g2p2pop Research Coordination Net-
work consists of biologists specializing at the levels 
of the gene, the cell, the organism, and the popula-
tion and modelers (A) who aim to tackle the chal-
lenge of predicting responses to climate change 
across levels of biological organization (B). Under-
standing and predicting climate change responses 
across levels of biological organization requires ad-
dressing the two pillars—microevolutionary pro-
cesses and plasticity. 

 

 
Here we present an effort that aims to coalesce groups 

that often do not interact, but their collaboration is essential 
to illuminate the complexities of life: empirical scientists 
and mathematical modelers, spanning levels of biological 
organization from genomes to organisms to populations. In-
sights into how systems function at different scales have the 
potential to provide a synthetic understanding of how ani-
mals operate and serve as the basis for quantitative models 
to predict resilience and vulnerability of species in a chang-
ing world. Thus, the overarching goal of our Research Co-
ordination Network (RCN) titled “Predicting vertebrate re-
sponses to a changing climate: modeling genomes to phe-
nomes to populations (g2p2pop)” is to facilitate, refine and 
diversify scientific discourse among biologists and mathe-
maticians with expertise that spans from genomes to popu-
lations. We anticipate that the RCN will create pivotal link-
ages among multiple disciplines of biology and mathemat-
ics such that collaborations will form naturally and result in 
bidirectional interplay between theory and experimentation 
to develop unified mechanistic models of genomes to phe-
nomes to populations (Figure 1). It is only through such in-
teractions between Experts and interplay between theory, 
models, and data that we can hope to facilitate the genera-
tion of a new synthesis and a conceptual framework for bi-
ology across levels. 
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