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a  b  s  t  r  a  c  t

Whole-cell  vaccines  successfully  reduce  signs  of  clinical  disease  and  fecal  shedding  of  Mycobacterium
avium  subsp.  paratuberculosis  (MAP),  however,  these  vaccines  have  some  limitations.  The  present  study
was conducted  to identify  MAP  proteins  that  might  be candidates  for the  development  of  an  improved  vac-
cine. MAP  proteins  were  screened  for immunogenicity  in  naturally  infected  cattle  and  selected  based  upon
reactivity  in  the  interferon-�  (IFN-�)  and  Western  blot  assays.  Proteins  (MAP1087,  MAP1204,  MAP1272c,
and  MAP2077c)  were  arrayed  into  4  overlapping  cocktails  containing  3 proteins  each.  The  efficacy  of the
proteins  within  these  cocktails  as vaccine  candidates  was  evaluated  by  subcutaneous  immunization  of
mice,  followed  by  challenge  with  live,  virulent  MAP.  All  MAP  protein  cocktails  significantly  reduced  the
recovery  of  live  MAP  from  the ileum,  while  cocktails  1 and  3  reduced  colonization  in  the  liver.  No  sig-
nificant  differences  were  seen  in  the mesenteric  lymph  node  or spleen,  however,  cocktail  1  reduced
viable  MAP  in the  mesenteric  lymph  node  compared  to other  treatments.  Stimulation  of  splenocytes
upregulated  antigen-specific  IFN-�  and  IL-23  secretion  in all  treatment  groups,  regardless  of  vaccination.
Interestingly,  IL-4  was  moderately  downregulated  for vaccinates  compared  to  control  infected  mice.  An
increase  in  total  CD25  expression  was  noted  for  3 of the 4 vaccinate  groups  upon  stimulation  of spleno-
cytes  with  a whole  cell  sonicate  of  MAP,  with  this  effect  becoming  more  significant  within  CD4CD25+
and  CD8CD25+  subpopulations.  The  present  study  demonstrated  that  MAP  proteins  are  useful  as vaccine
candidates  to  reduce  MAP  tissue  burden.

Published by Elsevier Ltd.

1. Introduction

Paratuberculosis vaccine studies have demonstrated the induc-
tion of both cellular and humoral immune responses, however, it is
widely accepted that vaccination will not prevent infection. Some
benefits of vaccination include reduced fecal shedding of MAP  and
reduced clinical signs in infected animals, with evidence suggesting
a reduction in the incidence of disease within herds or severity of
disease for individual animals [1–3]. The heat-killed whole cell vac-
cine that is approved for use in the US (Mycopar, Fort Dodge Animal
Health) is not ideal because of potential adverse reactions, includ-
ing severe inflammation and granuloma formation at the injection
site. In addition, vaccination with whole cell vaccines has been
shown to interfere with bovine tuberculosis skin testing and sero-
logic detection of MAP  infected animals [4–6]. Developing subunit
or DNA vaccines would significantly reduce or eliminate some of

∗ Corresponding author at: USDA-ARS, National Animal Disease Center, 2300 Day-
ton Road, Ames, IA 50010, USA. Tel.: +1 515 663 7304; fax: +1 515 663 7458.

E-mail address: judy.stabel@ars.usda.gov (J.R. Stabel).

the troubling aspects of the whole cell vaccine without sacrificing
beneficial properties.

Several MAP  proteins or protein complexes have demonstrated
success for use as subunit vaccines, including a 70 kDa heat shock
protein, a novel 74F polyprotein, and a mixture of Ag85/SOD pro-
teins. Immunization with these protein or protein complexes has
provided protection against MAP  challenge in mice, cattle and goat
models, resulting in reduced colonization of tissues and decreased
shedding in the feces [7–9]. Each of these subunit vaccines has
demonstrated that they are able to induce both cell-mediated and
humoral immune responses in the respective hosts, suggesting
strong protective measures. Further, it was recently demonstrated
that the Hsp70 subunit vaccine does not cross-react with the com-
parative cervical skin test, a diagnostic tool commonly used for
bovine tuberculosis in the field [10]. Positive responses to AvPPD
were noted in all vaccinated animals, however, responses to BoPPD
were demonstrated only for cattle vaccinated with whole cell
vaccine (Gudair) and not for those vaccinated with Hsp70 [10],
demonstrating that a subunit vaccine can be more discrimina-
tive for identification of animals infected or vaccinated against
MAP  versus those animals infected with Mycobacterium bovis.

0264-410X/$ – see front matter. Published by Elsevier Ltd.
http://dx.doi.org/10.1016/j.vaccine.2012.10.090
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Table 1
Mycobacterium avium subsp. paratuberculosis proteins.

NCBI gene IDa Locus tag Size (kDa) Predicted function M.  avium homologb Vaccine pools

2719512 MAP1087 15.4 ABC transporter permease MAV  3420 1, 2, 3
2720812 MAP1204 25.4 Putative invasion protein; NipC/P60 family; cell wall-associated hydrolase MAV 3300 1, 2, 4
2720835 MAP1272c 33.4 Putative invasion protein; NipC/P60 family; cell wall-associated hydrolase MAV  3208 1, 3, 4
2719950 MAP2077c 11.1 STASc domain containing protein MAV  2109 2, 3, 4

a A unique identification number for sequences in the NCBI database.
b The locus tag for the corresponding protein in M. avium subspecies hominissuis strain 104.
c STAS is an acronym for sulfate transporter antagonist of anti-sigma factor.

Disadvantages of protein vaccines are that purified antigens often
do not stimulate robust or durable immune responses, requiring
adjuvants to enhance effectiveness. Adjuvants used in veterinary
vaccines are often based upon fragments of mycobacteria and other
bacteria or chemicals that elicit strong inflammatory responses to
stimulate immunity [11]. The use of adjuvants with protein-based
vaccines can reduce the amount of antigen needed, as well the num-
ber of immunizations required to achieve protective immunity. In
the present study, cocktails of MAP  proteins previously shown to
elicit strong immune responses in cattle were evaluated for host
immunity and potential use as vaccine candidates for protection
against MAP  infection in a mouse model.

2. Materials and methods

2.1. Antigen screening

Four MAP  proteins were evaluated for reactivity with control
noninfected, subclinically and clinically infected cattle in a whole
blood interferon-� (IFN-�) assay. Infection status of cattle was  con-
firmed by bacteriologic culture for the fecal shedding of MAP  and
serologic assays by standard methods [12,13]. Whole blood was
incubated with medium only (nonstimulated; NS), concanavalinA
(ConA, Sigma), pokeweed mitogen (PWM;  10 �g/ml; Sigma), johnin
purified protein derivative (JPPD; 10 �g/ml; National Veterinary
Services Laboratory, Ames, IA), a whole-cell sonicate of MAP (MPS;
10 �g/ml; NADC), and one of the following MAP  proteins, MAP1087,
MAP1204, MAP1272c, MAP2077c, (Table 1; 10 �g/ml). After incu-
bation at 39 ◦C for 18 h, plasma was assayed using a Bovigam IFN-�
assay (Prionics, La Vista, NE). The selection of the 4 MAP  pro-
teins, MAP1087, MAP1204, MAP1272c, and MAP2077c, used in the
present study was based upon their immunogenic potential as
defined by robust antigen-specific IFN-� and antibody responses
in infected cattle and negligible responses in noninfected con-
trol cows. These 4 proteins were arrayed in 4 cocktails containing
3 of the 4 proteins as follows: cocktail 1: MAP1087, MAP1204,
MAP1272c; cocktail 2: MAP1087, MAP1204, MAP2077c; cocktail
3: MAP  1087, 1272c, 2077c; and cocktail 4: MAP1204, MAP1272c,
2077c.

2.2. Protein expression and purification

The four annotated coding sequences of the proteins were
selected from a battery of recombinant proteins amplified from
strain K-10 genomic DNA. The methods for expression and purifica-
tion of MAP  recombinant proteins are described in detail [14]. 74F
polyprotein, consisting of a combination of MAP1519 and MAP3527
peptides, was constructed as previously described [8].  The 74F
polyprotein had previously demonstrated efficacy in the mouse
model as a vaccine for paratuberculosis [8].

2.3. Bacterial strain

MAP  used as the challenge strain was isolated from the ileum
of clinical cow 167 (NADC) and was grown in Middlebrook 7H9

liquid medium (pH 5.9) supplemented with 0.5% Tween 80 (Sigma),
2 mg/ml  mycobactin J (Allied Monitor Inc., Fayette, MO)  and 10%
oleic acid–albumin–dextrose complex (BD Biosciences, Franklin
Lakes, NJ). The final concentration of the bacteria was  adjusted
to 109 cfu/ml and confirmed by serial dilution onto agar slants
of Herrold’s egg yolk medium (HEYM; BD) containing 2 mg/l of
mycobactin J (Allied Monitor) with a final read-out after 12 weeks of
incubation. The presence of each of the 4 MAP  proteins in the cock-
tails was confirmed in this strain by PCR and Western blot (data not
shown). Clinical cow strain 167 was used as the challenge strain as
it was expanded from a primary isolate from ileal tissue of a highly
infected cow and had not been subjected to repeated passage in
laboratory medium.

2.4. Mice

Six-week old, male Balb/c mice used in the study (Jackson Labs,
Bar Harbor, Maine) were housed in biosecurity level-2 containment
in disposable plastic cages with free access to water and standard
mouse chow. All procedures were approved by the NADC Animal
Care and Use Committee.

2.5. MAP  vaccines

Mice were randomly assigned to 7 treatment groups contain-
ing 10 mice each as follows: control uninfected (no vaccine, no
MAP), control infected (no vaccine, MAP  infection), 74F protein
only (74F vaccine, MAP  infection), cocktail 1 (cocktail 1, MAP infec-
tion), cocktail 2 (cocktail 2, MAP  infection), cocktail 3 (cocktail 3,
MAP  infection) and cocktail 4 (cocktail 4, MAP  infection). The 74F
group received 50 �g total protein as described in a previous study
[8] and mice in cocktail 1–4 groups were given 100 �g total pro-
tein in 100 �l volume per mouse subcutaneously (SQ) in the dorsal
region. The control uninfected and control infected groups received
100 �l PBS as sham injections. Mice within each treatment group
were boosted with the identical vaccine 3 weeks after the initial
immunization. Two weeks after boosting, mice were inoculated
intraperitoneally with live, virulent MAP  strain 167 (108 in 100 �l).
Three months after infection, mice were anesthetized by inhalation
of isoflurane and decapitated with a guillotine. The liver, spleen,
ileum and mesenteric lymph node were removed from each mouse,
weighed, and processed for tissue culture as previously described
[15]. Splenocytes were isolated from a portion of the spleen and cul-
tured at 2.0 × 106 cells/ml with medium only (NS); ConA, 10 �g/ml;
PWM,  10 �g/ml; and MPS, 10 �g/ml. Quantitative cytokine analy-
ses was performed on 24 h supernatants for interleukins (IL)-2, IL-4,
IL-10, IL-12, IL-23 and IFN-� using commercial ELISA kits, according
to accompanying protocol (R & D Systems, Minneapolis, MN). After
6 days of incubation, splenocytes were harvested for flow cytomet-
ric analyses of CD3, CD4, �� T cells (BD Biosciences), CD8, B cells,
monocytes, CD44, CD62L, and CD25 expression (BioLegend, San
Diego, CA). Data analyses were performed using FlowJo software
(TreeStar, Inc., San Carlos, CA).

Antigen-specific IgG1 and IgG2a responses were measured in
mouse sera by ELISA. Briefly, plates (Nunc MaxiSorp module, Nunc,
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Fig. 1. Secretion of interferon-� (Abs450nm; IFN-�) by control noninfected cows and cows naturally infected with Mycobacterium avium subsp. paratuberculosis upon incubation
of  whole blood with medium alone (NS); concanavalinA (ConA); pokeweed mitogen (PWM); a whole-cell sonicate of Mycobacterium avium subsp. paratuberculosis (MPS);
johnin  purified protein derivative (JPPD); and MAP proteins (2077c, 1204, 1272c, and 1087). Data are expressed as means ± SEM. Significant differences between control and
infection cows within in vitro treatment group are represented by asterisks (**P < 0.01; *P < 0.05).

Roskilde, Denmark) were coated with 200 ng/well of a whole cell
sonicate preparation of MAP  (clinical strain 167, NADC) and incu-
bated at 4 ◦C overnight. After blocking (1% BSA in TBST), diluted sera
were added to the wells and incubated at 25 ◦C for 1 h, followed
by incubation with either horseradish peroxidase-conjugated goat
anti-mouse IgG1 or IgG2a (Kamiya Biochemical Co., Seattle, WA)
for 20 min, and 3,3′,5,5′-tetramethylbenzidine substrate solution
(TMB; Kamiya Biomedical Co.) for 10 min. Absorbance at 450 nm
was measured in a Victor X3 Microplate reader (Perkin-Elmer, Shel-
ton, CT).

2.6. Statistical analysis

Data were analyzed using PROC MIXED procedure of the Sta-
tistical Analysis System (SAS Inst., Inc., Cary, NC). The model
included the fixed effects of treatment (vaccination), stimula-
tion (in vitro treatment), and treatment × stimulation interaction.
When significant effects (P < 0.05) due to treatment, stimulation,
or treatment × stimulation interactions were detected, means sep-
aration was conducted by the Student’s t-test option in SAS.
Designation of statistical significance within figures is described in
each figure legend. Broad measures of statistical significance due
to treatment or treatment × stimulation interactions may  only be
denoted within the text of the manuscript.

3. Results

3.1. Immunogenicity of MAP  protein candidates

The MAP  proteins (MAP1087, MAP1204, MAP1272c, and
MAP2077c) used in the present study to formulate vaccine cocktails
demonstrated strong immunogenic potential, producing antigen-
specific IFN-� responses similar to or greater than the whole-cell
sonicate of MAP  (MPS) in Johne’s subclinical and clinical cows
(Fig. 1).

3.2. Cytokine results

Results for Th1 and Th2-mediated cytokine secretion from
splenocytes stimulated with either medium alone (NS) or with MPS
are presented in Fig. 2. Stimulation of cells with MPS  resulted in

an upregulation (P < 0.05) of IFN-� compared to NS cultures in all
infected groups. Vaccination with MAP  protein cocktails reduced
IFN-� responses to MPS  overall when compared to the control
infected and 74F treatment groups (P < 0.05). Secretion of IL-12 fol-
lowed a similar trend with greater responses noted for the control
infected and 74F groups compared to the protein cocktail vacci-
nates (Fig. 2B). MPS-stimulated splenocytes had greater (P < 0.05)
IL-4 responses compared to NS cultures only in control infected
mice (Fig. 2C). Interestingly, immunization with MAP  protein cock-
tails resulted in increased (P < 0.05) IL-4 secretion in NS cultures
for mice immunized with cocktails 1 and 2 compared to control
infected mice. There were no significant effects due to vaccination
on the secretion of IL-10, regardless of in vitro stimulation, how-
ever (P < 0.05) differences between NS and MPS-stimulated cultures
were observed for control infected mice (Fig. 2D). Secretion of IL-2
and IL-23 was  not influenced by vaccination but an upregulation of
IL-23 was observed by stimulation of splenocytes with MPS  in all
infected mice (data not shown).

3.3. T cell populations

Vaccination with protein cocktails 1–3 and 74F resulted in
higher (P < 0.05) CD4T cells compared to control infected mice,
regardless of in vitro treatment (data not shown). In addition,
immunization of mice with MAP  protein cocktails (1–3) or 74F
resulted in dramatic (P < 0.05) upregulation of CD4CD25T cells in
MPS-stimulated cultures compared to NS cultures (Fig. 3A and B).
There were no major differences in CD8T cells due to vaccina-
tion of mice (data not shown), however, the number of CD8CD25T
cells was significantly (P < 0.05) upregulated in MPS-stimulated
splenocytes across treatment groups (Fig. 3C and D). There were no
differences in the percentage of �� T cells and ��CD25+ cells due
to vaccination, yet there was a consistent trend toward reduced
numbers of these cell types after MPS  stimulation of splenocytes
in all treatment groups (data not shown). There was  a trend for
increased total CD25T cells in mice vaccinated with MAP proteins
or 74F although only mice in cocktail 4 had significantly (P < 0.05)
higher CD25T cells after MPS  stimulation of splenocytes than con-
trol infected mice (8.30 ± 1.76 versus 5.46 ± 0.70, respectively; data
not shown). Total percentages of CD44, CD62L, and monocytes in
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Fig. 2. Secretion of Th1-mediated cytokines, interferon-� (A, IFN-�; pg/ml) and interleukin-12 (B, IL-12; pg/ml), and Th2-mediated cytokines, interleukin-4 (C, IL-4; pg/ml),
and  interleukin-10 (D, IL-10; pg/ml) by splenocytes stimulated with medium alone (NS) or with a whole cell sonicate of Mycobacterium avium subsp. paratuberculosis (MPS).
Splenocytes were isolated after 3 months of infection from control mice and mice vaccinated with 74F polyprotein or MAP  protein cocktails 1–4. Data are expressed as
means  ± SEM. Significant differences between NS and MPS  within treatment group are represented by asterisks (**P < 0.01; *P < 0.05).

splenocyte cultures were unaffected by immunization of mice or
in vitro treatment in the present study (data not shown).

3.4. B cells and MAP-specific serum IgG1 and IgG2a results

Interestingly, the percentages of B cells within MPS-stimulated
splenocytes were lower (P < 0.05) in mice immunized with cocktails
1, 2, and 4, compared to control infected mice (data not shown).
Infection with MAP  with or without immunization resulted in sig-
nificant (P < 0.05) increases in serum IgG1 and IgG2a compared to
control noninfected mice (Fig. 4). Mice immunized with either
74F or the MAP  protein cocktails demonstrated increased (P < 0.05)
MAP-specific serum IgG2a following challenge compared to control
infected mice. In contrast, differences due to vaccination were not
noted for MAP-specific serum IgG1 antibodies with similar levels
noted for all infected mice regardless of vaccination when com-
pared to control infected mice.

3.5. Tissue culture

Immunization with cocktails 1–4 did not significantly impact
tissue colonization in the spleen after challenge with live MAP, yet
there was a trend toward reduced MAP  colonization noted in the
cocktail 1 group compared to the control infected group (Fig. 5A).
Similar reductions in MAP  colonization were also noted in the MLN

of mice receiving cocktails 1 and 2 prior to challenge, although these
differences did not achieve statistical significance (Fig. 5C). How-
ever, liver colonization was  reduced (P < 0.05) in mice immunized
with cocktails 1 and 3, as well as the 74F polyprotein that served as
a positive control in the study (Fig. 5B). Further, all protein cocktails
significantly (P < 0.05) reduced MAP  colonization in the ileum com-
pared to infected controls (Fig. 5D). Although immunization with
the combination of proteins in cocktail 4 (MAP1204, MAP1272c,
and MAP2077c) provided less protection against MAP  colonization
compared to the 3 other cocktails, it was still effective in reducing
tissue burden in the ileum.

4. Discussion

The four MAP  protein candidates were chosen based upon
earlier work suggesting moderate to high antigenic responses in
serologic assays. Functions of these proteins include a peptide
transport system permease protein, MAP1087; putative invasion
proteins, MAP1204 and MAP1272c; and a STAS domain containing
protein, MAP  2077c. Two of the 4 selected proteins (MAP1087 and
MAP1204) had previously demonstrated strong reactivity with sera
from naturally infected cattle in the subclinical stage of infection
[16]. In addition, MAP1087, MAP1204, and MAP2077c all reacted
with sera from experimentally infected calves in the early stage of
infection [16]. The selection of these proteins was not based upon
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Fig. 3. Percentage of CD4CD25+ (A) and CD8CD25+ (B) T cells from splenocytes stimulated with medium alone (NS) or with a whole cell sonicate of Mycobacterium avium
subsp.  paratuberculosis (MPS). Representative dot plot profiles of CD4CD25+ (C) and CD8CD25+ (D) populations in MPS-stimulated splenocytes. Splenocytes were isolated
after  3 months of infection from control mice and mice vaccinated with 74F polyprotein or MAP  protein cocktails 1–4. Data are expressed as means ± SEM. Significant
differences between NS and MPS  stimulants within a treatment group are represented by asterisks (**P < 0.01; *P < 0.05).

Fig. 4. Serum IgG1 and IgG2a antibody responses against Mycobacterium avium subsp. paratuberculosis after 3 months of infection from control mice and mice vaccinated
with  74F polyprotein or MAP  protein cocktails 1–4. Data are expressed as means ± SEM. Significant differences between control uninfected, control infected and vaccinate
groups are represented by asterisks (**P < 0.01; *P < 0.05).



132 J.R. Stabel et al. / Vaccine 31 (2012) 127– 134

Fig. 5. Recovery of viable Mycobacterium avium subsp. paratuberculosis (cfu/g tissue) from (A) spleen, (B) liver, (C) mesenteric lymph node (MLN), and (D) ileum of control
mice  and mice vaccinated with 74F polyprotein or MAP  protein cocktails 1–4 after 3 months of infection. Data are expressed as means ± SEM. Significant differences between
control  infected and vaccinate groups are represented by asterisks (**P < 0.01; *P < 0.05).

specificity to MAP  and protein sequence analysis demonstrated sig-
nificant alignment of all 4 proteins to both MAP  and Mycobacterium
avium.  This is not surprising given the high level of genetic homol-
ogy (>98%) between MAP  and M.  avium,  with few unique genes
identified for MAP  and even fewer immunogens [14,17]. Although
partial sequences of MAP1204 were also found in other mycobacte-
rial species, including M.  bovis, this would not be a major detractor
from potential use as a vaccine candidate. Sero-diagnostic tests for
the detection of M.  bovis infection using antigens such as ESAT-6,
CFP-10, and MPB83, have demonstrated a lack of cross-reactivity in
calves vaccinated with the whole-cell vaccine for MAP  [13]. In addi-
tion, IFN-� responses to ESAT-6:CFP-10 antigens were observed to
be highly specific for calves infected with M.  bovis, with negligible
reactivity noted for MAP- and M.  avium-infected calves [18] or for
calves vaccinated with a whole cell vaccine [13]. This would sug-
gest that adequate tools are available to distinguish between MAP
vaccinates and animals infected with M.  bovis.

Although it is unknown how well immunogenic proteins trans-
late into successful vaccines, it is understood that proteins can be
highly antigenic, eliciting both humoral and cell-mediated immune
responses. Many researchers utilize immune reactivity in the host
as their primary method to screen protein candidates for subunit
vaccines, with the hypothesis that an induced response is sug-
gestive of protective immunity. Although proteomic and genomic
screening approaches can be used to identify vaccine candidates,
these tools are only useful if the candidates are recognized by the

host immune system. Screening tools such as Western blotting have
been effective for many bacterial pathogens, however, for intra-
cellular pathogens such as MAP, antigen screening should include
some measure of responsiveness in a cell-mediated assay since pro-
tection is aligned with Th1-mediated immunity in the host [19].
The proteins in the present study were selected upon observation
of robust IFN-� responses in naturally infected cattle, combined
with the ability to discriminate between infected and noninfected
cattle with some measure of specificity.

Numerous infection models have been developed for MAP, with
emphasis on ruminant species such as cattle, sheep, goats, deer, and
bison [20] since these are the target species for paratuberculosis.
However, the protracted period of subclinical infection that occurs
in naturally infected hosts is mimicked in experimentally infected
animals, resulting in lengthy study periods [20,21]. Mouse models
provide a reasonable approach to efficiently evaluate vaccine can-
didates due to a shorter infection periods compared to ruminants,
greater reproducibility due to more precise genetics amongst treat-
ment animals, and reduced costs for care and housing, allowing for
greater numbers of animals per treatment group. Mouse models for
MAP  infection have been adequately characterized and IP infection
of Balb/c mice results in effective colonization of the major target
tissues [22].

Th1-mediated immune responses may  be indicative of expo-
sure to mycobacterial pathogens, including MAP, but also
appear to be essential to keep infection from progressing from
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subclinical to clinical disease. In a neonatal calf infection model,
we were able to demonstrate the upregulation of immune mark-
ers including, robust antigen-specific IFN-� responses as well as
induction of antigen-specific CD25, CD26, and CD45RO expression
less than 3 months after infection [23]. Although Th2 responses are
not known to be protective in the host, both Th1- and Th2-mediated
immunity has been induced after vaccination with a whole cell
preparation of MAP  [24–26].  Recent studies have also demon-
strated that MAP  vaccines comprised of single proteins or protein
complexes will also evoke strong Th1 responses [7–9,26–28].  In
the present study, immunization of mice with MAP  protein cock-
tails prior to challenge with live MAP  resulted in similar induction
of antigen-specific IFN-� when compared to control infected mice,
although some attenuation of the IFN-� response was noted. Differ-
ences in IFN-� secretion between NS and MPS-stimulated cultures
were lower for mice vaccinated with protein cocktails, particularly
cocktail 1. This would suggest that immunization with this triad
of proteins may  have resulted in greater constitutive secretion of
IFN-� but lower antigen-specific IFN-� secretion after challenge,
an effect that may  be advantageous to the host. Pro-inflammatory
effects of IFN-� can be both beneficial and detrimental to the host
and a finite balance must be achieved in order to maintain effective
immunity [28]. Interleukin-23 was upregulated by MAP  infection,
with increased secretion noted after stimulation with MPS antigen
in vitro for all treatment groups. This is the first report describing
effects of MAP  infection on the secretion of IL-23. IL-23 is a newly
recognized cytokine that is involved in the inflammatory response
to mycobacterial infections, although little is known about its role
in the immunopathology of MAP  infections. IL-23 is required for the
generation of effector memory T cells and is also needed for gen-
eration of IL-17-producing T cells, which play an important role in
the inflammatory response [29].

Although Th2-mediated cytokine production was  not markedly
different due to vaccination, an interesting observation was  the
pattern of IL-4 secretion noted between NS and MPS-stimulated
splenocytes in mice vaccinated with MAP  protein cocktails, partic-
ularly for mice immunized with cocktail 1. Vaccination with MAP
proteins 1087, 1204, and 1272c, in cocktail 1 resulted in higher con-
stitutive secretion of IL-4 compared to the other treatment groups,
something that was not apparent upon further exposure of spleno-
cytes to MAP  antigen in vitro. These results would suggest that this
cocktail of MAP  proteins modulated Th2 responses of the host after
infection, an important consideration for selection of vaccine candi-
dates. This is further substantiated by the increase in MAP-specific
serum IgG2a noted for mice immunized with either 74F or MAP
protein cocktails. Secretion of IgG2a antibodies is most closely asso-
ciated with Th1-mediated immunity and cytokines such as IFN-�,
IL-4, and IL-10 can influence the isotype switch to IgG2a [30].

Immune responses to vaccination are critical for the control of
infection in the host. Immunization with the MAP  protein cock-
tails effectively reduced MAP  colonization of the liver and ileum.
In particular, cocktail 1 also demonstrated efficacy for reduced
colonization of the spleen and mesenteric lymph node, provid-
ing the most consistent effect on retardation of infection in the
host. Reduced colonization of tissues is a beneficial characteristic
for paratuberculosis vaccines and has been reported for commer-
cial vaccines such as Mycopar and Gudair, as well as for more
recently developed subunit vaccines [7,9,31,32].  Decreased tissue
burdens result in reduced shedding of MAP  in the feces thereby
allaying spread of infection within a herd [1].  Similar reductions
in tissue burden have been reported for mice immunized with
the 74F polyprotein, with reduced recoveries of viable MAP  from
spleen, liver and mesenteric lymph nodes at 12 and 16 weeks post-
challenge [8].  The highly positive results achieved with the 74F
polyprotein prompted us to incorporate it into our study as a pos-
itive control. The Mycopar vaccine was an undesirable choice as a

positive control vaccine in the current study as effects have not been
previously evaluated in a mouse model. In addition, the Mycopar
vaccine typically causes large granulomatous nodules at the injec-
tion site in ruminants, an effect that would not be handled well in
a young mouse [31]. In ruminants, this local inflammatory effect
is managed somewhat by injecting the vaccine in the fatty area
of the brisket. Much of the benefit previously noted for the 74F
immunogen was  repeated in the present study, with concurrent
reductions in tissue colonization and activation of T cells as previ-
ously described. Despite this, cocktail 1 seemed to invoke the most
consistent responses in protection against tissue colonization. Fur-
ther, this triad of MAP  proteins, 1087, 1204, and 1272c, appeared
to more tightly regulate the immune response post-immunization
both before and after challenge with live MAP. Host responses
after immunization with either cocktail 2 or 3 more closely aligned
themselves to results observed for cocktail 1. The common protein
between these 3 cocktails was MAP1087, whose known function
is a peptide transport system permease protein. This type of trans-
port protein has been considered as a potential vaccine for a wide
variety of bacterial species [33]. This provides us with an interest-
ing set of proteins to further evaluate as a potential MAP  vaccine in
a ruminant model.

In summary, the present study evaluated cocktails of MAP  pro-
teins as potential subunit vaccines for paratuberculosis. Cocktails
of MAP  proteins proved effective in protection against tissue colo-
nization and invoked cell-mediated and humoral immunity in the
host. Further evaluation of the components of cocktail 1, (MAP pro-
teins 1087, 1204, and 1272c), needs to be undertaken to evaluate
the potential of these proteins as subunit vaccines against Johne’s
disease.
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