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Repetitive Sampling and Control
Threshold Improve 16S rRNA Gene
Sequencing Results From Produced
Waters Associated With Hydraulically
Fractured Shale
Jenna L. Shelton1* , Elliott P. Barnhart2,3, Leslie Ruppert4, Aaron M. Jubb4,
Madalyn S. Blondes4 and Christina A. DeVera4

1 Eastern Energy Resources Science Center, U.S. Geological Survey, Sacramento, CA, United States, 2 Wyoming-Montana
Water Science Center, U.S. Geological Survey, Helena, MT, United States, 3 Center for Biofilm Engineering, Montana State
University, Bozeman, MT, United States, 4 Eastern Energy Resources Science Center, U.S. Geological Survey, Reston, VA,
United States

Sequencing microbial DNA from deep subsurface environments is complicated by
a number of issues ranging from contamination to non-reproducible results. Many
samples obtained from these environments – which are of great interest due to the
potential to stimulate microbial methane generation – contain low biomass. Therefore,
samples from these environments are difficult to study as sequencing results can be
easily impacted by contamination. In this case, the low amount of sample biomass may
be effectively swamped by the contaminating DNA and generate misleading results.
Additionally, performing field work in these environments can be difficult, as researchers
generally have limited access to and time on site. Therefore, optimizing a sampling
plan to produce the best results while collecting the greatest number of samples
over a short period of time is ideal. This study aimed to recommend an adequate
sampling plan for field researchers obtaining microbial biomass for 16S rRNA gene
sequencing, applicable specifically to low biomass oil and gas-producing environments.
Forty-nine different samples were collected by filtering specific volumes of produced
water from a hydraulically fractured well producing from the Niobrara Shale. Water
was collected in two different sampling events 24 h apart. Four to five samples were
collected from 11 specific volumes. These samples along with eight different blanks
were submitted for analysis. DNA was extracted from each sample, and quantitative
polymerase chain reaction (qPCR) and 16S rRNA Illumina MiSeq gene sequencing were
performed to determine relative concentrations of biomass and microbial community
composition, respectively. The qPCR results varied across sampled volumes, while no
discernible trend correlated contamination to volume of water filtered. This suggests that
collecting a larger volume of sample may not result in larger biomass concentrations or
better representation of a sampled environment. Researchers could prioritize collecting
many low volume samples over few high-volume samples. Our results suggest that
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there also may be variability in the concentration of microbial communities present in
produced waters over short (i.e., hours) time scales, which warrants further investigation.
Submission of multiple blanks is also vital to determining how contamination or low
biomass effects may influence a sample set collected from an unknown environment.

Keywords: low biomass samples, 16S/18S ribosomal RNA gene analysis, produced water, blanks, hydraulic
fracturing

INTRODUCTION

Microbial generation of methane occurs in many terrestrial
environments. Recent interest has focused on microbial
communities in deep subsurface hydrocarbon reservoirs as they
can be stimulated to produce additional natural gas from residual
organic material in crude oil, coal, and/or shale reservoirs
(Schlegel et al., 2013; Wuchter et al., 2013; Larter et al., 2015;
Ritter et al., 2015; Daly et al., 2016; Barnhart et al., 2017).
However, these environments typically contain low biomass
concentrations due to inherent reservoir characteristics: low
concentrations of essential nutrients, high temperatures, brackish
to brine salinity conditions, high pressures, and low water drives
(e.g., Head et al., 2003; Silva et al., 2013; Cai et al., 2015; Gieg,
2018). Unfortunately, field campaigns to collect samples can
be complicated by associated expenses, access to wells from
operators, and limited field access. Importantly, most researchers
cannot determine parameters such as biomass concentrations
prior to completing field sampling of hydrocarbon wells and
may be left with samples that may be compromised or of low
quality. Therefore, understanding the microbial constraints and
controls on stimulating methanogenesis is challenging because
identifying the microorganisms innate to these environments
with field-based studies can be difficult with low biomass
concentrations or other sampling issues, such as short time scale
(e.g., days) microbial population changes (e.g., Zelaya et al.,
2019) and the challenging and complex nature of produced
water composition.

Low biomass concentrations have been identified in many
environments outside of deep hydrocarbon reservoirs, such
as those associated with subsurface sediments (Ogram et al.,
1995), carbonate caves (Barton et al., 2006), spacecraft assembly
cleanrooms (Vaishampayan et al., 2013), acidic, arsenic-rich
creeks (Giloteaux et al., 2010), and subseafloor ocean crust
(Santelli et al., 2010). However, studies on how the low-biomass
characteristic impacts microbial sequencing are limited (e.g.,
Salter et al., 2014; Glassing et al., 2016). In these environments,
many specific challenges with generating 16S rRNA gene data
from sediment, rock, fluid or other materials have been identified.
Irreproducible or low-quality DNA extraction is one common
barrier to sequencing data from these environments, resulting
in unconvincing results. Many researchers are developing
tools or methods to deal with low-biomass results, such as
modifying DNA extraction techniques (e.g., Webster et al.,
2003; Barton et al., 2006), creating filters or other software
that target contaminants via bioinformatics (e.g., Minich et al.,
2018; Karstens et al., 2019), analyzing non-reproducible data
(e.g., Chandler et al., 1997), and attempting to mitigate

cross-contamination and contaminant DNA in samples (e.g.,
Eisenhofer et al., 2019). Laboratory contamination can occur
via many routes, including contamination of extraction or PCR
reagents and/or materials, surfaces, or human error (Salter et al.,
2014; Glassing et al., 2016). Furthermore, variation in sequencing
results have been observed across laboratories (e.g., Salter et al.,
2014). Therefore, not only can samples from hydrocarbon
wells possess low biomass, but they are also susceptible to
contamination issues that are magnified by their innate low
biomass nature. This means that biomass from contaminants
may be proportional to sample biomass in low biomass samples
but swamped by sample biomass in high biomass samples.

In this study, we collected biomass by filtering produced
water from one hydraulically fractured well producing from the
Niobrara Shale in northeastern Colorado. Hydraulic fracturing
is a process where water, sand, and other chemicals are injected
into a rock at a pressure great enough to fracture it, increase
permeability, and stimulate hydrocarbon flow. The goal of the
study was to ascertain a suitable sampling protocol for produced
waters so that the highest quality data could be obtained in
the most efficient way. We filtered specific volumes of water
for biomass to determine how field measurements of 16S rRNA
gene sequencing results vary across sample volume and if results
from the samples from the same volume of filtered water were
comparable. The hypothesis was that increasing volumes of water
filtered would result in increasing concentrations of biomass
collected. Our attempt was to simulate a situation where biomass
concentrations are unknown and standard operating procedures
are used to acquire data (e.g., non-low biomass specific DNA
extraction methods) so that a researcher could use these results to
determine the quality of the resulting 16S rRNA gene sequencing
data. The specific research questions for this study were (i) do
smaller volumes of sample result in sequentially smaller biomass
concentrations; (ii) can field researchers use Cp (crossing point-
PCR-cycle) values and blank samples to determine a quality
threshold for low biomass samples; and (iii) can an ideal
sampling plan be developed for researchers sampling low biomass
produced waters. These results may help guide future sampling
efforts in low-biomass environments to provide reproducible
and quality data.

MATERIALS AND METHODS

Field Methods
Produced water was collected in October 2018 from one
hydraulically fractured oil and gas well producing formation
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water, oil, and gas from the Niobrara B Chalk in the Denver-
Julesburg Basin. The well was located in Weld County, Colorado,
United States. The operator and exact location of the well is
confidential through a Technical Assistance Agreement with the
operator. Water was collected from the well separator into six 5-
L Nalgene HDPE carboys over a period of approximately 48 h,
collecting a total of 30 L. As these carboys were unable to be
autoclaved prior to field work, they were cleaned in the field
according to USGS protocol by rinsing each carboy 3 times with
sample water prior to filling the carboy to the brim (Graham et al.,
2008). Carboy 1 was collected on day one, carboys 2 and 3 were
collected concurrently on day two, and carboys 4, 5, and 6 were
collected concurrently on day three.

When collecting the sample water, each triple rinsed carboy
was filled to the brim (i.e., filled with no headspace), and closed
tightly until filtration (to limit exposure to the atmosphere).
First, we needed to determine the maximum amount of water
that could be filtered before the filter clogged so that we could
consistently filter a maximum volume of water without the filter
clogging. Sterile Nalgene tubing was inserted into the mouth of
a carboy and threaded through a peristaltic pump. A Sterivex
GP Filter unit was attached to the other end of the tubing, and
the pump was turned on. The filtrate (i.e., the water that passed
through the filter) was measured using a graduated cylinder. The
pump remained on until the filter clogged, and the volume of
filtrate was then measured. The maximum volume of water that
could be filtered was, on average, 1083 mL. Therefore, 1000 mL
of filtrate was used as the maximum volume for this study.

Fifty-seven filters were collected after filtering varied and
specific volumes of filtrate. Volumes were selected that decreased
sequentially from 1000 mL in an attempt to simulate changes
in biomass concentrations. The following volumes of water were
collected – 1000, 900, 800, 700, 600, 500, 400, 300, 200, 100, and
0 mL (Figure 1) – and at least four filters were collected at each
given volume using the method described for determining the
maximum volume of water described above. We attempted to
remove any bias or error that may have been generated due to
using 6 different carboys of sample water by randomizing the
filters that came from each carboy. For example, all four of the
1000 mL filters were not generated by filtering water from the
same carboy (see Table 1 for information about which samples
came from each of the 6 carboys). This approach should eliminate
any bias introduced by collecting water from different time points
(i.e., potential differences in biomass concentrations across the
carboys of water would be present across multiple volumes).

After a given volume of filtrate was reached, the filter was
removed from the tubing, capped, and placed immediately on dry
ice. A new sterile filter was then attached to the Nalgene tubing,
and a different specific volume of water was filtered through
that filter by repeating the above process. The Nalgene carboys
were kept well-mixed during the filtration process by physically
shaking the carboys. In addition to the samples discussed above,
a total of eight different internal sample blanks were collected,
four by filtering 2 L of 18.2 M�-cm lab-purified water through
a Sterivex filter, and four by submitting blank Sterivex filters
(opened but unused filters). The blanks were meant to serve
as an internal quality control and to base any instances of low

FIGURE 1 | Boxplot of qPCR results. Volume of water filtered for each of the
57 samples is compared to the 16S rRNA copies/µL for each sample. The
thick line in each box represents the median for each volume while the
whiskers extend to roughly a 95% confidence interval. The red trendline has
an R2 value of 0.0695. Samples are colored based on sample volume.

biomass (i.e., close to the qPCR detection limit) against. All
filters were shipped on dry ice to the Argonne Environmental
Sample Preparation and Sequencing Facility at Argonne National
Laboratory in Lemont, IL, for analysis, and kept at −80◦C
until extraction. Notably, we could not guarantee that the same
amount of DNA would be collected on each Sterivex filter at each
filtered volume (i.e., all 1000 mL samples did not necessarily have
the exact same biomass concentrations).

Laboratory Methods
Standard qPCR and sample preparation methods were used
to reduce bias and enable the development of a methodology
for produced water sample collection regardless of prior
knowledge of biomass concentrations. DNA was extracted from
the Sterivex filters using the Qiagen DNeasy PowerWater
Sterivex extraction kit (Cat No./ID: 14600-50-NF) following
manufacturer instructions. The extracted DNA was used as
template for qPCR and Illumina MiSeq sequencing. Each 20 µL
qPCR reaction contained 10 µL of SYBR Green Master Mix, 1 µL
of Caporaso et al. (2011) 515F forward primer, 1 µL of Caporaso
et al. (2011) 806R reverse primer, 7 µL of PCR pure water,
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TABLE 1 | Sequences per sample and OTUs identified per sample for each sample before and after contaminant removal.

Volume
filtered

Carboy
number

Above or below
Cp = 30.5

detection limit

Sequences per
sample before
contaminant

removal

Sequences per
sample after
contaminant

removal

Percent
difference in

sequences per
sample after
contaminant

removal

OTUs per
sample
before

contaminant
removal

OTUs per
sample

after
contaminant

removal

Percent
difference in

OTUs per
sample after
contaminant

removal

1000 mL 4 Above 51167 12366 61.1 68 57 8.8

900 mL 1 Above 39982 19410 34.6 59 52 6.3

900 mL 2 Above 12976 7668 25.7 40 30 14.3

900 mL 4 Above 85239 19520 62.7 84 76 5

800 mL 5 Above 7622 4703 23.7 27 18 20

800 mL 2 Above 21589 10248 35.6 48 38 11.6

800 mL 1 Above 35871 7232 66.4 56 50 5.7

800 mL 4 Above 34555 7257 65.3 55 51 3.8

700 mL 4 Above 31501 6218 67 61 51 8.9

700 mL 1 Above 11182 3849 48.8 31 24 12.7

600 mL 4 Above 24142 4996 65.7 58 53 4.5

600 mL 1 Above 14245 3980 56.3 31 23 14.8

500 mL 1 Above 13253 2554 67.7 45 38 8.4

500 mL 4 Above 34148 9727 55.7 82 72 6.5

500 mL 5 Above 14125 6317 38.2 36 30 9.1

400 mL 4 Above 13344 2349 70.1 40 37 3.9

400 mL 5 Above 50256 28207 28.1 132 110 9.1

300 mL 1 Above 25521 8880 48.4 30 25 9.1

300 mL 5 Above 22631 3556 72.8 41 33 10.8

300 mL 5 Above 1823 318 70.3 23 18 12.2

200 mL 5 Above 67754 18625 56.9 56 51 4.7

200 mL 5 Above 12712 1982 73 39 34 6.8

100 mL 5 Above 89394 40948 37.2 66 54 10

100 mL 5 Above 52272 10315 67 34 29 7.9

1000 mL 2 Below 20424 14398 17.3 101 79 12.2

1000 mL 3 Below 2289 642 56.2 11 6 29.4

1000 mL 6 Below 10457 6213 25.5 42 30 16.7

900 mL 6 Below 12956 8091 23.1 66 52 11.9

900 mL 6 Below 3642 1950 30.3 36 26 16.1

800 mL 6 Below 1447 572 43.3 17 12 17.2

700 mL 2 Below 6449 4394 19 25 16 22

700 mL 5 Below 3554 534 73.9 11 5 37.5

700 mL 3 Below 20527 12873 22.9 89 62 17.9

600 mL 5 Below 5789 1827 52 14 7 33.3

600 mL 3 Below 1535 1231 11 15 13 7.1

600 mL 2 Below 25405 16577 21 59 47 11.3

500 mL 3 Below 4205 2132 32.7 15 11 15.4

500 mL 6 Below 5071 2059 42.2 23 11 35.3

400 mL 3 Below 1412 131 83 12 4 50

400 mL 1 Below 15585 8582 29 46 27 26

400 mL 3 Below 25021 11659 36.4 54 34 22.7

300 mL 3 Below 6075 2206 46.7 21 13 23.5

300 mL 2 Below 447 28 88.2 4 3 14.3

200 mL 3 Below 18672 10846 26.5 52 34 20.9

200 mL 1 Below 9187 6528 16.9 28 20 16.7

200 mL 3 Below 19241 13602 17.2 58 44 13.7

100 mL 3 Below 16867 9603 27.4 55 35 22.2

100 mL 3 Below 3503 2186 23.1 52 37 16.9

100 mL 1 Below 27365 19124 17.7 64 46 16.4

Cells colored in red indicate a larger percent difference between the two measured values, while green-colored cells indicate a smaller percent change between the
two measured cells.
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and 1 µL of template DNA loaded into each well. The qPCR
conditions were as follows: denaturing DNA at 94◦C for 3 min
followed by a three step cycle 40 times, 94◦C for 45 s, 50◦C for
60 s, and 72◦C for 90 s. All samples were run in triplicate. Positive
controls were run in duplicate to ensure a precise standard curve.
The qPCR efficiency averaged approximately 96% across the eight
point standard curve.

A barcoded primer set adapted for Illumina MiSeq was used
to produce PCR amplicon libraries targeting the 16S rRNA
encoding gene. After PCR optimization, the V4 region of the
16S rRNA gene (515F-806R) was then amplified using PCR
with region-specific universal primers (Caporaso et al., 2011),
including sequencer adapter sequences used in the Illumina
flowcell and a 12 base barcode sequence that supports sample
pooling in each lane (Caporaso et al., 2011, 2012). Each PCR
reaction contained 9.5 µL of certified DNA-free MoBio PCR
water, 12.5 µL of QuantaBio Accustart II PCR ToughMix (2×

concentration, 1× final), 1 µL Golay barcode tagged forward
primer (5 µM concentration, 200 pM final), 1 µL reverse primer
(5 µM concentration, 200 pM final), and 1 µL of template DNA.
PCR conditions were denaturing DNA at 94◦C for 3 min, with 35
cycles at 94◦C for 45 s, 50◦C for 60 s, and 72◦C for 90 s, and a final
extension of 10 min at 72◦C to ensure complete amplification.

Amplicons were then quantified with a plate reader (infinite
ˆR 200 PRO, Tecan) and PicoGreen (Invitrogen). After
quantification, volumes of each product are pooled into a single
tube to ensure equimolar amounts of each amplicon. The pool
was cleaned using AMPure XP Beads (Beckman Coulter) and
quantified using a fluorometer (Qubit, Invitrogen). The molarity
of the pool was determined after quantification and diluted down
to 2 nM. The pool was denatured and further diluted to a final
concentration of 6.75 pM with a 10% PhiX spike for Illumina
MiSeq sequencing. Amplicons were sequenced on a 151 base
pair × 12 base pair × 151 base pair MiSeq run using customized
sequencing primers and procedures.

Resulting Illumina MiSeq data were processed using QIIME2
(Bolyen et al., 2019). Operational Taxonomic Units (OTUs)
were mapped at greater than 99% similarity and taxonomy
was assigned at the species level. Taxonomic assignments were
performed using Silva 132 (Yilmaz et al., 2013) and the dataset
was exported to R (R Core Team, 2019) to perform cleaning
steps and all statistical analyses. Sequences for each of the 57
samples (including the eight blanks) were scaled to represent
percent abundance (i.e., summing all sequences per sample
resulted in a value of 100 percent for every sample) so that
rarefaction would not occur and limit the dataset by potentially
removing operational taxonomic units (OTUs). Sequence reads
for each sample were deposited in the National Center for
Biotechnology Information (NCBI) Short Read Archive (SRA)
under Bioproject PRJNA529810. Data, OTU table, taxonomic
table, associated metadata, and code used are available in
Shelton and DeVera (2019).

Various methods were used to test the effectiveness of
laboratory procedures and data quality for the samples post-
16S rRNA gene sequencing, as discussed in the results section.
Statistical analyses were performed in R (R Core Team, 2019)
with base packages, vegan (Oksanen et al., 2019), ggplot2

(Wickham, 2016), reshape2 (Wickham, 2012), RColorBrewer
(Neuwirth and Brewer, 2014), and plyr (Wickham, 2009).
Resulting data were analyzed based on Argonne National
Laboratory internal qPCR blanks and thresholds and submitted
sample set blanks. The results of the Illumina MiSeq sequencing
run were used to compare communities of microbes identified
in all samples collected to look for differences across the entire
sample set and between the smaller volumetric subsets (e.g., the
five samples at 1000 mL filtered).

RESULTS AND DISCUSSION

Using qPCR to Determine if Smaller
Volumes of Sample Result in Sequentially
Smaller Biomass Concentrations
Fifty-seven samples including 8 external blanks along with one
internal laboratory extraction blank were analyzed by qPCR using
an eight-point calibration curve (not shown). The results of
the qPCR analysis were used to compare relative amounts of
biomass in each sample collected and across samples with the
same volume of filtrate (e.g., to compare the five 400 mL filtered
volume samples). This was performed in order to determine if
decreasing sample volume correlated with decreasing biomass
concentrations and increasing contamination. Triplicate analyses
were performed for each sample, the eight blanks, and one
laboratory extraction blank, producing three different Cp values
per sample which were averaged (Supplementary Table S1).
The Cp or CT (threshold cycle) value is the cycle at which
the fluorescence achieves a defined threshold and can be useful
to understand biomass concentrations in samples. A smaller
Cp value is indicative of a larger target expression in a given
sample, or more generally, indicative of a larger concentration of
targeted DNA per sample. The range of average Cp values for the
samples in this study was 25.55 (indicating the largest 16S rRNA
copies/µL) for sample JC30 (900 mL) to 40.41 (indicating the
sample with the smallest 16S rRNA copies/µL) for sample JC59
(a blank, 0 mL).

Average (not displayed) and median 16S rRNA copies/µL
generally displayed a weak trend when compared to filtered
volume (Figure 1). The R2 value for a linear correlation between
sample volume and Cp value was 0.0695. Additionally, using a
Kruskal-Wallis rank sum test due to a non-normal distribution
of Cp value by sample volume, it was confirmed that Cp value is
not significantly correlated to volume of sample; there was not a
significant relationship between Cp value and sample volume (p
value > 0.05).

As this is quite an unusual result, it could likely be explained
by either (1) variability in biomass concentrations (and also
contaminants) in produced water during production from a
hydrocarbon well (i.e., biomass concentration varies over short
periods of time, such as minutes to hours, during production of
water, oil, and gas from a well), (2) the presence of PCR inhibitors
disproportionally affecting samples of the same volume, or (3) the
volumes filtered are too small to detect differences in microbial
density. If biomass concentrations could change across short time
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scales in hydraulically fractured shale environments, then it is
not unreasonable to assume that PCR inhibitor concentrations
could change across similar time scales, which could have caused
the differences observed in Cp value across identical volumes
of sample. PCR inhibitors are chemicals that interfere with the
PCR process and are predominantly dissolved or solid organic
compounds such as clays, humic acids, phenols, and proteins
(Rossen et al., 1992; Abbaszadegan et al., 1993; Ijzerman et al.,
1997; Rådström et al., 2004; Schrader et al., 2012). However,
previous studies (e.g., Hull et al., 2018; Oetjen et al., 2018) have
concluded that the produced water geochemistry of hydraulically
fractured shale wells doesn’t change dramatically once in steady
state; therefore, PCR inhibitors may also be less variable in
concentration once in steady state production. To the authors’
knowledge, there are no studies looking at changes in microbial
community composition or geochemistry across short (minutes
to hours) time scales in mature hydraulically fractured shale
wells, so some variability may be missing in previous studies.
Therefore, more investigations should be done to ensure that
variability in both water chemistry and biomass does not occur at
short time scales in produced water associated with hydraulically
fractured shale.

It is also important to note that some of the variability
observed in Cp values between samples of the same filtrate
volume may be due to the batch of water used during sampling.
For instance, carboys 3 and 6 (collected at approximately 0 and
24 h, respectively) only produced samples that had Cp values
larger than the suggested detection limit of 30.5. As all of the
carboys were identical, it is unlikely that the carboy itself caused
these differences. However, carboys one, two and three were all
collected minutes apart on day 1 while carboys four, five, and six
were collected minutes apart on day 2; this suggests that there
may be variation in biomass concentrations in produced waters
from shale over very short time scales (e.g., minutes to hours).
This will be investigated further in future work.

Can a Quality Threshold for Low
Biomass Samples Be Determined Using
Cp Values and Field Blanks?
As simply increasing sample volume was not significantly
correlated with increasing biomass concentrations, it would then
be ideal to determine a given Cp value that could identify low
quality (i.e., low biomass) samples. This Cp would serve as a
cutoff threshold where samples with Cp values larger than the
threshold are always considered “low-biomass” and potentially
could be eliminated from sample sets. In an attempt to determine
this Cp value, multiple Cp detection limits were considered when
trying to determine if Cp values could define a quality threshold
for low biomass samples based on internal laboratory detection
limits and externally submitted blank samples.

The two Cp value thresholds tested were the laboratory’s
internal QC threshold, and the Cp value generated based on
the blank samples submitted for analysis. Argonne National
Laboratory provided information as to which of the 57 samples
did not amplify above their internal QC threshold (Figure 2).
Samples below the laboratory’s detection limit were generally

lower volume samples (200 mL filtered or less), while 7 of the
8 external blank samples also fell below this detection limit
(Figure 2). All samples with filtered volumes of 700 mL and
greater were above the laboratory detection limit. However, Cp
values did not correlate with this detection limit (Figure 2), as
many samples had very similar Cp values but were not similarly
classified by detection limit (i.e., two samples with the same Cp
value were not both below the laboratory detection limit).

Due to the fact that one blank sample was above the laboratory
detection limit, this indicates that: (1) this blank sample had a
contaminated filter, introducing more biomass than expected;
(2) this blank sample was contaminated during the laboratory
or analytical processes; and/or (3) this detection limit was not
suitable to discern low biomass samples. However, the internal
extraction blank submitted by the laboratory had a much larger
Cp (i.e., lower value of 16S rRNA copies/µL) than this blank
sample, meaning that laboratory, analytical, or background
contamination should have been minimal. Therefore, it is likely
that this suggested detection limit was inadequate to fully capture
poor quality samples and it shouldn’t be used as a threshold.

A different detection limit was tested so that every blank
sample would fall below it (i.e., all blank samples would be
classified as low biomass). The smallest Cp value generated from
all eight blanks, Cp = 30.5, was selected as a new detection limit.
Samples with an average Cp value greater than that threshold
Cp value were deemed below detection limit (n = 33) while
those with an average Cp value smaller than that threshold
value were deemed above the detection limit (n = 26), shown in
Figure 3. There is no trend in volume filtered when compared
to samples falling above or below this new threshold (Figure 3).
Every volume sampled had at least one sample above and below
the threshold (except the blanks) suggesting variability in the
composition of the water sampled, widespread contamination, or
that all samples collected were impacted by low biomass.

Glassing et al. (2016) found that their low bacterial biomass
samples had Cp values equal to or less than those generated for
their no template (i.e., negative) controls. They ranged from 26 to
31 with an average of 29, values that are much smaller than those
identified for blanks in this study (Supplementary Table S1).
However, many samples in this study had Cp values outside that
range; all of the blank samples had an average Cp value greater
than 31. This suggests that there may not be one specific Cp value
that classifies low biomass conditions or low-quality samples, and
that submitting multiple blanks, to establish a well vetted Cp
threshold, with a sample set is vital to establishing variation in
baseline or non-detect scenarios. Additional work will need to be
done to determine if Cp values vary by laboratory, extraction kit,
or other circumstances when submitting blanks.

Comparing the Suggested Cp Threshold
to 16S rRNA Illumina MiSeq Sequencing
Results
To determine if the suggested blank-defined detection limit (Cp
value = 30.5) could filter out poor quality samples, the sequencing
data generated for these samples was considered. As discussed
previously, as every sample in this study was from the same
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FIGURE 2 | qPCR data visualized with data categorized based on the internal detection limit (library amplification) supplied by the laboratory. Samples are either
above (dark blue color) or below (light blue color) the suggested detection limit for library amplification.

water source over the course of 24 h, the microbial community
composition of every sample (excluding the blanks) should be
statistically similar to one another, and the blanks should be
statistically dissimilar from the actual samples. The extracted
DNA from the 57 samples in this sample set was sequenced so that
the microbial community composition of each sample could be
compared across the sample set and within its respective volume
bin (see Supplementary Table S2 for abbreviated taxonomic table
or Shelton and DeVera (2019) for full taxonomic table). Results
presented below include the eight blank samples.

There were 875 different OTUs identified in the sample set
(including the eight blanks), with only one OTU identified
in every sample, Escherichia-Shigella sp. No other OTUs were
identified in every blank or identified in every non-blank sample.
The most abundant OTU in each sample did not necessarily
dominate (i.e., was present at greater than 20%) the given sample.
For example, the most prominent OTU in a given 700 mL
sample was present at 4.4% abundance (Acidobacteria, Subgroup
6). Methanogens, thermophilic and halophilic organisms are
present, typical of those identified in other waters produced
from hydraulically fractured shales (e.g., Kirk et al., 2012; Murali
Mohan et al., 2013; Cluff et al., 2014; Wang et al., 2019). Sample
richness (or number of OTUs identified per sample) ranged from

four OTUs (300 mL sample) to 132 OTUs (400 mL sample). The
Shannon Diversity index (H), a measurement of diversity across
a sampled microbial community (e.g., Haegeman et al., 2013),
ranged from 4.4 (1000 mL sample) to 0.3 (300 mL sample). In
general, the 900 mL filtered samples have the highest richness
and the 0 mL filtered samples have the lowest sample richness
(Figure 4); there is no general trend observed in sample diversity,
either variation or similar average values (Figure 4). The median
Shannon Diversity index was generally similar for 1000, 800, 700,
600, 500, and 400 mL samples and unexpectedly, the blanks.
The largest within-volume variation is observed in 100 and
300 mL samples, possibly suggesting that either these volumes
did not capture the representative microbial community of the
sampled well and may have been influenced by contaminants
or other low biomass artifacts, or the different within-volume
samples captured a limited representation of the subsurface
microbial community.

A species-based Bray-Curtis distance matrix was visualized
using a nonmetric multidimensional scaling plot (NMDS;
Figure 5) to determine which samples were most similar to
each other (i.e., did samples from the same volume have similar
microbial community compositions). An adonis2 test was used
to determine if a significant difference in microbial community
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FIGURE 3 | qPCR data visualized with data categorized based on the blank-defined detection limit (Cp = 30.5). Samples are either above (dark blue color) or below
(light blue color) the detection limit.

composition existed between samples above and below the two
identified detection limits (laboratory versus submitted blanks).
Samples were grouped by either being above or below the library
amplification (Figure 5A), or the blank-defined (Cp equal to 30.5;
Figure 5B) detection limit. An adonis2 test produced a non-
significant p value (>0.05) when samples were grouped using
the laboratory detection limit, but produced a significant p value
(0.001) when grouped by the blank-determined detection limit.
This suggests that the blank-determined Cp value was able to
successfully group samples with significantly different microbial
community compositions based solely on biomass concentration.
Therefore, samples below this detection limit had a significantly
different microbial community composition than samples above
this detection limit, meaning that any effects that low biomass
samples may have had on the sequencing data may be removed
when using this detection limit.

Contamination is the most likely reason that the samples
below the detection limit had a different microbial community
composition than those above. As contamination more strongly
impacts low biomass samples than non-low biomass samples
(Salter et al., 2014; Eisenhofer et al., 2019; Karstens et al., 2019;
Weyrich et al., 2019), the difference in microbial composition
between these two groups of samples may suggest that the

detection limit tested successfully separated low biomass samples
from the sample set within. However, the microbial ecology of
produced fluids of hydraulically fractured wells are known to
change over the lifetime of the well (Cluff et al., 2014; Evert
et al., 2016), although most of the significant change occurs
during the flowback period (typically within the first 2 months).
Studies suggest that the microbial ecology becomes stable in
mature hydrocarbon-producing wells (e.g., Cluff et al., 2014).
Geochemical conditions in established hydrocarbon-producing
wells where no injection of outside fluids is occurring also do
not vary widely between sampled points, specifically, for the
Niobrara Shale (e.g., Hull et al., 2018; Oetjen et al., 2018). The
methods used, such as keeping the sample water well mixed and
filtering the water across different volumetric batches instead
of in succession (i.e., sampling 800, 700, 600, 500 mL in a
batch instead of 800, 800, 800, and 800 mL), were done to
reduce variability across batches of water collected over the
24 h. Therefore, the microbial ecology should be considerably
stable over the sampling time period given the age of the
well. Theoretically, similar diversity and richness across samples
should also occur if the sampled water was indeed uniform and
unchanging over time, as all filtered water originated from the
same hydrocarbon well.
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FIGURE 4 | Box plots of Shannon Diversity index and sample richness grouped by volume of sample water filtered.

FIGURE 5 | Nonmetric-multidimensional scaling (NMDS) plots using a Bray-Curtis dissimilarity matrix with data categorized based on detection limit used. Samples
are either above (dark blue color) or below (light blue color) the given detection limit. (A) Laboratory internal detection limit; (B) Blank-determined detection limit, Cp
value equal to 30.5. Results of an adonis2 test provided on both plots.

When comparing the microbial community composition of
samples above and below the threshold defined by the smallest
Cp value identified in the blanks, Cp = 30.5, the most obvious

difference across the two groups is the abundance of the
class Thermotogae in the above detection limit samples and
the abundance of Gammaproteobacteria in the samples below
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the detection limit (Supplementary Figure S1). OTUs of the
class Thermotogae are anaerobic, thermophilic, and saccharolytic
bacteria that have been associated with thiosulfate reduction
to sulfide (Huber et al., 1986), drilling mud in Barnett Shale
natural gas wells (Struchtemeyer et al., 2011), hydraulic fracturing
flowback water impoundments from the Marcellus Shale (Murali
Mohan et al., 2013) and produced waters from oil-producing
reservoirs (Salinas et al., 2004; Magot, 2005). Thermotogae is
not listed in the low-biomass contaminant database defined by
Barton et al. (2006); therefore, its presence or absence may be
a good indicator to distinguish between high- and low-quality
samples, respectively, in samples for this study. The presence
of Escherichia-Shigella sp. largely explains the dominance of
Gammaproteobacteria in the below detection limit samples.

16S rRNA Sequencing Contaminant
Removal and Testing the Proposed Cp
Threshold
As a detection limit has been identified, Cp = 30.5, that
seemingly was able to distinguish between low biomass samples
and non-low biomass samples, the next step was to remove
any contamination to see if the above detection limit samples
become more similar to each other to test whether or not the
blank-defined detection limit was able to successfully capture
most of the contamination within the dataset. Therefore, any
OTU identified in a blank sample was removed from all other
samples in this study.

The blank samples had, on average, 8066 different sequences
across 156 different observed OTUs. However, most OTUs had a
very low average percent abundance (less than 0.1% abundance)
with only one OTU present at greater than 5% abundance,
Escherichia-Shigella sp., and only 12 OTUs present at greater
than 1% abundance: Nitrososphaeraceae sp., Acidobacteria
Subgroup 6 uncultured bacterium, Acidimicrobiia IMCC26256
uncultured bacterium, Sporichthyaceae sp., Sediminibacterium
sp., uncultured Flexibacter sp., Mucilaginibacter sp., uncultured
rumen bacterium from the class Kiritimatiellae, SAR11 Clade
Ia sp., Escherichia-Shigella sp., uncultured Chthoniobacteraceae
LD29, and unknown Bacteria sequences. Some of these are
organisms commonly identified as contaminants in DNA
extraction kits and in the generation of Taq polymerase (e.g.,
Salter et al., 2014; Chen et al., 2015; Glassing et al., 2016).

Removing all OTUs identified in the blank samples from the
rest of the sample set reduced the total number of OTUs in
the remaining 49 samples to 719. The minimum and maximum
number of sequences per sample changed from 447 and 89,394,
respectively, to 28 and 40,948, respectively. The impact of
removing the contaminant OTUs identified in the blank samples
can be observed in Table 1.

Samples in Table 1 are organized as either above or below
the detection limit of Cp = 30.5 (as discussed in previous
sections). Fewer contaminants were present in the samples
classified above the Cp detection limit than those below the
detection limit, supporting the use of the smallest Cp value
generated for the blanks as a good threshold for determining data
quality. Theoretically, contamination could affect low biomass

and non-low biomass samples in the same way but impacts of
that contamination would be greater in low biomass samples,
as there is less real sample DNA (e.g., Salter et al., 2014) or
the contaminants are a much larger proportion of the sample
when below the detection limit. Therefore, one would expect that
the number of OTUs removed per sample and/or the relative
number of sequences per sample removed due to contamination
should be much higher in low biomass samples than in non-low
biomass samples.

A study by Karstens et al. (2019) used serial dilutions of a
mock community to investigate how biomass concentration
and contamination are related. Their experiment found
that contamination increased with decreasing starting
biomass concentration, or that increasing dilution increased
contamination. This is not in agreement to what we observe here;
we see no relationship with smaller volumes of water filtered
and contamination. Increasing sample volume, which should
theoretically be tied to increasing biomass volume, is not related
to decreasing contamination or higher-quality samples. However,
the samples with Cp values greater than 30.5 do have a greater
percentage of their OTUs comprised of contaminant OTUs than
those above this detection limit, but the inverse is generally true
for contaminant sequences per sample. It appears that natural
systems are harder to decipher than mock community dilutions
like those presented in Karstens et al. (2019), and that it is not
appropriate to assume that collecting a greater volume of sample
will result in greater amounts of biomass and thus, fewer impacts
from contamination.

When a Bray-Curtis distance matrix of the blank-removed
dataset was visualized via an NMDS, significant clustering is
observed (Figure 6). The two different detection limit scenarios
are illustrated, with the laboratory’s library amplification
threshold plotted in Figure 6A and the blank-defined threshold
(Cp = 30.5) used as the detection limit in Figure 6B. An adonis2
test produced a significant p value (p = 0.001) for both detection
limit even though visually, it appears that the blank-defined
threshold more successfully captures the samples with extreme
microbial community composition similarity (as many samples
plot on top of each other). The samples that cluster near the
origin of the plot all have very similar microbial community
compositions, which is expected for samples representing the
composition of the single well sampled for this study. In
Figure 6A, there is no clear clustering of samples based on
detection limit even though the two groups cluster significantly
according to an adonis2 test. Although the two groups in
Figure 6A (above and below the detection limit) are significantly
different, the similarity of the samples above the detection limit
is greater in Figure 6B, or when Cp = 30.5 is used as the
detection limit.

The Role of Blanks in Low Biomass
Samples
As the blank-defined detection limit proved to be better at
differentiating low biomass samples from a sample set, it is
clear that the submission of external blanks is critical when
sampling a potentially low biomass environment. Additionally,
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FIGURE 6 | Non-metric multidimensional scaling plots of a Bray-Curtis distance matrix based on the dataset after blanks and contaminant removal and
normalization of sequences per sample. Plots are of the two different detection limits described in the test. (A) Detection limit is based on the laboratory’s internal
amplification threshold. (B) Detection limit is based on blank-defined detection limit, Cp = 30.5. Results from an adonis2 test are provided on both plots.

the development of this detection limit was highly dependent on
the number of blanks submitted with a sample set. Removing
any of these eight blanks could change the Cp value used
as the detection limit for these scenarios and could therefore
easily change which samples are classified as above or below a
suggested detection limit. It is therefore critical to submit a large
number of blanks when sampling; future work will focus on
how many blanks proves most successful in creating a usable Cp
detection limit.

Furthermore, even after contaminant removal, there was
still variability in microbial community composition across the
remaining 49 samples. This suggests that simply removing
contaminants from low biomass samples may not improve the
samples enough to be worthwhile to include in data analysis.
We suggest that it is imperative to differentiate from samples
impacted by their low biomass signature and remove them from
sample analysis.

Overall, these results suggest that increasing sample volume
does not necessarily directly relate to increasing biomass
concentrations (possibly due to increased presence of PCR
inhibitors) or the likelihood for a sample to be close to or
at the detection limit for qPCR. These results also imply
that no relationship between sample volume and microbial
community composition exist in this sample set. The samples
most affected by the removal of contaminant OTUs generally
fell below the detection limit, suggesting that using the smallest
Cp value in all submitted blanks as a detection limit may serve
as a good metric for weeding out low biomass samples that
may result in misleading or incorrect data. However, this is
highly dependent on the number of blanks submitted. Even

though all samples collected were from the same produced
water source, the microbial community compositions before and
after contaminant removal varied widely across the sample set.
This suggested that simply implementing contaminant removal
techniques for samples may not be enough to prove worthwhile in
downstream analysis, as many samples in the sample set with the
largest DNA concentrations had significantly similar microbial
community compositions.

Microorganisms Identified in High
Biomass Samples
There were 24 samples that had adequate biomass concentrations
(i.e., fell above the suggested Cp threshold of 30.5). Although
investigating the identified microbial community composition
of these 24 samples was not the focus of this study, expanding
on the communities identified would be useful to further
characterize the microbes present in the Niobrara Shale. After
contaminant removal, the major taxa identified in these 24
samples were Thermovirga spp. (10.2% average abundance across
the 24 samples), uncultured Methanothermobacter (9.2% average
abundance), Caldanaerobacter spp. (8.3% average abundance),
and Thermoanaerobacter spp. (5.7% average abundance). Many
of the identified OTUs are thermophilic, methanogens, or
halophilic organisms.

The orders Methanobacter (uncultured
Methanothermobacter) and Thermoanaerobacterales
(Thermoanaerobacter spp.), and the classes Clostridia
(Caldanaerobacter spp. and Thermoanaerobacter spp.) and
Synergistia (Thermovirga spp.) have been previously identified in
early (i.e., in production for fewer than 100 days) Niobrara
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produced waters (Hull et al., 2018; Oetjen et al., 2018;
Wang et al., 2019). Thermoanaerobacterales are sulfidogenic
organisms, potentially indicating the presence of sulfate in
these produced fluids and the potential for well souring (Davis
et al., 2012). Methanothermobacter is typically associated with
hydrogenotrophic methanogenesis (e.g., Wang et al., 2019), and
its presence in these samples could indicate the potential for
ongoing methane production in the Niobrara Shale that could
be stimulated.

Similar to Hull et al. (2018) and Oetjen et al. (2018),
Halanaerobium was not detected in any samples within, perhaps
providing further evidence that the microbiology of hydraulically
fractured shales are not uniform and may be specific to
other formation conditions, such as salinity (Kondash et al.,
2017). Hull et al. (2018) also identified an abundance of
Methanothermobacter in Niobrara Shale horizontal produced
fluids at a different location in the DJ Basin, indicating that wide-
spread enhancement of methanogenesis across the shale may be
possible, and that hydrogenotrophic methanogenesis may be the
major metabolic pathway for methane generation. Further work
on the genomics of Niobrara Shale produced waters would be
necessary to confirm this hypothesis.

The four predominate orders identified in this study were
not identified in any of the samples below the blank-defined
detection limit. This indicates two things: (i) that these four
classes could be used as indicator species for waters produced
from late-time series wells in the Niobrara Shale, and (ii) that,
again, the established blank-determined threshold was valid
for use in this study. The organisms identified in abundance
in the samples above the low biomass threshold are typically
identified in extremely similar environments (i.e., the Niobrara
Shale). Our analysis indicates these microorganisms are present
in mature steady-state formation water long after the flowback
period. Although the organisms identified in the low biomass
samples can be loosely tied to oil and gas production, the
four communities discussed above were not abundant in those
samples. Therefore, this provides further evidence that low
biomass samples must be screened and that this study may
represent an adequate sampling plan to capture organisms
present in low biomass environments. The microbial ecology
of formation water associated with the Niobrara Shale will be
expanded on in future research.

Sampling Plan Recommendations
Theoretically, increasing the volume of water sampled should
increase the volume of biomass collected, but this relationship
was not observed in this study. Overall, these results suggest
that increasing sample volume does not necessarily directly
relate to increasing biomass concentrations or the likelihood
for a sample to be close to or at the detection limit for
qPCR. No relationship between sample volume and microbial
community composition exist in this sample set. The samples
most affected by the removal of contaminant OTUs generally
fell below the detection limit, suggesting that using the smallest
Cp value in all submitted blanks as a detection limit may
serve as a good metric for filtering out low biomass samples,
where their inclusion may result in misleading or incorrect

data. However, this is highly dependent on the number of
blanks submitted. Even though all samples collected were from
the same produced water source, the microbial community
compositions before and after contaminant removal varied
widely across the sample set. This suggested that simply
implementing contaminant removal techniques for samples
may not be enough to prove worthwhile in downstream
analysis, as many samples in the sample set with the
largest DNA concentrations had significantly similar microbial
community compositions.

This suggests that researchers may be able to collect many
lower volume samples (e.g., 500 mL compared to 1000 mL) and
get the same quality data (i.e., a representative sample), which
could save time in the field. One could argue that collecting a
larger volume of sample over a longer time is needed to fully
capture a truly representative sample of the produced water
microbial community, but the results within do not support
that a large sample is necessary. If there is indeed variability
in the microbiology of produced fluids from shale wells over
short time periods like those sampled in this study (hours to
days), collecting many smaller volume samples would capture
this variability better than a few large volume samples, because
the lower volume samples also represent smaller points in time.
Additionally, this could also suggest that it is more prudent
to obtain multiple samples in collected and composite time-
integrated water samples.

When collecting samples of unknown biomass concentrations,
we recommend simply collecting multiple lower volume samples
over a few large volume samples. This is because potential
variability in biomass across short time scales in a production well
may be more adequately captured in smaller volume samples.
We suggest submitting multiple blanks and using the smallest
Cp value as a cutoff for usable data in downstream analyses.
Simply submitting one blank or only using an extraction blank
may not be adequate to account for any contamination or
underlying variation in sequencing results due to low biomass
conditions. Setting a conservative detection limit using a large
number of internal and external blanks is the key to obtaining
reliable data. If all Cp values are below the defined threshold
suggested by blank submission, other methods such as sample
pooling (i.e., taking multiple samples from a sample site and
pooling the extracted DNA from those samples into one sample)
may be required to overcome the limitations of low biomass
settings. Additional research on the reproducibility of multiple
low volume samples compared to a few large volume samples in
environments outside produced water is necessary. Testing this
hypothesis on shotgun metagenomic data would also be useful
for future studies as well as investigating changes in microbial
community composition over short time periods (hours to days)
in mature oil and gas wells.
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