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Abstract
Motion-activated wildlife cameras (or “camera traps”) are frequently used to remotely 
and noninvasively observe animals. The vast number of images collected from camera 
trap projects has prompted some biologists to employ machine learning algorithms 
to automatically recognize species in these images, or at least filter-out images that 
do not contain animals. These approaches are often limited by model transferability, 
as a model trained to recognize species from one location might not work as well for 
the same species in different locations. Furthermore, these methods often require 
advanced computational skills, making them inaccessible to many biologists. We used 
3 million camera trap images from 18 studies in 10 states across the United States of 
America to train two deep neural networks, one that recognizes 58 species, the “spe-
cies model,” and one that determines if an image is empty or if it contains an animal, 
the “empty-animal model.” Our species model and empty-animal model had accura-
cies of 96.8% and 97.3%, respectively. Furthermore, the models performed well on 
some out-of-sample datasets, as the species model had 91% accuracy on species from 
Canada (accuracy range 36%–91% across all out-of-sample datasets) and the empty-
animal model achieved an accuracy of 91%–94% on out-of-sample datasets from dif-
ferent continents. Our software addresses some of the limitations of using machine 
learning to classify images from camera traps. By including many species from several 
locations, our species model is potentially applicable to many camera trap studies in 
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1  | INTRODUC TION

Motion-activated wildlife cameras (or “camera traps”) are frequently 
used to remotely observe wild animals, but images from camera 
traps must be classified to extract their biological data (O’Connell, 
Nichols, & Karanth, 2011). Manually classifying camera trap images 
is an encumbrance that has prompted scientists to use machine 
learning to automatically classify images (Norouzzadeh et al., 2018; 
Willi et al., 2019), but this approach has limitations.

We address two major limitations of using machine learning to 
automatically classify animals in camera trap images. First, machine 
learning models trained to recognize species from one location and 
in one camera trap setup might perform poorly when applied to im-
ages from camera traps in different conditions (i.e., these models can 
have low “out-of-sample” accuracy; Schneider, Greenberg, Taylor, & 
Kremer, 2020). This transferability, or generalizability, problem is 
thought to arise because different locations have different back-
grounds (the part of the picture that is not the animal) and most 
models evaluate the entire image, including the background (Beery, 
Morris, & Yang, 2019; Miao et al., 2019; Norouzzadeh et al., 2019; 
Terry, Roy, & August, 2020; Wei, Luo, Ran, & Li, 2020). By including 
images from 18 different studies in North America, our objective 
was to train models with more variation in the backgrounds associ-
ated with each species. Furthermore, by training an additional model 
that distinguishes between images with and without animals, we 
provide an option that could be broadly applicable to camera trap 
studies worldwide.

Second, the use of machine learning in camera trap analy-
sis is often limited to computer scientists, yet the need for image 
processing exceeds the availability of computer scientists in wild-
life research. For example, several researchers have provided 

excellent Python repositories for using computer vision to analyze 
camera trap images (Beery et al., 2019; Beery, Wu, Rathod, Votel, 
& Huang, 2020; Norouzzadeh et al., 2018; Schneider et al., 2020). 
These software packages enable programmers to use and train mod-
els to detect, classify, and evaluate the behavior of animals in camera 
trap images. However, these packages require extensive program-
ming experience in Python, a skill which is often lacking from wildlife 
research teams. To facilitate the use of this type of model by biolo-
gists with minimal programming experience, Machine Learning for 
Wildlife Image Classification (MLWIC2) includes an option to train 
and use models in user-friendly Shiny Applications (Chang, Cheng, 
Alaire, Xie, & McPherson, 2019), allowing users to point-and-click 
instead of using a command line. This facilitates easier site-specific 
model training when our models do not perform to expectations.

2  | MATERIAL S AND METHODS

2.1 | Camera trap images

Images were collected from 18 studies using camera traps in 10 
states in the United States of America (California, Colorado, Florida, 
Idaho, Minnesota, Montana, South Carolina, Texas, Washington, and 
Wisconsin; Appendix S1). Images were either classified by a single 
wildlife expert or classified independently by two biologists, with 
discrepancies settled by a third. An image was classified as contain-
ing an animal if it contained any part of an animal. Our initial dataset 
included 6.3 million images but was unbalanced with most images 
from a few species (e.g., 51% of all images were Bos taurus). We re-
balanced the number of images by species and site to ensure that no 
one species or site dominated the training process. Previous work 
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suggested that training a model with 100,000 images per species 
produces good performance (Tabak et al., 2019); therefore, we lim-
ited the number of images for a single species from one location to 
100,000. When >100,000 images for a single species existed at one 
location, we randomly selected 100,000 of these images to include 
in the training/testing dataset. After rebalancing the data, we had a 
total of 2.98 million images; 90% were randomly selected for train-
ing, while 10% were used for testing. Images used in this study were 
either already a part of or were added to the North American Camera 
Trap Images dataset (lila.science/datasets/nacti; Tabak et al., 2019). 
Images from Canada were not used for training but were used to 
evaluate model transferability as an out-of-sample dataset.

2.2 | Training models

We trained deep convolutional neural networks using the ResNet-18 
architecture (He, Zhang, Ren, & Sun, 2016) in the TensorFlow frame-
work (Adabi et al., 2016) on a high-performance computing cluster, 
“Teton” (Advanced Research Computing Center, 2018). Models were 
trained for 55 epochs, with a ReLU activation function at every hid-
den layer and a softmax function in the output layer, mini-batch sto-
chastic gradient descent with a momentum hyperparameter of 0.9 
(Goodfellow, Bengio, & Courville, 2016), a batch size of 256 images, 
and learning rates and weight decays that varied by epoch number 
(described in Appendix S2). We trained a species model, which con-
tained classes for 58 species or groups of species and one class for 
empty images (Table 1). We also trained an empty-animal model that 
contained only two classes, one for images containing an animal, and 
the other for images without animals.

2.3 | Model validation and transferability

We first evaluated our trained models by applying them to predict-
ing species in the 10% of images that were withheld from training. 
Models were evaluated for each species using the recall, top-5 re-
call, and precision, which are values summarizing the number of true 
positives (TPs), false positives (FPs), and false negatives (FNs):

As recall is the proportion of images of each species that were 
correctly classified, top-5 recall is the proportion of images for each 
species in which one of the model's top five guesses is the correct 
species. We also calculated confidence intervals for recall and pre-
cision rates (Appendix S3). To evaluate transferability of the model, 
we conducted out-of-sample validation by applying our trained 
models to images from locations where the model was not trained. 
We evaluated the species model using four out-of-sample datasets 
from North America: the Caltech Camera Traps dataset (Beery, Van 
Horn, & Perona, 2018), the ENA24-detection dataset (Yousif, Kays, 
& He, 2019), the Saskatchewan, Canada dataset from this study, and 
the Missouri Camera Traps dataset (Zhang, He, Cao, & Cao, 2016). 
The empty-animal model was tested using the Wellington Camera 
Traps dataset from New Zealand (Anton, Hartley, Geldenhuis, & 
Wittmer, 2018), the Snapshot Serengeti dataset from Tanzania 
(Swanson et al., 2015), and the Snapshot Karoo dataset from South 
Africa (http://lila.scien ce/datas ets/snaps hot-karoo).

To evaluate the effect of using multiple training datasets on 
model generalizability, we iteratively trained models using varying 
numbers of datasets (i.e., 1 dataset, 3 datasets, 6 datasets, … all 18 
datasets) and tested the model on the out-of-sample datasets.

2.4 | R package development

MLWIC2 was developed using the R packages Shiny (Chang et al., 
2019) and ShinyFiles (Pedersen, Nijs, Schaffner, & Nantz, 2019) so 
the user can choose to either use a programming console or a graphi-
cal user interface. Users can navigate to locations on their computer 
using a browser window instead of specifying paths. The package 
can classify images at a rate of 2,000 images per minute on a laptop 
with 16 gigabytes of random-access memory and without a graphics 
processing unit. MLWIC2 will optionally write the top guess from 
each model and confidence associated with these guesses to the 
metadata of the original image file. The function “write_metadata” 
and the associated R Shiny Application uses Exiftool (Harvey, 2016) 
to accomplish this. In addition, if scientists have labeled images, 
MLWIC2 has a Shiny app that allows users to train a new model to 
recognize species using one of six different convolutional neural net-
work architectures (AlexNet, DenseNet, GoogLeNet, NiN, ResNet, 
and VGG) with different numbers of layers. We also trained mod-
els in these other architectures for comparison. Note that the time 
required to train a model depends on the number of images used 
for training and computing resources; operating MLWIC2 on a high-
performance computing cluster requires programming experience.

3  | RESULTS

We found the highest validation accuracy (within sample validation) 
using ResNet-18 (Table 1), for which we found an overall accuracy 

Recall=
TP

TP+FN

Precision=
TP

TP+FP
.

TA B L E  1   Comparison of validation accuracy (accuracy on the 
withheld dataset) using different architectures

Architecture
Validation 
accuracy

ResNet-18 96.8

DenseNet-121 95.9

VGG-22 88.6

GoogleNet-32 88.1

AlexNet-8 85.4

NiN-16 84.3

http://lila.science/datasets/snapshot-karoo
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of 96.8% for the species model and 97.3% for the empty-animal 
model. Several species (6 of 11) had recall of >95% with fewer than 
2,000 images used for training (Table 2; Figure 1). A confusion matrix 
(Appendix S4) depicts how all images of each species were classi-
fied by the species model. When evaluated on out-of-sample images, 
the species model accuracy ranged from 36.3% to 91.3% (Table 3), 
with top-5 accuracy ranging from 65.2% to 93.8% (Figure 2), and the 
empty-animal model accuracy ranged from 90.6% to 94.1% (Table 3). 
When we iteratively trained the model on varying numbers of 

datasets, we found that accuracy on out-of-sample images increased 
with the number of datasets used to train the model (Figure 3).

4  | DISCUSSION

In MLWIC2, we provide two trained machine learning models, one 
classifying species and another distinguishing between images with 
animals and those that are empty, with 97% accuracy, which can 

TA B L E  2   Mean recall and precision rates (along with 95% confidence intervals) for predicting species using the species model on the 
validation dataset (the 10% of images that were withheld from training)

Class name (scientific name)
Number of training 
images Recall Precision

Accipitridae family (Accipitridae) 1,511 0.91 (0.67, 1) 0.94 (0.89, 0.97)

American crow (Corvus 
brachyrhynchos)

2,522 0.67 (0.61, 0.73) 0.7 (0.64, 0.75)

American marten (Martes 
americana)

51,081 0.96 (0.95, 0.97) 0.96 (0.94, 0.97)

Anatidae family (Anatidae) 1,071 0.97 (0.92, 0.99) 0.97 (0.92, 0.99)

Armadillo (Cingulata) 8,947 0.94 (0.59, 0.99) 0.95 (0.94, 0.96)

Bighorn sheep (Ovis canadensis) 1,189 1 (0.97, 1) 1 (0.97, 1)

Black bear (Ursus americanus) 111,426 0.97 (0.91, 0.99) 0.99 (0.91, 0.99)

Black-billed magpie (Pica hudsonia) 2,770 0.98 (0.95, 0.99) 0.96 (0.91, 0.99)

Black-tailed jackrabbit (Lepus 
californicus)

5,617 0.95 (0.93, 0.96) 0.93 (0.91, 0.95)

Black-tailed prairie dog (Cynomys 
ludovicianus)

43,999 0.93 (0.93, 0.94) 0.95 (0.94, 0.96)

Bobcat (Lynx rufus) 31,634 0.96 (0.95, 0.99) 0.97 (0.96, 0.98)

California ground squirrel 
(Otospermophilus beecheyi)

30,301 1 (1, 1) 0.99 (0.98, 0.99)

California quail (Callipepla 
californica)

2,046 0.97 (0.94, 0.99) 0.99 (0.97, 1)

Canada lynx (Lynx canadensis) 15,119 1 (0.99, 1) 0.99 (0.98, 0.99)

Cattle (Bos taurus) 269,963 0.97 (0.93, 0.98) 0.98 (0.77, 0.99)

Clark's nutcracker (Nucifraga 
columbiana)

2,785 0.94 (0.91, 0.96) 0.92 (0.87, 0.95)

Common raven (Corvus corax) 21,134 0.99 (0.91, 0.99) 0.99 (0.98, 1)

Coyote (Canis latrans) 41,512 0.96 (0.94, 0.98) 0.97 (0.96, 0.99)

Cricetidae and Muridae families 1,254 0.93 (0.87, 0.96) 0.83 (0.7, 0.94)

Dog (Canis familiaris) 1,136 0.82 (0.7, 0.98) 0.78 (0.6, 0.99)

Domestic sheep (Ovis aries) 16,340 0.99 (0.99, 1) 0.99 (0.99, 1)

Donkey (Equus asinus) 2,403 0.99 (0.97, 1) 0.94 (0.9, 0.96)

Elk (Cervus canadensis) 112,389 0.97 (0.95, 0.98) 0.99 (0.86, 0.99)

Empty (no animal) 907,096 0.97 (0.93, 0.98) 0.95 (0.92, 0.97)

Fisher (Pekania pennanti) 7,697 0.98 (0.97, 0.99) 0.99 (0.96, 1)

Golden-mantled ground squirrel 
(Callospermophilus lateralis)

1,587 0.89 (0.83, 0.92) 0.86 (0.81, 0.91)

Grey fox (Urocyon 
cinereoargenteus)

16,094 0.98 (0.96, 0.99) 0.97 (0.95, 0.99)

Grey jay (Perisoreus canadensis) 3,776 0.97 (0.87, 0.98) 0.94 (0.8, 0.98)

(Continues)
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potentially be used to rapidly classify camera trap images from many 
locations. While the species model performed well on out-of-sam-
ple images from Saskatchewan, Canada (91% overall accuracy), the 
model performed poorly on some out-of-sample datasets (Table 3; 
Figure 2). The discrepancy in model performance on images from 
different datasets indicates that transferability remains an issue and 
our species model will not be useful on all datasets; some users will 
need to train new models on images from their field sites, an op-
tion that is available in MLWIC2. Nevertheless, even in the Missouri 

dataset where our model performed worst, the top-5 accuracy, the 
rate at which the true species in an image was in the model's top-5 
guesses, was 65% (Table 3). For some applications, for example, de-
tection of invasive or rare species, such an out-of-sample top-5 recall 
rate may be sufficient to address scientific questions or meet moni-
toring objectives. Additionally, our empty-animal model performed 
well at distinguishing empty images from those containing animals 
in datasets from three different countries (91%–94% accuracy), in-
dicating that this model may be broadly applicable for finding empty 

Class name (scientific name)
Number of training 
images Recall Precision

Grey squirrel (Sciurus carolinensis) 24,677 0.98 (0.64, 0.99) 0.98 (0.64, 0.99)

Grizzly bear (Ursus arctos horribilis) 843 0.99 (0.94, 1) 0.99 (0.94, 1)

Gunnison's prairie dog (Cynomys 
gunnisoni)

17,393 0.83 (0.82, 0.85) 0.93 (0.91, 0.94)

Horse (Equus ferus) 3,644 0.94 (0.53, 0.97) 0.95 (0.45, 0.98)

Human (Homo sapiens) 139,983 0.98 (0.97, 0.98) 0.98 (0.97, 0.99)

Marmota genus (Marmota spp.) 1,497 0.98 (0.95, 0.99) 0.95 (0.91, 0.98)

Moose (Alces alces) 11,741 0.99 (0.97, 1) 0.99 (0.97, 1)

Mountain lion (Puma concolor) 13,900 0.96 (0.95, 0.97) 0.97 (0.96, 0.98)

Mule deer (Odocoileus hemionus) 91,068 0.98 (0.95, 0.99) 0.98 (0.93, 0.99)

Opossum (Didelphimorphia) 5,782 0.94 (0.76, 0.98) 0.97 (0.87, 0.99)

Other grouse (Tetraoninae) 4,237 0.97 (0.91, 0.99) 0.98 (0.96, 0.99)

Other mustelids (Mustelidae) 2,467 0.89 (0.85, 0.92) 0.91 (0.85, 0.96)

Other passerine birds 
(Passeriformes)

3,363 0.86 (0.81, 0.9) 0.88 (0.75, 0.94)

Porcupine (Erethizontidae and 
Hystricidae)

6,608 0.97 (0.82, 0.99) 0.98 (0.96, 0.98)

Prairie chicken (Tympanuchus 
cupido)

815 1 (0.96, 1) 0.98 (0.93, 1)

Pronghorn (Antilocapra americana) 57,953 0.98 (0.97, 0.98) 0.99 (0.98, 0.99)

Raccoon (Procyon lotor) 51,439 0.9 (0.83, 0.99) 0.93 (0.91, 0.99)

Red fox (Vulpes vulpes) 43,433 0.98 (0.96, 0.99) 0.98 (0.97, 0.99)

Red squirrel (Tamiasciurus 
hudsonicus)

21,586 0.85 (0.84, 0.96) 0.86 (0.88, 0.97)

River otter (Lontra canadensis) 1,821 0.96 (0.92, 0.98) 0.97 (0.93, 0.98)

Snowshoe hare (Lepus americanus) 37,467 0.97 (0.94, 0.99) 0.97 (0.95, 0.98)

Steller's jay (Cyanocitta stelleri) 1,844 0.91 (0.8, 0.98) 0.96 (0.87, 1)

Striped skunk (Mephitis mephitis) 12,416 0.98 (0.9, 0.99) 0.97 (0.96, 0.98)

Swift fox (Vulpes velox) 3,266 0.85 (0.81, 0.88) 0.95 (0.92, 0.97)

Sylvilagus family 6,385 0.93 (0.82, 0.99) 0.94 (0.86, 0.97)

Totals 2,682,380 0.97 0.97

Vehicle (truck, ATV, car) 32,912 0.97 (0.96, 0.98) 0.97 (0.97, 0.98)

White-tailed deer (Odocoileus 
virginianus)

88,531 0.93 (0.83, 1) 0.97 (0.84, 0.99)

Wild pig (Sus scrofa) 243,344 0.98 (0.98, 0.99) 0.99 (0.98, 1)

Wild turkey (Meleagris gallopavo) 15,686 0.94 (0.88, 0.99) 0.98 (0.95, 1)

Wolf (Canis lupus) 3,070 0.96 (0.88, 1) 0.95 (0.8, 1)

Wolverine (Gulo gulo) 18,810 0.98 (0.96, 1) 0.98 (0.97, 0.99)

TA B L E  2   (Continued)
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images in datasets globally. For many research projects, the task of 
simply removing empty images can save thousands of hours of labor. 
We propose a workflow for how users can apply these models to fil-
ter-out empty images and train new models as necessary (Figure 4). 
By providing Shiny Applications to train models and classify images, 
we make this technology accessible to more scientists with minimal 
programming experience. Our finding that high recall (>95%) can be 
achieved with fewer than 2,000 images for some species (Table 2; 

Figure 1) suggests that smaller labeled image datasets can poten-
tially be used to train models with this software.

Other researchers have developed models for recognizing an-
imals in camera traps, with some success in out-of-sample identi-
fication. For example, Zilong software accurately removed 85% 
of empty images (Wei et al., 2020), MegaDetector had a precision 
of 89%–99% at detecting animals (Beery et al., 2019), and MLWIC 
achieved an accuracy of 82% at out-of-sample species classification 

F I G U R E  1   Within sample validation of the species model revealed high recall and precision for most species. Median values across 
datasets are presented along with 95% confidence intervals. The number of datasets for each species is included in the circle next to the 
species name (circle sizes are proportional to the number of datasets containing each species)
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(Tabak et al., 2018, 2019). We hypothesize that our models per-
formed well on some out-of-sample datasets (Snapshot Serengeti, 
Snapshot Karoo, Wellington, and Saskatchewan; Table 3) because 
they were trained using camera trap images from multiple locations 
with different camera placement protocols, allowing the model to 

develop a search image for each species in multiple backgrounds 
(Figure 3).

Transferability of machine learning models remains a complica-
tion for implementing these models more broadly to camera trap 
data and, in many cases, it is most productive for scientists to build 

Dataset
Number of 
images tested Model tested Accuracy

Top-5 
accuracya 

Snapshot Karoo (South 
Africa)

38,101 Empty-animal 0.906

Snapshot Serengeti 
(Tanzania)

104,651 Empty-animal 0.941

Wellington (New 
Zealand)

266,966 Empty-animal 0.939

Caltech Camera Traps 
(USA)

218,147 Species 0.562 0.744

ENA24-Detection (USA) 5,285 Species 0.507 0.649

Missouri Camera Traps 
(USA)

5,008 Species 0.363 0.652

Saskatchewan (Canada) 5,200 Species 0.913 0.938

aTop-5 accuracy is not relevant for the empty-animal model because there are only two classes. 

TA B L E  3   Out-of-sample validation 
results. All out-of-sample images are 
available from lila.science/datasets

F I G U R E  2   Species model out-of-sample validation revealed variable recall and precision rates across species. Median values across 
datasets are presented along with 95% confidence intervals. The number of datasets for each species is included in the circle next to the 
species name
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models that are trained directly on their study sites (see Figure 4 
for more details). While such models will have less broad applica-
bility (they are unlikely to be accurate globally), they can have high 
study-specific accuracies, thus reducing the burden of manual image 
classification. Our finding that models become more generalizable 

when more datasets are used to train the model (Figure 3) indicates 
that by including more diverse datasets when we train future mod-
els, we may be able to train a model that can be accurate in more 
locations.

4.1 | Future directions

As this new technology becomes more widely available, ecologists 
will need to decide how it will be applied in ecological analyses. For 
example, when using machine learning model output to design oc-
cupancy and abundance models, we can incorporate accuracy esti-
mates that were generated when conducting model testing. The error 
of a machine learning model in identifying species from camera traps 
is similar to the problem of imperfect detection of wildlife when con-
ducting field surveys (McIntyre, Majelantle, Slip, & Harcourt, 2020). 
Wildlife are often not detected when they are present (false nega-
tives) and occasionally detected when they are absent (false posi-
tives); ecologists have developed models to effectively estimate 
occupancy when data have these types of errors (Guillera-Arroita, 
Lahoz-Monfort, van Rooyen, Weeks, & Tingley, 2017; Royle & 
Link, 2006). We can use Bayesian occupancy and abundance models 
where the central tendencies of the prior distributions for the false 
negative and false-positive error rates are derived from validation of 
our machine learning models. While we would expect false-positive 
rates in occupancy models to resemble the false-positive error rates 
for the machine learning model, false-negative error rates would be a 
function of the both the machine learning model and the propensity 

F I G U R E  3   Models became more generalizable (i.e., out-of-
sample accuracy increased) as the number of datasets used to train 
the model increased. Points represent median accuracy across out-
of-sample datasets and lines connect the minimum and maximum of 
the 95% quantiles for accuracy values across these datasets
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F I G U R E  4   Proposed workflow for 
using MLWIC2 models when classifying 
camera trap images
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for some species to avoid detection by cameras when they are pre-
sent (Tobler, Zúñiga Hartley, Carrillo-Percastegui, & Powell, 2015).

Another area in need of consideration is how to group taxa when 
few images are available for the species. We generally grouped spe-
cies when few images were available for model training using an ar-
bitrary cut off of approximately 1,000 images per group (Table 2). 
Nevertheless, we had relatively few images of grizzly bears (Ursus 
arctos horribilis; n = 843), but we included this species because it is 
of conservation concern, and found high rates of recall and preci-
sion (99% for each). We grouped members of Mustelidae (Mustela 
erminea, Mustela frenata, unknown Mustela spp., Neovison spp., and 
Taxidea taxus) together, and this group had relatively low recall and 
precision (89% and 91%, respectively). When researchers develop 
new models and decide which species to include and which to group, 
they will need to consider the available data, the species or groups 
in their study, and the ecological question that the model will help 
address.
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