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Understanding the pathogenic mechanisms of Mycobacterium avium subspecies

paratuberculosis (MAP) and the host responses to Johne’s disease is complicated by the

multi-faceted disease progression, late-onset host reaction and the lack of available ex vivo

infection models. We describe a novel cell culture passage model that mimics the course of

infection in vivo. The developed model simulates the interaction of MAP with the intestinal

epithelial cells, followed by infection of macrophages and return to the intestinal epithelium.

MAP internalization triggers a minimal inflammatory response. After passage through a

macrophage phase, bacterial reinfection of MDBK epithelial cells, representing the late phase of

intestinal mucosal infection, is associated with increased synthesis of the pro-inflammatory

transcripts of IL-6, CCL5, IL-8 and IL-18, paired with decreased levels of TGFb. Transcriptome

analysis of MAP from each stage of epithelial cell infection identified increased expression of

lipid biosynthesis and lipopeptide modification genes in the inflammatory phenotype of MAP.

Total lipid analysis by HPLC-ES/MS indicates different lipidomic profiles between the two

phenotypes and a unique set of lipids composing the inflammatory MAP phenotype. The

presence of selected upregulated lipid-modification gene transcripts in samples of ileal tissue

from cows diagnosed with Johne’s disease supports and validates the model. By using the

relatively simple cell culture passage model, we show that MAP alters its lipid composition

during intracellular infection and acquires a pro-inflammatory phenotype, which likely is

associated with the inflammatory phase of Johne’s disease.

Received 1 February 2015

Accepted 6 May 2015

INTRODUCTION

Mycobacterium avium subspecies paratuberculosis (MAP) is

the causative agent of Johne’s disease, a chronic intestinal

inflammatory disease that affects ruminants worldwide.
The disease is particularly devastating to the dairy industry,
with an economic loss estimate as high as $1.5 billion
annually in the USA alone (Ott et al., 1999; Stabel, 1998).
The development of new approaches for control of the dis-
ease is needed and depends on increased understanding of
the pathogenesis of MAP and its interaction with the rumi-
nant host. However, investigation of the molecular mech-
anisms that drive the disease is made difficult by many

Abbreviations: LAM, lipoarabinomannan; MAP, Mycobacterium avium
subspecies paratuberculosis.

The Gene Expression Omnibus (GEO) accession number for the gene
expression values of the changing phenotypes of MAP is GSE62566.
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factors including the long incubation period between the
silent subclinical infection and the severe clinical stage of
the disease, and the facilities and costs associated with
housing experimentally infected animals during the devel-
opment of disease. Initiation of infection occurs early in
the life of a calf; however, clinical signs of disease do not
appear until years after initial exposure. Infection can
remain undetected for a number of years, and antigen-
specific and immune signal-based diagnostic tests usually
fail to identify animals in the preclinical stages of the dis-
ease. When clinical signs emerge, it is too late for thera-
peutic intervention, and the animal producer resorts to
the culling and removal of diseased animals from the herd.

The phenotype of a bacterial population plays an import-
ant role in its ability to cause and maintain a long-term
infection in the host, as it has been shown with pathogens
such as Neisseria gonorrhoeae (Hagblom et al., 1985),
Salmonella enterica serovar Typhimurium (Diard et al.,
2013), Pseudomonas aeruginosa (Penketh et al., 1983),
and Mycobacterium tuberculosis (Ryan et al., 2010). Thus,
environmental and host factors may potentially influence
the phenotype of MAP prior to and during infection.
Early studies on this phenomenon have identified a variety
of phenotypes between geographically distinct MAP iso-
lates (Whittington et al., 2011), and have illustrated pro-
teomic differences between laboratory culture and
mucosal derived isolates (Weigoldt et al., 2011). MAP
also develops a more invasive phenotype in response to
both the hyperosmolar environment of raw milk and
growth within the mammary epithelium (Patel et al.,
2006). As phenotypic changes are quite pervasive among
pathogens and utilized to drive disease, further investi-
gation is needed to determine if differing MAP phenotypes
develop while within the host and how they affect the
course of Johne’s disease.

Although the study of MAP phenotypes during the disease
is clearly important, there is a limited number of well-
defined models used to study the interaction between
MAP and the mammalian host. At present, simple
in vitro culture models of single-cell monolayers are used
to explore the interaction of MAP with the epithelial intes-
tinal cell or with phagocytic macrophage cells. Mouse
models are typically employed to investigate initiation
and prevention of infection during the early stages of
Johne’s disease (Bannantine et al., 2014; Bermudez et al.,
2010; Scandurra et al., 2010), while goat and calf models
are more commonly used to study vaccine efficacy and
the later stages of the disease (David et al., 2014; Facciuolo
et al., 2013; Hines et al., 2014; Khare et al., 2012). While
large animals provide useful models since they are the
natural ruminant hosts of MAP and progress through the
entire spectrum of disease states, they come with a variety
of disadvantages. Pitfalls include the necessity of large
spaces, extended time-courses, and very high costs, as
animal infection must be allowed to progress for many
years prior to development of the clinical signs of disease.
In light of the drawbacks of current models, a more

elaborate in vitro system is needed to mimic and study
the different environments encountered by MAP during
infection.

Natural infection within ruminant hosts begins with the
uptake of MAP by the intestinal epithelium (Bermudez &
Young, 1994; Bermudez et al., 2010), followed by uptake
by tissuemacrophages (Buergelt et al., 1978; Sigurethardóttir
et al., 2004), and tissue dissemination likely via macrophages
within the lymphatic system to sites including, but not
limited to, the lymph nodes, mammary tissue, liver and
epithelial tissue (Antognoli et al., 2008). In this study,
we describe the development of a novel in vitro cell
culture passage model which mimics the passage of
bacteria from their uptake by the intestinal epithelium,
spread to the tissue phagocytes, and ultimate return to the
intestinal epithelium during the later stages of infection.
We demonstrate that a predominant pro-inflammatory
immune response is mounted upon sequential passage of
bacteria and infection of epithelial cells. Our findings led
us to characterize intracellular MAP populations into non-
inflammatory and inflammatory phenotypes. At the genetic
level, lipid biosynthesis genes are more highly expressed in
the inflammatory MAP phenotype, while lipidomic analysis
shows that the inflammatory MAP phenotype has a distinct
lipid profile compared to that of the non-inflammatoryMAP
phenotype. Using the cell culture passage model, we exam-
ined the inflammatory phenotype of MAP and tested our
hypothesis that the constantly changing phenotypes of
MAPmay trigger the transition between the multiple disease
stages during the course of infection. These bacterial changes
could play a significant role in variable diagnostic results and
low vaccination efficacy in populations of ruminants
infected with, or at risk of, contracting MAP. Further exam-
ination of this phenomenon may provide a better platform
for understanding and developing future diagnostic and
treatment options.

METHODS

Bacterial preparation. Mycobacterium avium subspecies para-
tuberculosis strain K10 (ATCC BAA-968) was cultured at 37 uC on
7H10 agar (BD) supplemented with casein hydrolysate (1 g l21; BD),
10 % (v/v) oleic acid, albumin, glucose and catalase (OADC; Hardy
Diagnostics), and ferric mycobactin J (2 mg l21; Allied Monitor) for
3–4 weeks. Prior to experiments, a bacterial suspension was made in
Hanks’ balanced salts solution (HBSS; Corning), passed through a
22-gauge needle to disperse clumps and allowed to settle for 10 min.
The top half of the inoculum was used as a single-cell suspension for
experiments as described previously (Patel et al., 2006).

Mammalian cell culture. Madin–Darby bovine kidney (MDBK)
epithelial cells (CCL-22) and RAW 264.7 macrophage cultures
(TIB-71) were obtained from the American Type Culture Collection
(ATCC). Both cells lines were cultivated in Dulbecco’s Modified
Eagle’s Medium (DMEM) supplemented with 10 % heat-inactivated
FBS (Gemini Bio-Products), at 37 uC in 5 % CO2.

In vitro cell culture passage model. Cell cultivation and infection
schedule was completed as described (Fig. 1). MDBK cells were seeded
in T-75 tissue culture flasks and grown to 80 % confluence. MAP was
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prepared as described above and used to infect monolayers at an
m.o.i. of 50 : 1 for 4 h, at which time medium was removed, cells were
washed two times with HBSS and replaced in fresh medium. MAP
infection proceeded for 24 h, at which time modified differential
centrifugation was used to isolate bacterium from host cells as
described (McNamara et al., 2012). Cells were lysed with 0.1 % Triton
X-100 for 15 min and lysate was centrifuged for 15 min at 2000 g at
4 uC. The pellet was suspended in 0.1 % Triton X-100 and centrifuged
for 3 min at 60 g at 4 uC to remove intact cells and cell debris. The
MAP-containing supernatant was collected and bacterium pelleted at
2000 g at 4 uC for 10 min. The bacterial pellet was suspended in
HBSS, centrifuged again at 60 g at 4 uC to pellet any residual cell
debris and MAP-containing supernatant was collected and cen-
trifuged at 5600 g at 4 uC to pellet intracellular bacterium. The MAP
pellet (primary MAP population) was suspended in HBSS; any bac-
terial clumps were disrupted by passage through a 22-gauge needle as
described above and used to infect RAW 264.7 macrophages. Infec-
tion was allowed to proceed for 72 h. Macrophages were lysed and
processed using differential centrifugation as described above to iso-
late intracellular bacterium. Single-cell suspensions were used to
infect MDBK cells for 24 h, at which time differential centrifugation
was used to isolate the intracellular bacterium (secondary MAP
population). Mock infection passages were completed using HBSS in
the absence of bacterium to account for presence of host material after
differential centrifugation. MAP and mock primary and secondary
populations were frozen at 280 uC for downstream analysis.

Mammalian RNA extraction and analysis. After progression
through the passage model described above (Fig. 1), RNA from
MDBK epithelial cells was extracted. DNase treatment was conducted
using an RNeasy Mini kit as per manufacturer’s instructions
(Qiagen). RNA samples were verified for absence of DNA, quality
verified and quantified. cDNA was synthesized using an iScript reverse
transcription supermix for real-time qPCR (RT-PCR) (Bio-Rad) and
transcripts were analysed using a CFX Connect Real-Time PCR
Detection System (Bio-Rad) using primers listed in Table 1. PCR
amplifications were run as follows: 95 uC for 3 min, 35 cycles of 95 uC
for 30 s, 53 uC or 60 uC for 30 s (see Table 1 for anneal temperatures)
and 72 uC for 20 s, followed by a final extension at 72 uC for 5 min,
and a melt curve from 50 to 95 uC to confirm amplicon size. Relative
change in gene expression was quantified using the DDCt method
(Livak & Schmittgen, 2001). b-Actin was used as an internal nor-
malization control for the amount of mammalian cDNA added to
each reaction, and mock infection samples served as a baseline control
for the immune signal profile of host cells that undergo the passage
model in the absence of bacterium.

Intracellular bacterial RNA extraction. The cell culture passage
model was conducted (Fig. 1) and total intracellular bacterial RNA
was isolated as described (Wren & Dorrell, 2002). Briefly, infected
monolayers were lysed with guanidine thiocyanate (GTC) buffer (4 M
guanidine thiocyanate, 0.5 % N-lauryl sarcosine, 30 mM sodium
citrate, pH 7.0) with 0.1 M b-mercaptoethanol, and lysates were
pelleted at 2700 g at 4 uC. The pellet was washed twice with GTC
buffer and pelleted at 2700 g at 4 uC. The intact bacterial pellet was
lysed in Trizol (Life Technologies) with 0.5 ml of 0.1 mm glass beads
by bead beating in a reciprocal bead beater for 20 s each, incubated on
ice for 1 min and repeated three times. Chloroform : isoamyl alcohol
(24 : 1; Ambion) was added and the mixture was centrifuged at 9500 g
at 4 uC. The aqueous layer was collected, an equal volume of
chloroform added, mixed and centrifuged at 9500 g at 4 uC. The
aqueous layer was collected and nucleic acids were precipitated with
0.7 volume 2-propanol and 15 mg of linear polyacrylamide overnight
at 220 uC. Nucleic acids were pelleted at 9500 g at 4 uC for 30 min,
washed with 70 % ethanol and suspended in nuclease-free water.
DNase treatment and RNA clean-up were performed using an RNeasy
Mini kit (Qiagen) as per manufacturer’s instructions. RNA prep-
aration was verified for absence of DNA contamination and quanti-
fied. For each sample, 100 ng of RNA was amplified using a Message
AmpII-Bacteria RNA Amplification kit (Ambion) as per manu-
facturer’s instructions. Amplified RNA was synthesized using biotin-
labelled UTP nucleotides (Ambion) and analysed for quality on an
Agilent Bioanalyser 2100 at the Center for Genome Research and
Biocomputing at Oregon State University. Samples were aliquoted
and stored at 280 uC prior to microarray analysis.

Bovine CCL5 ELISA. The cell culture passage model was conducted
as described above. Supernatants from the primary and secondary
sets of MAP and mock-infected MDBK epithelial cells were collected
after 36 h of infection. For control samples MDBK cells were
infected with DMEM alone or lipopolysaccharide from Escherichia
coli 0111 : B4 (100 ng ml21; Sigma-Aldrich) and supernatants col-
lected. Samples were filtered through a 0.2 mm filter and used to
measure the secreted chemokine CCL5 during infection using a
Bovine RANTES ELISA kit (NeoBioLab) as per manufacturer’s
instructions.

DNA microarray. The MAP K10-specific DNA oligo spotted arrays
were designed and printed at the National Animal Disease Center
(USDA-ARS, Ames, IA). Arrays were post-processed, blocked and
hybridized prior to use as per standard protocol (http://derisilab.ucsf.
edu/microarray/protocols.html). For hybridization, total RNA was
fragmented to 200 bp fragments by incubation for 30 min at 94 uC in

MAP
infection

‘Primary’
MDBK epithelial cell

RAW 264.7
Macrophage

‘Secondary’
MDBK epithelial cell

(1)  Collect host RNA from MDBK cells
(2)  Isolate intracellular MAP for RNA and lipids

24 h 72 h 24 h

Fig. 1. In vitro cell culture passage model. A schematic of the cell culture passages used to mimic the path MAP takes during
infection in ruminants. The time points analysed are indicated above, and samples collected for analysis of host–microbe
interactions during cell culture passage are shown below.
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fragmentation buffer (100 mM potassium acetate, 30 mM magnesium
acetate and 40 mM Tris-acetate). Array chips were hybridized with

6 mg of biotinylated RNA for 16 h using an InSlide Hybridization

Oven (Thomas Scientific) in a humidified chamber at 45 uC.Chipswere
washed for 5 min in 5|Saline-SodiumCitrate SSC/0.01 % SDS buffer,

3 min in 0.5|SSC buffer and 30 s in 0.1|SSC buffer, stained with

streptavidin-Cy3 (Life Technologies) in 10 %BSA inHBSS for 1 h, and

washed again in 5| SSC/0.01 % SDS buffer for 5 min, 0.5|SSC for

1 min and 0.01|SSC for 10 s, and slides were centrifuged to dry. Array

chip fluorescence was measured using the Axon4000 slide reader at the

Center for Genome Resources and Bioinformatics at Oregon State

University. Hybridization fluorescence was analysed using Axon4000

software and spots containing bubbles, scratches or inconsistency in

fluorescence across the circle were censored from the data. Triplicate

spots on each array were averaged and each slide was normalized to

control spots containing hybridization buffer only. Triplicate

biological replicates were averaged (median) and the ratio of the

fluorescence values of secondaryMAP/primaryMAPwas determined.

Fluorescence values were normalized to hybridization buffer spots

within each individual array chip. To confirmmicroarray data, cDNA

was synthesized from bacterial RNA using iScript reverse transcrip-

tion supermix for RT-qPCR (Bio-Rad) and each sample was run in

triplicate for each time point analysed. Primers were designed for

100–200 bp amplicons with one primer located within the 70 bp

oligomer spotted onto the microarray chip (Table 1). PCR amplifi-

cations were run as follows: 1 ml cDNA, 0.2 mM forward primer,

0.2 mM reverse primer, 12.5 ml SsoAdvance SYBR Green Supermix

(Bio-Rad) andwater to 25 ml. PCR conditionswere 95 uC for 3 min, 35

cycles of 95 uC for 30 s, 60 uC for 30 s, 72 uC for 20 s, followed by a

final extension at 72 uC for 5 min and a melting curve from 50 uC to
105 uC to confirm amplicon size.

The data discussed in this publication have been deposited in NCBI’s
Gene Expression Omnibus (Edgar et al., 2002) and are accessible
through GEO Series accession number GSE62566 (http://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE62566).

Lipid analysis of intracellular bacterial phenotypes. Intracellular
bacterial samples isolated from the in vitro cell culture model
were collected and stored at 280 uC. Samples were lyophilized
and whole cell lipids were extracted by chloroform : methanol (2 : 1),
dried under nitrogen, and purified using Folsch wash (chlor-
oform : methanol : water, 4 : 2 : 1) (Eckstein et al., 2006). Isolated
lipids were separated by HPLC fractionation and analysed in both
positive and negative mode by ES-MS as previously described (Sartain
et al., 2011) at the Central Instrument Facility at Colorado State
University. Total spectrum of lipid ions of 200 to 3000m/z are reported
and phenotype-specific peakswere determined by the subtraction of the
ion abundance of each phenotype from the other.

MAP-infected bovine ileal tissue. MAP-infected intestinal tissue
was obtained from cattle involved in a previously approved study at
Michigan State University. From dissected ileal tissue, 1 cm3 biopsy
samples were collected, washed twice in PBS, snap frozen in liquid
nitrogen and stored at 280 uC. Specimens were thawed in RNAlater-
ICE tissue transition solution (Life Technologies) as per manu-
facturer’s instructions. Tissue (200 mg) was dissected from each
sample and homogenized in GTC buffer with 3.2 mm stainless steel
beads for 2 min at setting 8 in a Bullet Blender (Next Advance). The

Table 1. Primer sets for bovine and bacterial transcript analysis

Primer Sequence (59–39) Anneal temp. (8C) Source

Bovine

b-Actin_B_Fwd CGCACCACTGGCATTGTCAT 60 Konnai et al. (2003)

b-Actin_B_Rev TCCAAGGCGACGTAGCAGAG 60 Konnai et al. (2003)

IL-6_B_Fwd TCCAGAACGAGTATGAGG 53 Konnai et al. (2003)

IL-6_B_Rev CATCCGAATAGCTCTCAG 53 Konnai et al. (2003)

IL-8_B_Fwd TGCCTCATGTACTGTGTGGG 60 Weiss et al. (2002)

IL-8_B_Rev GGGATAAAGAAACCAAGGCG 60 Weiss et al. (2002)

TGF-b_B_Fwd TTCTTACCCTCGGAAAATGCCATCC 60 This paper

TGF-b_B_Rev CCATCAATACCTGCAAAGCGTG 60 This paper

CCL5_B_Fwd CATGGCAGCAGTTGTCTTTATCA 53 This paper

CCL5_B_Rev CTCTCGCACCCACTTCTTCTCT 53 This paper

IL-18_B_Fwd TCTTTGAGGATATGCCTGATTCTG 60 This paper

IL-18_B_Rev CAGACCTCTAGTGAGGCTGTCCTT 60 This paper

MAP

MAP_16s_Fwd CGAACGGGTGAGTAACACG 60 This paper

MAP_16s_Rev TGCACACAGGCCACAAGGGA 60 This paper

IS900_Fwd_C GATGGCCGAAGGAGATTG 60 This paper

IS900_Rev_C CACAACCACCTCCGTAACC 60 This paper

MAP2131_Fwd CGTCGATGGTCAGGGCCGA 60 This paper

MAP3121_Rev AGCAGATTCGGATGTCGGCGG 60 This paper

MAP3433_Fwd CCCGAAGTCGACGAGGCGTT 60 This paper

MAP3433_Rev TGCCGACCTGCAGCCAGAAG 60 This paper

MAP2974c_Fwd GGCGTGGGAACCACCAAAAGTG 60 This paper

MAP2974c_Rev GATCTGCGGGTGCACGACCTG 60 This paper

MAP1584c_Fwd GGCGATCTTGTCGCTGACCTCG 60 This paper

MAP1584c_Rev TCAACCGGCTGACCGACCCG 60 This paper

Novel model to describe inflammatory phenotype of MAP

http://mic.sgmjournals.org 1423

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62566
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62566


homogenate was transferred to a new tube and intact bacterium and
debris pelleted at 5500 g for 5 min at 4 uC. The pellet, containing
bovine tissue debris and MAP, was collected in GTC buffer and
intracellular bacterial RNA was purified as described above. For
complete removal of genomic DNA, samples first underwent DNase
treatment and RNA clean-up (Qiagen), then were processed with a
second DNase treatment with 20 U RNase-free DNase (Roche), and
20 U RNase-OUT (Life Technologies) for 20 min, followed by RNA
clean-up (Qiagen). Samples were tested for presence or absence of
DNA by PCR for bovine b-actin using primers listed in Table 1 and
were amplified as follows: 95 uC for 30 s, 60 uC for 30 s, 68 uC for 30 s
and repeated for 40 cycles. Bacterial RNA was enriched using a
MICROBEnrich kit (Ambion) as per manufacturer’s instructions.
cDNA was prepared using an iScript cDNA Synthesis kit (Bio-Rad)
and used as DNA template for PCR detection of bacterial transcripts.
PCR amplification reactions were conducted using the primer sets in
Table 1 and amplification proceeded as described above. Amplicons
were resolved on a 1 % agarose gel and band intensities analysed using
ImageJ software (Schneider et al., 2012).

Statistical analysis and data interpretation. Results are reported
as the mean of three repeated experiments+SD. Statistical compari-
sons between experimental groups and control groups were deter-
mined using the Student’s t-test with Pv0.05 denoting statistical
significance. GraphPad Prism version 6.0 software was used for the
construction of graphs, data interpretation, and statistical analysis.

RESULTS

Development of a novel in vitro cell culture
passage model

To readily understand the progression of MAP pathogen-
esis, we developed an in vitro cell culture passage model
that mimics the interactions between the bacterium and
the host intestine over the course of infection. The goal
of this study was to investigate the bacterial and cellular
mechanisms and their changes over the course of infection,
specifically focusing on the changes that occur within the
epithelial cells between the early and late stages of infection.
Our illustrated model (Fig. 1) consists of consecutive
passages of MAP through host cells starting with MDBK
epithelial cells, continuing with dissemination into macro-
phages, and the final return to the intestinal epithelium.
MDBK epithelial cells serve as an excellent model of the
intestinal barrier and have been used to study the patho-
genesis of many other pathogens. The cellular progression
design of the model simplifies and replicates the stages
that MAP goes through during infection of the host.
Upon oral uptake of MAP from either the environment
or faecal-contaminated food and water, MAP first interacts
with and invades the intestinal epithelium (Bermudez et al.,
2010). After translocation through the epithelial cells, bac-
terium are ingested by local and infiltrating macrophages in
response to infection, where MAP is able to reside and
replicate. Following macrophage infection, we hypothesize
that during the late stage of infection bacterium are
released by macrophages, during either granuloma for-
mation, cell-mediated death or bacterial-mediated escape
to encourage spread of the disease. This release would
result in the subsequent return to, and infection of, the

intestinal epithelium during the late stage of the disease,
and is supported by in vivo evidence that MAP can be
identified within the intestinal epithelium during the late
stage of Johne’s disease in ruminants (Antognoli et al.,
2008; Khan et al., 2010). Time points were determined
based on the relative progression of the disease in the
host. Invasion and translocation through the intestinal epi-
thelium occurs within a short amount of time following
infection, and thus we determined 24 h infection of each
epithelial infection stage would be effective in modelling
the infection. Furthermore, intracellular infection in
macrophages can persist for long amounts of time, and
requires the intracellular environment for efficient
growth, replication and evasion of the immune response.
Due to this, we chose a 72 h time point for macrophage
infection as an appropriate representation of the survival
and time within macrophages in our model. As our focus
was on the hypothesized changes occurring between each
stage of epithelial cell infection, we collected nucleic acids
and lipids from the mammalian epithelial cells and the iso-
lated bacterial samples during the completion of the model
for further analysis. The development of the in vitro passage
model described here represents a novel technique in which
the intricate host–microbe interactions during various
stages of infection may be analysed in a simplified
manner, compared to current animal infection models
for Johne’s disease.

Serial passage of MAP initiates inflammatory
response in bovine epithelial cells

To investigate if there is a change in the host immune
response to infection with cell culture-passaged compared
with non-passaged bacteria, we employed the model
described in Fig. 1. Complete passages were conducted
with MAP bacteria, as well as passages with HBSS to
serve as a control (mock) infection to account for any carry-
over of mammalian components during isolation of intra-
cellular MAP. MDBK epithelial cell RNA was collected 24 h
after each MAP or mock infection, cDNA was analysed for
bovine cytokine and chemokine signals, and the expression
ratios of MAP-infected MDBK epithelial cells to mock-
infected MDBK cells were determined (Fig. 2a). Gene
expression analysis revealed that the secondary epithelial
cell population produced a gene expression profile of
immune signals different from the primary infected
MDBK cells in the model. An increase in transcripts of
the pro-inflammatory signals IL-6 and IL-8 was seen only
in the second infected MDBK cell population. This
secondary MDBK cell population also showed a significant
decrease in the expression of the anti-inflammatory signal
TGFb, compared to primary infected MDBK cells
(Pv0.005). While secondary epithelial cells infected with
MAP slightly increased expression of the pro-inflammatory
signals IL-18 and CCL5 when compared to mock-infected
cells, primary cells infected with MAP appeared to suppress
the expression of CCL5 and IL-18. Together, the secondary
infected MDBK cells had a significant increase in the

J. L. Everman and others
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transcript presence of CCL5 (Pv0.05) and IL-18
(Pv0.005) compared to MAP-infected primary population
of MDBK cells in our model. To confirm our findings,
ELISA was performed to detect the secreted CCL5 protein
in the supernatants of MAP-infected MDBK cells from the
passage model (Fig. 2b). Supernatant samples collected
from the secondary MAP-infected epithelial cells demon-
strated a higher level of CCL5 protein production and
secretion than the measured expression level of CCL5
from the primary set of infected MDBK epithelial cells.
Collectively, our results indicate that early infection with
unpassaged MAP in the primary MDBK epithelial popu-
lation induces a decreased inflammatory state within epi-
thelial cells. Conversely, the secondary MDBK epithelial
cell population infected with cell culture-passaged MAP
exhibits a more inflammatory profile by means of increased
pro-inflammatory (IL-6, IL-8, IL-18 and CCL5) cytokine
and chemokine expression and by decreased anti-inflam-
matory (TGFb) signals detected. These data suggest that
during passage through host cells, MAP likely develops a
novel phenotype responsible for the induction of a more
pro-inflammatory immune response during infection
with intracellular-conditioned MAP.

Bacterial gene expression changes during in vitro
passage model

To determine the bacterial phenotype change during the
cell culture passage model, we profiled MAP gene
expression at each stage of MDBK epithelial cell infection.
Intracellular MAP was collected from both primary and

secondary MDBK cell populations after 24 h of infection,
and RNA from intracellular MAP was extracted and hybri-
dized to MAP K10 DNA arrays for transcriptome analysis.
Genome-wide expression analysis was completed by com-
paring the phenotype of MAP isolated from the secondary
epithelial host cells to MAP isolated from the primary set of
MDBK cells (Table 2). Our analysis identified 52 genes
upregulated more than twofold in the inflammatory phe-
notype of MAP, when compared to the non-inflammatory
primary phenotype. The upregulated genes could be cate-
gorized into three general categories: lipid biosynthesis
and metabolism (MAP2974c, MAP3121 and MAP3763c),
cell wall remodelling (MAP1584c, MAP0385, MAP2604c
and MAP1137c) and cellular metabolism (MAP2660,
MAP0808 and MAP1485c). A regulator of the transcription
factor Sig8 (MAP3111c) was upregulated, as well as a var-
iety of hypothetical proteins that have yet to be fully
described (MAP3433 and MAP3516). Our results confirm
the original hypothesis that intracellular passage of MAP
through host cells elicits a change in gene expression, par-
ticularly in genes involved in lipid and cell wall com-
ponents of the bacteria.

Lipidomic changes in MAP during passage model
infection

Gene expression studies uncover substantial information
on the transcriptional state of an organism. The production
of macromolecules including lipids can require a variety of
genetic components, non-ribosomal peptide synthase
enzymes and post-translational modifications prior to
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production of a functional moiety. This can result in a

skewed ratio of gene expression transcripts to translated

functional lipid or protein components. As lipids play a

pivotal role in mycobacterial pathogenesis, we analysed

the total lipid composition of both MAP phenotypes

before and after serial passage through host cells in order

to ascertain the changes in the bacterial lipidome. Intra-

cellular MAP was collected after 24 h of infection from

both the primary and secondary MDBK cell populations

and whole cell lipids were extracted and analysed using

HPLC-ES/MS (Fig. 3). The complete lipidome spectrum

between the primary passaged MAP population (Fig. 3a)

and secondary passaged inflammatory MAP population

(Fig. 3b) have similarities in the composition of common

small ion fragments from 200 to 300 m/z, and in mycolic

acid ion patterns found from 1000 to 1500 m/z. Conversely,

there are dramatic differences in the lipid profiles detected

from 300 to 900 m/z between the MAP phenotype isolated

from the primary epithelial cell infection (Fig. 3c) and the

inflammatory MAP phenotype isolated from the secondary

epithelial cell infection (Fig. 3d). Focusing on the differ-

ences within that range, whole cell lipidome profiles were

analysed for lipids specific to each population. The inflam-

matory phenotype of MAP is composed of a much more

diverse set of lipids, including a wider array of specific

sizes and types of lipids (Fig. 3f), compared to those

specific to the primary MAP population (Fig. 3e).

The mycobacterial lipid Para-LP-01 has been described as
an important cell wall component of MAP (Eckstein
et al., 2006). Para-LP-01 is known to decrease in abundance
following intracellular infection (Alonso-Hearn et al.,
2010). We used this molecule as an internal validation
marker for our model (Fig. 4). When comparing the two
phenotypes, Para-LP-01 was found in high abundance in
the lipidomic spectrum of the primary MAP phenotype
at an intensity of 7.7|104 (Fig. 4a), while the lipid compo-
sition of the cell culture-passaged inflammatory phenotype
contained a significantly lower abundance of Para-LP-01 at
an intensity of 3.0|103 (Fig. 4b). The loss of Para-LP-01
and differences in other lipids in the late infection pheno-
type suggest that the change in lipid composition may con-
tribute to the inflammatory status within the intestinal
epithelium during MAP infection of the ruminant host.

Identification of upregulated MAP transcripts
from infected tissues

In order to validate the in vitro cell culture passage model,
we selected upregulated MAP genes from the secondary
inflammatory phenotype and investigated the presence of
these transcripts in the tissue samples of MAP-infected ani-
mals. Two cattle at a Michigan dairy were identified as
MAP-positive by standard diagnostic techniques including
faecal PCR and ELISA detection of MAP antibodies (data
not shown). The high level of bacterial burden measured
by qPCR, and observations of abnormal peripheral blood

Table 2. Microarray analysis of MAP phenotypes

Intracellular MAP was isolated after 24 h from each MDBK cell population during infection using the in vitro cell culture passage model. Extracted

bacterial RNA was amplified to biotinylated amplified RNA, and hybridization to a MAP K-10 microarray slide was measured using a streptavidin-

Cy3 probe on an Axon4000 slide reader. Data represent the mean value of three independent experiments with gene oligomers spotted in triplicate

on each slide and are reported as the ratio of gene expression of MAP from the secondary MDBK population to gene expression of MAP from the

primary MDBK population.

Gene Fold change Gene description Biological process

MAP2974c 3.20 Cyclopropane-fatty-acyl-phospholipid synthase 1 Lipid biosynthesis

MAP3121 3.14 Enoyl-CoA hydratase Lipid metabolism

MAP3433 2.99 Hypothetical protein Unknown

MAP3763c 2.98 Conserved polyketide synthase-associated protein 3 Lipid metabolism

MAP1584c 2.92 ATP-dependent Lon protease Stress response proteolysis

MAP2660 2.85 NAD-dependent epimerase dehydratase Nucleic acid metabolism

MAP0385 2.82 Restriction endonuclease family protein DNA binding

MAP0808 2.81 Molybdenum cofactor biosynthesis protein Metabolism

MAP3111c 2.81 Regulator of Sig8 Metabolism

MAP3516 2.77 Hypothetical protein Unknown

MAP1456 2.76 Hypothetical esterase lipase Metabolism

MAP1485c 2.72 Acyl-CoA synthase Metabolism

MAA2452 2.72 Hypothetical protein Unknown

MAP1137c 2.71 Aminoglycoside tetracycline-transport membrane protein Membrane transport

MAP0350 2.70 Short chain dehydrogenase Oxidoreductase

MAP2604c 2.68 Mycocerosic acid synthase Oxidoreductase

MAP2239 2.67 Mmpl4 protein Unknown

MAP2751 2.67 21 kDa protein Unknown
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mononuclear cell counts indicated that one animal was in
the advanced stages of Johne’s disease (animal no. 6211;
Fig. 5b and data not shown), while another exhibited a sub-
stantially lower level of bacterial shedding, was in relatively
good body condition and had normal peripheral mono-
nuclear cell counts (animal no. 1688; Fig. 5a and data
not shown). Tissue samples were collected from various
locations within the terminal ileum during necropsy, and
total RNA was isolated and analysed for the presence of
bacterial transcripts (Fig. 6a). Within each tissue sample,
the MAP insertion element IS900 was detected in abun-
dance, indicating MAP infection in each particular tissue
section. The presence of MAP3121, MAP3433, MAP2974
and MAP1584 transcripts was detected within at least one
ileal tissue sample from each of the infected animals.
It was observed that detection levels within each tissue
biopsy appeared to be correlated with areas that were
observed to have more significant lesions during necropsy
(lesion 2 in animal no. 1688 and lesion 1 in animal no.
6211). Band intensity determined that levels of the inflam-
matory phenotype-related MAP transcripts in animal
no.6211 were higher than those found in animal no.
1688. Interestingly, animal no. 6211 was in a more
advanced clinical stage of Johne’s disease, as observations
indicated the animal had stopped eating and was almost
unable to stand. Necropsy and diagnostics indicated a
greater degree of inflammation within the ileal tissue, and

almost 100 times more MAP was detected in faecal qPCR
tests. In contrast, animal no. 1688 was visually healthy,
active and mobile, and had a lower grade of inflammation
observed upon gross examination of the ileal tissue (obser-
vational data). The identification of inflammatory MAP
phenotype transcript markers within naturally occurring
MAP-infected cattle, and the increase of these markers in
tissue from an animal in the much more progressive
stages of Johne’s disease, provide evidence that supports
the validity of the findings reported using the described
cell culture passage model.

DISCUSSION

The shift in the host immune response is a key character-
istic to the onset of inflammation within the intestinal
tissue of ruminants, and results in the distinct character-
istics of Johne’s disease. While cell culture and animal
models have uncovered intracellular survival mechanisms,
little is known about the bacterial drivers behind the tran-
sition in the immune response and progression to the clini-
cal stage of the disease. In this paper, we describe a novel
cell culture passage model which mimics the progression
of infection within the tissues of the host. Using this
model, we identify two different bacterial phenotypes that
trigger opposite levels of inflammatory signals produced
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by infected epithelial cells, similar to the pattern of the
infection in cows. These data indicate that MAP alters its
phenotype during intracellular infection, and the lipid
composition of the bacterium changes and we hypothesize
that those changes potentially contribute to the shift in the
inflammatory response by the infected host epithelial cells
during Johne’s disease.

Current disease models used to study Johne’s disease
include in vitro cell culture systems which provide import-
ant information on bacterial virulence mechanisms, yet the
scope of infection is limited to the cellular level of a single
particular cell line. Mouse models are used to investigate
the ability of MAP to invade the intestinal mucosa and dis-
seminate to peripheral tissues (Bermudez et al., 2010), to
determine preventive probiotics (Cooney et al., 2014) and
to identify and validate vaccine candidates (Bannantine
et al., 2014; Scandurra et al., 2010). Unfortunately, mouse
models offer limited insight on the complete disease pro-
gression, as mice do not exhibit intestinal inflammation
in the same manner as ruminants in advanced stages of
Johne’s disease. MAP infections of goat and calf models
are used to study a variety of disease interactions including
host gene expression (Khare et al., 2012), vaccine efficacy
(Hines et al., 2014), both bacterial (Facciuolo et al., 2013)
and host (David et al., 2014) biomarker discovery for
enhanced diagnostics, and are used to track and develop

mathematical shedding and transmission models (Mitchell
et al., 2008); however, the excessive time and space costs of
large animals make ruminant models challenging to use.
Though recent efforts have been made to standardize
animal models used in Johne’s disease research (Hines
et al., 2007), historical literature lacks consistency.
A review of the past century of Johne’s disease literature
reveals a high level of variation in study design variables
(Begg & Whittington, 2008). These inconsistencies allow
past Johne’s animal studies to be open to a wide array of
interpretation as to how those varying factors and the par-
ticular animal host used accurately and consistently model
the full stages of Johne’s disease infection. With this know-
ledge, we aimed to develop a passage model system com-
posed of cell lines to simulate the more complex
interactions occurring within the intestinal tissue of the
host (Fig. 1). By utilizing this model, we will be able to
more readily understand both the host and bacterial mech-
anisms used during the invasion and infection process of
the ruminant intestine, and discover unidentified changes
or interactions that occur during the disease.

During natural infection, ruminants are infected with MAP
via intestinal epithelial cell uptake and the bacterium are
ingested by resident and infiltrating macrophages in the
epithelial tissue. MAP-containing macrophages can then
traffic throughout the host, leading to system dissemina-
tion of the bacterium as demonstrated by the detection
of MAP from a variety of organs including mesenteric
lymph nodes, liver, muscle tissue, mammary lymph
nodes, epithelium and intestinal mucosa (Alonso-Hearn
et al., 2009; Antognoli et al., 2008; Sweeney et al., 1992).
Infected macrophages located in the epithelial tissue can
then lead to the formation of granulomatous lesions
within the mucosa. Once a high enough intracellular
burden has been reached, MAP can trigger necrosis
within infected bovine macrophages (Periasamy et al.,
2013), suggesting that necrotic macrophages in the early
stages of granuloma formation may contribute returning
MAP to the host epithelium during the progression of
Johne’s disease. The model described here, and the inflam-
matory signals measured during the differing stages of
infection, are supported by the scientific literature which
has reported the subclinical and clinical stages of Johne’s
disease and analysed the immunological responses specific
to the mucosal intestinal tissue during each stage (Buza
et al., 2003; Khare et al., 2012; Lee et al., 2001; Stabel &
Robbe-Austerman, 2011; Weiss et al., 2006). Experimental
observations support the role of induced immune tolerance
in mucosal tissue during early stages of Johne’s disease.
TGFb is capable of inducing ‘inflammatory anergy’ in
human macrophage cells, as they maintain phagocytic
capabilities, but are unable to mount a proper pro-inflam-
matory cytokine response (Smythies et al., 2005). Weiss
et al. (2006) have reported that although the total T-cell
population increases during MAP infection in cattle, the
majority of those cells are memory (CD2+CD62L2) or
regulatory (CD4+CD25+) cells, but it is unclear as to
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Fig. 5. Bovine intestinal tissue samples. Tissue samples from ani-
mals testing positive for Johne’s disease were collected from the
terminal ileum of each animal. Animal no.1688 (a) was in a much
healthier state, while animal no. 6211 (b) was extremely weak, in
poor body and immune condition and in a much later stage of
infection. Biopsy punches were taken from locations indicated
(1–5) after photograph (a), and prior to photograph (b), and
immediately snap-frozen for downstream sample processing.
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whether the cells deemed as regulatory T-cells in the study

were under the control of FoxP3 activation. Additionally,

host gene expression analysis has identified a variety of

T-cell, cytokine and additional immune cell signalling factors

that are either suppressed or not expressed at all during the

early stages of MAP infection within ligated ileal loops of

MAP-infected neonatal calves (Khare et al., 2012). The early

phenotype of MAP may play a role in inducing a transient

anti-inflammatory environment to gain a foothold for

increased infection outcomes.We show that IL-18 is downre-

gulated within epithelial cells during early MAP phenotype

expression. IL-18 is important in immunomodulation

during mycobacterial infection, as IL-18-deficient mice are

unable to stimulate interferon gamma (IFNc) and develop

an excess of granulomatous lesions in response to

M. tuberculosis and Mycobacterium bovis BCG challenge

(Sugawara et al., 1999). IFNc is a well-known immune

signal for combating mycobacterial disease, serves as a

marker used to aid in diagnosing MAP infection and can be
seen as early as 3 months after oral infection in cattle (Stabel

& Robbe-Austerman, 2011). By creating an early anti-inflam-
matory environment within the epithelium, early MAP phe-

notypes may be used to create a microenvironment within
the mucosal tissue which supports enhanced uptake, intra-

cellular survival and spread of the bacterium.

In addition to epithelial infection, macrophages have been
shown to respond differently following the contact with

different pathogens. It is now accepted that either patho-
gens are capable of triggering an inflammatory response

characterized by anti-microbial activity represented by
the release of IFNc (M1 subpopulation), or that pathogen

stimulation can result in the production of IL-4, IL-13,
IL-10 or TGFb, and behave as an anti-inflammatory sub-

population, associated with Th2 stimulation and function
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(Mosser & Edwards, 2008). In our study, following uptake
of MAP, the phenotype of the macrophages was not inves-

tigated, although we have preliminary evidence indicating

that macrophages infected with MAP produce TNFa,
suggesting that the infection results in the inflammatory
macrophage phenotype. Further studies will be performed

to attempt to delineate if M2 macrophages develop or have

any role during MAP infection.

It is well described that the alteration of the phenotype of a

bacterium can be imperative to the response to and survival
within a variety of environmental and host conditions. Sev-

eral pathogens utilize particular phenotypes for enhanced

infection, including Neisseria meningitidis (Hagblom et al.,
1985), Staphylococcus aureus (Tuchscherr et al., 2011), and

Sal. Typhimurium (Diard et al., 2013), and a variety of

mycobacterial species are reported to readily alter their phe-

notypes in response to external stimuli. The close relative of
MAP,M. avium subspecies hominissuis, alters its phenotype

upon the formation ofmicroaggregates and biofilms (Babrak

et al., 2015; McNabe et al., 2011), in response to the metal

matrix found within host phagosomes (Early & Bermudez,
2011) and upon intracellular infection of macrophages and

amoebae (Bermudez et al., 2004; Harriff & Bermudez,

2009). Furthermore, previous studies with MAP indicate
that changing phenotypes in response to environmental

and host conditions contributes to virulence and increased

pathogenesis within the host (Alonso-Hearn et al., 2008;

Patel et al., 2006). Our data suggest that MAP changes its
phenotype during the stages of intracellular infection, and

that these changes involve the alteration of whole cell- and

cell wall-associated lipids. These changes are pertinent, as
MAP has an abundant reliance on its lipid-rich cell wall for

virulence and survival (Bansal-Mutalik & Nikaido, 2014;

Cambier et al., 2014; Ehrt & Schnappinger, 2007). The upre-

gulated genes we identified in this study are involved in a
number of lipid-related processes. The genes MAP2974c,

MAP3121, MAP3763c and MAP1584c are all involved in

larger lipid synthesis gene clusters and ORFs responsible
for the production of multi-domain lipid synthase enzymes

required for proper lipid production. Other changes include

an increase in the unique mycobacterial cell wall component

mycocerosic acid (Rainwater & Kolattukudy, 1985),
MAP1456 (which is located in a larger cluster of genes con-

taining ABC-transporters) and a hypothetical transcrip-

tional regulator encoded by MAP3111c. Interestingly,

rather than being responsible for the synthesis of one specific
lipid, many of the genes identified in our study seem to be

specific components of the larger multi-factorial pathways

required for the breakdown and biosynthesis of lipids
within the bacterium. The higher expression of these genes

suggests that in tandem they have the ability tomore globally

impact the production of lipid components. Lipid analysis

conducted in this study identified ion fragment patterns of
the lipidome and suggest that the change in gene expression

results in an impact on total lipid composition. As seen from

our data, the inflammatory phenotype of MAP is uniquely

composed of a wide variety of types and sizes of lipids com-
pared to the non-inflammatory MAP phenotype.

Changes in lipid composition, cell wall-associated mol-
ecules or the abundance of such components have the abil-
ity to dramatically impact the virulence of the bacterium
prior to and during infection. One major cell wall com-
ponent known to change during intracellular infection is
the high molecular mass lipopeptide Para-LP-01, which is
found in abundance in the cell wall of MAP and is recog-
nized by sera from infected cattle (Eckstein et al., 2006).
The decrease in Para-LP-01 abundance after intracellular
infection (Alonso-Hearn et al., 2010) is also seen in the
total lipid composition from intracellular MAP in our pas-
sage model, with significantly higher levels of Para-LP-01
present in the bacterial lipids from the bacterial population
isolated from the primary MDBK cell infection. These find-
ings provide evidence that supports the validity of the
model system described in this manuscript, and that the
changing lipidome may play a role in the evolving stages
of Johne’s disease.

The shift in mycobacterial lipid composition in response to
a changing environment could result in a variety of out-
comes. The immunogenic nature of mycobacterial lipids
is classically demonstrated by their addition to Freund’s
adjuvant and its ability to elicit a robust immune response
(Freund, 1956). Mycobacterial lipid components are
capable of stimulating inflammatory cytokines IL-6 and
TNFa when coated onto latex beads and delivered to
host immune cells (Geisel et al., 2005). Alternatively, this
change in bacterial components could be a useful strategy
in suppressing particular inflammatory responses at certain
times, producing virulence factors at specific times to trig-
ger a particular stage of the disease, and produce an
environment it needs to survive. The expression levels or
variation of lipoarabinomannan (LAM) and mannose-
capped LAM molecules result in a change in virulence or
bacterial survival as LAM is, in part, responsible for the
inhibition of maturation of mycobacterium-containing
phagosomes and thus contributes to intracellular survival
(Fratti et al., 2003). Not only does mannosylated LAM
increase intracellular survival, but MAP derived molecules
are capable of suppressing macrophage inflammatory sig-
nals by prolonged stimulation of IL-10 during infection
(Souza et al., 2013). Additional evidence demonstrates
that M. tuberculosis utilizes its lipid moieties to modify
the innate response of macrophages via TLR receptors. Dif-
fering virulence phenotypes of M. tuberculosis contain a
different composition of lipids from one another, and
infection with each strain results in opposing macrophage
inflammatory phenotypes, with the most virulent strains
more negatively affecting the TLR-activated cytokine
response within the host phagocytes (Rocha-Ramı́rez
et al., 2008). Keeping each of these situations in mind,
the variation of bacterial lipids described in this study
may provide a method of camouflage for the bacterium
early during infection, by interacting with TLRs and
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cellular receptors and resulting in the alteration, by either
suppression or stimulation, of the host immune response.

An explanation for the changing lipid phenotype during
infection can also be that it is due to the energetic demands
on the bacterial organism. The production of the lipids,
specifically mycolic acids, which make up the majority of
the cell envelope ofMAP ismetabolically costly.Mycocerosic
acid, whose synthase (MAP2604c) is upregulated 2.68-fold
in the inflammatory phenotype, is a dense lipid moiety
based on a long 28- to 32-carbon backbone (Minnikin,
1982). The production of the pentapeptide component
of Para-LP-01 requires a large input of energy and
resources, as the gene that encodes its production is
approximately 20 kb in length. The seemingly unnecessary
production of such large molecules could channel required
nutrients or lipid components away from pathways needed
to produce functionally relevant cell wall molecules needed
for the current infection stage at hand. This specifically
rings true for intracellular populations which are already
limited in the ions, fatty acid precursors, cholesterol and
metabolic building blocks necessary for intracellular viru-
lence and survival (Subramoni et al., 2013; Tuchscherr
et al., 2011). Using differing phenotypes for initiation, sur-
vival and transmission ensures that the pathogen is more
successful, and energetically efficient, during each particu-
lar stage of disease.

The development of the novel cell culture passage model
described here enhances the ability to more readily study
the intricate mechanisms occurring between the bovine
host and MAP in the absence of a live animal. This model
demonstrates that MAP develops an inflammatory pheno-
type over the course of infection, and initiates a more pro-
inflammatory cytokine and chemokine response in the
later stages of infection within the epithelial mucosa. The
inflammatory phenotype is characterized by a distinct set
of upregulated genes and contains a lipid composition dis-
tinct from the non-inflammatory phenotypes of MAP.
Identification of these lipid synthesis transcripts within
MAP-infected bovine tissues provides evidence which sup-
ports the validity of our model and offers evidence towards
the idea that the changes in MAP, its gene expression and
its lipid composition could be a driver behind the multiple
stages of Johne’s disease. These changes could be a notable
pathogenic mechanism of interest to study, as the character-
ization of the function of these lipids may provide novel
compounds for enhanced vaccine targets and therapeutic
strategies for animals in the advanced stages of Johne’s
disease.
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