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Abstract17

The meteorite paleomagnetic record indicates that differentiated (and potentially,18

partially differentiated) planetesimals generated dynamo fields in the first 5-40 Myr af-19

ter the formation of calcium-aluminium-rich inclusions (CAIs). This early period of dy-20

namo activity has been attributed to thermal convection in the liquid cores of these plan-21

etesimals during an early period of magma ocean convection. To better understand the22

controls on thermal dynamo generation in planetesimals, we have developed a 1D model23

of the thermal evolution of planetesimals from accretion through to the shutdown of con-24

vection in their silicate magma oceans for a variety of accretionary scenarios. The heat25

source of these bodies is the short-lived radiogenic isotope 26Al. During differentiation,26

26Al partitions into the silicate portion of these bodies, causing their magma oceans to27

heat up and introducing stable thermal stratification to the top of their cores, which in-28

hibits dynamo generation. In ‘instantaneously’ accreting bodies, this effect causes a de-29

lay on the order of > 10 Myr to whole core convection and dynamo generation while30

this stratification is eroded. However, gradual core formation in bodies that accrete over31

> 0.1 Myr can minimise the development of this stratification, allowing dynamo gen-32

eration from ∼ 4 Myr after CAI formation. Our model also predicts partially differen-33

tiated planetesimals with a core and mantle overlain by a chondritic crust for accretion34

timescales > 1.2 Myr, although none of these bodies generate a thermal dynamo field.35

We compare our results from thousands of model runs to the meteorite paleomagnetic36

record to constrain the physical properties of their parent bodies.37
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Plain Language Summary38

The paleomagnetic record from meteorites shows that magnetic field generation within39

the liquid cores of their parent asteroids was widespread during the first 200 million years40

of our solar system. These bodies, termed planetesimals, formed during the first few mil-41

lion years of the solar system and were the building blocks of the terrestrial planets and42

cores of the gas giants. However, it can be difficult to determine the physical properties43

(such as the size) of these planetesimals from the meteorites themselves. Magnetic field44

generation in a liquid iron core places constraints on the size of these early planetary bod-45

ies as well as requirements on how fast they were cooling. In this study, we have mod-46

elled the thermal evolution of a number of planetesimals and recorded when they were47

able to generate a magnetic field. We find that the timing and duration of magnetic field48

generation depends strongly on the timescale of accretion and size of the planetesimal.49
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1 Introduction50

Advances in rock magnetism and paleomagnetic techniques over the past two decades51

have revealed that many meteorites carry primary magnetic remanences imparted by mag-52

netic fields generated in the first few 100 Myr after the formation of the solar system.53

This primary remanence has been found in both achondrites (e.g. Fu et al. (2012), Bryson54

et al. (2015), Wang et al. (2017)), which sample the mantles of differentiated planetes-55

imals, as well as chondritic meteorites (e.g. Carporzen et al. (2011), Cournede et al. (2015),56

Gattacceca et al. (2016), Shah et al. (2017), Bryson et al. (2019a), Cournède et al. (2020),57

Maurel et al. (2020)), which are usually considered to be samples of unmelted, undiffer-58

entiated planetesimals. The potential candidates for the source of these magnetic fields59

in the early solar system include the nebular field generated by the protoplanetary disk60

itself, dynamo fields produced in the liquid or semi-liquid core of planetesimals, either61

by convection driven by cooling or core solidification (Nimmo, 2009) or mechanical stir-62

ring (e.g. Le Bars, Wieczorek, Karatekin, Cébron, & Laneuville, 2011 and Reddy, Favier,63

& Le Bars, 2018), shock fields from impacts between planetary bodies and the solar wind64

field. The possibility of the solar wind being the source of the magnetisation in mete-65

orites has been discounted largely due to the low field intensity of the solar wind field66

in the planet-forming regions of the solar system compared to the recovered paleointen-67

sities of the meteorites (Oran et al., 2018). Long-lived dynamo activity driven by me-68

chanical stirring from impacts (Le Bars et al., 2011) or perturbation of orbital param-69

eters such as precession (Reddy et al., 2018) is also unlikely due to the short < 10 kyr70

spin-down timescales of asteroid-sized bodies (Burns et al., 1973).71

Short-lived radioisotope systems have been used to constrain the timing of the pri-72

mary remanence acquired either as the host meteorite cooled, imparting a thermorema-73

nent magnetisation (TRM), or was aqueously altered, leading to the generation of new74

magnetic minerals that record a chemical transformation remanent magnetisation (CTRM)75

as they grew. Combined with the paleointensities recovered from these meteorites, these76

ages provide a picture of the evolution of magnetic fields generated by asteroids during77

the early solar system is emerging (Figure 1). This record can be split into five epochs:78

three during which magnetic fields were active and two with very weak or null fields. The79

first episode of magnetic field generation was from ∼ 0−4 Myr after the formation of80

the solar system 4567.3 Myr ago (Connelly et al., 2012) where the age of the solar sys-81

tem is taken as the age of the first condensate solids to form, calcium-aluminium inclu-82
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sions (CAIs). There was then a pause in magnetic field generation between ∼ 4 and 5 Myr83

after CAI formation (Gattacceca et al., 2016, Wang et al., 2017, Weiss et al., 2017). The84

second recorded period of magnetism was from ∼ 5−40 Myr after CAI formation, which85

was followed by a pause in magnetic activity from ∼ 40 Myr to approximately 65−10086

Myr after CAI formation. The final episode of magnetic field generation in planetesimals87

was from ∼ 65− 100 Myr to < 250 Myr after CAI formation. The boundary between88

this final stage of magnetic field generation and the prior pause in magnetic field gen-89

eration is poorly constrained and depends on the meteorite group under consideration90

as the magnitude of the pause in magnetic field generation is a function of the meteorite’s91

parent body size (Bryson et al., 2019a).92

The earliest period (from the start of the solar system to ∼ 4 Myr after CAI for-93

mation) has been attributed to the nebular magnetic field generated by the protoplan-94

etary disk around the young Sun (Fu et al., 2014a, Fu et al., 2020). It has been argued95

that dynamo field generation in planetesimals was not possible at this time due to the96

partitioning of the short lived radioisotope 26Al , which has a half-life of 0.717 Myr (Neumann97

et al., 2014), into the silicate portion of the body on differentiation (Bryson et al., 2019a).98

This leads to a period during which planetesimals’ mantles are hotter than their cores99

which prevents core convection and dynamo generation. Bryson et al. (2019a) suggests100

that it takes up to 5.5 Myr after CAI formation for the supply of the heat source 26Al101

to be sufficiently depleted to allow mantle and subsequent core cooling. This leads to102

a delay in dynamo generation until 5.5 Myr after CAI formation, by which time the so-103

lar nebula and its associated magnetic field had dissipated (Wang et al., 2017).104

The latter two periods of early Solar System magnetism have been linked to dy-105

namo generation within the (semi-)fluid cores of the meteorite parent bodies (e.g. Elkins-106

Tanton, Weiss, & Zuber, 2011). The ability for a planetary body to generate a core dy-107

namo field places stringent constraints on the internal heat transfer occurring at that108

time. As such, the timing and duration of these early fields have been used to infer prop-109

erties of meteorites parent bodies such as their size and accretion timing (Elkins-Tanton110

et al., 2011, Bryson, Neufeld, & Nimmo, 2019b). The period of magnetism from ∼ 5−111

40 Myr after CAI formation has been attributed to dynamo fields driven by relatively112

rapid core cooling with no core crystallisation. This is an inefficient method of dynamo113

generation as the density difference induced by core cooling is orders of magnitude lower114

than that created during core solidification and requires core cooling rates of > 1K Myr−1
115
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in cores of > 200 km in radius (Nimmo, 2009). Such fast cooling rates are only possi-116

ble in the first few tens of Myr after the formation of solar system when these small bod-117

ies lose heat from their surfaces through semi-molten convecting magma oceans in their118

interiors (Elkins-Tanton et al., 2011, Sterenborg & Crowley, 2013, Bryson et al., 2019b).119

Once convection in the silicate portion of the body ceases, the body cools more slowly120

by conduction which leads to subadiabatic core heat fluxes and no core convection. There-121

fore, a pause in internal dynamo generation may be expected between an early thermally-122

driven epoch and a later period of dynamo generation driven by compositional convec-123

tion during core solidification (Bryson et al., 2019a). This transition from core quiescence124

with no core solidification to the switching-on of a dynamo field as core crystallisation125

starts is observed in the pallasites (Nichols et al., 2016) with the older members of this126

group recording no remanent magnetisation at 100-150 Myr after CAI formation but younger127

members recording a remanence at 200-270 Myr after CAI formation (Figure 1). The128

exact timing and duration of this pause between thermally- and compositionally-driven129

dynamo activity will depend strongly on the size of the meteorites’ parent body and its130

core sulfur composition, which controls its liquidus temperature. The control of these131

factors on the properties of any pause in magnetism has led to the diffuse nature of the132

boundary between the last two epochs in Figure 1.133

The youngest period of magnetism from ∼ 65 − 250 Myr after solar system for-134

mation has been linked to dynamo fields generated during core crystallisation on the par-135

ent bodies (Bryson et al., 2015, Bryson et al., 2019a and Maurel et al., 2020). The ex-136

act mode of core crystallisation in planetesimals is uncertain and may proceed from a137

nucleus outward (as with the Earth’s inner core) or inwards from the core-mantle bound-138

ary (CMB), depending predominantly on the size of core and its light element content139

(Williams, 2009). If the core solidifies outwardly, these bodies could generate a dynamo140

through the same mechanism as the Earth by convection driven primarily by the expul-141

sion of light elements at the inner core boundary. However, if the core starts crystallis-142

ing inwardly from the CMB, dynamo generation cannot be generated directly by the re-143

jection of light elements from the advancing solid. Instead, it has been proposed that dy-144

namo activity could have been powered by the remelting of solid ’iron snow’ as it falls145

into the interior of the core as has been proposed for Ganymede (Rückriemen et al., 2015),146

or driven by the delamination of solidified iron from the CMB, as proposed for the IVA147

meteorite parent body (Neufeld et al., 2019). The timing and duration of any late-stage148
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fields produced will depend on the dynamo generation mechanism, which depend on the149

mode and direction of solidification, and the resultant thermal and compositional strat-150

ification as this controls the fluid density and hence the drive for vigorous convection.151

The sulfur concentration of the core is critical to these processes as this element has a152

strong influence on the liquidus temperature of Fe-FeS alloys with pure Fe melting at153

1810 K and eutectic Fe-FeS at 1234 K (Sterenborg & Crowley, 2013).154

In this study, we aim to elucidate the first period of magnetic field generation in155

asteroid-sized bodies from ∼ 5 − 40 Myr after CAI formation that has been linked to156

dynamos created by thermal convection in planetesimal cores alone. The ability for asteroid-157

sized bodies to generate thermally-driven dynamos depends on both the rate at which158

their cores cool and the distance over which their core convects. However, whether a core159

is able to convect during this period is uncertain for the following reason. Differentia-160

tion in these bodies is driven by the decay of the short-lived radioisotope, 26Al , which161

partitions into the silicate mantle during core formation. This is expected to lead to a162

period during which the mantle becomes hotter than the core due to the continued de-163

cay of 26Al while internal heating is absent in the core. The diffusion of heat from the164

magma ocean into the top of the core will lead to the development of a stable thermal165

stratification in the core. Once the core starts to cool, this stable thermal stratification166

will inhibit core convection and thus dynamo generation. The duration and mechanism167

of core formation are therefore important as they will control the extent to which this168

stable stratification develops. Previous studies that investigate the possibility of ther-169

mally driven dynamo generation in planetesimals such as Elkins-Tanton et al. (2011) and170

Bryson et al. (2019b) assume that core formation is instantaneous and do not explicitly171

model the build up and subsequent decay of any thermal stratification in the core. We172

include these core formation processes in our models to better constrain the effects of173

accretion and core formation on thermally driven dynamo generation and to improve our174

understanding of what the timing and duration of these early fields can tell us about the175

thermal and accretionary history of planetesimals.176

We do this by building a 1D model of a planetesimal’s thermal and structural evo-177

lution during accretion, differentiation, and magma ocean convection. We then use ex-178

isting scaling laws to convert the predicted heat flux out of the core to a magnetic Reynolds179

number, which we use to predict whether a core is capable of generating a dynamo field.180

This is a similar approach to that taken by Elkins-Tanton et al. (2011), Sterenborg and181
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Crowley (2013) and Bryson et al. (2019b). These studies demonstrated that thermally-182

driven dynamo generation lasting for longer than 10 Myr is possible in large planetes-183

imals. However, the minimum planetary radius required for dynamo generation varies184

among these studies with Rp > 200 km, Elkins-Tanton et al. (2011); Rp > 320 km,185

Bryson et al. (2019b) and Rp > 500 km, Sterenborg and Crowley (2013). We build on186

these previous studies by including the gradual accretion and differentiation of planetes-187

imals and assess the extent to which these processes affect the thermal structure of the188

core and hence any ability to generate a thermal dynamo. Moreover, the inclusion of these189

processes allows us to constrain the timescale of planetesimal accretion from the prop-190

erties of the magnetic field it generates for the first time. Gradual accretion of chondrules191

to the planetesimal’s surface, as described in Johansen et al. (2015), also allows for the192

development of partially differentiated planetesimals. We then use our model results to193

constrain the accretionary history of the angrite parent body, which had an active dy-194

namo field at 11 Myr after CAI formation (Wang et al., 2017). Finally, we use the re-195

sults of our modelling to discuss the paleomagnetic record of early magnetic field gen-196

eration in planetesimals.197
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Figure 1. Meteorite Paleomagnetic Record with data from Carporzen et al., 2011, Fu

et al., 2014a, Fu et al., 2014b, Cournede et al., 2015, Bryson et al., 2015, Gattacceca et al., 2016,

Nichols et al., 2016, Weiss et al., 2017, Wang et al., 2017, Maurel et al., 2018, Bryson et al.,

2019a, Borlina et al., 2020, Fu et al., 2020, Maurel et al., 2020, Cournède et al., 2020 and Bryson

et al., 2020. Points represent meteorites where the age of the magnetic remanence has been dated

using a geochronometer and the analytical uncertainty on this age is shown by the error bars.

Bars represent meteorites where the age of the magnetic remanence is inferred from a separate

measurement (e.g., cooling rate). Orange markers correspond to thermoremnant magnetisations

(TRMs); blue markers correspond to chemical transformation remnant magnetisations acquired

during aqueous alteration (CTRMs). Filled markers represent samples where remnence was im-

parted by a magnetic field > 2µT . The open markers denote meteorites which experienced a

magnetic field < 2µT indicating they experienced a weak or null magnetic field. The grey zones

represent times at which there appears to have been an absence of magnetic field generation in

the early solar system. The diffuse boundaries of these zones represents the uncertainty of the

timings of these magnetic and non-magnetic epochs. Whether the R chondrites experienced the

early nebula field or an internal dynamo field is uncertain due to the large ±17 Myr on the age

of the remanence. The R chondrites could also have recorded a remanence between 4 − 6 Myr

after CAI formation, which would argue against the pause in magnetic field generation in the

early solar system recorded by other meteorite groups. The uncertainty on the Pb-Pb age of the

angrite, Angra dos Reis, is ±0.1 Myr (Weiss et al., 2017).–9–
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2 Thermal Evolution Model198

2.1 Model Overview199

Our model considers the thermal evolution of a planetesimal, from accretion and200

differentiation through to magnetic field generation and the cessation of magma ocean201

convection. The thermal evolution of these bodies can be split into five stages (Figure202

2). In Stage 1, the planetesimal gradually accretes chondritic material to its surface (Johansen203

et al., 2015) whilst it is heated by the radioactive decay of the short-lived radioisotope,204

26Al . This leads to metal melting at ∼ 1200 K followed by partial melting of the sil-205

icates up to ∼ 1600 K. The decrease in viscosity caused by the presence of > 20 wt%206

silicate melting leads to differentiation and the onset of convection across a portion of207

the planetesimal. The initiation of this process marks the start of Stage 2 when core for-208

mation can commence as shear strains are introduced that create pathways down which209

the metal melt can flow to the centre of the body. The differentiation into a core and210

overlying semi-molten magma ocean leads to partitioning of 26Al into the magma ocean211

and a period during which the magma ocean continues to produce heat and can become212

hotter than the core. The diffusion of this heat into the core can lead to the development213

of a stably stratified thermal structure at shallow depths in the core, which can inhibit214

core convection and dynamo generation. Once the 26Al in the mantle is extinct, the plan-215

etesimal begins cooling. This gradually causes any stratification in the core to be removed216

(Stage 3), leading to convection in the core and the potential for dynamo generation (Stage217

4). The model ends with the cessation of convection in the silicate portion of the plan-218

etesimal (Stage 5). We predict the timing and duration of any dynamo fields generated219

by using scaling laws from Olson and Christensen (2006), which relate the superadia-220

batic heat flux out of the core to its magnetic Reynolds number.221

Stage 1, which consists of the accretion and initial heating of the planetesimal, is222

similar to that described in Neumann et al. (2012). However, here we do not model core223

formation and differentiation using multiphase flow between the silicate and metal melts224

and solids. Instead, we argue that these processes occurred rapidly after the onset of con-225

vection in the planetesimal (Bryson et al., 2019b). The presence of magma oceans on226

planetesimals has been hotly debated (Wilson & Keil, 2017) due to uncertainties in the227

speed at which melts segregated, the rate of which is a function of the grain size distri-228

bution of the solid (Lichtenberg et al., 2019) and the density difference between the melts229
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and solid residue (Fu & Elkins-Tanton, 2014). Here, we instead treat the magma ocean230

as a crystal slurry with a highly temperature-dependent viscosity that convects if the231

Rayleigh number is high enough. The presence of a convecting magma ocean increases232

the rate of core cooling, which has been shown in previous studies to drive thermal con-233

vection in the core that is vigorous enough to generate a dynamo field (Bryson et al.,234

2019b). In this work, we build on this earlier model by explicitly considering stratifica-235

tion at the top of the core immediately following core formation and include the effects236

of gradual accretion and core formation on the thermal state of the core, with implica-237

tions for thermal dynamo generation.

1. Accretion 2. Differentiation and
Core Thermal Stratification

3. Erosion of Core Stratification

4. Core Convection

5. Magma Ocean
Convection Stops

Undifferentiated,
Chondritic

Differentiated
Silicate

Liquid
Fe-FeS

Hot

Cold

Key

Figure 2. Schematic of planetesimal thermal evolution Grey, green and orange regions

represent undifferentiated chondritic, silicate mantle and core material respectively. Shading in

a given region (e.g. orange (cold) to yellow (hot) in the core during Stage 2) represents thermal

stratification across the region. Diffusive heating of the core during the first 4 Myr of the plan-

etesimal’s history could lead to a stably stratified core that inhibits core convection and dynamo

generation. This stratification must be eroded (Stage 3) before the core can convect and poten-

tially generate a dynamo field (Stage 4). Finally, the thermal forcing wanes and magma ocean

convection stops (Stage 5).

238
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2.2 Model Description239

We begin our calculations of planetesimal evolution with an initial seed radius R0240

at time t0, composed of cold, porous chondritic material that has 26Al distributed ho-241

mogeneously throughout. The material has an initial temperature, T0 = 200 K, and it242

has an initial porosity φ0 = 0.25 that is similar to the porosity of surface lunar rocks243

(Warren, 2001). This porosity gives the material an initial density of244

ρ0 = ρb(1− φ0), (1)

where ρb is the bulk density of the body (both silicate and metal portions). For a plan-245

etesimal that contains sufficient metal to form a core that is half the body radius, we set246

ρb = 3500kg m−3, which results in ρ0 = 2625 kg m−3, given the initial porosity of247

25% .248

Stage 1 of the model consists of the diffusive heating of this seed planetesimal by249

the decay of 26Al whilst the planetesimal accretes chondritic material to its surface. As250

the chondritic material heats up, it sinters and loses its porosity, which leads to a de-251

crease in planetary radius as well as an increase in the thermal conductivity of the body.252

The power available from the decay of 26Al to heat up the planetesimal depends on the253

time at which the material is accreted to the body. 26Al has a half-life of t 1
2

= 0.717 Myr254

(Neumann et al., 2014) and is therefore effectively exhausted 3−4 Myr after CAI for-255

mation. The heating power per unit mass from the decay of 26Al decay as a function256

of time is given by257

H = H0Al0XAle
− [ln2]t

t1/2 , (2)

where H0 is the heating power per unit mass of 26Al at t = 0 Myr, Al0 = 5 × 10−5
258

is the ratio of the concentration of 26Al to 27Al in the accreting material at t = 0 Myr259

for which we take the canonical value (Elkins-Tanton et al., 2011) and XAl = 1.4wt%,260

the weight percentage of aluminium in the accreting material (Doyle et al., 2015).261
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The planetesimal grows from its initial to its final radius, Rp, over a time interval,262

∆tac. We have adopted a general exponential form for the accretion law (Neumann et263

al., 2012) so that the radius of the protoplanetary body is given by264

Rφ0
(t) = R0,φ0

(
Rp,φ0

R0,φ0

) (t−t0)
∆tac

(3)

where the Rφ0
is the uncompacted, high porosity radius, R0,φ0

= Rφ0
(t = t0) is the265

initial uncompacted seed radius and Rp,φ0
is the final uncompacted radius at time t =266

t0 + ∆tac.267

The newly accreted material is added to the surface of the planetesimal with the268

same initial temperature and porosity as the material that originally made up the start-269

ing seed planetesimal. We do not consider heating by impacts as this is a localised and270

stochastic heat source or heating by release of gravitational energy as the magnitude of271

this is negligible compared to the heating provided by the decay of 26Al for small plan-272

etary bodies. 26Al is distributed homogeneously within the added material with a heat-273

ing power given by equation 2 evaluated at the time the material was added.274

As the 26Al decays, it heats up the planetesimal. Some of this heat is lost from275

the surface of the planetesimal (see below and Supporting Figure 1). Initially, heat loss276

occurs by conduction whilst the chondritic material is still cold and highly viscous. The277

conductive temperature profile throughout the body is modelled by a 1-D radial diffu-278

sive heat transfer equation that accounts for the internal heating provided by 26Al ,279

ρcp
∂T

∂t
=

1

r2
∂

∂r

[
kr2

∂T

∂r

]
+H, (4)

where ρ(φ) is the density of the material, cp(φ) is the specific heat capacity of the ma-280

terial and k is the thermal conductivity of the material. Both the density and thermal281

conductivity of the material are functions of its porosity φ(r, t), which sinters and loses282

its porosity at ∼ 700 K (Yomogida & Matsui, 1984). Further description of this sinter-283

ing process and associated porosity evolution is detailed below.284

In general, the surface temperature of the planetesimal is given by matching the285

heat flux to the surface from the interior with the radiative flux from the Sun and the286

radiative heat flux from the surface to space. However, for the range of surface heat fluxes287
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produced by the cooling of the body’s interior (0.1−20 W m−2), the equilibrium sur-288

face temperature for a planetesimal situated in the asteroid belt varies by < 10 K through-289

out its evolution (Supporting Figure 1). Therefore, we instead impose a constant sur-290

face temperature, Ts = 200 K, when solving equation 4 following the same approach adopted291

by Henke et al. (2013) and Bryson et al. (2019b). We additionally impose regularity of292

the thermal profile at the planetesimal centre,293

∂T (0, t)

∂r
= 0. (5)

As the chondritic material heats up, it sinters and its porosity decreases. This leads294

to an increase in both the density of the material and its thermal conductivity (Krause295

et al., 2011, Warren, 2011). Within our model the porosity evolution with temperature296

is given by (Yomogida & Matsui, 1984, Neumann et al., 2014)297

∂[ln(1− φ)]

∂t
= Aφσ

2
3
g b

−3 exp

(
−Eφ
RgT

)
, (6)

where Aφ = 3.8×10−5 N− 2
3 m

5
3 is an experimentally-determined pre-factor (Schwenn298

& Goetze, 1978), σg is the stress acting on the grain boundaries , b is the size of the grains299

(which we take to be 1 mm), Eφ is the activation energy for the sintering process, Rg300

is the gas constant and T is the temperature of the grain. The stress acting on the grain301

boundary is a function of the hydrostatic pressure the grain is under. The hydrostatic302

pressure is given by303

∂P

∂r
= −ρ(r)g(r), (7)

subject to the surface condition304

P (R(t), t) = 0, (8)

where R(t) is the planetesimal radius at that time. The gravitational acceleration is given305

by306

g(r) =
G

r2

∫ r

0

s2ρ(s)ds, (9)
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where the density structure ρ(s) is calculated from the porosity structure of the body.307

Following Kakar and Chaklader (1967) and Rao and Chaklader (1972), the grain308

boundary stress is given by309

σg =
πP

2
√

3
[
−1 + [4

√
3(1− φ)

2
3 f2(φ)]

] , (10)

where310

f(φ) =
1

2

(
3

π(2
√
g(φ)(3− g(φ))− 3)

) 1
3

, g(φ) =

(
1− φ0
1− φ

) 2
3

. (11)

The Arrhenius term on the right-hand side of equation 6 leads to a rapid loss of311

porosity from 25% to 0% at 700 K and an increase in thermal conductivity by a factor312

of 10 (Warren, 2011). Warren (2011) gives an expression for the porosity dependence of313

the thermal conductivity in lunar lithologies (which we take to be good analogue ma-314

terials)315

k(φ) = km exp(−12.46φ), (12)

where km is the thermal conductivity of the compacted material. The thermal conduc-316

tivity of the planetesimal depends on the type of chondritic material from which it is made.317

In this work, we use three different thermal diffusivities κ = k
ρcp

=6, 9, 12×10−7 m2 s−1
318

to cover this range and enable better comparison of the model results to the paleomag-319

netic record. These are the same thermal diffusivities used by Bryson et al. (2019b).320

After sintering and compaction at 700 K, the body continues to heat up due to the321

decay of 26Al . The onset of Fe-FeS metal melting occurs at the eutectic temperature322

of Teu = 1234 K (Scheinberg et al., 2016). Depending on the sulfur content of the metal,323

complete metal melting will occur over the temperature interval of 1234−1810 K. For324

simplicity, we assume that the metal in our model is at the Fe-FeS eutectic composition325

of 32 wt% S so that metal melting occurs entirely at 1234 K. When a node reaches the326

metal melting temperature, the temperature of the node is held constant until all the327

metal is melted. The change in metal melt fraction, χFe, is given by328
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ρFeLFe
∂χFe
∂t

=


0, T < 1234 K, χFe = 0 wt%

1
r2

∂
∂r (kr2 ∂T∂r ) +H, T = 1234 K, 0 wt% < χFe ≤ 100 wt%

0, T > 1234 K, χFe = 100 wt%,

(13)

where ρFe and LFe are the density and latent heat respectively of eutectic Fe-FeS metal329

solid. If all the metal present in the body melts and it fully differentiates, the body will330

contain a total of 12.5 vol% metal melt, which will form a core with a radius of half the331

planetary radius. Once the metal is fully melted, the body continues to heat up follow-332

ing equation 4.333

This metal melt is more dense than the surrounding solid silicates and could per-334

colate through the solid silicate matrix to the centre of the body to form a core. How-335

ever, whether a core can form in a small planetary body by percolation of metal melt336

through a solid silicate matrix is uncertain. This is due to the high dihedral angle be-337

tween the metal melt and silicate grains (> 120◦, Shannon & Agee, 1996) which requires338

a high metal melt fraction (> 10%, Laporte & Provost, 2000) to be present before per-339

colation can start in the body. However, experiments by Holzheid et al. (2000) show that340

the dihedral angle of a eutectic Fe-FeS melt is 94− 106◦ which decreases the percola-341

tion threshold to 3− 7vol% metal melt (Laporte & Provost, 2000) and promotes core342

formation by percolation (Néri et al., 2019).343

The low gravity of these planetesimals and high viscosity (> 1020 Pa s) of the solid344

silicate matrix could lead to low percolation velocities and long (> Myr) core formation345

timescales (Supporting Figure 2). These long core formation timescales contrast with346

the measured Hf-W ages of magmatic iron meteorites which imply differentiation and347

core formation in their parent bodies was rapid and occurred by 0.6−2 Myr after CAI348

formation (Kruijer et al., 2012, Kruijer et al., 2014).349

If the melt fraction of the silicates reaches > 50wt%, the rheological transition from350

solid-like to liquid-like viscosities dramatically decreases the core formation timescales351

to match those determined from Hf-W dating. However, whether such high melt frac-352

tions were present in meteorite parent bodies is uncertain (Wilson & Keil, 2017) and it353

is more likely that the presence of > 20wt% silicate melt fraction in the body will pro-354

mote the onset of convection (Sterenborg & Crowley, 2013 and Bryson et al., 2019b) which355

provides shear stresses that create melt pathways along which the Fe-FeS can easily flow356
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to the centre to form a core (Hustoft & Kohlstedt, 2006). Given that 26Al quickly heats357

the interior of the body up to supersolidus temperatures on 100 kyr timescales (Support-358

ing Figure 2), it is likely that the main epoch of core formation occurs during solid-state359

convection of the body with only a minor component of Fe-FeS melt percolating to the360

centre of the body prior to this. Thus, in our model, we consider the onset of differen-361

tiation and core formation (Stage 2) as the onset of convection, which requires > 20wt%362

silicate melting.363

The silicate portion starts to melt at 1400 K and the melt fraction increases lin-364

early across the interval 1400− 1800 K. As such, the silicate melt fraction is365

χsil =
T − Tsil,s

Tsil,l − Tsil,s
, (14)

where Tsil,l and Tsil,s are the silicate liquidus and solidus temperatures, respectively.366

We take into account the latent heat required for this melting by using an effec-367

tive specific heat capacity (Merk et al., 2002),368

cp,eff = cp,m

[
1 +

Lsil
cp,m(Tsil,l − Tsil, s)

]
, 1400K < T < 1800K (15)

where Lsil is the silicate latent heat. Given the values in Table 1, the modified heat ca-369

pacity is approximately 2 cp,m.370

Both the increase in temperature and melt fraction leads to a decrease in the vis-371

cosity of the silicate material. Below T < 1600 K or χsil < 50wt% silicate melt frac-372

tion, the silicates have a relative high viscosity > 1014 Pa s. There is a rapid decrease373

in viscosity from 1600 − 1650 K around the critical melt fraction of χsil ' 50wt% as374

the silicates transition from a solid-like rheology to a liquid-like rheology with a viscos-375

ity < 102 Pa s. This temperature-dependent viscosity is a modified version of the vis-376

cosity profile adopted by Sterenborg and Crowley (2013) and Bryson et al. (2019b) and377

has a similar form to the observed dependence on crystal fraction as described by Costa378

(2005). We adopt a temperature-dependent silicate viscosity of the form379

log10[η(T )] = 64− T

29
− 5 tanh

(
T − 1625

15

)
(16)
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where the constants have been fitted to the profile used in Sterenborg and Crowley (2013)380

and Bryson et al. (2019b) as shown in figure 3. At temperatures below the rheological381

transition (< 1600K), the silicates behave like a Newtonian fluid with an Arrhenius tem-382

perature dependence.383

Convection first starts over that portion of the planetesimal where the local Rayleigh384

number exceeds a critical value. This leads to the start of Stage 2 and core formation385

below a semi-molten magma ocean. The planetesimal does not need to be fully accreted386

by this point. The local Rayleigh number, Ra(r), is defined between a given radius and387

the centre of the body as this is the distance over which the convection may occur. The388

local Rayleigh number given by389

Ra(r) =
ραsilgr

3(T (r)− Tb)
κη

, (17)

where all the terms are evaluated at the given radius, αsil is the thermal expansivity of390

the silicates and Tb is the temperature of the central node of the body. The critical Rayleigh391

number required for a given radius to start convecting is given by (Solomatov, 1995 Robuchon392

& Nimmo, 2011)393

Racrit(r) = 20.9

[
Eη

RgT 2
ref

(T (r)− Tref )

]4
, (18)

where Eη is the activation energy for vacancy movements required for diffusion creep (300 kJ mol−1,394

Sterenborg and Crowley (2013)) and Tref is the viscosity reference temperature of 1800 K.395

This scaling of the critical Rayleigh number was developed for Newtonian fluids with an396

Arrhenius temperature dependence, which is how the silicates in our viscosity model be-397

have below 1600K in the temperature range over which they will start convecting.398

There are two endmembers predicted by this model of accretion and differentia-399

tion which arise from comparing the timescale of accretion to the ∼ 100 kyr timescale400

over which 26Al heats up the interior of a body to a high enough temperature (1450-<401

1600 K) to drive melting and differentiation (Supplementary Figure 2). If the planetes-402

imal accretes rapidly over a timescale on the order of 104−105 years, it heats up quickly403

with a small temperature difference within the body (with the exception of the top 1-404

2km which are cold due to radiant heat loss to space). Therefore, since the Rayleigh num-405

ber is proportional to r4 (as Ra ∝ r3g where g ∝ r), the peak in the Rayleigh num-406
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ber occurs at radii near the surface. This leads to convection starting over most of the407

planetary radius. After the onset of convection, the liquid metal is rapidly segregated408

to the centre of the body to form a core and the semi-molten silicates form a convect-409

ing magma ocean that loses heat to space. Core formation, in this case, is short-lived410

(a few 100 kyr) with the core forming at close to its final size of half the planetary ra-411

dius. If the planetesimal instead accretes more gradually over a duration of 105− 106412

years, there is a large temperature difference between the interior of the body and shal-413

lower depths. This leads to very high (> 1020Pas) viscosities in outer layers of the body.414

This high viscosity lowers the Rayleigh number at higher radii. Therefore, the radius with415

maximum Rayleigh number, which becomes supercritical first, is at an intermediate ra-416

dius and the body initially starts convecting over only a portion of the interior. A small417

core forms from the liquid metal in this portion that then grows as the undifferentiated418

material above the magma ocean continues to heat up and subsequently differentiates.419

In this case, complete core formation can take on the order of a million years.420

After the body starts convecting over some interior portion, the liquid metal is in-421

stantly segregated to form a core. The metal-depleted silicate portion forms a convect-422

ing magma ocean of depth d at a well-mixed magma ocean temperature Tm given by the423

average temperature of the differentiated portion. The core’s initial temperature Tc is424

equal to the magma ocean temperature at differentiation. Due to the lithophilic nature425

of aluminium, we assume that the 26Al segregates entirely into the semi-molten silicate426

magma ocean. Technically, the 26Al will partition into the silicate melt fraction as alu-427

minium is an incompatible element. Rapid, upwards migration of this 26Al− enriched428

melt could lead to the removal of this heat source from the interior of the body to its429

surface (Neumann et al., 2014). However, the removal of this melt would greatly increase430

the viscosity of the interior (Figure 3) and hinder magma ocean convection, which is re-431

quired to enable sufficiently fast core cooling rates to generate thermal dynamo fields in432

planetesimals (Bryson et al., 2019b). Instead, we assume that the silicate melt remains433

in the interior and it is always in good thermal contact with the solid silicate phases. There-434

fore, we treat 26Al as well mixed throughout the magma ocean. The partitioning of 26Al435

into the magma ocean removes the heat source from the core. We note that including436

the short-lived radioisotope 60Fe as a heat source for the core only leads to a 20 K tem-437

perature increase in the core over 10 Myr and the heat from the release of gravitational438

potential energy on core formation is also negligible (Henke et al., 2013).439
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The magma ocean and any overlying undifferentiated chondritic outer layers con-440

tinue to heat up as the 26Al decays further. The magma ocean loses heat both to the441

surface and to the core as the base of the magma ocean becomes hotter than the top of442

the core, as shown schematically in Figure 4. The heat flux lost to the surface by con-443

vection in the slurry-like magma ocean is given by444

fs = −km
(Ts − Tm)

δu
, (19)

where km is the thermal conductivity of the magma ocean. The boundary layer thick-445

ness at the top of the magma ocean δu is given by (Solomatov, 1995)446

δu = d

[
γ(Tm − Ts)

c1

] 4
3
(
Ram
Ram,c

)− 1
3

, (20)

where c1 = 8 , Ram is the Rayleigh number of the magma ocean as given by equation447

17 and Ram,c is the critical Rayleigh number for the cessation of convection in the magma448

ocean. A typical value of Ram,cr = 1000 is used here (Sterenborg & Crowley, 2013) in449

contrast with the scaling used for the onset of convection (Equation 18) as convection450

in the magma ocean homogenises the temperature and hence the viscosity of the magma451

ocean. The thickness of the boundary layer at the bottom of the magma ocean is (Solomatov,452

1995)453

δl = d

[
γ(Tcmb − Tm)

c1

] 4
3
(
Ram
Ram,c

)− 1
3

. (21)

Heat is passed across the upper boundary layer into an undifferentiated chondritic454

lid by diffusion. We solve the 1-D heat diffusion equation, taking into account any sil-455

icate or Fe-FeS melting, for the thermal structure in the boundary layer and chondritic456

crust. The bottom boundary condition in this case is457

T (Rm, t) = Tm, (22)

where Rm is the radius of the top of the magma ocean.458

When the magma ocean is hotter than the top of the core, heat passes into the top459

of the core by diffusion across the core-mantle boundary (CMB). The heat flux from the460

magma ocean to the CMB is given by461
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f1 = −km
∂T

∂r

∣∣∣∣
r=R+

cmb

. (23)

The heat flux from the CMB into the top node of the core is similarly given by462

f2 = −kc
∂T

∂r

∣∣∣∣
r=R−

cmb

. (24)

The temperature of the CMB, Tcmb, is calculated at all times by assuming flux conti-463

nuity across the CMB (f1 = f2). The thermal evolution of the magma ocean is thus464

given by465

ρmcp,mVm
∂Tm
∂t

= −fsAs + f1Acmb + hmρmVm, (25)

and is driven by the power lost to the surface across the top of the magma ocean with466

area As, the power passed into the core across the area of the CMB Acmb, and the ra-467

diogenic power production from the decay of 26Al in the volume of the magma ocean468

Vm, respectively. We find that immediately after formation of the magma ocean, the magma469

ocean heats up rapidly. The core is subsequently heated diffusively from above by the470

radiogenic magma ocean. A hot layer of liquid iron develops at the top of the core and471

the core’s thermal structure becomes stably stratified. While the CMB heat flux is di-472

rected into the core resulting in a thermal stratification, we calculate the temperature473

profile of the core by solving the 1-D heat diffusion equation (equation 4), subject to the474

flux continuity condition at the CMB.475

Further differentiation of any chondritic crust at the surface of the body can oc-476

cur if there is still sufficient 26Al present. We apply the same Rayleigh number-based477

approach to this lid as we did for the entire body. As layers of the lid reach super-critical478

Rayleigh numbers, the silicate portion from these layers is added to the magma ocean479

and the liquid metal added to the top of the core. We assume the addition of both sil-480

icates to the magma ocean and metal to the core is instantaneous. We also assume the481

silicates mix in instantly and adjust the temperature of the magma ocean to a new, well-482

mixed average temperature.483

As the liquid metal passes through the magma ocean, we assume it thermally equi-484

librates and is added to the top of the core at the temperature of the magma ocean. If485
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the magma ocean is hotter than the core, this newly added material will sit at the top486

of the core. If cold material is added to the top of the core, it will sink and mix with the487

warmer core material as it falls. This will act to mix and destroy any pre-existing strat-488

ification. We model this process by mixing the added cold material into the core to the489

depth of neutral buoyancy of the mixture. Core formation and differentiation (Stage 2)490

end when the temperature of the upper boundary of the magma ocean begins to decrease,491

as this indicates that no further material is prone to convection and differentiation.492

By 3 − 4 Myr after CAI formation, all the 26Al has effectively decayed and the493

planetesimal no longer contains any appreciable heat sources. The magma ocean and any494

remaining chondritic lid starts to cool. Initially, if the magma ocean is hotter than the495

top of the core, the magma ocean will continue to pass heat into the top of the core as496

well as losing it to space. However, once the magma ocean and CMB becomes colder than497

the top of the core, the core will also start to cool. The core can lose this heat either dif-498

fusively, if the core’s thermal structure remains stably stratified or the magma ocean cool-499

ing leads to a sub-adiabatic heat flux out of the CMB (< 0.01 W m−2), or by convec-500

tion once portions of the core are no longer stably stratified (Stage 3, erosion of core strat-501

ification). The stably stratified region of the core is defined as the region in which ∂T
∂r >502

0. While the core is stably stratified (which occurs at early times for bodies which ac-503

crete over timescales of less than ∼ 1 Myr), the heat fluxes in and out of the CMB are504

given by equations 23 and 24 and the core temperature profile is calculated using equa-505

tion 4.506

After sufficient magma ocean cooling, the top of the core becomes colder than the507

interior of the core and convection may proceed in the core. This marks the start of Stage508

3, in which any thermal stratification in the core is eroded. The top of the core is mixed509

down to a level of neutral buoyancy (see Figure 4). This results in a well-mixed isother-510

mal profile from the CMB to the depth of neutral buoyancy. At first, this mixed region511

only reaches into the top few kilometres of the core. The radius of the bottom of the well-512

mixed region is given by Rcon and its thickness by dcon. This well-mixed region can now513

convect when the core cools further whilst the colder, stratified interior passes heat dif-514

fusively. The heat flux from the convecting portion of the core to the CMB is given by515

f2 = −kc
(Tcmb − Tc)

δc
, (26)
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where Tc is now the temperature of the well-mixed convecting portion of the core and516

δc =

(
κcηc

ρcαcgc(Tc−Tcmb)

) 1
3

is the boundary layer thickness at the top of the core. The517

subsequent temperature change of the core’s convecting region, with volume Vcon, is given518

by519

ρccp,cVcon
∂Tc
∂t

= −f2Acmb + f34πR2
con, (27)

where

f3 = −kc
∂T

∂r

∣∣∣∣
r=Rcon

(28)

is the heat flux from of the base of the convecting region to the top of the stratified layer.520

Further core cooling erodes the stable stratification and the convecting region extends521

into the deep interior of the core. The stratification in the core is completely removed522

(Stage 4) approximately at the time that the magma ocean temperature cools to the tem-523

perature at which differentiation first occurred. This corresponds to the time at which524

all the heat added to the core in the first 3− 4 Myr is removed.525

In Stage 4, we continue to calculate the temperature evolution of the convecting526

magma ocean using equation 25. However, the flux from the CMB to the base of the magma527

ocean now occurs over the lower boundary layer so that528

f1 = −km
(Tm − Tcmb)

δl
. (29)

As the magma ocean cools, both its top and bottom boundary layers grow and the529

convecting depth decreases. This, along with the increase in viscosity, lowers the magma530

ocean’s Rayleigh number. Once the Rayleigh number of the magma ocean becomes sub-531

critical, Ram < 1000, convection shuts off in the silicate portion of the planetesimal and532

heat is lost throughout the entire mantle by diffusion. This leads to a large drop in the533

CMB heat flux and core cooling becomes subadiabatic and convection ceases (Bryson534

et al., 2019b). Therefore our model ends when the magma ocean stops convecting (Stage535

5) since in general, planetesimals cannot generate a dynamo driven by thermal convec-536

tion alone once the mantle is cooling conductively (Bryson et al., 2019b).537

Finally, we quantify whether the planetesimal was able to generate a thermal dy-538

namo during this early period of magma ocean convection by calculating the magnetic539
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Reynolds number of the core at each time step. The magnetic Reynolds number Rem =540

ul/λ is a dimensionless measure of the strength of the convective forcing to that of the541

Ohmic dissipation in a dynamo where u is a characteristic convection velocity, l is the542

length scale of the convection and λ = 1.3 m2 s−1 is the magnetic diffusivity of liq-543

uid iron. In this case, we take the length scale of the convection as the depth of the con-544

vecting portion of the core. The velocity of the convective motions in the planetesimal’s545

core can be estimated using a balance of the magnetic, Archimedean and Coriolis (MAC)546

forces (Weiss et al., 2010),547

u =

(
2πGαcRcFdrive

cp,cΩ

) 2
5

. (30)

Here Ω is the angular rotational frequency of the planetesimal for which we adopt a value548

of Ω = 1.7×10−4 s−1 (a period of 10 hours) to enable direct comparison of our results549

with Bryson et al. (2019b), and Fdrive = f2 − fad, the superadiabatic heat flux out of550

the core. The core adiabatic heat flux is551

fad =
kcαcgcTc
cp,c

. (31)

There are multiple velocity scalings used in Weiss et al. (2010) and the MAC scal-552

ing we have adopted here gives velocity estimates of 10-100 times lower than the other553

possibilities and is therefore a conservative estimate. For dynamo generation, the crit-554

ical value of Rem is between 10 and 100 (Weiss et al., 2010). We adopt to the lower value555

of 10 in line with Sterenborg and Crowley (2013) and Bryson et al. (2019b). This is done556

to enable direct comparison between our results and theirs so the effects of gradual ac-557

cretion and core formation on thermal dynamo generations can be seen clearly, without558

changing any other parameters which might promote or hinder dynamo activity such as559

the critical magnetic Reynolds number. Throughout each model run, we record any time560

periods during which the magnetic Reynolds number is super critical and therefore the561

times when thermally driven dynamo activity is possible. We also record the maximum562

achieved Rem and the core cooling rate at these times.563

In order to solve the diffusive components of our model (equations 4 and 13), we564

use a forward-in-time centred-in-space (FTCS) flux conservative scheme with a time step565

of 300 yrs and initial high-porosity radial node spacing of 700m. To account for com-566
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paction and loss of porosity as the chondritic material heats up, the radial node spac-567

ing decreases as the material heat up and becomes less porous. The radial position of568

each node at each time step rji is calculated by conserving mass in each node and alter-569

ing the volume of the node as its porosity and density changes. The porosity dependence570

of the density is given by equation 1.571

Within the diffusive components of the model (e.g. the stagnant lid or the ther-572

mally stratified core layer), the temperature change ∆T ji of a node at radial position i573

and at time step j is574

∆T ji =
δt

ρj−1
i cj−1

p,i

(
∂T

∂r

∣∣∣∣
j−1,i

[
2kj−1
i

rj−1
i

+
∂k

∂r

∣∣∣∣
j−1,i

]
+ kj−1

i

∂2T

∂r2

∣∣∣∣
j−1,i

)
(32)

where575

∂T

∂r

∣∣∣∣
j−1,i

=
1

2

[(
T j−1
i+1 − T

j−1
i

rj−1
i+1 − r

j−1
i

)
+

(
T j−1
i − T j−1

i−1

rj−1
i − rj−1

i−1

)]
, (33)

∂k

∂r

∣∣∣∣
j−1,i

=
1

2

[(
kj−1
i+1 − k

j−1
i

rj−1
i+1 − r

j−1
i

)
+

(
kj−1
i − kj−1

i−1

rj−1
i − rj−1

i−1

)]
, (34)

∂2T

∂r2

∣∣∣∣
j−1,i

=

[(
T j−1
i+1 − T

j−1
i

rj−1
i+1 − r

j−1
i

)
−

(
T j−1
i − T j−1

i−1

rj−1
i − rj−1

i−1

)](
1

2

[
rj−1
i+1 − r

j−1
i−1

])−1

. (35)

We have implemented the code on a highly resolved grid of time steps of 30 yr and576

verified that the model results are independent of the choice of node spacing.577

578
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Parameter Symbol Value Units Reference

Initial Temperature of Accreting Material T0 200 K (Henke et al., 2013)

Initial Porosity of Accreting Material φ0 0.25 (Warren, 2001)

Half-life of 26Al t1/2 0.717 Myr (Neumann et al., 2014)

Heating power of 26Al at t = 0 H0 0.355 W kg−1 (Elkins-Tanton et al., 2011)

26Al / 27Al Ratio at t = 0 Al0 5× 10−5 (Elkins-Tanton et al., 2011)

Weight percentage of Al in Accreting Material XAl 1.4 wt% (Doyle et al., 2015)

Final Radius of Planetesimal Rp km

Initial Radius of Planetesimal R0 km

Start Time of Accretion t0 Myr

Accretion Duration ∆tac Myr

High-Porosity Radial Node Space ∆rφ0 700 m

Radial Node Space Post-Compacting ∆r 636 m

Time Step ∆t 300 yr

Porosity Prefactor Aφ 3.8× 10−5 N− 2
3m

5
3 (Schwenn & Goetze, 1978)

Grain size of Accreting Material b 1 mm

Activation Energy of Sintering Process Eφ 2.51 MJ mol−1 (Neumann et al., 2012)

Fe-FeS Eutectic Temperature Teu 1234 K (Sterenborg & Crowley, 2013)

Density of Solid Metal ρFe 7800 kg m−3 (Bryson et al., 2015)

–
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Latent Heat of Fusion of Metal LFe 270 kJ kg−1 (Bryson et al., 2015)

Silicate Solidus Temperature Tsil,s 1400 K (Sterenborg & Crowley, 2013)

Silicate Liquidus Temperature Tsil,l 1800 K (Sterenborg & Crowley, 2013)

Latent Heat of Fusion of Silicates Lsil 400 kJ mol−1 (Elkins-Tanton et al., 2011)

Mantle Specific Heat Capacity cp,m 850 J kg−1 K−1 (Elkins-Tanton et al., 2011)

Silicate Thermal Diffusivity κ 6, 9, 12× 10−7 m2 s−1 (Opeil et al., 2010)

Specific Heat Capacity of Core cp,c 850 J K−1 kg−1 (Elkins-Tanton et al., 2011)

Thermal Conductivity of Core kc 30 W m−1 K−1 (Opeil SJ et al., 2012)

Thermal Expansivity of Silicates αsil 4× 10−5 K−1 (Sterenborg & Crowley, 2013)

Viscosity Activation Energy Eη 300 kJ mol−1 (Sterenborg & Crowley, 2013)

Viscosity Reference Temperature Tref 1800 K (Robuchon & Nimmo, 2011)

Critical Mantle Rayleigh Number Ram,c 1000 (Sterenborg & Crowley, 2013)

Density of Core Liquid ρc 6980 kg m−3 (Morard et al., 2018)

Thermal Expansivity of Core Liquid αc 9.2× 10−5 K−1 (Nimmo, 2009)

Viscosity of Core Liquid ηc 0.01 Pa s (de Wijs et al., 1998)

Rotational Period tspin 10 hr (Bryson et al., 2019b)

Table 1: Parameters and values used in model

–
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Figure 3. Modelled temperature dependence of the silicate viscosity fitted to the

step functions used by Sterenborg and Crowley (2013) and Bryson et al. (2019b). We treat the

silicate melt and solid as a single phase that undergoes a rheological transition from solid-like be-

haviour to liquid-like behaviour at the critical melt fraction of 50wt% (as marked by the dashed

grey line). This rapid drop in viscosity around the critical melt fraction leads to an increase in

Rayleigh number and promotes the onset of convection in the planetesimal. The red dashed line

shows that at temperatures below the 50 wt% melt rheological transition, the viscosity of the

silicates behaves like a Newtonian fluid with an Arrhenius temperature dependence. Therefore,

our chosen scaling for the critical Rayleigh number required for convection to start, which was

developed from such a fluid (Robuchon & Nimmo, 2011), is robust as in the temperature range

in which these bodies start to convect, the silicates are behaving as a Newtonian fluid (Bryson et

al., 2019b).
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a) Sketch of Model Setup b) Example Temperature Profiles

Figure 4. a) Sketch of 1D model set up and b) Example temperature profiles

through a planetesimal during both magma ocean heating (blue line) and cooling

(green line). Initially the magma ocean is hotter than the core due to partitioning of the 26Al

into the magma ocean. This leads to diffusive heating of the core from above and the build-up of

a stably stratified layer at the top of the core. The temperature profile in the body during this

period resembles that shown by the blue line in b). Once the magma ocean becomes colder than

the top of the core, convection starts up in a thin layer at the top of the core whilst its interior

remains stably stratified. This temperature profile is shown by the green line in b).
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3 Results579

3.1 Thermal Evolution of Case Studies580

In this section, we present the results of the thermal evolution model for three spe-581

cific cases to illustrate the effect of accretion duration and the timescale and process of582

core formation on a planetesimal’s ability to generate a thermally driven dynamo. In these583

cases, the initial radius of the body is 170 km and the final radius is 500 km. Accretion584

starts at 0.8 Myr after CAI formation with the accretion duration varying between the585

three cases. Case 1 (Figure 5) grows ”instantaneously” to its full size in 500 yr. Case586

2 (Figure 6) takes 200 kyr to reach its full size and Case 3 (Figure 7) accretes material587

slowly over 1200 kyr.588

Both Case 1 and 2 result in fully differentiated bodies with 250 km radius cores.589

However, the rapidly accreting body (Case 1) does not generate a thermal dynamo at590

any time whereas the more gradually accreting body (Case 2) generates one from 7−591

21 Myr after CAI formation. This is due to the difference in core formation durations,592

which leads to differences in the thermal structures of the cores created during this pro-593

cess. Case 1 forms a core rapidly that is then heated from above by the superheated magma594

ocean, resulting in a strong (70 K) stable stratification extending tens of kilometres be-595

low the CMB that hinders early core convection. Whole core convection in this case is596

delayed until 40 Myr after CAI formation (while the stratification is gradually removed597

through the passage of heat across the CMB) at which point the body is cooling too slowly598

to generate supercritical CMB heat fluxes. In the more gradual case, the stratification599

at the top of the core is less strong due to the majority of the core forming once the magma600

ocean had heated up to 1610 K (i.e., the inner part of the core is hotter than the instan-601

taneous case, leading to a weaker stratification). This stratification is entirely removed602

by 10 Myr after CAI formation and the whole core convects readily during the period603

of fast magma ocean cooling. This body achieves a supercritical magnetic Reynolds num-604

ber from 7 − 21 Myr after CAI formation. Case 3 accretes slowly with significant ad-605

dition of chondritic material to its surface after 1.8 Myr after CAI formation. This ma-606

terial is depleted in 26Al and therefore has to rely on heat passed upwards from the hot-607

ter interior in order to differentiate. As the body starts to cool, this heat is instead lost608

to space and the 26Al -depleted layers do not melt. This results in a partially differen-609

tiated body with an inner liquid core and convecting magma ocean hidden below an un-610
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differentiated chondritic lid. In this body, the small size of the core leads to subcritical611

magnetic Reynolds numbers.612

3.1.1 Case 1: Instantaneous Accretion613

Figure 5a shows the thermal evolution of a planetesimal growing from an initial614

seed radius of 170 km to a final radius of 500 km in 500 yr as a function of radius and615

time. The position of the core is given by the black dashed line. The temperature of the616

magma ocean and the core (initially the top of the core then the convecting portion of617

the core) as a function of time is shown in Figure 5b and the evolution of the CMB heat618

flux and magnetic Reynolds number are shown in Figures 5 c and d respectively.619

For instantaneous accretion, the body heats up quickly due to the decay of 26Al.620

Due to the speed with which the body accretes to its full size, the body heats up isother-621

mally with only a thin 2 km thick cold lid at the surface, which is cooled by radiative622

heat loss to space. Therefore, at the onset of solid-state convection at 1.1 Myr after CAI623

formation, the inner 480 km of the body differentiates as the Rayleigh number first be-624

comes supercritical close to the surface. A core of radius 240 km and an overlying con-625

vecting magma ocean of depth 240 km form at a temperature of 1505 K. The 26Al par-626

titions into the silicate magma ocean and the core is left without any internal heat source.627

This causes a period of heat transfer between 1.1 Myr and 3.5 Myr after CAI formation628

from the base of the magma ocean across the CMB into the top of the core while the magma629

ocean continues to heat up due to the decay of 26Al as shown by the negative CMB heat630

flux in Figure 5c. The magma ocean reaches its peak temperature of 1620 K at 1.2 Myr631

after CAI formation (Figure 5c). The core grows by an additional 10 km to its final size632

of 250 km as some of the remaining chondritic lid differentiates later between 1.1 and633

1.3 Myr after CAI formation. These later episodes of differentiation lead to the top of634

the core and magma ocean being the same temperature temporarily as the new core ma-635

terial is added to the top of the core at the magma ocean temperature. This results in636

the CMB heat flux going to zero temporarily as seen in Figure 5c. The CMB heat flux637

quickly becomes negative again after these episodes of core formation as the magma ocean638

heats up due to the decay of 26Al. The timing of these further episodes of core forma-639

tion is controlled by the diffusive timescale required to heat the undifferentiated lid suf-640

ficiently for it to start convecting. We have ensured our choice of time step is sufficiently641

fine that this behaviour is fully resolved, as is the subsequent thermal evolution. This642
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step-like behaviour seen in the CMB heat flux is a consequence of the 1D nature of our643

model where core formation occurs in discrete shells whereas in reality, this process would644

be marked by a more continual delamination of parcels of the undifferentiated lid into645

the convecting magma ocean. After 1.3 Myr after CAI formation, differentiation is com-646

plete and the position of the core-mantle boundary becomes fixed.647

The magma ocean remains at a peak temperature Tm > 1620 K from 1.2-3 Myr648

after CAI formation whilst there is still sufficient decay of 26Al present to balance the649

loss of heat from the surface (10 W m−2) and to the core (0.05W m−2). During this pe-650

riod, the top 5 km of the core is heated passively from above to a temperature of 1620 K651

whilst the interior of the core remains at the cooler differentiation temperature of 1505 K.652

This introduces a stable thermal density stratification in the core that inhibits core con-653

vection.654

The magma ocean remains hotter than the top of the core until 9 Myr after CAI655

formation. During this period, the core is heated diffusively from above and this causes656

the core to become progressively more thermally stratified. At 9 Myr after CAI forma-657

tion, the base of the magma ocean becomes colder than the top of the core and heat is658

now extracted from the top of the core. Initially, this heat transfer out of the core can659

occur by conduction as the temperature gradient in the core is positive and there is there-660

fore no negative density contrast between the cooling top of the core and the material661

below to drive convection. However, this only occurs at very early times after the core662

starts to cool (1000-2000 years at most). Once the top of the core becomes colder than663

the interior, a negative density difference at the top of the core exists which may drive664

convection. This occurs at 9 Myr after CAI formation. The resultant convecting layer665

is initially ∼ 2 km deep and at 1575 K. The onset of convection in the core greatly in-666

creases the CMB heat flux (figure 5c). Below this convecting layer however, the core is667

still stably stratified and heat is passed diffusively between the top of the stratified layer668

and the base of the convecting layer.669

As the body continues to cool, the convecting layer in the core grows as more of670

the stable stratification is eroded. The associated increase in length scale of convection671

in the core leads to an increase in magnetic Reynolds’ number (figure 5d). At 40 Myr672

after CAI formation, all the stable stratification has been removed and the core convects673

over its entire radius. This corresponds to the peak Rem ' 4.4 at 40 Myr after CAI for-674
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mation. After this time, the magnetic Reynolds’ number decreases as the CMB heat flux675

decreases. The magma ocean Rayleigh number drops below the critical value of 1000 at676

56 Myr after CAI formation and convection in the magma ocean shuts off.677
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Figure 5. Case 1: a) Thermal Evolution of a Rapidly Accreting Planetesimal which

grows from a 170 km seed radius to 500km over a period of 500 years. The black dashed line

denotes the position of core-mantle boundary, and the black dotted line the position of the base

of the convecting region in the core. The blue dashed line marks the position of the top of the

magma ocean. b) Magma Ocean and Core Temperatures. The core temperature shown

is initially that at the top of the core then the temperature of the convecting portion once the

stable stratification has been removed. c) CMB Heat Flux and d) Magnetic Reynolds

Number for this planetesimal. The top of the core becomes stably stratified during the first 4

Myr and the complete erosion of this stratification takes until 40 Myr. This inhibits whole core

convection whilst the magma ocean is cooling rapidly and thus no dynamo field is generated.
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3.1.2 Case 2: Intermediate Accretion Rate678

Figure 6a shows the thermal evolution of a planetesimal growing from an initial679

seed radius of 170 km to a final radius of 500 km in 200 kyr as a function of radius and680

time. The position of the core is given by the black dashed line. The temperature of the681

magma ocean and the core (initially the top of the core then the convecting portion of682

the core) as a function of time is shown in Figure 6b and the evolution of the CMB heat683

flux and magnetic Reynolds number are shown in Figures 6c and d, respectively.684

The longer duration of accretion in this case leads to a variable temperature pro-685

file with depth throughout the body as it heats up from the decay of 26Al. Therefore,686

the onset of convection in the body first occurs over the inner 150 km of the body at a687

temperature of 1550 K, 1.1 Myr after CAI formation. At this time, the chondritic ma-688

terial at larger radii is too cool and viscous to start convecting. This effect creates a core689

75 km in radius and a 75 km deep convecting magma ocean under a thick undifferen-690

tiated lid that is still heating up. This undifferentiated lid insulates the deep magma ocean,691

which quickly heats up to > 1600 K at 1.2 Myr after CAI formation. Heat is passed dif-692

fusively into the top of the core and the temperature of the core is approximately isother-693

mal with the magma ocean during this period (Figure 6b).694

Simultaneously, the undifferentiated shallower regions in the body heat up due to695

the decay of 26Al and the viscosity in these regions decreases. Between 1.4 and 1.8 Myr,696

convection starts across these shallower depths and these regions undergo differentiation.697

Subsequently the top 250 km of the body differentiates during this time period. The ma-698

terial from shallower depths is cooler (∼ 1450K) than the magma ocean and its addi-699

tion to the far hotter magma ocean (Tm ' 1620 K at 1.4 Myr after CAI formation)700

results in cooling of the magma ocean to ∼ 1580 K. The new core material is then in-701

corporated into the core at this new magma ocean temperature. This material is cooler702

than the top (10s of km) of the core and thus sinks when it enters the core. The strat-703

ification at the top of the core is destroyed by the addition of this cool material and the704

core becomes well mixed over the top 180 km with a temperature Tc ' 1600 K. This705

leads to a brief 100 kyr interval during which the top 180 km of the core passes heat by706

convection into the magma ocean which is shown by the spike in CMB heat flux and mag-707

netic Reynolds number at this time. The magma ocean is rapidly heated back up to ∼708

1620 K by the decay of 26Al and the CMB heat flux becomes negative as heat is passed709
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from the base of the magma ocean to the top of the core. A thin, stably stratified layer710

develops at the top of the core with a depth of < 5 km and temperature of 1615 K.711

At 4 Myr after CAI formation, the supply of 26Al is exhausted and the magma ocean712

cools below the temperature of the top of the core. Core convection over a shallow depth713

below the CMB starts immediately and the convective layer quickly grows. This leads714

to a rapid increase in the magnetic Reynolds (Figure 6d). The CMB heat flux also in-715

creases as the CMB temperature difference increases, which contributes to this increase716

in magnetic Reynolds number. By 7 Myr after CAI formation, the core is convecting over717

the top 200km and its magnetic Reynolds number exceeds the critical value of 10 such718

that the core is able to generate a thermally driven dynamo field. Whole convection oc-719

curs at 10 Myr after CAI formation and results in a peak magnetic Reynolds number720

of 14. From 10 Myr after CAI formation onwards, the magnetic Reynolds number de-721

creases in line with the decreasing CMB heat flux. It becomes subcritical at 21 Myr af-722

ter CAI formation and the dynamo field shuts off. The magma ocean convection con-723

tinues until 56 Myr after CAI formation.724

The increased timescale of core formation in this case compared to the instanta-725

neously accreting planetesimal results in a core thermal structure that is easily able to726

convect over most of its depth once core cooling commences. This enables core convec-727

tion in the first 20 Myr whilst the magma ocean is losing heat rapidly to the surface, re-728

sulting in high enough CMB heat fluxes to generate supercritical magnetic Reynolds num-729

bers.730
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Figure 6. Case 2: a) Thermal Evolution of a Gradually Accreting Planetesimal

which grows from a 170 km seed radius to 500km over a period of 200 000 years. The black

dashed line denotes the position of core-mantle boundary, and the black dotted line the position

of the base of the convecting region in the core. The blue dashed line marks the position of the

top of the magma ocean. b) Magma Ocean and Core Temperatures. The core tempera-

ture shown is initially that at the top of the core then the temperature of the convecting portion

once the stable stratification has been removed. c) CMB Heat Flux and d) Magnetic

Reynolds Number for this planetesimal. The top 190 km of the core forms once the magma

ocean has heated up to ∼ 1600 K. Therefore once the core starts to cool at 3.5 Myr, the core

is less strongly stratified underneath the CMB and convection starts over the top 190 km at 5

Myr whilst the deep-seated stratification is quickly eroded by 9.3 Myr. This difference in core

formation mechanism allows for whole core convection whilst the magma ocean is cooling rapidly

and the generation of a thermally driven dynamo field from 7 to 21 Myr.
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3.1.3 Case 3: Slow Accretion Rate731

Figure 7a shows the thermal evolution of a planetesimal growing from an initial732

seed radius of 170 km to a final radius of 500 km in 1.2 Myr as a function of radius and733

time. The position of the core is given by the black dashed line. The temperature of the734

magma ocean and the core (initially the top of the core then the convecting portion of735

the core) as a function of time is shown in Figure 7b and the evolution of the CMB heat736

flux and magnetic Reynolds number are shown in Figures 7c and d, respectively.737

The chondritic material that accretes prior to 1.8 Myr after CAI formation con-738

tains enough 26Al to drive melting and differentiation of the body. However, the mate-739

rial that accretes after this time only contains sufficient 26Al to heat the material with-740

out causing it to melt. The onset of convection and differentiation in this body occurs741

at 1.2 Myr after CAI formation, before the body is fully accreted. In a similar manner742

to the intermediate accretion rate example (Case 2), the body first differentiates over743

a deep interior portion up to a radius of 150 km. This process forms a small 75 km core744

under a shallow 75 km deep magma ocean. The temperature of differentiation is 1560 K.745

At this time, the body is 200 km in total radius. The magma ocean quickly heats up to746

∼ 1620 K (figure 7b). Differentiation in the 50 km lid above the magma ocean as well747

as in the new material added to the surface after 1.2 Myr can be driven by both the de-748

cay of 26Al and heating from below by the hot (1620 K) magma ocean. The steep ther-749

mal gradient across the undifferentiated lid leads to gradual differentiaton of layers 1-750

2km above the magma ocean. While this newly differentiated material is cooler than the751

magma ocean (similar to the previous case), the volume of material that is added to the752

magma is reduced and thus its cooling effect on the magma ocean temperature is reduced.753

As a consequence, the magma ocean remains hotter than the core for the first 4 Myr af-754

ter CAI formation. The CMB heat flux goes to zero at each addition of new material755

to the core as the top of the core and the magma ocean are temporarily isothermal, giv-756

ing rise to the seemingly stochastic jumps in Figure 7. Prior to 3-4 Myr after CAI for-757

mation, the CMB heat flux then quickly falls below zero again as the magma ocean be-758

comes hotter than the top of the core due to the decay of 26Al. This results in the saw-759

tooth pattern in both the CMB heat flux (Figure 7c) and magnetic Reynolds number760

(Figure 7d). Again, this is a consequence of the 1D nature of our model and its inabil-761

ity to model core formation as a smooth, continuous process and the timescale of these762

jumps is set by the diffusive timescale required for the next layer to reach its critical Rayleigh763
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number. We have shown an effective CMB heat flux and magnetic Reynolds number in764

Figures 7c and d, which is the average of the respective quantity for each episode of core765

formation and thermal evolution between episodes in order to give a clearer picture of766

the evolution of both these values.767

Chondritic material that accretes to the surface of the planetesimal after 1.8 Myr768

after CAI formation does not contain sufficient 26Al to differentiate by internal heating769

from this heat source alone. However, differentiation is able to continue after 1.8 Myr770

after CAI formation in the layers directly above the magma ocean as the magma ocean771

provides an additional heat source to drive melting in these layers. This is seen in Fig-772

ure 7a as the core radius increases from 90 km at 1.8 Myr to 110 km at 10 Myr after CAI773

formation, the time at which core formation ends in this case.774

The magma ocean first becomes colder than the top of the core at 1.8 Myr after775

CAI formation at a temperature of 1625 K, at which point the CMB heat flux becomes776

positive. The oscillation between high and low positive values is due to the continued777

addition of discrete delamination events of cool material from the cold lid to both the778

magma ocean and the core as differentiation proceeds. This acts to reduce the CMB tem-779

perature difference and thus the CMB heat flux. In the periods between episodes of dif-780

ferentiation, the magma ocean cools faster than the top of the core which increases the781

CMB temperature difference and thus CMB heat flux.782

Core formation ends at 10 Myr after CAI formation with a core of 110 km, a magma783

ocean depth of 110 km and with the top 280 km remaining undifferentiated. However,784

much of this undifferentiated lid would not be expected to preserve its chondritic tex-785

ture. The bottom 50 km of the lid directly above the magma ocean has been heated to786

peak temperatures above the Fe-FeS eutectic liquidus, and above the silicate liquidus for787

the inner 30 km of this portion. This partial melting will destroy the original chondritic788

texture of the material at these depths. Instead, this material could be somewhat sim-789

ilar in petrology and texture to primitive achondrites. Convection in the magma ocean790

ceases shortly afterwards at 11 Myr. The magnetic Reynolds number in this case remains791

subcritical for the entire period of magma ocean convection, due to small size of core.792
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Figure 7. Case 3: a) Thermal Evolution of a Slowly Accreting Planetesimal which

grows from a 170 km seed radius to 500km over a period of 1.2 Myr. The black dashed line de-

notes the position of core-mantle boundary, and the black dotted line the position of the base

of the convecting region in the core. The blue dashed line marks the position of the top of the

magma ocean. b) Magma Ocean and Core Temperatures. The core temperature shown

is initially that at the top of the core then the temperature of the convecting portion once the

stable stratification has been removed. c) CMB Heat Flux and d) Magnetic Reynolds

Number for this planetesimal. We show both the model output per timestep of these quanti-

ties (blue lines) as well as the effective quantities (orange lines), which represents the average of

these quantities during core formation. This body accretes the outer 250km of its radius after

1.8 Myr by which time these layers do not contain sufficient 26Al to differentiate. This results

in a partially differentiated body with a molten core and convecting magma ocean below an

undifferentiated chondritic lid.
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n t0/ Myr ∆tac/ Myr R0/km Rp/km

Sweep 1 5000 0.01-2 0.005-4 70-545 70-550

Sweep 2 5000 0.01-1.8 0.005-1.2 70-400 400-550

Table 2. Input values for two random parameter sweeps of n = 5000 simulations. The accre-

tion start t0, duration ∆tac, initial and final radii R0 and Rp, of the planetesimal were randomly

chosen using the inbuilt Random package in Python for each simulation. The radii given here

are compacted lengths, that is with no porosity in the body. The values for Sweep 2 were based

on the results of Sweep 1 and were chosen to target the region of parameter space in which the

models exhibit dynamo generation.

3.2 Parameter Sweeps793

In the previous section, the results of three example model runs were presented to794

show the effect of accretion rate and the duration of core formation on a planetesimal’s795

ability to generate a thermally-driven dynamo. In this section, we present the results of796

two parameter sweeps of our four input variables - accretion start time and duration, and797

initial and final body radius - to constrain the impact that these parameters have on the798

properties of thermally driven dynamo activity in meteorite parent bodies. We also show799

the results of the structures of planetesimals we obtain in our models.800

For each of our three values of the mantle thermal diffusivity, we ran two param-801

eter sweeps of 5000 model runs with randomly sampled combinations of accretion start802

time, duration, initial and final body radius. These 5000 simulations spanned the entire803

parameter space. We subsequently performed 5000 simulations on a subset of initial pa-804

rameter, focusing on those parameter combinations known to produce thermally-driven805

dynamos. Table 2 gives the range of input values for both sets of simulations for all three806

silicate thermal diffusivities studied. The results presented here are for a silicate ther-807

mal diffusivity of κ = 9×10−7m2s−1. The full results of the other two are included in808

the Supplementary Materials (Supplementary Figures 3 and 4).809
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3.2.1 Controls on Dynamo Generation810

Figure 8a shows the dependence of the initial and final radius of the planetesimal811

on its potential to create a thermally driven dynamo. A final planetary radius of > 410 km812

and an initial radius of < 350 km is required for bodies with a thermal diffusivity of κ =813

9× 10−7 m2 s−1. This corresponds to a minimum core size of ∼ 205 km. For a larger814

κ = 12× 10−7 m2 s−1, this requirement is R0 < 380 km and Rp > 395 km while for a815

smaller κ = 6× 10−7 m2 s−1, this requirement is R0 < 340 km and Rp > 430 km.816

The constraint on magnetic field generation for initial radii of < 350 km comes from817

the requirement of gradual core formation to avoid strong stable stratification at the top818

of the planetesimal core. If the planetesimal grows by more than 250 km in radius over819

> 100 kyr, this promotes more gradual core formation and early onset of whole core con-820

vection to coincide with the period of quickest magma ocean cooling. However, there are821

many runs that fulfilled the initial and final radii constraints that did not produce a su-822

percritical magnetic Reynolds at any point in their history (as shown by the bluer mark-823

ers in the top left corner of Figure 8a). This is due to the dependence of magnetic field824

generation on the start time of accretion and accretion duration which is shown in Fig-825

ures 8b and 8c, respectively. In both these figures, runs that did not produce planetes-826

imals with cores greater than 205 km in radius have been excluded.827

In order to generate a thermal dynamo, the planetesimal needs to accrete in the828

first 1.4 Myr after CAI formation and grow by a minimum of 210 km in radius over du-829

ration of 100-1200 kyr. Bodies that accrete later than 1.4 Myr after CAI formation but830

with the necessary accretion duration and growth amount do not fully differentiate, there-831

fore their cores are too small to produce a magnetic Reynolds number Rem > 10, as seen832

by the blue markers in the top right hand corner of Figure 8b. Equally, a planetesimal833

can accrete very early but if its accretion rate is too fast (either due to a short accre-834

tion duration or small radial increase during accretion), core formation is very quick and835

a strong stable stratification forms at the top of the core that inhibits core convection836

until after the main peak of magma ocean cooling. This is shown most clearly in Fig-837

ure 8c by the band of blue markers with accretion durations of < 100 kyr which do not838

reach supercritical magnetic Reynolds numbers, despite easily fulfilling the radial growth839

constraints.840
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The start time of thermal dynamo generation in these bodies is controlled by the841

initial radius of the planetesimal (Figure 8d) as this controls how fast the core forms and842

the strength of the thermal stratification at the top of the core. The earliest time at which843

we predict thermal dynamo generation is 4 Myr after CAI formation since before this844

time, there is still sufficient 26Al to keep the magma ocean from cooling and the core845

is heated from above by the magma ocean. Only once all the 26Al has decayed can the846

core start cooling and potentially convecting. The time at which the core can then start847

to convect over a depth of 205 km or greater is controlled by the thickness and strength848

of the stratification at the top of the core. The earliest start times are 4 Myr and 4.5 Myr849

after CAI formation for thermal diffusivities of κ = 12×10−7 m2 s−1, 6×10−7 m2 s−1
850

respectively. The radius of the planetesimal controls how quickly the body cools once851

the 26Al has decayed and therefore when the thermal dynamo generation shuts off (Fig-852

ure 8e). In all cases, the thermal dynamo shuts off before the end of the period of con-853

vection in the magma ocean and we do not expect thermally driven dynamo activity in854

any planetesimals after 34 Myr after CAI formation.855

Table 3 summarises the dependence of thermal dynamo generation in planetesimals856

on the model input parameters for the three thermal diffusivities we investigated as well857

as the range of start and end times of these dynamos.858
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Figure 8. Model results of parameter sweeps for silicate thermal diffusivity of κ =

9×10−7 m2 s−1: a) Dependence of magnetic Reynolds number Rem on initial and final

planetary radius, b) accretion start time and c) accretion duration requirements for

dynamo generation in bodies with core radii greater than 205 km. d) Start time

and e) end time of dynamo generation as a function of initial and final radius. The

green lines in a) indicate the constraints on initial and final planetary radii for thermal dynamo

generation. However, even if planetesimals fulfill these radial constraints, there are additional

constraints from accretion start time (which controls the size of the core which forms) and du-

ration (which controls the development of any thermal stratification in the core) that determine

whether they will ultimately be able to generate a thermal dynamo. Therefore, there are blue

markers, indicating no dynamo, in the top left corner region of a) as well as red markers, indicat-

ing dynamo generation is possible.
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Thermal Diffusivity, κm/ m2 s−1 t0/ Myr ∆tacc/ Myr R0/km Rp/km ∆Racc Dynamo start time/ Myr Dynamo end time/ Myr

6× 10−7 < 1.4 0.1-1.15 < 340 > 430 > 270 4.5-27 9-30

9× 10−7 < 1.4 0.09-1.19 < 350 > 410 > 210 4-28 8.5-33

12× 10−7 < 1.5 0.07-1.20 < 380 > 395 > 250 4-29 8-34

Table 3. Summary of the requirements for thermal dynamo generation in planetesimals for the range of thermal diffusivities investigated.

The silicate thermal diffusivity controls how fast and how much heat is moved around the planetesimal therefore the higher κm models record earlier dynamo onset

times with smaller critical core radii.
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3.2.2 Structure of Planetesimals859

Our model results in both fully differentiated planetesimals and completely undif-860

ferentiated ones, which never form a core as they accrete too late to contain sufficent 26Al861

for widespread melting of the body. The model also produces partially-differentiated bod-862

ies with a liquid core and metal-depleted mantle buried underneath an undifferentiated,863

chondritic lid (Figure 9). We find that for convection to start over any portion of a plan-864

etesimal and the differentiation process to begin, the planetesimal needs to begin accret-865

ing before 1.8 Myr after CAI formation. Any body that starts accreting after 1.8 Myr866

after CAI formation will not contain enough initial 26Al to melt the original chondritic867

material and initiate differentiation. Fully differentiated bodies, which melt sufficiently868

to segregate all the iron present in the body into the core, are produced when the end869

of the addition of cold, chondritic material to the planetesimal’s surface occurs by 2-2.5870

Myr after CAI formation (depending on initial and final radii, this period can extend871

to 3-4 Myr after CAI formation). Lastly, if a planetesimal starts accreting early enough872

to differentiate but has a relatively late addition of 26Al-depleted material to its surface,873

it will end up with a partially differentiated structure with an inner liquid core and magma874

ocean beneath a thick, porous chondritic lid as discussed in section 3.1.3. The percent-875

age of the planetesimal radius which remains undifferentiated in this case can be up to876

80% (Figure 9).877
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Figure 9. Dependence of the fraction of the planetesimal radius that differentiates

as a function of accretion start time and duration. Bodies which start and finish accret-

ing material to their surfaces before 2 Myr after CAI formation will result in fully differentiated

bodies. Planetesimals which start accreting after 1.8 Myr after CAI formation will never differ-

entiate. Partially differentiated bodies, in which between 20% and 100% of their final radii have

undergone differentiation, are formed by accreting material continuously from both earlier and

later than 1.8 Myr after CAI formation.

–47–



manuscript submitted to JGR: Planets

4 Discussion878

4.1 Magnetic Epochs in Early Solar System879

The timing and duration of the magnetic field generation by planetesimals during880

the early solar system reflect the accretionary history and structural evolution of the plan-881

etesimal and dictate whether a certain meteorite will have recorded a primary magnetic882

remanence. We find that internal dynamo field generation in planetesimals is not pos-883

sible prior to at least 4 Myr post-CAI formation, consistent with the results of Bryson884

et al. (2019b), which have the earliest fields starting at 5 Myr after CAI formation. This885

is due to the radiogenic heating of the planetesimal’s silicate mantle by 26Al which keeps886

the magma ocean at a higher temperature than the core for the first 3.5−4 Myr after887

CAI formation. Only once 26Al has effectively decayed (i.e. > 4 Myr after CAI for-888

mation) can the magma ocean and subsequently the core start to cool and dynamo ac-889

tivity feasibly be generated. The earliest possible onset time for planetary magnetic fields890

of 4 Myr after CAI formation supports the nebula field origin for the magnetism recorded891

at 2−3 Myr after CAI formation by the chondrules in the Semarkona ordinary chon-892

drite (Fu et al., 2014a) as this is the only viable long-lived magnetic field source during893

the first 4 Myr of the Solar System. The primary remanence in the CM chondrites (Cournede894

et al., 2015), the chondrules in both CR chondrites (Fu et al., 2020) and the CO chon-895

drites (Borlina et al., 2020), and the ungrouped chondrite WIS 91600 (Bryson et al., 2020)896

has also been attributed to this early nebula field. Additionally, the R chondrites report-897

edly experienced an ∼ 5µT magnetic field at 4 Myr after CAI formation, which Cournède898

et al., 2020 attribute possibly to an internal dynamo field on the R chondrite parent body.899

However, the ±17 Myr uncertainty on the age of the remanence-carrying mineral phases900

in the R chondrites means a nebular origin for this magnetising field cannot be completely901

ruled out (Cournède et al., 2020). The nebula field had dissipated by 3.8−4.8 Myr af-902

ter CAI formation (Wang et al., 2017) therefore any long-lived magnetic field recorded903

after this time is likely due to an internal dynamo on the meteorite’s parent body. The904

solar wind and impact-generated fields have been suggested as field sources for the pri-905

mary remanence in meteorites. However, the intensity of the solar wind in the planet-906

forming regions of the solar system is > 103 times smaller than the paleointensities re-907

covered from the meteorites (Oran et al., 2018), which is on the order of 1-10s µT. Mag-908

netic fields generated during planetesimal impacts were transient and dissipated quickly909

over a timescale of 100-1000s (Hood & Artemieva, 2008), which contrasts with the slower910

–48–



manuscript submitted to JGR: Planets

cooling rates (or aqueous alteration rates) experienced by these meteorites. Therefore,911

internally generated dynamo fields on the meteorite parent bodies are the most likely912

source for the primary remanences in meteorites recorded after 4 Myr after CAI forma-913

tion. These dynamo fields could either have been thermally driven or compositionally914

driven during core crystallisation, depending critically on the time at which the rema-915

nence was recorded.916

Our results indicate that dynamo generation by thermal convection alone in plan-917

etesimal cores is possible if core convection occurs over a distance of greater than 200 km918

and the core is cooling at a rate of > 2 K Myr−1. This is consistent with the required919

cooling rates and core sizes calculated by Nimmo (2009) and suggests that our adoption920

of a low critical magnetic Reynolds of 10 is realistic for these small planetary bodies. Our921

lower bound on the core radius of 200 km is larger than that found by Bryson et al. (2019b),922

which requires Rc > 160 km for thermally driven dynamo generation. This is due to923

the different formulation of the CMB heat flux during core cooling where, for the same924

CMB temperature difference, the CMB heat flux in the current study is lower than that925

used by Bryson et al. (2019b) (and Sterenborg and Crowley (2013)). In these other two926

models, the CMB heat flux is a fraction of the surface heat flux and is therefore depen-927

dent on the temperature difference between the magma ocean and the surface. Instead,928

we have assumed heat flux continuity across the CMB which results in more realistic but929

lower CMB heat fluxes throughout the planetesimals’ evolution. Thus, we require larger930

core sizes to reach supercritical magnetic Reynold numbers in the current study.931

Our size and cooling rate requirements place constraints on the accretionary his-932

tory of planetesimals. For instance, we find that our model requires that planetesimals933

grow by > 250 km in radius of the planetesimal from an initial radius to a final radius934

of > 400 km over a duration of greater than 100 kyr. This leads to gradual differenti-935

ation and core formation with duration on the order of 1 Myr that avoids the develop-936

ment of a strongly stably stratified layer at the top of the planetesimal’s core and pro-937

motes early onset of whole core convection whilst the magma ocean is cooling quickly,938

generating supercritcal magnetic Reynolds numbers. These results potentially allow us939

to use the timing and duration of these early thermal dynamo fields recorded by mete-940

orites to recover information about the timescale of accretion of their parent bodies.941
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These results are in contrast to the conclusion of Bryson et al. (2019b) whose model942

can generate thermally driven dynamos for bodies that accreted instantaneously. The943

difference in the two studies is due to the realistic inclusion of the potential for thermal944

stratification of the core in the current model and points to the importance of the core945

thermal structure in determining the evolution of magnetic field generation in planetes-946

imals. During the period of magma ocean superheating in Bryson et al. (2019b), the en-947

ergy supplied to the core by the magma ocean is distributed homogeneously through-948

out the core, leading to an isothermal temperature profile throughout the core. There-949

fore, once the magma ocean becomes cooler than the top of the core, the whole core can950

convect immediately. These authors approximate the delay to full core convection due951

to the need to remove some stable stratification from the top of the core by maintain-952

ing a temporally isothermal core while heat production balances heat loss in the magma953

ocean. This approximates the time at which all the heat added to the core during the954

first 3 Myr (as a stably stratified layer) has been removed by whole core cooling. How-955

ever, their formulation of the CMB heat flux as a fraction of the surface heat flux leads956

to > 10 mW m−2 CMB heat fluxes during this period of rapid magma ocean cooling957

and much faster removal of this stratification than in our model (which has CMB heat958

fluxes of < 3 mW m−2 during this period). The early removal of this stratification leads959

to whole core convection whilst the magma ocean is cooling quickly and the generation960

of supercritical magnetic Reynolds numbers at this time for bodies with core radii > 160 km.961

In contrast, we treat the development and decay of the stable stratification as a diffu-962

sive problem with a subsequently slower heat transfer. This leads to more realistic and963

potentially much longer delays (> 10−15 Myr) in whole core convection that only oc-964

curs once the magma ocean is cold and viscous in our instantaneously accreting bodies.965

The time at which the thermally driven dynamo field shuts off depends solely on966

the final radius of the planetesimal as this controls how fast the body cools. The latest967

time we find thermally driven dynamo activity in planetesimals is 34 Myr after CAI for-968

mation for a body of 550 km in radius. The end times we find are later on the whole than969

those found by Bryson et al. (2019b). This is because our CMB heat fluxes are lower through-970

out the core cooling period and we can therefore extract the same amount of heat from971

the core whilst keeping the CMB heat flux supercritical for a longer time than Bryson972

et al. (2019b).973
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Any long-lived magnetic fields generated after 34 Myr after CAI formation are there-974

fore very likely driven by compositional convection during the crystallisation of the plan-975

etesimal’s core. Exactly how small planetary cores crystallise is not well understood (Williams,976

2009) but it is possible that low internal pressures lead to crystallisation starting at the977

CMB, followed by inward solidification of the core. Therefore dynamo generation dur-978

ing this period could be either iron-snow like (e.g. as in Ganymede, Rückriemen et al.979

(2015)) or driven by large-scale delamination of iron dendrites (e.g. as in Neufeld et al.980

(2019)). Both of these mechanisms are capable of producing buoyancy fluxes strong enough981

to drive dynamo fields. The timing and duration of these solidification-driven fields de-982

pends on the light element concentration, likely the sulfur content, of the core as this con-983

trols the core’s liquidus temperature (and density contrast during core solidification).984

Our model assumes an Fe-FeS eutectic composition (32 wt % S) core composition which985

has a freezing temperature of 1234 K. In this case, core solidification starts tens of mil-986

lion years after the cessation of convection in the magma ocean and any composition-987

ally driven dynamo field is late. However, the observed sulfur concentration range across988

the magmatic iron meteorite groups is 0−18 wt % S (Goldstein et al., 2009). This range989

is inferred from the trace element content of the meteorites, which is sensitive to volatile990

loss during large impacts, and therefore might not reflect the original sulfur content of991

these parent body cores. Assuming that there has been no impact processing of these992

meteorites, the range of 0−18 wt % S corresponds to liquidus temperature range of 1486−993

1810 K. These liquidus temperatures are well within the range of core temperatures dur-994

ing the convecting magma ocean phase. Therefore it is possible for core solidification to995

have started before convection in the magma ocean ceases. As a result, we infer that mag-996

netic fields generated prior to 34 Myr after CAI formation may not be due uniquely to997

thermal convection alone. The start of core crystallisation is likely reflected by an in-998

crease in the strength of recovered dipole field as the density difference induced during999

core solidification is orders of magnitude greater than that typically created during core1000

cooling. For instance, such an increase in axial dipole moment of the geodynamo in the1001

Ediacaran was used by Bono et al. (2019) to explore the timing of the nucleation of Earth’s1002

inner core. However, no meteorite group currently has sufficiently well-resolved time se-1003

ries of these early fields to distinguish between a thermally and compositionally driven1004

field.1005
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Our model assumption of a eutectic Fe-FeS composition for the metal in these bod-1006

ies neglects the potential for an evolving core sulfur composition during core formation.1007

This has two consequences for the timing and duration of magnetic fields in planetes-1008

imal cores. Firstly, it may affect the survival of thermal stratification in the core. In all1009

cases, the temperature at which the bodies first differentiate is less than the peak tem-1010

perature of ∼ 1625 K reached in the magma ocean. Therefore, for iron-rich metal com-1011

positions, the metal melt that exists at the onset of core formation will be relatively en-1012

riched in sulfur compared to the bulk metal composition. This sulfur-rich melt will form1013

the cool interior of the core. As the magma ocean then heats up due to the continued1014

decay of 26Al, it is likely that any new metal melt will be relatively iron-rich and thus1015

more dense than the sulfur-rich proto-core. Therefore this iron-rich material will sink1016

to the centre of the core, despite being warmer than the pre-existing core material, and1017

any thermal stratification will be destroyed. This would then promote an early onset of1018

whole core convection and thermally driven dynamo generation. Exactly how the sul-1019

fur content of the core forming metal melts evolves will also depend on the oxygen fu-1020

gacity and silicate composition of the planetesimals as these factors control the parti-1021

tioning of sulfur between the metal and silicate phases. Secondly, as discussed above, the1022

final core composition dictates the core liquidus temperature and thus the timing at which1023

any compositional dynamo may start. As such, the evolution of the sulfur composition1024

of the core could have an impact on the timings of both thermal convection and com-1025

positional convection. While we have neglected the possibility of compositional dynamos1026

here, this work improves on our understanding of the controls of the timing and dura-1027

tion of thermally driven dynamo fields in planetesimals. In particular, our results pro-1028

vide a new constraint of 100 − 1000kyr on the timescale of planetesimal accretion re-1029

quired for the generation of thermally driven dynamo activity.1030
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4.2 Properties of the Angrite Parent Body1031

The angrites are a well-studied group of rocky achondrites that are the products1032

of basaltic volcanic and plutonic activity on their differentiated parent body during the1033

first few 10s Myr of the Solar System (Keil, 2012). The volcanic angrites formed 3.8−1034

4.8 Myr after CAI formation (Keil (2012) and McKibbin et al. (2015)) and the more slowly-1035

cooled plutonic angrites formed at approximately 11 Myr after CAI formation (Amelin,1036

2008). The volcanic angrites experienced a magnetic field of < 0.6µT at 3.8−4.8 Myr1037

after CAI formation (Wang et al., 2017), which has been interpreted as the absence of1038

both the solar nebula field and any internally generated dynamo field. However, the plu-1039

tonic angrite Angra dos Reis recorded a field of approximately 17 µT at 11 Myr after1040

CAI formation (Wang et al., 2017). Assuming that this was a thermally driven dynamo1041

field, we can use our model results to constrain the acccretional history of the angrite1042

parent body, given a silicate thermal diffusivity of κm = 9×10−7 m2 s−1. We take the1043

window for the start time of this dynamo field as some time between 3.8−11 Myr af-1044

ter CAI formation and its end time as > 11 Myr. These constraints on start time and1045

end time of dynamo activity require that the angrite parent body grew from an initial1046

size of R0 < 225 km to a final size of Rp > 415 km (figure 10) where the timescale of1047

accretion (between 100−1200kyr) will depend on the exact final and inital radii. This1048

is similar to the size constraint obtained by Bryson et al. (2019b). The planetesimal must1049

also have grown by a minimum of 260 km during its accretionary phase, which needed1050

to last > 100 kyr, and reached its final size within the first 1.8 Myr in order to fully dif-1051

ferentiate. These size requirements for the angrite parent body are consistent with the1052

independent estimate of its radius of Rp > 270 km from the volatile contents of melt1053

inclusions by Sarafian et al. (2017).1054
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Figure 10. Dependence of a) the start time, b) the end time and c) the duration

of the angrite thermal dynamo on initial and final planetary radii with an assumed

silicate thermal diffusivity of κm = 9 × 10−7 m2 s−1. Only model runs which resulted in dynamo

generation starting some time between 3.8− 11 Myr after CAI formation and ending after 11 Myr

after CAI formation are shown here. A start time of 3.8−11 Myr after CAI formation requires an

initial radius of < 225 km and a final radius of > 420 km is needed for the angrite parent body

to still have a dynamo field at 11 Myr. The longevity of this dynamo field can range from a few

Myr to > 20 Myr, depending on the exact values of the initial and final radii.
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4.3 Structural Evolution of Planetesimals1055

Our models produce a spectrum of planetesimals, from undifferentiated chondritic1056

bodies through partially differentiated bodies with an unmelted lid atop a molten inte-1057

rior to fully differentiated achondrite-like bodies. In order for a planetesimal to form a1058

core, it must accrete to a size of 70 km by 1.8 Myr after CAI formation. Otherwise, the1059

concentration of 26Al in the body is too low to drive the onset of convection and dif-1060

ferentiation and the planetesimal remains a homogeneous mixture of metal and silicates.1061

This is assuming that metal-silicate segregation by percolation is unimportant to the core1062

formation process. However, the maximum temperature reached by the very centre of1063

these undifferentiated bodies can be above 1500 K with complete Fe-FeS melting and sil-1064

icate melt fractions of 20 − 30wt %. Modelling by Neumann et al. (2012) shows that1065

core formation by percolation of eutectic Fe − FeS liquid through a semi-molten non-1066

convecting silicate mantle can occur on the short < 2 Myr timescales required by the1067

Hf-W systematics (Kruijer et al., 2014). Much of the planetesimal (> 45 % vol, Table1068

9 in Neumann et al. (2012)) remains undifferentiated in this case. Additionally, the high1069

δ56Fe value measured in the ureilite meteorites is interpreted as evidence for the segre-1070

gation of a S-rich metal melt in the ureilite parent body without any significant silicate1071

melting (Barrat et al., 2015). Therefore, we do consider metal-silicate segregation by per-1072

colation in the absence of a convecting magma ocean as a viable core formation mech-1073

anism which could generate partially differentiated bodies. However, the lack of a con-1074

vecting magma ocean reduces the early high surface heat loss from these planetesimal1075

that is required to generate the > 10 mW m−2 CMB heat fluxes needed to drive a ther-1076

mal dynamo. As such, planetesimals that form cores through this process are unlikely1077

to be relevant to this study of thermal dynamo generation.1078

For full differentiation, the planetesimal needs to have finished accreting by 2 −1079

2.5 Myr after CAI formation. Due to our imposed surface temperature boundary con-1080

dition, the top 1 − 2 km of our models never differentiate. This is not realistic and it1081

is likely that bodies that reach such high melt fractions in their interiors experience sur-1082

face volcanism. The angrite parent body is such an example. This asteroid experienced1083

basaltic volcanism early in its evolution with the plutonic and volcanic angrites origi-1084

nating from the top 100m of its crust (Keil, 2012). However, the large temperature dif-1085

ference between the planetesimal’s interior and the cold vacuum of space should have1086
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ensured a frozen stagnant lid at its surface through which magma could have erupted1087

to the surface in conduits.1088

Partially differentiated planetesimals can form by accreting material to their sur-1089

faces later than 2− 2.5 Myr after CAI formation. The fraction of their radii that dif-1090

ferentiates depends on the proportion of the body that is added after 1.8 Myr compared1091

to its initial seed radius. This is due to the exponential nature of our chosen accretion1092

law, which leads to the addition of the majority of mass of the planetesimal occuring in1093

the last few time steps of accretion. If this final addition occurs after 1.8 Myr after CAI1094

formation, there will be little 26Al available to drive differentiation and the body will1095

preserve a thick chondritic crust above a convecting magma ocean and liquid core. This1096

liquid core can potentially generate a dynamo field, either during core cooling or core1097

crystallisation, which could be recorded during aqueous alteration or cooling of mate-1098

rial in the chondritic crust. There is a growing catalogue of chondritic meteorites in which1099

the source of their primary magnetic remanence has been attributed to an internally gen-1100

erated thermally driven dynamo field. These include the CV meteorites, Kaba (Gattacceca1101

et al., 2016) and Allende (Carporzen et al., 2011), which obtained their primary rema-1102

nence between 5−20 Myr after CAI formation. This remanence has been interpreted1103

as evidence for an active dynamo field and thus a liquid core on a partially differenti-1104

ated CV parent body. A third CV meteorite, Vigarano, also appears to carry a primary1105

remnance (Shah et al., 2017) but the timing and nature of this remnance is uncertain1106

due to the meteorite’s complex thermal history. The R chondrites also experienced a ∼1107

5µT field at 4±17 Myr after CAI formation which has been attributed to an internal1108

dynamo in the R parent body (Cournède et al., 2020) and would suggest that the R par-1109

ent body was also partially differentiated. Bryson et al. (2019b) used these observations1110

to constrain the CV parent body size R0 > 220 km growing to Rp > 270 km later.1111

Meteorites from the H chondrites (Bryson et al., 2019a), mantle-hosted IIE irons (Maurel1112

et al., 2020) and L/LL chondrites (Shah et al., 2017) also experienced a planetary dy-1113

namo field but these fields were younger and post-dated any thermally driven dynamo1114

fields. Therefore these meteorites likely experienced magnetic fields driven by core crys-1115

tallisation on their parent bodies. There are also several magnetised chondrites (e.g. the1116

CM chondrites (Cournede et al., 2015) and WIS 91600 (Bryson et al., 2020)) that were1117

likely magnetised by the solar nebula field during the first 4 Myr after CAI formation.1118
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However, the partially-differentiated bodies that formed in our parameter sweeps1119

and that retain an appreciable thickness of undifferentiated material do not produce ther-1120

mal dynamo fields due to their small core sizes and reduced core cooling due to insula-1121

tion from thick chondritic lids. The planetesimals that do produce an early thermally-1122

driven field in our model have differentiated over 95% of their final planetary radii (Fig-1123

ure 11). This corresponds to a maximum of 20 km of chondritic crust preserved at the1124

surface, much of which will have undergone some metal and silicate melting and may no1125

longer retain its chondritic texture. This is a product of the exponential accretion law1126

leading to a large addition of material in the final stages of radial growth of the plan-1127

etesimal as well as the requirement of core radii of > 200 km for supercritical magnetic1128

Reynolds number. As such, it appears that a different accretional regime is required to1129

explain the magnetic remanence carried by the CV chondrites and potentially the R chon-1130

drites.1131
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Figure 11. Histogram of the distribution of degrees of differentiation of planetes-

imals obtained acrossed both the wide and targeted parameter sweeps. The second

targeted sweep has led to the bias in highly differentiated bodies as the start time of accretion

was limited to the first 1.8 Myr of the Solar System during which time there was sufficient 26Al

to drive differentiation in any body > 70 km in radius.
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5 Conclusions1132

• We have modelled planetesimal accretion and differentiation in order to investi-1133

gate the effect of these processes on the ability of a planetesimal to generate dy-1134

namo activity by convection in their cores by cooling alone.1135

• The partitioning of 26Al into the silicate magma ocean during differentiation leads1136

to the development of a stably stratified layer in the core as the magma ocean con-1137

tinues to heat up. The depth and duration of initial core formation controls the1138

size and strength of this stratification1139

• Quickly accreting planetesimals (∆tacc < 100 kyr) form a large core very rapidly1140

and the top of the core becomes strongly thermally stably stratified in the first1141

3−4 Myr after CAI formation by heating from the mantle above. This introduces1142

a delay of > 10s Myr to the onset of whole core convection after the magma ocean1143

starts to cool whilst this stable stratification is removed. By the time the whole1144

core starts to convect, the magma ocean is cooling more slowly due to its increased1145

viscosity, which results in subcritical values of the CMB heat flux.1146

• Planetesimals that accrete > 250 km of material to their surfaces over a timescale1147

of > 100 kyr avoid developing this stable stratification below the CMB. Instead,1148

this stratification is deep seated. Whole core convection can start earlier and co-1149

incide with the early period of fast magma ocean cooling whilst the magma ocean1150

crystal fraction and viscosity are low. This can lead to the generation of thermal1151

dynamo fields from 4-34 Myr after CAI formation in bodies with core sizes greater1152

than 200 km in radius.1153

• Bodies that accrete slowly over > 1 Myr with significant addition of material to1154

their surfaces after 1.8 Myr result in partially differentiated bodies with an un-1155

melted chondritic lid atop a molten interior. However, none of these models gen-1156

erate a thermally driven dynamo due to their small relative core sizes and added1157

insulation from the porous undifferentiated lids. Therefore, the paleomagnetic ob-1158

servations of thermal dynamos on partially differentiated bodies require a differ-1159

ent accretionary regime, e.g., multistage accretion.1160

• Thermal dynamo generation is possible in planetesimals with core radii > 200 km1161

that accrete over a timescale of 100−1200kyr. The earliest possible onset time1162

of these magnetic fields is 4−4.5 Myr after CAI formation, with the exact start1163

time depending on the size and location of the stratification which develops dur-1164
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ing core formation. The end timing of these fields is controlled by the final plan-1165

etesimal radius with planetesimals of > 500 km in radius capable of generating1166

these fields until > 25 Myr after CAI formation.1167

• We obtain constraints on the timing and duration of accretion of the angrite par-1168

ent body as well as its final size by comparing our model predictions to the mea-1169

sured paleomagnetic remanences in multiple angrites. In order to generate a ther-1170

mal dynamo at 11 Myr after CAI formation, the angrite parent body must have1171

finished accreting from an initial size of < 225 km to its full size of > 420 km1172

by 1.8 Myr after CAI formation. The duration of this accretion is between 90−1173

1190 kyr.1174
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