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ABSTRACT Bad weather, such as snowfall, can seriously decrease the quality of images and pose great
challenges to computer vision algorithms. In view of the negative effect of snowfall, this paper presents a
single-image snow removal method based on a generative adversarial network (GAN). Unlike previous
GANs, our GAN includes an attention mechanism in the generator component. By injecting attention
information, the network can pay increased attention to areas covered by snow and improve its capability to
perform local repairs. At the same time, we improve the traditional U-Net network by combining it with the
residual network to enhance the effect of the model when removing snowflakes from a single image. Our
experiments on both synthetic and real-word images show that our method produces better results than
those of other state-of-the-art methods.

INDEX TERMS snow removal; generative adversarial networks; attention mechanisms

I. INTRODUCTION
As a special weather phenomenon, snowflakes reduce the

visibility of background scenes, affect the clarity of images,
and cause useful information in the images to disappear.
These issues have a tremendous negative effect on
subsequent image processing tasks, such as target detection
[1], scenario analysis [2], and other image processing tasks
[3]. Especially for the applications of artificial intelligence,
clear and clean images are needed to extract and process
correct information in most cases. Therefore, removing
snowflakes from a single image is of great significance in
the field of computer vision.

Existing snowflake removal methods for a single image
can be divided into two types: traditional model-based and
deep-learning-based methods. The first type mainly uses
the spatial features of snow to detect and remove it from
images. Pei et al. [4] used saturation and visibility
characteristics to remove snowflakes from images by using
high frequency filtering. Xu et al. [5] designed a refined
guidance image. First, the original image was degraded, and

then it was differentiated from the original image. By using
the difference between the degraded image and the original
image as the guidance, the authors reduced the degradation
caused by dynamic weather and maintained detailed
information about local regions. Ding et al. [6] claimed that
the rain and snow components of an image have the
characteristics of ridge edges, while other components have
other edge properties such as those of step edges and valley
edges. A guided L0 smoothing filter combined with edge
properties was used to detect and remove the rain and snow
components. Zheng et al. [7] took advantage of the
frequency characteristics of images in which the rain and
snow components were in the high-frequency portion, and
the low-frequency portion did not include the rain and snow
components. The low-frequency components were used as
the guide graph to remove the rain and snow components
from the high-frequency portion. Based on morphological
analysis, Rajderkar et al. [8] used dictionary learning and
sparse representation to detect rain and snow and employed
smooth filtering to repair pixels covered by rain and snow.
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Unfortunately, this method causes image blurring. Wang et
al. [9] proposed a hierarchical approach for rain or snow
removal in a single-color image. First, they distinguished
the high-frequency and low-frequency components of the
image and extracted the overcomplete dictionary of rain
and snow components and nondynamic components at high
frequencies from a three-layer hierarchy of the image. A
guided filter was then applied to restore the rain and snow
pixels. Finally, the authors summed the nondynamic
components to obtain images with the rain and snow
removed. Lu et al. [10] regarded snowflakes in the
atmosphere as particles. They used the maximum value of
the degree of polarization and the angle of polarization
obtained by global analysis of the Stokes vector to
accurately estimate atmospheric air-light at infinity and the
transmission map. Huang et al. [11] used sparsity-based
regularization to reconstruct a potentially snow-free image
and proposed an autotuning mechanism to seek an
improved reconstruction of a snow-free image via time-
varying inertia weight particle swarm optimizers.
Snowflakes are removed from the image through step-by-
step iteration. Model-based methods for snowflake removal
only consider one or several features of snowflakes. During
the detection and repair processes, some detailed
information is ignored and lost, resulting in image blurring.

Unlike traditional modeling methods, algorithms based
on deep learning utilize the self-learning ability of the
network to extract the features from an image to detect and
remove the rain and snowflakes in the image. Liu et al. [12]
proposed a multistage network called DesnowNet, which
adopts a semitransparent recovery and residual generation
module to recover images blurred by snowflakes. Jaw et al.
[13] used a pyramidal hierarchical design with lateral
connections across different resolutions to enrich location
information and reduce computational time, which is based
on DesnowNet. Li et al. [14] designed a composite
generative adversarial network (CGAN). Unlike the
previous GAN, their generator network comprises a clean
background module and a snow mask estimation module to
extract useful information. Based on a 3D residual network,
Yan et al. [15] utilized both contextual information and 3D
scene structure information to effectively detect snowflakes
of different sizes in low frequency (LF) images. Finally, an
encoder-decoder-based LF image restoration network was
proposed to restore the background image. Li et al. [16]
proposed a multiscale tacked densely connected
convolutional network to detect and remove snowflakes in
an image. The results of the snowflake detection network
were transmitted forward to guide the snow removal
network, and the results of the snowflake removal network
were transmitted backward to guide the snow removal
network. In this way, snowflake detection and removal
were achieved. Chen et al. [17] proposed a joint size and
transparency-aware snow removal method of joint size that
can address both transparent and nontransparent snow

particles by applying the modified partial convolution.
Yang et al. [18] proposed a deep-learning-based rain streak
removal method injected with self-supervision. They
created a fractal band learning network based on frequency
band recovery to improve the capacity to capture
discriminative features for deraining. Lin et al. [19]
proposed a framework based on a sequential dual attention
deep network to remove rain streaks in a single image.
They used sequential dual attention blocks and multi-scale
feature aggregation modules to improve the removal of rain
streaks. Yeh et al. [20] proposed a method relying on multi-
scale residual learning and image decomposition to remove
haze from images. They employed a deep residual
convolutional neural network (CNN) and a simplified U-
Net to avoid color distortion. However, this algorithm leads
to significant image blurring.

To remove snowflakes from a single image, we
developed a novel single-image snowflake removal method
employing an attention mechanism and an improved U-Net
on the basis of a GAN.

Compared to previous studies on snow removal from a
single image, our method offers the following contributions.

(1) Our method takes advantage of an attention
mechanism. The attention diagram of snowflakes
is employed as the guide for improving the
sensitivity of the network model to snowflakes,
thereby improving the snowflake removal ability
of the model.

(2) We combine a U-Net with a residual network
(ResNet) to enhance the quality of recovered
snow-free images.

This paper is organized as follows. Section 2 introduces
the deep learning network framework related to our work.
Section 3 presents our proposed network model and the loss
function. Section 4 presents the experimental results and
analysis, and the paper is briefly summarized in Section 5.

II.  RELATED WORKS
In this section, we briefly review the basic model for

snow removal from a single image and related deep
learning network frameworks.

A. Single-Image Snow Removal Model
Snowy images can be seen as combinations of clean

background pixels and snowflake-contaminated pixels, and
these images can be expressed as follows:

(1 )I B M S M     (1)
where � represents the input image, which is corrupted by
snow, � represents clean background pixels, � represents
snow pixels, � denotes a characteristic graph of the
approximate snowflake position, and the operator ⨂
represents elementwise multiplication.

B. Generative Adversarial Network (GAN)
In 2014, Goodfellow et al. [21] proposed the GAN

framework for the first time. The structure of the GAN
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framework is shown in Fig. 1. As shown in the figure, this
framework trains two models simultaneously: a generator
network G and a discriminator network D. The former is
trained to learn the true distribution of given data and create
a generated sample, while the latter is used to determine if a
sample is a true sample. The training process of G involves
trying to force D to make as many mistakes as possible,
while the training process of D involves improving its
ability to determine if a sample is a real sample or a sample
generated by the generator network. With constant training,
the generator is able to generate a fake sample that is
sufficiently similar to the real sample. The loss function of
a GAN is defined as follows:

     
( ) ( )

G D

minmax log ( ) 1 log ( (z))
data zx p x z p z

Dx DG
 

 E E (2)

where G represents the generator, D represents the
discriminator, x is a sample from the real data (its label is
known), and z is the sample produced by the generator (its
label is unknown).

However, the traditional GAN has some problems, such
as training instability, gradient disappearance and mode
collapse. Arjovsky et al. [22] proposed the WGAN model,
which includes the Wasserstein distance with superior
smoothness. They solved the vanishing gradient and mode
collapse problems faced by the GAN. Mao et al. [23]
adopted the least squares loss function for the discriminator
and proposed the LSGAN model, which increases the
quality of the images generated by the network and
stabilizes the training process at the same time.

Recently, GANs have been applied in many fields, such
as image enhancement [24], image segmentation [25],
target detection [26], image repair [27] and other
applications [28~30].

FIGURE 1. Architecture of a generative adversarial network (GAN).

C. Residual Network (ResNet)
The main problems encountered by deep learning

algorithms with network depth are vanishing gradients and
exploding gradients. The general corresponding solutions to
these problems are the initialization and batch
normalization of data. However, these solutions cause other
problems, such as the degradation of the performance of the
network and increases in the network depth and error rate.
He et al. [28] proposed the ResNet in 2015. This network
solves the problems of network degradation and gradient
problems, thus improving the performance of the network.

ResNet includes a method for fitting the residual
mapping, that is, the convolution result is not directly taken
as the output, but the identity mapping is used for the
calculation. Assume that the network has a hidden layer F(x)

that satisfies the mapping relation F(x)=H(x)-x. If multiple
nonlinear layers are combined, we can consider them as a
complex network. Similarly, we can assume that the
residual mapping of the hidden layer approximates a
complex function: H(x)=F(x)+x. The structure of ResNet is
shown in Fig. 2.

As shown in Fig. 2, ResNet performs feature extraction
on the image by adding the outputs and inputs of multiple
convolution hierarchies, thus reducing the number of
training parameters used. Compared with other networks,
ResNet is relatively simple with fewer training parameters
and a shorter training time, thereby solving the performance
degradation problem of deep CNNs. Consequently, ResNet
has been widely used in computer vision.

FIGURE 2. Architecture of the residual network.

D. U-Net
Ronneberger et al. [32] proposed the U-Net structure in

2015, by forming a symmetrical U-shaped structure for
image feature extraction through an encoding network and
a decoding network. The encoding network is mainly
responsible for downsampling and extracting high-
dimensional feature information. Each downsampling
iteration contains two convolution operations and one
pooling operation. Employing a rectified linear unit (ReLu)
as the activation function halves the size of the sampling
and doubles the number of features. The decoding network
is mainly used for the upsampling. Each upsampling
iteration contains two convolution operations, and the ReLu
is modified as the activation function. With each
upsampling step, the size of the image is twice that of the
input, and the number of features is halved. During the
upsampling processes, the output features of each iteration
are combined with the features of the corresponding
encoding network to complete the missing boundary
information.

III.  PROPOSED METHOD
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In this section, we introduce our single-image snow
removal model based on the GAN in detail, including the
generator and discriminator. The architecture of our model
is shown in Fig. 3. Additional details for each block are
shown in Fig. 4 ~Fig. 7.

FIGURE 3． Architecture of our model.

A. Generator Network
The generator network in our model consists of two

portions: the attention map estimation module and the
snow-free image generation module. The function of the
attention map estimation module is to discover the snow-
covered area by learning between the clean image and the
image polluted by snowflakes. The snow-free image
generation module can repair the snowy image by referring
to the attention map.

FIGURE 4. Architecture of the attention map estimation module.

FIGURE 5. Architectures of residual blocks.

1) ATTENTION MAP ESTIMATION MODULE
Inspired by Mnih et al. [35] and Qian et al. [36], we

utilize a recurrent network to generate attention maps. The
recurrent network consists of four blocks, and each block

consists of five ResNet layers, one long-short-term memory
(LSTM) layer and one convolutional layer. The structure of
the network is shown in Fig. 4. In the network training
phase, the input of this module consists of a snowy image, a
snow-free image, and a binary mask of snow. After being
processed by this module, the attention map of snowflakes
is obtained and merged with the snowy image before being
injected into the next module.

The series of ResNet layer is used to extract features
from the input image, and its structure is shown in Fig. 5.
The convolutional layer is used to generate a 2D attention
map. The attention map generated by each block is also
merged with the input images and injected into the next
block at the same time. The final attention map is obtained
through the learning processes of all four blocks

The LSTM unit contains an input gate it , a forgetting
gate ft , an output gate ot , and a cell state gate Ct . The
interactions between gates are defined as follows:
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where Xt represents the features generated by ResNet, Ht
denotes the final output features extracted by the LSTM
unit, Ct is the unit state provided to the next LSTM,
�� , �� , �� ,and �� represent the biases of the input gate,
forgetting gate, cell state gate and output gate, respectively,
and the operator * stands for the convolution operation.

When training the attention map estimation network, we
use pairs of images polluted by snow and snow-free images,
with both having the same background. During each
training process, the loss function of the network is defined
as the mean squared error (MSE) between the output
attention map and the binary mask. The loss function is
expressed as follows：

N

AML t
1

({A},M)= (A M)N t
MSE

t

 


  ， (4)

where �� represents the attention map generated by the
attention map estimation network at time step t, �� =
��h�(��−1,��−1,��−1) , ��−1 is the splicing of the input
image and the attention map generated by the previous
training process, and M represents the binary mask of snow,
which can be obtained when the snowy image is
synthesized. In our model, N = 4 and α = 0.7 . We set the
initial attention map with values of 0.5, and as the number
of training steps increases, the values of the pixels covered
by snow increase gradually.
2) SNOW-FREE IMAGE GENERATION MODULE

In our proposed model, we use a U-Net-based network to
generate snow-free images. The generator module consists
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of an encoding component and a decoding component.
Taking advantage of ResNet, we combine ResNet with U-
Net to improve the quality of the recovered snow-free
images with a small increase in network complexity. The
structure of this network is shown in Fig.6. In the network
training phase, the attention map and snowy image are
input into this module, and a snow-free image is output
after processing.

The encoding component is based on the downsampling
operation while the decoding component employs the
upsampling operation. Skip connections are utilized to
retain the details of the image. In the fifth layer of U-Net,
we employ five ResNet blocks containing dilated
convolutions. The structure of this ResNet is shown in Fig.
5. U-Net has deeper levels and more training parameters
than ResNet, which extracts more features for restoring the
image. At the same time, this method avoids training times
that are too long and overfitting [31]. The function of
dilated convolution is to enlarge the receptive field of the
network without increasing the complexity of the
parameters.

FIGURE 6. Architecture of the snow-free image generation module.
As shown in Fig. 6, the input of the first convolutional

layer is a 4D array. The first dimension represents the batch
size, and the last dimension represents the number of
feature channels. In the encoding component, we set 32
first-level feature channels and then double the number of
feature channels step by step until reaching a total of 512.
Accordingly, in the decoding component, we gradually
reduce the number of feature channels in the upsampling
portion until the color snow-free image is generated. We
employ the mean absolute error (MAE) to express the
difference between the generated image and the original
image, with different scales generated by different levels.
The loss function of the network is defined as follows:

I

Unet
1

({R},{T})= (R T )i MAE i i
i




  ， (5)

where �� represents the i-th output image of the decoder, ��
represents the corresponding snow-free image, and ��
represents the weights of the loss at different scales. The �
values of the 1st, 2nd, 3rd, and 4th layers from the end of the
structure are set to 1,0.8,0.6, and 0.5, respectively. In

addition, we use a perceptual loss [34] to calculate the
global difference between the output of the snow-free
image generation module and the clean image. A trained
CNN, such as the VGG16 network trained on the ImageNet
dataset, is employed to extract this discrepancy. The loss
function can be rewritten as follows:

I

1

({O},{T})= (VGG(O ) VGG(T ))PL MAE i i
i

  ， (6)

where �� represents the output image of the generation
module, �� denotes the corresponding clean image, and
VGG is a pretrained CNN used to extract image features.

To sum up, the loss function of the generator network
can be expressed as follows:

G AMl Unet

GAN

= ({A}, M)+ ({R},{T})

+ ({O},{T})+ (O)PL

  

 
(7)

where ���h(�) = log (1 − D(O)) and O represents the
generator of the final output image.

B. Discriminator Network
The discriminator network is used to classify the input

image as real or fake. As shown in Fig. 7, the discriminator
contains four groups of convolutional layers. For each layer,
there is a convolutional layer followed by a batch
normalization layer and a ReLu activation layer. A fully
connected layer and a single neuron with a sigmoid
activation operation are placed in the last layer for the
output.

The loss function of the discriminator network is defined
as follows:

D = -log(D(T))-log(1-D(G(I))) (8)
where T represents the real snow-free image, and I denotes
the input snowy image.

FIGURE 7. Architecture of the discriminator network.

IV.  EXPERIMENTAL ANALYSIS
In this section, we introduce the data and details of the

training process. In the following subsections, the effects of
different methods are evaluated from various aspects in
detail.

A. Dataset
In this paper, a snow dataset named Snow100K2 [8] is

utilized for training and testing, and it contains synthesized
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snowy images, relevant clean images and snow masks. We
employ 8000 snow masks of disparate scales and 10000
clean background images to generate 18620 synthesized
snowy images. The dataset is divided into a training set and
a test set at a ratio of 8:2 to improve the performance of the
network.

B. Training Details
We train the network on an NVIDIA Tesla V100 GPU.

Our proposed method is implemented using TensorFlow
1.12.0 and Python 3.6.0. The parameters of the learning rate
and batch size are set to 0.0004 and 4, respectively. All
training images are resized to 256*256. In addition, the
generator network and discriminator network of the GAN

are trained at the same time, and their parameters are
updated accordingly.

C. Results Analysis
In this section, we show the experimental results of our

method along with those of other state-of-art algorithms in
terms of removing snowflakes from a single image: the
algorithms of Li et al. [9], Chen et al. [12], Qian et al. [36],
and Yang et al. [38]. We analyze the experimental results
from different perspectives. In this paper, we present six
synthesized snowy images, as shown in Fig. 8 and Fig. 10,
which are included in these test set. We also employ real-
world snowy images obtained from YouTube, was shown
in Fig. 9.

FIGURE 8. Example synthetic image results. (a) Ground truth, (b) Snowy image, (c) Li et al. [9], (d) Chen et al. [17], (e)Qian et al. [36], (f) Yang et al. [38],
(f) our method.

1) QUANTITATIVE EVALUATION
Table 1 shows quantitative comparisons between our

method and other existing methods using the PSNR [39]
and SSIM [40] metrics, which are based on images in Fig. 8.
As shown in the table, compared with those of other
methods, the PSNR and SSIM values obtained by our
method are higher. This indicates that the snow-free image
generated by our method is closer to the real snow-free
image than the images generated by the other algorithms.

We also compare the network complexity and the run
time complexity of our method and the other methods. We
utilize processing time per image to present the run time
complexity. As shown in Table III, the method of Yang et
al. [38] has the fastest processing time, while the method of
Chen et al. [17] has the slowest. Our method is slower than
the methods of Li et al. [9] and Yang et al. [38], but faster
than other competing algorithms. To compute the network
complexity, we employ floating point operations (FLOPs),

which represents the calculated amount. In Table IV, we
show the FLOPs of our method and the methods of Li et al.
[9], Qian et al. [36], Yang et al. [38]. As shown in the table,
our framework is less complex than that of Qian et al. [36]
but more so than the others.

TABLE I
PERFORMANCE COMPARISON OF ALL COMPETING METHODS ON SYNTHETIC SNOW

VIDEOS IN TERMS OF THE PSNR, AND SSIM METRICS IN FIGURE 8
1st image 2nd image 3rd image

PSNR SSIM PSNR SSIM PSNR SSIM
Li et al. [9] 23.95 0.9198 24.96 0.9214 28.05 0.9389

Chen et al. [17] 24.56 0.8834 26.19 0.8995 25.47 0.8847
Qian et al. [36] 25.36 0.9362 26.45 0.9366 28.24 0.9442
Yang et al. [38] 23.64 0.8633 24.85 0.8712 25.39 0.8381

Our 28.26 0.9780 29.71 0.9791 29.15 0.9597

TABLE II
PERFORMANCE COMPARISON OF LOSS FUNCTION ABLATION EXPERIMENTS IN TERMS

OF THE PSNR AND SSIM METRICS
1st image 2nd image

PSNR SSIM PSNR SSIM
c 28.5508 0.9091 27.6322 0.8864
d 20.6313 0.6771 21.6481 0.7012
e 24.2146 0.7879 23.9517 0.7956
f 29.8812 0.9493 28.5334 0.9233
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TABLE III
PROCESSING TIME COMPARISON

Fig. 8 Fig. 9
1st image 2nd image 3rd image 1st image 2nd image

Li et al. [9] 14.22s 14.56s 15.96s 14.61s 14.13s
Chen et al. [17] 91.19s 90.13s 94.01s 92.03s 91.34s
Qian et al. [36] 15.41s 15.48s 17.40s 15.98s 15.13s
Yang et al. [38] 3.81s 3.08s 3.62s 3.70s 3.95s

our 14.63s 14.54s 16.76s 14.83s 14.61s

TABLE IV
THE NETWORK COMPLEXITY OF OUR METHOD COMPARED

WITH STATE-OF-ART METHODS IN TERMS OF FLOPS
FLOPs

Li et al. [9] 5.06E85
Qian et al. [36] 4.11E86
Yang et al. [38] 2.33E73

our 7.21E85

2) QUALITATIVE EVALUATION
In this section, we show the qualitative evaluation of the

performances of the proposed method and the methods of
Li et al. [9], Chen et al. [17], Qian et al. [36], and Yang et
al. [38]. We conduct experiments on both the synthetic

images and the real image to provide convincing results.
Fig. 8 shows the results obtained by the algorithms of Li et
al. [9], Chen et al. [17], and Yang et al. [38] in comparison
with our results. As seen from Fig. 8, the algorithm of Yang
et al. [38] removes only a few snowflakes from the image,
and it causes considerable blurring of the image at the same
time. By comparison, the method of Li et al. [9] removes
more snow; however, distortion is generated when the
snowflake pixels are repaired. Some snowflake pixels have
not been completely fixed, as the second group image
shows. The algorithm of Chen et al. [17] removes some
snowflakes while some snow remains. Unfortunately,
images processed by the method of Chen et al. [17] lose the
details and produce some artifacts, which are obvious in the
third group image. The method of Qian et al. [36] removes
most of the snowflakes in the image, while some still
remained. In contrast, our method removes snowflakes and
produces a snow-free image that most closely resembles the
real background

FIGURE 9. Example real-world images results. (a) Snowy image, (b) Li et al. [9], (c) Chen et al. [17], (d) Qian et al. [36], (e) Yang et al. [38], (f) our method.

FIGURE 10 Example results of the ablation study. (a) Ground truth, (b) snowy image.
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Fig. 9 shows the resulting real-world snowy images
generated by different methods. As shown in Fig. 9, the
algorithm of Yang et al. [38] only removes some of the
snowflakes from the image and loses background
information while repairing pixels covered by snowflakes.
As shown in the first group image, the method of Chen et al.
[17] fails to remove snow from the real-world image. A
large number of snowflakes remained after the treatment.
The algorithm of Qian et al. [36] removes some of the
snowflakes and saves more background information.
However, there still some noticeable snowflakes remain. As
can been seen clearly in Fig. 9, the method of Li et al. [9]
removes some of the snowflakes but causes a substantial
amount of blurring in the image. Compared to the previous
algorithm, our method removes snowflakes thoroughly and
preserves background information integrally. By
comparison, the images generated by our method are
clearer than the images generated by the other algorithms.

D. Ablation Study
To study the effectiveness of each module and the loss

function in our proposed network, we conducted an ablation
study, and the results are shown in Table. 2 and Fig. 10.
Subfigures (c), (d), and (e) represent the loss function
without ���h , ��h , and ����� , respectively. Subfigure (f)
denotes the completed loss function. As seen from Fig. 10,
without ���h ,the attention map estimation module is not
trained, so some snowflakes will remain. Without ��h ,
there will be color distortion in the images. The snow-free
image generation module is not well trained without ����� ,
which causes blurring in the generated images. The
completed loss function performs better than the partial loss
function.

V.  CONCLUSION
In this paper, we propose a single-image snow removal

model based on an attention mechanism and a GAN. We
use the attention mechanism to detect snowflakes in a
single image and make the snow-free image generation
module pay increased attention to the pixels covered by
snowflakes when repairing the image by using an attention
map. To obtain high-quality snow-free images, we improve
U-Net to increase the amount of available information.
Experiments on synthetic images and real-world images
show that our method has advantages over other snow
removal methods. In future work, we will focus on the
problem of misjudgments of snow and improve the ability
of our model to deal with real-world snow scenes.
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