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ABSTRACT Activity Recognition is an active research topic focused on detecting human actions and
behaviours in smart environments. In most cases, the use of data-driven models aim to relate data from
sensors to an activity through a model developed by a supervised approach. In this work, we focus on
the goal of domain adaptation between smart environments, which has required a novel approach to relate
the concepts of domain adaptation using binary sensor and learning from daily imbalanced data. In this
work, the sensor activation from a given context is translated to a different one, based on the temporal
alignment from human activities. The domain adaptation of binary sensor is accomplished through a three
step procedure: i) clustering of sensor activation, ii) activity based alignment of sensor data between the
two environments, iii) an ensemble of classifiers used to mine a mapping function, translating sensor data
between the two environments. The proposed method was evaluated over a publicly available dataset, and
obtained preliminary results which were encouraging with an F1-Score of 87%.

INDEX TERMS Sensor translation, smart environments, domain adaptation.

I. INTRODUCTION
The state of the art solutions for smart environments
allow for the monitoring of human activities in an increas-
ingly less invasive way [1]. Activity Recognition (Activ-
ity Recognition (AR)) has been among the main topic of
investigation in relation to the development of smart envi-
ronments [2], [3]. Its application can help to improve the
quality of healthcare services whilst allowing people to stay
independent for as long as possible and to remain living
in their own homes [4]. AR aims at developing predic-
tive models which detect human actions and their goals [5]
within a smart environment with the aim of providing assis-
tance to the inhabitant when required. Since the earliest
attempts of implementing smart environments, binary envi-
ronmental sensors have been commonly proposed as suitable
devices for gleaning data from the environment. The data
can subsequently be used to describe daily human activities
through the monitoring of the interaction of the user and the
environment [6], [7].

The associate editor coordinating the review of this manuscript and
approving it for publication was Ghufran Ahmed.

The technology progress witnessed in recent years has
offered major advancements both in terms of hardware and
software solutions. From a hardware perspective, sensing
technology has becomemore sophisticated offering increased
computational resources, increased battery life and enhanced
forms of communications whilst at the same time becom-
ing less expensive. From a software perspective, the models
used to detect activities in smart environments have evolved
largely taking advantage of the recent advancements in the
field of machine learning. To date, supervised approaches
for the development of models have arguably been the most
prominent approach for AR [8]. One of the major chal-
lenges in the field of smart environments has been the ability
to build effective models for the purposes of AR that are
reusable across different environments [9], [10]. Neverthe-
less, the common denominator of models developed for the
purpose of AR applications is that they are typically deeply
coupled with a specific sensor deployment that generates the
data used for model training. Taking this into consideration,
models are not easily transferable to different environments
and to different sets of activities The adaptation to a different
environment requires the model to be retrained, or at least
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to be fine- tuned, in order to match the sensor deployment
corresponding to the new environment. When using a super-
vised ML approach a similar transfer is seriously obstructed
by the fact the training process to adapt to the new environ-
ment requires the presence of labeled data. One of the main
approaches which aims to address this challenge is referred
to as transfer learning, and more specifically within a method
known as domain adaptation; a field of study which attempts
to map input data between different environments [11].

In this work, this problemwas addressed as a domain adap-
tation scenario [12] as a special case of transfer learning [13].
The goal was to predict sensor activation in a different envi-
ronment with the general assumption that the same set of
activities were ongoing, i.e. trying to predict the binary sensor
activation in a target domain which differs from the source
domain in terms of sensor deployment.

More specifically, the proposed method targets the domain
adaptation of binary sensors allowing the prediction of binary
sensor activations in the target environment corresponding to
a specific activity, based on the activations produced in an
observable source environment. One of the biggest obstacles
in domain adaptation, however, is the scarcity of labeled data
which relates the information between contexts to train such
models. In this work, this problem is addressed by relating
the sensor activation with the labeling from human activities
provided in data-driven datasets.

The presence of a domain adaptation model, which is capa-
ble of transferring sensor activations from a given domain to
another domain, is a highly desirable functionality, consider-
ing that location and configuration of devices across differ-
ent smart environments presents an extremely heterogeneous
scenario. One of the possible applications of such a method
is the prediction of sensor activation for inhabitants in unseen
environments [14], which in turn can be deemed useful to
anticipate the user interaction in unknown environments [15]
or to evaluate the differences of sensor activations between
users and context. Above all, however, the domain adaptation
of sensors [12] would enable multi-domain learning having
the possibility of translating and reusing an available labeled
set of groundtruth data, for training a model in different
environments within the context of limited labelled data
required for the purposes of developing supervised learning
solutions.

In this work, a methodology is proposed to enable the
translation of binary sensor data from labeled datasets col-
lected in naturalistic conditions in different environments.
The proposed method for domain adaptation consists of four
steps:

1) Sensor activation belonging to the same activity in the
source and target environment are clustered in order
to detect patterns of interest to relate in the domain
adaptation of binary sensors.

2) Temporal alignments of data of the domain is per-
formed to relate the patterns of interest of an activity,
and in particular the ones characterising the start and
the end of a particular activity.

3) A classifier for each sensor with ad-hoc balanced
dataset to predict the sensor activation in target domain
is proposed. This approach enable the learning of
sequence activation of target sensors from forms.

4) Fuzzy temporal windows configure the feature vector
based on short and middle-term activation from the
activation of sensors and activities in the input domain

The requirement for implementing the proposed method to
translate sensor activations into different domains is focused
on the activity labeling, whose activities are required to be
included in the same contexts. Developing domain adaptation
using the available labels from human activities represent an
important advantage facilitating the generation of labelled
datasets, whose creation normally require a time consuming
manual collection and annotation process.

It should be noted that the domain adaptation by means
of time alignment provides a relationship which includes
uncertain and imprecision between both domains [16]. This
is due to the fact that labeling is for annotating activities,
however, it does not take into consideration the implicit rela-
tionship between sensor activations in contexts. The temporal
alignment is a weak labeling between domains where there
is not a straightforward relation between domains in all the
instances.

In this way, selecting a suitable dataset for evaluation pur-
poses can be viewed as being a convoluted task considering
that such a dataset satisfy the following requirements by:
i) include the same set of activities in at least two different
environments, ii) include diverse development for each activi-
ties, and iii) be recorded in naturalistic conditions. In addition,
the dataset should be accurately labeled. Consequently, only
a limited choice of datasets could be used for the purpose of
evaluation.

In addition to the problem of the lack of adequate availabil-
ity of labelled data, domain adaptation also aims at addressing
the intrinsic differences between various domains, consider-
ing scenarios in which the source and the target domain are
heterogeneous in the sense of the set of deployed sensors and
their locations [17].

In the remainder of this article, we provide further detailed
descriptions of the proposed approach. Section II reviews
related works and state of the art of similar approaches
for domain adaptation, emphasizing the main novelties of
the proposed approach. Section III presents the proposed
methodology for translating the sensor information between
different context domains. Section IV introduces the evalu-
ation of the methodology analyzed in a real-world dataset.
Finally, in Section V, conclusions, ongoing and future works
are discussed.

II. RELATED WORKS
As previously mentioned, the deterioration of AR accuracy
normally observed when moving models to new environ-
ments represents one of the biggest challenges in the domain.
This deterioration phenomenon is not specifically linked to
smart environments, it is more generally related to the limited
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generalisation abilities that ML models face in the context of
all data-driven supervised applications. Training data driven
AR models requires large amounts of labelled data [18]. The
ability to reuse trained models in different environments with
different subjects remains an open issue [19].

An AR model can be seen as a mapping function identify-
ing a target activity y on the basis of observed sensor input X
within a corresponding time interval. Considering both the
input domain X and the output, i.e. the set of activities Y ,
some cases can be distinguished when moving a model M
between two different contexts. In the simplest case, both the
input domains X1 and X2 and the output domains Y1 and Y2
of the two environments are the same. In this case, a model
exhibiting generalization issues in the new environment can
be deemed as linked to overfitting phenomena, in most cases
due to the fact of failing the assumption that the two input
sets X1 and X2 are drawn from the same distribution [11].
However, the typical case of an AR model transfer between
smart environment, the situation should be considered as
being more complicated, since, different environments will
correspond to different users, different sensor deployment
(i.e. different input sets X ), and often a different set of activ-
ities Y . The two cases of adaptation can be distinguished
as domain adaptation, i.e. in cases where the aim is the
adaptation is between X1 and X2, or task adaptation in cases
in which the set of activity labels differs between the two
environments [11].

In this work, the problem of domain adaptation and in
particular the case of heterogeneous1 domain adaptation was
addressed. Heterogeneous domain adaptation can be per-
formed through a means of learning a function which maps
sensor data between two environments subsequently allowing
a model to be trained using labelled data form a different
environment.

Model adaptation, is a frequently investigated topic in AR,
and has been applied for instance in egocentric AR solutions
using wearable devices. In this case, the adaptation allows the
model to be adapted to different users, often using person-
alization techniques [16], [20]. Personalization approaches
allow models to be adapted to a new target subject, however,
the transfer between subjects assumes that the feature space
X and activity labels Y are the same between the source and
the target environment. Consequently, alternative approaches
have been proposed for cases requiring adaptation between
the source and the target environment, either in terms of the
sensor deployments or activity labels.

The current work focuses on the case of heterogeneous
domain adaptation between a source X1 and a target domain
X2 in the presence of a similar set of activities. Several stud-
ies have investigated new techniques for domain adaptation
including supervised and unsupervised adaptation methods,
however, the terminology used to describe these terms often
varies between studies [11]. In the current study, similar to

1i.e. in cases where the sensor deployment between the two environments
is different

the works presented in [11], the term unsupervised domain
adaptation is used to refer to methods attempting to perform
adaptation between X1 and X2 where activity labels are avail-
able only for the source context Y1, as opposed to the case
of semi-supervised domain adaptation where some activity
labels are available also for the target domain Y2. A fur-
ther distinction between domain adaptation techniques can
be made when considering homogeneous and heterogeneous
adaptation. This considers the case of domain adaptation with
the same or different sensor deployment.

A recent example of adaptation between different smart
environments was proposed in SLearn [18]. In this case,
the authors tried to address the problem of scarcity of labelled
data by enabling a shared learning approach. This approach
allows models to be trained on shared training data obtained
by combining annotated data which is available frommultiple
datasets, i.e. frommultiple environments. The shared learning
is accomplished through two main steps: (i) feature space
remapping, and (ii) label space remapping covering both
cases of domain and task adaptation. The approach aimed
to implement a semi-supervised domain adaptation solution
which supported shared training between different dataset
with as little as 0.1% of annotated data.

In [19], authors proposed an unsupervised domain adap-
tation approach. The adaptation process was implemented
as a three step procedure: pre-annotation of source domain,
a knowledge driven based feature remapping, the generation
of pseudo-labels in the target domain for model training.

In the context of transfer learning approaches, other studies
have been addressing the problem of unsupervised domain
adaptation methods as a weak labeling problem, e.g. in the
case of audio [21] or video [22]. In the works reported in [16]
a weak labeling approach to train a personalised model was
presented. The approach was further developed in [23], where
an automatic annotation heuristic producing weak labels was
used to train personalised classifier models. The work was
also detailed in [20], where an unsupervised personalization
approach was proposed. The automatic annotation approach
is only viable for for simple activities, whereas, for complex
ADLs an automatic annotation approach is hardly achiev-
able. The complexity is further exacerbated when using a
completely unsupervised approach as in [20]. In this case the
target set of simple activities was made extremely simplified,
distinguishing between light, moderate and intense activities
rather than trying to target complex activity labels. As an
alternative, addressing the problem of scarcity of labels as
a data annotation problem, has also shown its limitation,
since data annotation is a time consuming and error prone
process [24], [25].

Most of the proposed domain adaptation attempt to share a
common phase, usually reported as feature mapping, whose
goal is to learn a mapping function between the input feature
space in the two environments, as for instance in [18], [19].
In order to provide the feature mapping from the data in the
different domains, the use of unpaired data generates a more
challenge, but it facilitate the application in real domains.
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The unpaired data do not include information about how X1
matches which Y2 and it is in the topic of this work [26].
So, the domain adaptation models map between the source

and target data distribution [27]. Similar approaches have
been mainly developed in visual applications [28]. In the
case of this work, where the goal is to predict binary sensor
activations, a new approach for this problem is presented.
This low-level mapping between the two domainsX1 and
X2 requires a learning phase, in which sensor activations
corresponding to the same activity label are examined in order
to identify common patterns of interest corresponding to the
beginning and the ending of the same activity. A similar
analysis has previously been undertaken through clustering
algorithms [29] providing the discovering of daily patterns
which were related to tasks from users. In AR, a cluster-based
ensemble method can be successfully applied as a viable
option for activity recognition [30].

Moreover, domain adaptation improves the performance
when including the selection of areas of interest in an unsu-
pervised way which detail key pattern to map the data
between domains the [31]. To optimize or approach, we detect
areas of interest integrating a temporal alignment of key pat-
terns extracted by clustering using the temporal progression
in the activity, which provides a method to relate the unpaired
data between domains in a unsupervised way. In Figure 1,
we describe the relation of these key points and the approach
presented in this work.

FIGURE 1. Labeling and alignment with unpaired data between domains
in related stages of domain adaptation and the related of this
approach.

In a similar way, sensor event prediction has also been
used in the past, as in [14] where the authors explored the
analysis of the input data as a time series using Recurrent
Neural Networks. When including the time information in
the input data, the accuracy of predicting the next sensor
event was 84%. Nevertheless, in this case the prediction was
limited to the scope of predicting activations within the same
environment.

With respect to the state-of-the-art that has been discussed,
it should be noted that, despite the presence of a significant
amount of literature around this topic, the proposed methods
have predominantly defined in the context of visual infor-
mation, and within the sensor in smart environment they
have addressed sensor event predictions rather than domain
adaptation.

III. PROPOSED METHOD
In this section, the proposed domain adaptation method
is presented. The method defines the development of a
model which translates the activation of binary sensors
between different domains or smart homes. In Section III-A,
the problem being addressed is presented in a formal way
as a semi-supervised heterogeneous domain adaptation case.
In section III-B, a clustering method is proposed to com-
pute relevant sensor patterns. This clustering step is also
used to address the problem having of highly imbalanced
number of activations of sensors for different activities.
Section III-C using activity labeling presents the alignment
method for relating points of time from different domains
using temporal progression of activity labels. An balanced
dataset for each classifier for a given target sensor is presented
as an ensemble model in Section III-D. Finally, Section III-E
describes the evaluationmethodology of the conducted exper-
iment based on an inverse translation and cross validation
method.

A. PROBLEM DESCRIPTION
Considering a given smart environment A, let SA =

{SA1 , . . . , S
A
|SA|} be the set of sensors deployed in the environ-

ment, and letLA = {LA1 , . . . ,L
C
|LA|} be the set of activity labels

which have been observed and annotated in A. The process of
AR can be seen in this context as a labeling problem, creating
a function that links a set of sensor activations SAi to the
corresponding set of conducted activities LAi , i.e. a labeling
function SA→ LA.
Both the binary sensor activations and activities are

described by a set of temporal instances within a given
interval of time, defined by a starting and ending point as
presented by Eq. (1):

SAi = {S
A
i0 , . . . , S

A
|Si|}, SAij = {S

A
ij0
, SAij+}

LAi = {L
A
i0 , . . . ,L

A
|Li|}, LAij = {L

A
ij0
,LAij+} (1)

where: i) |SAi | represents the number of temporal intervals
for a given binary sensor, ii) |LAi | represents the number of
temporal intervals for a given daily set of activities Ai, and
iii) Sij0 ,Sij+ the starting and ending point of a time interval
for the sensor SAi , respectively.
It should be noted that the cardinality of LAi and SAi can vary

significantly between long and short activities (e.g. preparing
a meal vs leaving the house) and activities that generate a
high number of activations (e.g. cooking) whereas other are
intrinsically less verbose activities (e.g. leaving house) can be
expected to generate relatively few sensor activations. In this
work, we provide a domain adaptation between two sensor
contexts A,B by means of activities LA,LB which translates
the binary activation of sensors SA to SB. The translation
modelM provides the sensor representationM (A→ B) from
the sensor activation in the context SA to the sensor activation
in the context SB in case of developing the activities LA.

M : {SA,LA} → {SA→B,LA} (2)

VOLUME 8, 2020 228807



A. Polo-Rodriguez et al.: Domain Adaptation of Binary Sensors in Smart Environments Through Activity Alignment

Figure 2 illustrates an example of sensor to sensor trans-
lation (also know as domain adaptation) from two different
context domains A and B, by means of a translation model.

FIGURE 2. From sensors SA, SB and activities LA, LB in contexts A and B
respectively, a translation model learn the activation of sensors in
domain SB from the activation of sensors SA.

The following Sections describe the stages defined for
developing a domain adaptation model translating binary
sensor activation between the domains A and B.

B. SELECTION OF FREQUENT KEY PATTERNS IN
ACTIVITIES BY MEANS OF FUZZY CLUSTERING
A dataset is considered to be imbalanced when its classes
are not equally represented [32]. In the scenario of consid-
ering activities of daily living, the datasets suffer from a
severe class imbalance problem in activities and sensor acti-
vation [6], [7], [33].Within the application context targeted in
this work, an extreme imbalanced relation between activation
and non-activation in the sensor can be expected due to the
activities that are intrinsically more verbose in the sense of
the number of activations they generate and activities that
generate a sparse set of activations. In Figure 2, the activation
percentages of time-slots for each binary sensor is detailed,
providing a visual example of this type of imbalance [6].
Learning the activation of these infrequent sensors in the daily
timeline is a needle-in-a-haystack problem.

In order to address this type of imbalance, our implemen-
tation proposes a selection method of relevant sensor patterns
within the daily activities where sensor data are automatically
aggregated into clusters to improve on recognition accuracy
with respect to classification models [34] while at the same
time being robust to imbalanced and uncertain conditions
with noisy data [35]. The proposed method is based on fuzzy
clustering using the Fuzzy C-means algorithm [36] which is
a centroid-based method used to compute the clusters and
membership degrees between 0 and 1 for each sample to the
cluster centers. These clustering approaches with the inte-
gration of fuzzy approaches, specifically the fuzzy C-means
algorithm [36] have provided suitable methods to extract
meaningful patterns from sensors [37]. The selection of the

fuzzy C-means is based on the sturdiness in handling noisy
data samples [38] and the ability to express ambiguity in
relating instances to several clusters, being robust in terms
of local minima of the objective function [39]. Despite the
fact that the use of fuzzy C-means can be affected by a high
dimensional data set, the dimension size is defined by the
number of binary sensors, whose value is limited (between
ten and one hundred in the dataset evaluated in this work [6]).
Fuzzy C-means and other clustering approaches have been
successfully used in AR to detect key patterns [40], [41].

First, we initially segment the timeline in time-slots using
the window size 1t = 60s based on the standard refer-
ence from [6], [42], [43]. Second, we divide the timeline
T = {min(S0ij ),max(S

+

ij )}, which configures the range of

time between first starting point min(S0ij ) and the ending
point max(S+ij ). The range of evaluation for each time-slot
is defined by a sliding window between [ti, ti + 1t]. For
each time-slot and a given sensor, we determine its activation
based on whether it has been activated (even just partially)
within it:

S(ti, s) =

{
1 ∃[S0sj , S

+
sj ] ∩ [ti, ti +1t]∀Ssj

0 otherwise
(3)

Thirdly, a fuzzy clustering technique is applied to compute
the relevant patterns of time-slots for each activity. The pur-
pose of computing clusters of time-slots for each activity is to
obtain key patterns which are independent of their frequency
of appearance in the timeline. In this manner, the selection
method based on clustering prevents the possibility that some
relevant key patterns could result in begin undetected due
to their low frequency. For example, in the activity leaving
home, the opening or closing the door is developed in one
single time-slot, even if the empty home situation, with none
of the sensors being activated for a long time involves a
large number of time-slots. The proposed clustering method
is able to compute the two clusters (opening/closing door
and inactivity) as a relevant and neutral representation of the
activity leaving home with independence of their frequency
of these patterns

Forthly, it is necessary to remove noisy clusters which
result due to spurious instances of an activity. For that, the rel-
ative frequency of clusters of the same activity are counted
to evaluate the relevance of them while the full time-line.
We call fCLi as the relative frequency of the cluster Ci of

the activity Lj which is computed as fCLi =
∑
C
Lj
i /

∑
j C

L
j ,

where
∑

j C
L
j represents all temporal instances of the activity

Lj and
∑
C
Lj
i represents the instances of the cluster. So,

the relative frequency of the cluster in all instances of the
activity is used as metric which can be thresholded fCLi <

β rejecting the infrequent clusters to maintain only these
relevant clusters which better describe the activity in most of
the activity occurrences.

Finally, we note as result of this step, both the center and the
number of clusters for each activity provide an interpretable
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representation from sensors and human behaviours, in
addition to, a metric of the complexity of the activities devel-
oped in different domains and contexts. Figure 1 provides a
visual representation of the clustering method presented in
two different environments, based on a real dataset. From
the clusters obtained, we note: i) the relation between activi-
ties and sensor activation described by clusters provides an
interpretable representation of the user activity and sensor
interaction, ii) the differences in developing same activities
between the inhabitants and domains in the context A and
B in terms of number of sensors and activation describe the
difference between domains.

C. ALIGNMENT BETWEEN TIME-SLOTS USING ACTIVITY
LABELING
One of the main challenges in the domain adaptation pro-
cess consists of aligning the source and the target data
which is necessary to learn the translation model between
the two environments. The reason behind the complexities
of relating two scenes is that it is impossible to replicate the
same activities maintaining the order and duration between
domains in a naturalistic manner. Furthermore, replicating
activities in the same order to other inhabitants/contexts
avoids the natural characteristic of spontaneity of the inhab-
itant when developing human activities. Observing human
activities in smart environments requires intrinsic naturalis-
tic conditions when collecting inhabitant behaviour. In our
approach for translating sensor activation between different
contexts, we need to relate the occurrence of a time-slot
from the source domain to another time-slot from the target
domain.

In order to align the time-slots of the sensor activation
between the two domains the activity labeling and clus-
ters obtained in the previous step are used. First, for each
cluster C , a number of representative time-slots are selected,
as random time-slots from the timeline whose membership
degree to the cluster overcomes a threshold dC > α. Then,
the progressionwA of the time-slot tA within the activity LA as
a value between [0, 1] is computed as wA = (tA−LA0 )/(L

A
+−

LA0 ), where [L0,L+] are the starting and ending points of
time for the activation of the activity. In a straightforward
way, a selection of a time-slot tB for the same activity in
the other context LB with a similar temporal progression
wB ' wA = |wB − wA| < σ , where σ defines the similitude
margin of progression, in the other context provides a relation
between both time-slots and domains tA → tB. In Algo-
rithm 1, we describe the alignment of time-slots between
contexts with a similar temporal progression between same
activities.

Balancing the dataset was proven to enhance performance
in dealing the activation/non activation within the same and
other activities with an ad-hoc learning for each classi-
fier of the ensemble [7]. In order to select the time-slots
which compose the dataset for learning the activation of the
sensor Sj, an ad-hoc balanced dataset was generated for each

TABLE 1. Relevant clusters obtained for activities: Snack, Toileting,
Breakfast, Showering and Lunch in two Houses A, B for different
inhabitants and sensors [6]. Rf defines the relative frequency of the
activity pattern.
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Algorithm 1Alignment of Time-Slots Between Contexts
With a Similar Temporal Progression Between the Same
Activities
Data: tA,LA = [LA0 ,L

A
+]

Result: tB
/* Alignment random method tA, tB */
wA = (tA − LA0 )/(L

A
+ − L

A
0 );

// For same activity in the B context
for LB ∈ B do

// Obtain a random time-slot in B
tB = randomTimeSlot(LB);
wB = (tB − LB0 )/(L

B
+ − L

B
0 );

// Have they a similar activity
progression?

if |wB − wA| < σ then
return tB;

else

classifier trained for this given target sensor. The ad-hoc
balancing process combines time-slots between activation
and not activation, as the integration of three cases, aiming
at improving the ability to discriminate the activation in the
learning of the target sensor: i) time-slots where the target
sensor is activated in a cluster of a given activity, ii) time-slots
where the target sensor is not activated in other clusters
of the same activity (if it exists), and iii) time-slots from
idle activities where the target sensor is not activated for
any of its clusters. We note, with this proposed method the
relation between samples with activation and non activation
for each sensor is weighted in a relation between [1/2, 1/3]
depending on the activation distribution of the sensor within
the patterns recognized for each activity in point ii). The num-
ber of time-slots for activity and idle activation are defined
as NA,NA.
For generating pairs of time-slots tA ←→ tB, which

configure the ad-hoc balanced dataset for each sensor Sj,
we adhere to the following stages. As we detailed previ-
ously, we select clusters where the sensor Sj presents a
representative activation, and other clusters where it is not
activated. The selection of a relevant cluster is computed
by a threshold degree α which evaluates of the member-
ship degree of the time-slot µ(tB,CL

j ) in a given cluster C .
Once we select a relevant clusters CL

j , we collect a num-
ber of time-slots for each cluster which is limited accord-
ing to the relative frequency of the cluster Ni = NĊ

Lj
i

in the dataset. Finally, the random selection of time-slots
which pertain to the cluster is developed by: i) selecting
time-slots whosemembership degree overcomesµ(tB,CL

j ) >
α; analogously for non activation, ii) and iii) selecting ran-
dom time-slots whose membership degree is lower than
µ(tB,CL

j ) < 1 − α. The stochastic method for generat-
ing pairs of time-slots in a balanced dataset is described
in Algorithm 2.

Algorithm 2 Method for Selecting the Ad-Hoc Dataset
for the Sensor Sj

Data: Sj, {CL
1 , . . . ,C

|L|
|
C|},N

Result: {tA←→ tB}
/* Ad hoc dataset for learning target

sensor Sj */
dataset ← {};
// i) To select clusters CL

j where

sensor Sj is presented
for CL

j ← CL
j (Sj) > α do

1|dataset| = 0;
// To select Ni samples

while 1|dataset| < Ni = N × C
Lj
i do

// To select a time-slot from
cluster

tB← µ(tB,CL
j ) > α;

1|dataset| + +;
dataset = dataset

⋃
tB;

// ii) To select a random
time-slot from non-activation
clusters of sensor Sj of same
activity L

if ∃tB,CL
k µ(tB,CK ) < 1− α then

dataset = dataset
⋃
tB;

else

// iii) To select a random time-slot
from idle activities of sensor Sj

for CL
j ← CL

j (Sj) < 1− α do
1|dataset| = 0;
// To select Ni samples

while 1|dataset| < Ni = N × C
Lj
i do

// To select a time-slot from
cluster

tB← µ(tB,CL
j ) > α;

dataset = dataset
⋃
tB;

1|dataset| + +;

return dataset;

D. LEARNING FROM A BALANCED DATASET FOR SENSOR
TO SENSOR TRANSLATION
The problem of translating the binary sensor activation from
an input context to a target context is formalised as a sequence
to sequence problem. In this work, we propose developing
the learning using an ensemble of classifiers with an ad-hoc
balanced dataset aiming to enhance the performance for data
from binary sensors [7].

Once the training process has been completed, each target
classifier can be presented with input data from the binary
sensor activation from the input context in order to predict the
activation or non-activation of the target sensor in the target
domain. As features from the binary sensor from the input
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context, multiple temporal windows [7] were used for seg-
mentation, and more specifically, incremental fuzzy temporal
windows (FTWs) which were proven to provide a suitable
representation of the activation of binary sensors for the
purposes of learning [7], [44]. The representation of binary
sensors with Fuzzy Temporal Window by Trapezoidal Mem-
bership Functions is defined in Appendix. In order to simplify
the creation of the incremental fuzzy temporal windows,
the Fibonnaci series was used [45], where a set of incremen-
tally ordered evaluation times L = {L1, . . . ,L|L|},Li−1 <
Li defines the limits of the trapezoidal functions for sev-
eral FTWs according to the temporal window index Tk =
Tk (1ti)[Lk ,Lk−1,Lk−2,Lk−3] from the elapsed time 1ti to
time-slot ti. Moreover, temporal activation of binary from
preceding FTW L− is combined with oncoming FTWs L+ to
increase the learning performance [46]. Figure 3 illustrates
the configuration of fuzzy temporal windows evaluated in
this work which represents the short-term activation of binary
sensors defined by the Fibonacci sequence.

FIGURE 3. Example of preceding FTWs L− = {0, 1, 1, 2, 3, 5, 8} and
oncoming FTWs L+ = {0, 1, 1, 2, 3, 5, 8}, which are defined by the
Fibonacci sequence in a timeline.

At the end of this stage, the ensemble of classifiers is
able to predict the translation for each time-slot from the
input sensor context to the target sensor context, by means
of training using a balanced dataset for each classifier and a
fuzzy temporal representation of input binary sensors.

E. EVALUATION METHOD BASED ON CROSS VALIDATION
AND INVERSE TRANSLATION
As previously mentioned, the binary sensor activation
and developed activities cannot be expected to be gener-
ated with the same conditions and behaviours be- tween
domains/inhabitants. Therefore, the method aims at learning
the translation of sensor activations from the input domain to
the target domain using a limited amount of data.

We cannot therefore rely on the presence of groundtruth
data in the target domain. As such, a different evalua-
tion experiment is proposed to examine the validity of the
approach. Assuming that groundtruth data is available in large
quantities, only for the source domain, the translation process
between domains is repeated to learn the mapping function in
the opposite direction B→ A′. This method allows verifica-
tion of the quality of a sensor event prediction in a different
environment by comparing the original sensor activations in
the source domain, after they have been translated into the

target domain and back to the source domain following the
same process.

First, a cross-validation segmentation is applied in both
datasets, where the data are split into training and test in
a rotating process which subsequently involves the evalu-
ation of the full dataset. As a cross-validation method for
the human activity dataset and binary sensors, one-day-left
cross-validation is suggested and applied in this approach [6],
[7], [42]. Second, we learn and evaluate the translation model
input → target ′ for each training partitioning sample from
the cross-validation obtaining the prediction for each day of
the dataset. At the end of cross- validation, the challenge is the
joining of all days from the evaluation to compose a predicted
timeline with the activities from the input domain, however,
including the sensor activation of the target domain.

Thirdly, the predicted timeline in target domain is used
to replicate the process to compute the translation model
target ′ → input ′ to a predicted sensor activation in the input
domain. Exactly the same learning and evaluation with leave-
one-day-out cross- validation is replicated. At least, the com-
bination of the sensor activation for each of the evaluation
days generates a prediction of the input sensors. Evaluation
metrics based on classification (precision, recall, f1-score)
between the prediction sensor activation and the ground truth
sensor activation in the input domain are used to describe the
performance of the translation model.

It should be noted that this evaluation method is particu-
larly strict in this case, due to the fact that the error in sensor to
sensor translation is calculated following a double translation
process. First, the model error δinput→target is incorporated in
the input data of the target model generating noisy data; and
second, the model error δtarget→input in the inverse translation
is also accumulated into the final results of sensor to sensor
translation.

As summary, in Figure 4, we illustrate the evaluation
method described in this section, where we show the seg-
mentation of one-day-left cross-validation of data which are
trained to build the domain adaptation from source A to
target B. Symmetrically, the process is repeated from
domain B to domain A′, which enables comparing the ground
truth of A with A′.

IV. EVALUATION EXPERIMENT
In this Section, we present an evaluation of the methodology
for translating sensors between different domains which are
aligned by human activity labels. As described in the Intro-
duction Section, selecting a suitable dataset for evaluation
purposes is a convoluted task due to the requirements of
including the same activities in different domains by differ-
ent contexts/inhabitants and including several days of data
collection in naturalistic conditions. Based on these require-
ments, we evaluated the dataset Ordoñez [6]. In this dataset,
two experiments were carried out in two different houses
(A and B). In house A with 4 rooms, 12 binary sensors
describe 14 days where 9 daily activities were carried out
over a period of 19,932 minutes. In house B with 5 rooms,
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FIGURE 4. Evaluation based on an inverse translation and cross
validation method. First, we translate sensor activation from input to
target. A second translation process with the target prediction enables
comparing the ground truth of the prediction in the input domain.

a further 12 binary sensors describe 22 days where 10 daily
activities are carried out over a period of 30,495 minutes.
A map of the houses together with the senor deployment is
shown in Figure 5. In addition, the inhabitants and behaviours
between A and B context differ (each one corresponding to a
different user), as well as in the labeling (data were labelled
manually by the inhabitant). The difficulties in domain adap-
tation in this problem are notable, for example, we note:
i) the differences in the nature of sensors: bathroom cabinet,
bedroom pir door, living pir door, electric toaster and kitchen
pir door, and ii) the location is different in the maps, i.e. the
lack of sensor in one of the living rooms in house B regarding
house A so that the sensor Living-Pressure-Seat is completely
different between domains. This type of differences between
House A and House B provided the typical differences in AR
in real-time environments [7].

FIGURE 5. Map of houses A and B together with its sensor deployment.

Two modifications have been made to the original dataset:
i) we fix same duration (14 days) in context B to provide same
balance and size of data in learning the translation model,
ii) the dinner activity in House B was changed to snack
to provide exactly same activities between House A and B,
which are: snack, toileting, lunch, breakfast, sleep, leaving,
grooming, showering, spare time/tv. We note, the deployed
sensors between houses A and B have got a different location
and nature in the rooms to describe the daily activities of the
inhabitants (see Table 2).

TABLE 2. Description of sensors in the two contexts of houses A and B.
In last column (% Activation), percentage of time-slots when the sensor is
activated.

As mentioned in section III-E, where the evaluation
method is described, the context of houses A and B have
been segmented applying a one-day- left cross-validation
in both datasets according to the stages described in fol-
lowing Sections. The code and data are available in the
open repository for the community and evaluation purposes
https://github.com/AmsterdamVibes/transfer-sensor.

A. EXPERIMENTAL SETUP
In this Section, the proposed methodology from Section III
has been implemented to evaluate the Ordoñez dataset.
First, segmentation and clustering of frequent key patterns
are detailed. Second, implementation of alignment between
time-slots with a balanced datasets is described. Third, FTWs
configuration and selected classifiers are identified. The key
parameters in experimental setup are described in Table 3 to
clarify the parametrization of the work.

1) SEGMENTATION AND CLUSTERING OF FREQUENT KEY
PATTERNS
First, the binary sensor and activity activation were seg-
mented in time-slots of window size 1t = 60s [6], [42].
Based on the time-slots of this segmentation, we compute the
relevant patterns of sensors of activity in the timeline using
Fuzzy C-means. Next, we remove those non-relevant clusters
of relative frequency below β = 0.1 < fCLi .
The number of clusters obtained for each activity and con-

texts A and B are presented in Table 4. In Figure 1, we show
relevant clusters obtained for activities: Snack, Toileting,
Breakfast, Showering and Lunch in Houses A and B.

2) SETTING THE ALIGNMENT BETWEEN TIME-SLOTS WITH A
BALANCED DATASETS
As previously mentioned, an ensemble of classifiers is pro-
posed in our method, where for each sensor of the target con-
text a classifier receives as input the binary sensor activation
from the input context in order to predict the activation or
non-activation of the target sensor in the other domain.
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TABLE 3. Key parameters in experimental setup.

TABLE 4. Number of clusters obtained for each activity and
contexts A y B.

As already introduced in algorithm 2, for each target sensor
to learn from the target domain, an ad-hoc balanced dataset
is calculated for its classifier including:

• i) time-slots where the target sensor is activated in a
cluster of a given activity selecting the time-slots whose
membership degree of the sensor overcomes dC > α.

• ii) time-slots for the same activities of case i) where
sensor is not activated (if exists) selecting those whose
membership degree is lower than dC < 1− α.

• iii) time-slots from idle activities where the target sensor
is not activated for any of its cluster selecting those
whose membership degree is lower than dC < 1− α

The threshold to the evaluate the degree was set to alpha =
0.75, and the maximal number of time-slots as NA = 400.

Following this step, the time-slots tA ←→ tB which are
aligned by a similar temporal progression w for the same
activity in both contexts wB ' wA are identified according
to the Algorithm 1.

3) FUZZY TEMPORAL WINDOWS AS FEATURES OF AN
ENSEMBLE CLASSIFIER
In order to build a feature vector with the temporal acti-
vation of binary sensors from the input domain, we com-
pute the preceding FTW L− and oncoming FTW L+ [46]
for each time-slot, which was proven to provide a suitable
representation of the activation of binary sensors for learning
purposes [7], [44]. The definition of FTWs has been devel-
oped using the Fibonacci sequence [45], [47]. Two models
of FTWs have been evaluated: i) short-term FTW L− =
L+ = {1, 2, 3, 5, 8}, which represents the binary sensor
previous and ongoing 8 minutes close to real-time transla-
tion, ii) long-term FTW L− = {1, 2, 3, 5, . . . , 610},L+ =
{1, 2, 3, 5, . . . , 233}, which represents the binary sensor acti-
vation from previous 10 hours and the current ongoing
4 hours.

The FTW are computed under a sliding window approach
from a given current time (refer to Figure 3). The temporal
features describe the feature vector for each time-slot from
which the classifier relate the temporal activation from input
domain to predict the activation in target domain by the
ensemble of classifier.

Finally, several classifiers for learning sensor to sensor
translation in the ensemble of classifiers have been evalu-
ated. In the case of traditional models, we selected: Random
Forest (RF) and Support Vector Machine (SVM). In addi-
tion, we have included Deep Learning models for predict-
ing the activation of sensors: Convolutional Neural Net-
works (CNN) and Long short-term memory (LSTM), which
have been previously proposed in domain adaptation for other
contexts [48], [49].

B. RESULTS
This section presents the results of the evaluation experiment
using two different configurations of FTWs (short and long
term features) and several set of classifiers (SVM,RF,CNN
and LSTM).

Due to the severe imbalance problem of sensor activation in
the timeline, simple accuracy may be biased and therefore not
considered as a suitable metric. For this reason, the metrics of
precision TP

TP+FP , recall
TP

TP+FN and F1-score 2×P×R
P+R based on

the activation of sensor from ground truth and prediction [7]
within a temporal margin of confidence W were used for
evaluation. The temporal margin of confidence W checks
that the activation of the prediction is within a number of
time-slots of the ground truth. This is key in the sensor to
sensor translation metrics because of the delays in labeling,
prediction and variations in the behaviour of the inhabitants
under naturalistic conditions while developing the activities.
In the experiment, themargin of confidencewas set toW = 5,
within 5 minutes or time-slots, and we have evaluated the
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variance of the metric F1-score 1F1 with a wider temporal
margin W = 15.
Tables 5 and 6 report the results of sensor to sensor trans-

lation for SVM and RF, respectively for each sensor from
the input domain regarding the evaluation method proposed
in the methodology. In addition, Tables 7 and 8 report the
results of sensor to sensor translation for CNN (4 layers with
24 kernels) and LSTM (2 layers with 100 units), respectively.

TABLE 5. Precision P5, recall R5 and F1-score F5 in sensor to sensor
translation for SVM with a temporal margin of confidence W = 5. F15
represents the F1-score with W = 15.

TABLE 6. Precision P5, recall R5 and F1-score F5 in sensor to sensor
translation for RF with a temporal margin of confidence W = 5. F15
represents the F1-score with W = 15.

For the best configuration of classifier and FTWs (with
Random Forest and short term temporal windows), we have
included a deeper evaluation: evaluating the impact of bal-
anced learning and including a activities developed as inputs
of domain adaptation.

For that, we present an evaluation of the impact of the size
of samples in the learning model adaptation using the clus-
tering method for balancing the activation and non-activation
from the daily dataset. In Table, we evaluate the F1-score with
next sizes of sample N = {150, 400, 800}, which shows that
computing key patterns of interest and relating them provide

TABLE 7. Precision P5, recall R5 and F1-score F5 in sensor to sensor
translation for CNN with a temporal margin of confidence W = 5. F15
represents the F1-score with W = 15.

TABLE 8. Precision P5, recall R5 and F1-score F5 in sensor to sensor
translation for LSTM with a temporal margin of confidence W = 5. F15
represents the F1-score with W = 15.

an encouraging learning with a low number of samples and
the increasing of size of sample is not representative.

Next, we have added an evaluation of learning without
including our clustering method to compute and relate key
patterns of interest between domains. In this case, the sam-
ples of time-slots are simply related between the different
houses based on the similar temporal progression of the same
activity in different domains without clustering and balanced
method here proposed. We note how the decreasing of the
performance is remarkable and the proposed approach to
compute clusters in activities and balanced the learning based
on the activation and non-activation is key in obtaining an
encouraging performance in domain adaptation of binary
sensor from datasets with daily activities. The results are
shown in Table 10.
Finally, we present an evaluation where the labeling from

activities developed by the inhabitant are included in the
feature vector in addition to sensor activation. It should cor-
responds to including the output from a perfect classifier of
activity recognition as input sources in the features to increas-
ing the performance in learning. The results are presented
in Table 9.
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TABLE 9. Precision P5, recall R5 and F1-score F5 in sensor to sensor
translation for RF including activity and sensor activation in feature
vector with a temporal margin of confidence W = 5. F15 represents the
F1-score with W = 15.

TABLE 10. F1-score F5 margin of confidence W = {5, 15} in sensor to
sensor translation for datasets with: -cluster) temporal alignment
between activities without clustering method to compute and relate key
patterns N = 400, +cluster+alignment) clustering method to compute
and relate key patterns with N = 400, N = 150 and N = 800.

C. DISCUSSION
From the results provided in the experimental setup,
we observe the best configuration in learning the domain
adaptation of binary sensors between different environments
is RF together with short term temporal features. Despite the
fact there is not a relevant difference in performance in case
of short and long term features, 0.87 and 0.84 respectively in
RF, SVM decreases notably from 0.77 to 0.60. It suggests the
short term activation from the source environment is enough
for describing the sensor activation in target one, and the
inclusion of long term evaluation is not significant in learning
process introducing noise in temporal features.

A remarkable result is that the Deep Learning models
have shown a slightly lower performance than RF. This fact
is related by the capability of RF in handling noisy and
uncertain data [50] which are intrinsic in this work from
the weak labeling from activity alignment between contexts.

The temporal alignment is a weak labeling between domains
where not straightforward relation in all instances between
domains; so, using a classifier which is robust to noise and
imprecision of data, we can obtain encouraging results.

We note, the wide difference of performance in sensor
translation is strongly based on the deployment of sensors
between contexts. For example, those which are not included
in same contexts versus those which are included in same
location between contexts. For example the activation of the
sensor BathroomMagneticCabinet presents the lower result
due to the sensor is included only in the input domain, hence
the activation prediction of the sensor is difficult using sensor
activation from non closer temporal and spatial activations in
other context.

The temporal margin to compute the metrics from sensor
activations is key to evaluate a sensor to sensor translation
because the variances in order and delay of activities in natu-
ralistic conditions are intrinsic to the problem. The temporal
margin of 5 minutes W = 5 is suitable for most of the
sensors, however, a wider temporal marginW = 15 improves
the metrics sensor from the kitchen where the activities of
breakfast and lunch are more complex (they are described by
a higher number of relevant clusters).

Then evaluation of the impact of the size of samples in
the learning model adaptation, using the clustering method,
shows that computing key patterns of interest generate rep-
resentative samples where learning is not mainly affected
by a low number of samples and the increasing of size of
sample is not representative. In addition, it is remarkable
that we have observed the need for including the clustering
approach presented to process datasets with daily activities,
which compute clusters and balance the learning based on
the activation and non-activation of sensors. The decreasing
of performance when only relating the samples based on
the temporal progression of activities between domains is
notable.

In future works the probability of activation, rather than
precision and recall of binary activation or non-activation
with a crisp binary value 0, 1, would be an interesting metric
for real-life applications. For example, if a given kitchen
sensor (microwave) is not always activated in lunch (just
some times), the translation could generate an activation in
the range [0, 1] with an expected value closer to 0.5.

V. CONCLUSION AND ONGOING WORKS
This work presented a domain adaptation method for
translating binary sensor activation between different smart
environments. This novel approach opens a wide range
of possibilities for future works. Domain adaptation was
obtained by means of aligning sensor activations by means
of human activity developed by source and target domains
without the need to establish additional labeling to relate
the sensor activation. An evaluation procedure was necessary
to evaluate the data in a quantitative way, so, in order to
validate the adaptation model, in this work, we presented
an evaluation method based on cross validation and inverse
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translation, which we have validated using an openly avail-
able dataset. For learning the activation for each sensor in the
target domain an ad-hoc dataset and classifier are proposed.

The results highlighted promising performance in the con-
voluted problem of sensors translation between different con-
texts. Random Forest is an alternative more robust to noise,
an essential requirement when learning from a weak labeling
like the one provided by temporal alignment of activities
between both contexts.

The adversarial networks could develop promising results
based on previous performance within domain adaptation
[51]; however, visual models would require an adaptation
to temporal sequence to sequence learning of sensors and
including balancing and computing of key patterns of inter-
est which have been described in this work. Additionally,
the development of AR, in order to include the prediction of
activities as input from domain, in a parallel way to domain
adaptation is consider as an appropriate ongoing work.

Regarding the proposed evaluation method, the error in
sensor to sensor translation was calculated after a double
translation process. Alternative procedures may be consid-
ered in future work, avoiding the need for double translation.
For instance, a knowledge-based approach could validate
the sensor to sensor translation between domains checking
the statistical differences between real and estimated data.
In addition, we note that it is necessary to collect new labeled
datasets with an extensive data collection in the context of
real-life homes to enable the domain adaptation between
different multi-domain contexts.

APPENDIX
REPRESENTATION OF BINARY SENSORS WITH FUZZY
TEMPORAL WINDOW BY TRAPEZOIDAL
MEMBERSHIP FUNCTIONS
The FTWs are described straightforwardly according to the
distance from the current time t∗ to a given timestamp t j

as 1t j = t∗ − t j using the membership function µTK (1t j).
Each TFW Tk is described by a trapezoidal function based
on the time interval from a previous time t j to the current
time t∗: Tk (1t j)[l1, l2, l3, l4] and a fuzzy set characterized
by a membership function whose shape corresponds to a
trapezoidal function. The well-known trapezoidal member-
ship functions are defined by a lower limit l1, an upper limit
l4, a lower support limit l2, and an upper support limit l3 (refer
to Equation (4)):

TS(x)[l1, l2, l3, l4]=



0 x ≤ l1
(x−l1)/(l2−l1) l1<x< l2
1 l2 ≤ x ≤ l3
(l4−x)/(l4−l3) l3<x< l4
0 l4 ≤ x

(4)

Therefore, a given FTW Tk is defined by the values
Lk ,Lk−1,Lk−2,Lk−3, which determine a trapezoidal mem-
bership function as:

Tk = Tk (1t∗i )[Lk ,Lk−1,Lk−2,Lk−3] (5)

Once a FTW Tk is defined, the activation degree of a binary
activation Sij from a sensor Si at evaluated time t∗ is computed
as:

Tk (Sij , t
∗) =

{
max(Tk (1t∗i ))∀ti ∈ Sij ∃ti ∈ [S0ij , S

+

ij ]

0 otherwise
(6)
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