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Abstract 

Surgical meshes have been employed in the management of a variety of pathological conditions 

including hernia, pelvic floor dysfunctions, periodontal guided bone regeneration, wound healing, 

and more recently for breast plastic surgery after mastectomy. These common pathologies affect a 

wide portion of the worldwide population; therefore, an effective and enhanced treatment is crucial 

to ameliorate patients’ living conditions both from a medical and aesthetic point of view. At present, 

non-absorbable synthetic polymers are the most widely used class of biomaterials for the 

manufacturing of mesh implants for hernia, pelvic floor dysfunctions and guided bone regeneration, 

with polypropylene and poly tetrafluoroethylene being the most common. Biological prostheses, such 

as surgical grafts, have been employed mainly for breast plastic surgery and wound healing 

applications. Despite the advantages of mesh implants to the treatment of these conditions, there are 

still many drawbacks, mainly related to the arising of a huge number of post-operative complications, 

among which infections is the most common. Developing a mesh that could appropriately integrate 

with the native tissue, promote its healing and constructive remodelling, is the key aim of ongoing 

research in the area of surgical mesh implants. To this end, the adoption of new biomaterials including 

absorbable and natural polymers, the use of drugs and advanced manufacturing technologies, such as 

3D printing and electrospinning, are under investigation to address the previously mentioned 

challenges, and improve the outcomes of future clinical practice. The aim of this work is to review 

the key advantages and disadvantages related to the use of surgical meshes, the main issues 

characterising each clinical procedure, and the future directions in terms of both novel manufacturing 

technologies and latest regulatory considerations. 

 

1. General introduction 

Surgical mesh implants are generally defined as flexible and thin flat sheets [1] that are commonly 

used to provide additional support to a weakened tissue [2]. The first meshes used in clinical practice 

date back to 1950s , when they were explored for the treatment of hernia conditions [3]. Meshes for 

hernia repair applications provided a tension free reinforcement for the injured tissue [4] that resulted 

in better outcomes both in terms of tissue integration and consequent repair [3]. Having noticed the 

improvements reported in the treatment of hernia, in 1970s meshes were introduced for the 

management of pelvic floor dysfunctions (PFDs), including pelvic organ prolapse (POP) and stress 

urinary incontinence (SUI)), with the first urogynaecological mesh approved by the U.S. Food and 

Drug Administration (FDA) only twenty years ago [5].  

The ability to provide mechanical support to weak tissues was subsequently exploited in other clinical 

fields. For instance, in 2001 meshes were introduced to expand the size of the reconstructive pocket 
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in breast reconstructive surgery after mastectomy [6]. Surgical meshes have also been used to create 

an isolated environment for tissue regeneration. Particularly, guided bone regeneration (GBR) 

membranes have been extensively used as an efficient method for the reconstruction of both structure 

and function of alveolar bone defects before dental implant placement. Through this approach, the 

membrane is used to cover the defect site and direct the growth of new bone while preventing the 

infiltration of connective tissue into the defected area [7]. GBR meshes need different features with 

respect to those employed in hernia repair, mainly osteoinduction, which is the ability to recruit 

mesenchymal stem cells (MSCs) and influence their differentiation into osteoblasts, and 

osteoconduction, which is the ability of the mesh to guide bone tissue formation [8]. Finally, the use 

of meshes in form of dressings for wound healing applications intended to create a “safe space” for 

the wound bed, acting as a barrier against the external environment, preventing bacterial 

contamination, absorbing exudates and keeping it clean [9]. 

Up to now, meshes have been produced mainly using non absorbable materials, especially for hernia 

and PFDs. They have been developed as an alternative to biological prostheses, aiming to overcome 

the limitations related to their use, such as the possibility to develop infections, unpredictable 

mechanical properties and the high risk associated with tissue harvesting procedures [3,5]. However, 

their employment is also linked to a vast number of post-operative complications, with infection be 

the most common one in hernia [3], PFDs [5], GBR [7] and breast reconstruction (BR) [10]. Other 

complications include the arising of chronic immune reaction and subsequent fibrotic process [11], 

and device mechanical failure . Especially concerning meshes employed in PFDs, several restrictions 

have been imposed on their use by FDA and by the National Health Service (NHS) in UK, due to the 

substantial amount of side effects related to their use. These issues, in turn led to an important 

decrease in the number of mesh-based surgical procedures (from 13,990 in 2008 to 7,245 in 2016 for 

SUI, and from 3,073 in 2008 to 2,680 in 2016 for POP) [12] and, in some countries, to their complete 

ban [13,14]. 

Therefore, many efforts have been made in the last years to improve meshes’ performances, 

particularly in terms of antibacterial behaviour, material selection and manufacturing process. Aiming 

to mitigate the immune reaction and counteract infections, a wide range of antibacterial agents and 

drugs have also been investigated (e.g. antibiotics, metallic nanoparticles, natural antimicrobials, bio-

molecules) [15,16], as well as absorbable and naturally-derived materials (e.g. collagen, chitosan, 

alginate) [7,17]. Additionally, the lack of patient-specific solutions  has led to the employment of new 

technologies [18]  aiming to develop personalised devices and to improve the integration with the 

native tissue. The feasibility of additive manufacturing (AM) and electrospinning has been 

extensively studied to deal with the personalised manufacturing strategies for such applications. Their 
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exploitation could be promising to design patient-specific devices with reproducible geometrical 

features and increased biomimetic activity [19,20].  

Some of the mentioned clinical conditions, although not life threatening, are very common into the 

worldwide population and can have a negative impact on patients’ social life and psychology. 

Furthermore, the amount of money spent for the treatment of these pathologies is high. Specifically, 

in Europe the total expenditure for the management of PFDs is 10 billion euros [7,19], while around 

6 million dollars and 15 million dollars are estimated to be invested in hernia and wound care devices 

respectively, by 2027 [21,22]. Up to now, for each clinical condition no ideal surgical mesh device 

exists, and despite the big number of commercially available products, they still suffer from several 

limitations [18]. Therefore, the aim of this review is to provide an overview on the use of novel 

materials, drugs and antimicrobial agents in combination with emergent technologies for the 

manufacturing of drug-eluting meshes. The need for mesh designs more compliant to patients’ 

anatomy, in order to better integrate within the surrounding tissue and thus reduce the number of post-

operative complications are then reviewed and discussed. Ultimately, insights about current 

regulatory considerations and the potential further research holds, in order to advance current clinical 

practice, are provided.  

2. Clinical applications  

According to the specific field of application as well as clinical need, meshes can be adopted by 

surgeons via different types of surgical procedures, and with the final aim to provide mechanical 

support, healing and tissue repair.  

2.1 Hernia 

From a clinical perspective, hernias are caused by the protrusion of internal organs out of the 

abdomen, mainly due to the presence of a weak spot or a hole into the surrounding connective and 

muscular tissue [2,23], and can be classified into two different groups according to the protrusion 

location. Groin hernias are located in the bottom half of the body [24]. They mainly affect the male 

population with an incidence between the 27% and 43% [25]. Ventral hernias are located in the 

superior half of the body [24], and many times, they are referred to us as incisional hernias, since 

occur as consequence of weaknesses developed after laparoscopic abdominal surgery [26]. The 

current treatment of hernia includes mesh-based surgery, with 91,673 operations performed in 2018 

in UK [12]. The reference standard is the Lichtenstein open “tension-free” procedure [25]. Traditional 

surgical procedures consisted into the superimposition of tissues which were not normally 

overlapped, thus introducing undesirable tension [27].  Lichtenstein approach consists in the fixation 

of the mesh (via tissue glues, tacks, staples or stitches) onto the aponeurotic tissue after having made 

an incision above the defect, thus considerably decreasing the level of tension to which the tissue will 
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be subjected  [24,27]. Unfortunately, Lichtenstein approach has been associated in 63% of the cases 

with the arising of chronic pain, thus affecting patients’ quality of life. So recently, the laparoscopic 

approach (transabdominal preperitoneal (TAPP) and totally extraperitoneal (TEP)) has gained a lot 

of attention because it makes the surgery safer and less invasive [25] (Figure 1-A).  

2.2 Pelvic floor dysfunctions  

POP is due to the inability of the pelvic floor to support organs of the pelvic cavity (e.g. urethra, 

bladder, vagina, uterus, cervix and rectum) thus causing their descendance from their original position 

[28]. The weakening of the pelvic floor, which is more common in the elder population (post 

menopause women) [29,30], is also the main cause for the arising of SUI, which is characterised by 

the uncontrolled spillage of urine due to the failure of the sphincter muscle [31]. It has been reported 

that PFDs develop in the 17% of the female population. Specifically, up to 73% of women suffer 

from POP and more than the 40% is affected by SUI [30].  

According to the specific prolapsed organ, PFDs can be grouped in four types [32]: 

 Anterior prolapse, characterised by the bulging of the bladder into the front wall of the vagina. 

 Uterine prolapse, in which the womb protrudes out of the vagina. 

 Vaginal prolapse, caused by the sagging of the upper part of the vagina. 

 Posterior prolapse, due to the protrusion of the bowel into the back wall of the vagina. 

There are several ways in which POP and SUI could be managed, which include non-surgical and 

surgical treatments [28]. Non-surgical treatments include life-style changes, such as weight loss, 

pelvic floor exercises, hormone treatments and the application of pessaries [28,32]. Among the most 

common surgical procedures, anterior colporrhaphy or sacrospinous ligament fixation, can be carried 

out without the use of meshes [33]. Instead,  sling surgery [34] (especially used in the treatment of 

SUI [31]) and sacrocolpopexy (both via open surgery or with a laparoscopic approach) require the 

use of a prosthesis in order to restore the normal positions of the organs. Sling surgery is performed 

by inserting a mid-ureteral sling/tape to provide additional support to the urethra. Sacrocolopexy, 

instead, consist in the placement of a mesh from the sacrum to the vagina/uterus [35] (Figure 1-B). 

Currently, NHS advise to use vaginal meshes as last resort due to significative amount of post-

operative complications, which include pain, nerves damages, and sexual problems among other 

issues [34]. Additionally, in some other countries, such as New Zealand and Australia, vaginal meshes 

have been completely banned and are no longer supplied [13,14]. The regulatory considerations on 

the use of vaginal surgical meshes will discussed in section 7. 

2.3 Breast surgery 
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The mechanical support exerted by meshes have also been used by surgeons during BR after 

mastectomy. Mastectomy consists in the partial or complete removal of the breast aiming to eliminate 

cancer, especially in those cases in which tumour cells have spread throughout all that area. Due to 

the physical and psychological burden, very often surgeons suggest the possibility to have a 

reconstruction [36]. In the UK, reconstructive surgery is performed in the 60% of the cases [37]. It 

consists in putting a saline or silicone implant under the skin or the muscles of the chest (subcutaneous 

and submuscular approach respectively) [38,39]. Lately, prepectoral approach, through which the 

mesh is sutured to the inferior margin of the major pectoralis muscle, has become really promising 

since it allows to create a larger reconstructive fold, thus making the final implant more stable and 

comfortable [10,38] (Figure 1-C).  

2.4 Periodontal surgery 

Mesh implants have also been exploited to provide a growth support during periodontal surgery, 

helping in the restoration of periodontium or of the alveolar bone prior to dental implant insertion. 

Periodontium is a complex tissue whose primary aim is to anchor the tooth to the mandible. It 

interfaces on one side with the root cementum and on the other side with the alveolar bone, which is 

the main support for teeth and gingiva [40]. Periodontitis is a very common disease (half of the US 

population is affected [41]) characterised by the gradual destruction of periodontium, often resulting 

in tooth and alveolar bone loss, as well as gingiva recession [40].  There are several ways in which 

this condition can be managed, among which guided tissue regeneration (GTR) and GBR are of 

interest for this review. The main difference between the two approaches relates to the fact that GTR 

is primarily used to restore the function of periodontium while GBR is used to help the growth of the 

alveolar bone [16]. However, in both the cases, the surgical procedure consists in the sub-gingival 

placement of a membrane in the defect site aiming to provide an isolate environment for tissue growth 

and regeneration [16,42] (Figure 1-D).  

2.5 Wound dressings 

Meshes in form of dressings have been widely employed also in the treatment of wounds. Wound 

management has become crucial due to the high incidence of  deaths every year caused by burns 

(almost 180,000 deaths per year) [43] and the frequent development of chronic leg ulcerations [44].  

Chronic wounds may develop when the healing process fails to progress through its normal stages, 

due to the presence of underlying pathologies, such as venous or arterial problems [44,45], and thus 

causing an impairment in tissue regeneration and formation [46,47]. TIME (tissue, infection, 

moisture, edge) and TWA (triangle of wound assessment) approaches, which are based on the wound 

examinations, are very common practises in order to choose the clinical plan [45]. Current 

management approaches rely on wound debridement, infection prevention strategies, biological 
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therapies [45] and on the use of passive dressings such as gauzes [48]. However, these strategies are 

often non-specific and unable to address all the problems related to impaired wound healing, such as 

moisture and pressure control and exudates absorption. Also, the use of passive dressings frequently 

result in poor outcomes, mainly related to the arising of secondary trauma or their inability to provide 

an efficient barrier against the external environment [45,48].  All these issues have led to the 

development of new bioactive dressings, which could play an active role in the healing process, 

providing a moist environment in the wound site, allowing gas exchange, preventing infections and 

protecting the wound from the external space [9,49] (Figure 1-E).  

Currently, a significative number of surgical meshes are available on the market. They are made of 

different materials and characterised by different levels of inflammatory response, tissue infiltration, 

biodegradation rate and stability. In Table 1 are reported some examples of meshes currently 

employed in clinical practice for the treatment of hernia, PFDs, BR, wound healing, GBR procedures, 

including details about their material composition and key properties. 



8 

 

 

Figure 1: Schematization of the use of surgical meshes. A left) Representation of hernia pathology, in which a small part of the intestine 

protrudes from the abdominal wall; A right) hernia treatment via placement of surgical mesh [23]. B left) Apical compartment prolapse in 

PFDs; B right) Sacrocolpopexy [29]. C) Implant and mesh positioning in BR [10]; D) GBR surgical mesh placement between the epithelium 

and the underlying bone defect [16]; E) Examples of hyaluronic acid-based wound dressings for wound healing applications [49]. 
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Table 1: Commercially available meshes currently used in clinical practice 

Clinical 

application 

Commercial  

product 

Material 

composition 
Key properties Manufacturer References 

Hernia 

Prolene PP Non-absorbable, medium weight, monofilament, macroporous mesh. Good fibrovascular 

ingrowth, infections resistance, compliance. Visceral adhesion risk. 

Ethicon 
[3,18] 

Marlex PP Non-absorbable, medium weight, monofilament, macroporous mesh. High tensile strength but 

induce a strong inflammatory reaction. 

Marlex [3,18] 

Marsilene PET  Non-absorbable, lightweight, multifilament, macroporous mesh. Low infection risk but could 

induce a severe immune reaction with a strong production of fibrotic tissue. 

Ethicon [3,18] 

Dual Mesh ePTFE Non-absorbable, heavyweight, multifilament, microporous mesh. Promote tissue ingrowth and 

reduce the risk of attachment. Possibility to develop infections.  

Gore [3,18] 

Dexon PGA Absorbable, multifilament mesh. Minimal inflammatory response, resistance to adhesion. Low 

mechanical stability due to degradation, high recurrence rate. Can be used also for PFDs. 

Davis & Geck [3,5,18] 

Vicryl Polyglactin 910 

(92% glycolide, 

8% lactide) 

Absorbable, multifilament, medium weight, microporous mesh. Mechanical stability up to 3 

weeks. Significative inflammatory response and low mechanical properties on the long term. Can 

be also used in PFDs and BR.  

Ethicon [3,5,18,50] 

Polylactide 

Mesh 

Polylactide (95% 

lactide, 5% 

glycolide) 

Absorbable, multifilament, medium weight mesh. Improved mechanical properties up to 9 months, 

decreased seroma and connective tissue formation. Activation of foreign body granuloma and 

giant cells.  

Ethicon [18] 

PFDs 

Gynecare 

gynemesh 

PP Non-absorbable, monofilament, medium weight, macroporous mesh. Good mechanical properties, 

easy to cut in custom shape. Possible retraction, extrusion and dyspareunia. 

Johnson & 

Johnson 

[5,51] 

UpsylonTM Y-

mesh 

PP Non-absorbable, y-shaped, monofilament, lightweight, macroporous mesh. Minimal contact with 

the vaginal tissue. Possibility to develop infections, adhesion, erosion, extrusion and inflammation.  

Boston 

Scientific 

[5,51,52] 

Gore-Tex® ePTFE Non-absorbable, multifilament, microporous mesh. Less inflammatory response and adhesion risk 

with respect to PP. Low level of tissue ingrowth, risk of erosion and high rejection rate. Can be 

also used in GBR. 

Gore [5,7,53] 

Breast 

reconstructive 

surgery 

TiLoop Bra Titanised PP Non-absorbable, monofilament lightweight mesh. Used in prepectoral reconstruction. Low risk of 

inflammation, scar formation and shrinkage.  

Pfm medical [50,54] 

TIGR® 

Matrix 

Glycolide and 

trimethylene 

carbonate; lactide 

and trimethylene 

Absorbable macroporous mesh with two type of filaments (fast and slow degrading). Mechanical 

support for up to 9 months. Fully degraded after 3 years. Can be also used for hernia repair. 

Novus 

Scientific 

[18,50,55] 

Wound healing 

Dermagraft® Polyglactin Absorbable dressing colonized with neonatal fibroblasts. Production of growth factors that 

enhance the healing process. Used in the treatment of diabetic foot ulcers. Absorbed in 3-4 weeks.  

Organogenesis [56–58] 

Transcyte® Nylon and silicon Neonatal fibroblasts embedded in the matrix and cultured for up to 6 weeks, aiming to produce 

extracellular matrix and growth factors. Enhanced healing process.  

Advanced tissue 

science 

[56,58] 

GBR 

Cytoflex® Ti-

Enforced® 

Tefguard 

Titanium frame 

enclosed in two 

PTFE layers 

Multilayers non-absorbable membrane. Shape maintenance and minimal graft movement during 

healing. Barrier function against bacteria and gingival tissue-derived cells. Could be used in 

treatment which last from 30 days and up to 6 months.  

Unicare 

Biomedical 

[7,59] 

Guidor® PLA 2 layers absorbable membrane, with different pore size at each layer. The external layer enhances 

soft tissue growth. The internal layer allows for nutrients and vascular supply while acting as 

barrier against gingival tissue entrance. Total resorption in up to 2 months. 

Sunstar [7,60] 
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Bio-Gide® Collagen Bi-layered and absorbable membrane. No need for second surgery. Long term stability. Good 

tissue integration, bone formation and wound stabilization.   

Geistlich 

Pharma 

[61] 
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3. Mesh-related complications  

The use of surgical meshes could potentially led to significant improvements in terms of clinical 

outcomes, considering their ability to support cell growth and collagen production [3]. Their use is 

still accompanied by several drawbacks, which are listed in Table 2 according to the different clinical 

application. The adverse events have been found to mainly relate to the material used, mesh design 

and manufacturing method. 

One of the major issues is immune reaction. Even if materials used in biomedical applications are 

biocompatible, their presence inside the body always induces the activation of the immune system 

[3]. Foreign body reaction is a key point when talking about mesh implants, especially about hernia, 

PFDs and BR. A strong immune reaction could potentially lead to the formation of a fibrotic scar 

tissue around the implant and to its encapsulation [3,11]. In the case of hernia and PFDs an excessive 

production of fibrotic tissue may cause native tissue erosion with the subsequent extrusion (or 

migration) of the mesh [3,5]. Moreover, the formation of the fibrotic capsule is often linked to a 

reduction of the available mesh area, also known as mesh contraction [5,62]. Similarly, for breast 

reconstructive meshes the intense immune reaction may promote capsular contracture, which in turn 

could result in pain and breast deformation [63]. 

Infections are usually caused by infiltration of small bacteria (1-2 μm) within the pores of the implant 

[64]. Considering this, it is evident that pores’ dimension plays a role in the success of a mesh. Pores 

should be big enough to also allow the entrance of immune cells [64]. Some of the most frequent 

infections that may occur during hernia [15], PFDs [64], BR [10] and wound healing [17] 

management are related to the presence of S. Aureus, E. Coli, or other gram-positive and gram 

negative bacteria. With particular regards to wound healing, this condition may develop due to the 

chronic state of inflammation of the wound that could make the tissue more prone to the entrance of 

bacteria and to biofilm formation (see Figure 2) [65,66], thus making the use of dressings a valuable 

option to counteract it [48]. Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and 

Streptacoccus mutans infections may develop, instead, after the application of dental membranes [7].  
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Figure 2: Different stages for biofilm formation in chronic wounds [65]. 

The mechanical properties of the employed materials, as well as the meshes’, could be the cause for 

a non-constructive integration of the device with the surrounding tissue. Using very stiff polymers 

could strongly affect the degree of flexibility and pliability of the final product [5]. Moreover, during 

the treatment of hernia and PFDs the insertion of a rigid mesh may cause stress shielding, a 

phenomenon characterized by the thinning and erosion of the native tissue, and caused by a 

biomechanical mismatch between the prosthesis’s mechanical properties and those of the tissue 

[67,68]. Likewise, the use of very stiff meshes in GBR for dental applications could potentially lead 

to the perforation of the gingival tissue with consecutive mesh dehiscence and exposure [69]. On the 

other hand, absorbable polymers show some limitations as well. Their degradation time not always 

matches the ingrowth rate of the new tissue, thus causing a loss of mechanical stability due to implant 

mechanical failure [5,18]. 

Finally, traditionally employed manufacturing methods, such as knitting, allow the production of 

meshes with limited customizability and with geometrical and mechanical features that make them 

unable to replicate the complex tissue environment and to conform to individual patient’s anatomy 

[18].  

Considering all these issues, the need for new strategies to implement meshes production has become 

evident. The encapsulation of drugs, antibacterial agents or bioactive molecules within the implant 

could be really powerful to help in counteracting infections [15,17,41]. Additionally, a mesh made of 

the appropriate material, with a correct biomechanical behaviour and a proper design is paramount to 

ameliorate its inclusion within the body [41,70]. 
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Table 2: Major complications commonly associated to the use of surgical meshes in clinical practice. 

Clinical application Complication(s) Incidence (%) Reference 

Hernia 

Seroma 3.3 

[71] 
Hematoma  7.9 

Infections 1.5 

Recurrence 42-57 

 Pain 10-12  

POP 

Erosion 35.1 

[72] 

Pain 31.4  

Infections 16.8 

Dyspareunia 7.2 

Perforation 5.8 

Urinary problems 5.3 

Shrinkage 2.8 

Recurrence 2.1 

SUI 

Pain 34.9 

[72] 

Erosion 31.8 

Infections 18.9 

Urinary problems 16.0 

Perforation 8.3 

Recurrence 7.5 

Dyspareunia 5.3 

Vaginal scarring 1.6 

Breast reconstructive 

surgery 

Infections 6.1 

[73] 

Seroma 4.8 

Hematoma 9.5 

Infections 6.1 

Capsule fibrosis 2.2 

Wound healing Chronic infections due to biofilm formation 60 [74] 

GBR 
Soft tissue complications (dehiscence, exposure, 

infections, abscess) 
18 [75] 

 

4. Materials for surgical meshes 

Biomaterials processed as 3D scaffolds are one of the main pillars in tissue engineering-based 

approach. Scaffold properties, in terms of biocompatibility, biodegradability and biomechanical 

behaviour, strictly depend on its design, architecture, porosity and pore size, and on the biomaterial(s) 

choice [76]. In this manuscript, materials will be categorized into synthetic and natural. A further 

distinction will take place for synthetic materials, since they can be divided into absorbable and non-

absorbable. A summary of the materials currently used, as well as possible future choices, is provided 

in Table 3. 
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Table 3: Current and future materials for surgical meshes 

Material Derivation/ 

Source 

Melting 

Temperature 

Degradation rate Advantages Disadvantages Clinical / Potential use Reference 

PP Synthetic 
130 °C- 

171°C 
Non degradable 

Inert, biocompatible, favours tissue 

ingrowth, good mechanical properties 

High inflammatory response, 

adhesion with the viscera, 

increased stiffness over time 

Hernia repair, PFDs, 

BR 

[5,18,77,78] 

PTFE/ 

ePTFE 
Synthetic 325°C Non degradable 

Inert, biologically stable, less 

inflammatory response and viscera 

adhesion, good mechanical properties 

Poor tissue ingrowth, risk for 

tissue erosion, second surgery for 

removal 

Hernia repair, PFDs, 

GBR 

[5,7,18,42,79] 

PET Synthetic 243-260 °C Non degradable 
High cytocompatibility, strong tissue 

ingrowth, less inflammatory reaction 

Tissue erosion, 

Chronic infections 

Hernia repair, PFDs [5,18,80] 

Titanium Synthetic 1668°C Non degradable 

High mechanical properties, tissue 

ingrowth, corrosion resistant, less 

prone to develop bacterial infections 

Tissue perforation, second 

surgery 

GBR, in form of 

coating for BR 

[7,69,77,81] 

PGA Synthetic 220°C-230°C 1.5-3 months 

Minimal inflammatory response, 

resistance to adhesion, do not require 

second surgery. 

Loss of tensile strength after 

absorption, possible development 

of harmful oxidative species 

during polymer break down 

Hernia repair, PFDs, 

GBR, BR 

[5,7,18,50,82] 

PLA Synthetic 140°C-180°C 3-6 months 

Good in vivo biocompatibility, tissue 

ingrowth, in vitro strength for up to 8 

months, do not require second 

surgery. 

Loss of tensile strength after 

absorption, possible development 

of harmful oxidative species 

during polymer break down 

Hernia repair, PFDs, 

GBR 

[5,7,35,82,83] 

PLGA Synthetic 240°C-280°C 1-6 months 

Biocompatible, suitable for drug 

delivery, tunable degradation rate, 

FDA-approved, easy handling, do not 

require second surgery. 

Loss of mechanical stability Hernia repair, GBR, 

Wound healing 

[7,18,82,84–86] 

PCL Synthetic 59°C-64°C 2-4 years 

Biocompatible, FDA-approved, cost-

effective, easy processability, long 

degradation rate, do not require 

second surgery. 

Possible mismatch of physical 

and mechanical properties, poor 

antimicrobial properties 

Hernia, PFDs, GBR, 

Wound healing 

[7,8,18,19,56,87] 

Collagen Natural 
30°C-36°C 

(denaturation) 

depending on the type 

of collagen (1-10 

months) 

Biocompatible, biodegradable, able 

to enhance fibroblasts activity, do not 

require second surgery. 

High cost, rapid swelling, fast 

degradation rate, fragile, poor 

exudate absorption. 

Wound healing, GBR, 

hernia 

[7,18,88–90] 

Chitosan Natural 

30°C-100°C 

(processing 

temperature) 

depending on the 

deacetylation degree 

(i.e. 60%, 36 days-80 

days) 

Biocompatible, biodegradable, 

antibacterial properties, suitable for 

drug delivery applications,  

Low mechanical properties, 

limited solubility in organic 

solvents, short half-life, limited 

biostability.  

Wound healing, hernia 

(as coating) 

[15,88,91,92] 

Alginate Natural 

60°C-80°C 

(processing 

temperature) 

depending on the 

molecular weight 

(75% low molecular 

weight and 25% high 

molecular weight, ~ 40 

days) 

Biocompatible, biodegradable, 

enhance cells growth, haemostatic 

properties, water absorption abilities.  

Rapid degradation, unpredictable 

dissolution profile, no hydration 

properties.  

Wound healing, GBR 

(in combination with 

other polymers) 

[7,88,93–95] 
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4.1 Non-absorbable synthetic materials 

Up to now, non-absorbable synthetic materials are the gold standard for biomedical applications in 

which meshes are used to provide additional mechanical support to the tissue. This is mainly due to 

their durability and mechanical features. In fact, mechanical strength and relatively long degradation 

rates are desirable properties for this type of surgical meshes. High mechanical strength is crucial to 

properly sustain the tissue, while moderate degradation rates are needed in order to give time to cells 

to populate the scaffold, produce new tissue while exerting at the same time the requested mechanical 

properties  [42,96].  

According to Baylón et al., mesh implants can be divided into three main material-based categories, 

with non-absorbable synthetic meshes falling in the first one (“first generation meshes”). Some of the 

polymers that belong to this category are polypropylene (PP), polyethylene therephthalate (PET) and 

non-expanded/expanded polytetrafluoroethylene (PTFE/ePTFE) [3]. These materials have been 

extensively employed in the management of hernia [3], PFDs [5], BR [50] and periodontal GBR [42], 

with PP being the gold standard in several of these application. Some example of non-absorbable 

commercially available mesh are Prolene (Ethicon, PP, hernia), Marlex (Bard, PP, hernia), Marsilene 

(Ethicon, PET, hernia), DualMesh (Gore, ePTFE and PTFE, hernia) [18], Gyenecare ( GynemeshJ&J, 

PP, PFDs), Upsylon™ Y-mesh (Boston scientific, PP, PFDs) [5], Cytoflex® Tefguard (Unicare 

Biomedical, PTFE, GBR) [7], Gore-Tex® (Gore-Tex®, ePTFE, GBR, PFDs) [5,7].  

Recently, thermoplastic polyurethane (TPU), which combines properties of thermoplastics and 

rubbers, have also gained attentions, especially in the treatment of PFDs [97] and breast implants [98] 

mainly because of its biocompatibility, flexibility, haemocompatibility and easy processability. 

Thanks to its mechanical properties, could be a good choice to potentially reduce mesh related 

complications [19].  

Aside from polymers, the excellent mechanical features, light-weight properties and ability to 

withstand inflammations of titanium have been investigated to design meshes for hernia [99], BR 

[77] and GBR [69]. According to the categorization made by Baylón et al., titanium-coated implants 

fall into “second generation meshes” category [3]. In a clinical trial by Eichler et al. the performances 

of TiLoop Bra/TiMesh® (pfm medical ag, Köln, Nordrhein-Westfalen, Germany), a titanium-coated 

PP mesh for BR applications, were compared with the commonly used acellular dermal matrix 

(ADM) by analysing their clinical outcomes and the respective arising of complication rates. The 

study did not show any significative difference between the two devices [77]. Moreover, titanium-

coated PTFE meshes have been also used as dental membranes and thanks to their higher compressive 

strength, they resulted in better outcomes in respect of non-coated PTFE meshes [42].  
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Unfortunately, despite their optimal mechanical behaviour, the use of non-absorbable meshes is often 

accompanied by an excessive immune reaction that results in a non-constructive remodelling of the 

tissue [19], adhesion to the viscera, erosion, [5] infectious complications [100] and, in the case of 

periodontal GBR membranes, a second surgery for removal [42]. 

4.2 Absorbable synthetic materials 

To overcome the problems related to the permanent presence of a mesh inside the body, absorbable 

synthetic polymers seemed to be a good choice. They could be used both as coatings, to ameliorate 

the interaction between the implant and the body and possibly confer antibacterial properties [101], 

but also as main mesh backbone, since they will eventually degrade, and ideally leaving behind a new 

and healthy piece of tissue [5].  

Polylactide acid (PLA) and polyglycolide acid (PGA), as well as poly(lactic-co-glycolic acid) 

(PLGA) that is the polymer obtained by their combination, have been widely used in many biomedical 

applications and for the formulation of drug delivery systems. PLGA demonstrated to be extremely 

suitable for tissue engineering and drug delivery applications thanks to its tunable degradation rate 

(that depends upon the molecular weight of the co-polymers), high biocompatibility, easy handling 

and FDA approval [84]. One of the main fields of application of these polymers is in wound healing, 

very often used in form of fibrous dressing (this will be further analysed in the next sections), but also 

in form of drug-loaded nanoparticles to be used as coating for wound mats. For example, Choipang 

et al. designed a polyvinyl alcohol (PVA) hydrogel coated with ciprofloxacin loaded PLGA 

nanoparticles to treat pressure ulcers. The authors performed drug releasing test, noticing a sustained 

release for up to 6 days with an initial burst release; they assessed the antibacterial activity against S. 

Aureus and E.Coli and cytotoxicity using dermal fibroblasts. At a PLGA/Ciprofloxacin nanoparticles 

concentration of 244 mg, bacterial growth was reduced of ~99% in both bacterial colonies, also non-

cytotoxic effects were observed  [85]. PGA, PLA and PLGA were also used in the design of hernia, 

PFDs, BR and GBR meshes. Some examples of available meshes are Dexon (Davis & Geck, PGA, 

hernia and PFDs) [5,18], Vicryl (Ethicon, Polyglactin 910 [92% glycolide, 8% lactide], hernia, PFDs 

and BR) [5,6,18], Polylactide mesh (Ethicon, Polylactide [95% lactide, 5% glycolide], hernia) [18]; 

Guidor (Sunstar, PLA) and Cytoflex Resorb® (Unicare Biomedical, PLGA, GBR) [7]. 

Polycaprolactone (PCL) is an absorbable polymer whose features are very attractive in tissue 

engineering field, since it is biocompatible, biodegradable, it can be solubilized in a variety of 

solvents for fabrication (e.g. chloroform and tetrahydrofuran), is inexpensive and FDA-approved. It 

has a relatively low melting temperature, thus resulting in an easy processability through a wide range 

of manufacturing technologies whose required molten polymers (e.g. fused deposition modelling 

(FDM), 3D Printing or hot-melt extrusion (HME)) [19,87]. Additionally, PCL has a long degradation 
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rates due to the absence of suitable enzymes within the human body, thus slowing down the 

absorption process [87]. This makes PCL very good for drug delivery since it permit to better control 

the medication releasing process; moreover it can be easily combined with other polymers in order to 

obtain composites with very different properties (e.g. faster degradation rates) that could potentially 

fulfil the most different needs [19]. Despite this advantages, there are very few commercially 

available meshes made of PCL or composites of PCL (such as Vivosorb® (Polyganics), Poly-DL-

Caprolactone [PDLLCL], used in GBR applications [7]), but many research groups are now 

investigating the possibility to produce surgical meshes and dressings by using it. For example, 

Ebersole et al. assessed the effectiveness of PCL nanofibrous meshes for hernia repair applications. 

They tested six different electrospun meshes obtained by varying PCL polymeric content and 

processing conditions (flow rate: 3.5 mL/h–10 mL/h), aiming to evaluate their morphology and 

mechanical behaviour and concluding that high PCL content (12% w/v) and low flow rates (4 mL/h, 

6 mL/h) was the most promising combination [102].  

However, meshes based on absorbable polymeric materials have showed several issues, especially 

with regards to hernia and PFDs. In fact, due to polymer degradation, it is very likely that the use of 

these implants is accompanied by loss of tensile strength and subsequent mechanical failure [5]; 

additionally, rapid absorption rates could potentially lead to the formation of a very poor scar tissue 

[62].   

4.3 Absorbable natural materials 

Collagen, chitosan and alginate are among the most exploited natural-derived biomaterials. Collagen 

is an abundant structural protein present in the human body with the ability to enhance fibroblasts 

functions [88]. Chitosan is a substance derived from the deacetylation of chitin, present in fungi’s 

exoskeleton. It naturally possesses antibacterial activity, promotes drainage, avoid the production of 

exudates and allows gas exchange [17,88]. Alginate is obtained from seaweed, it is highly absorbent 

and biodegradable [93]. These materials could be engineered to produce a wide range of biomedical 

devices, but very often are used in form of hydrogel and due to their high biocompatibility and ability 

to absorb liquids, they have been extensively employed in wound healing applications [45,88]. These 

three materials were also combined by Xie et al. to successfully create a composite seawater-resistant 

wound dressing, that showed an enhanced ability to promote the healing process while absorbing 

exudates, facilitating platelet aggregation, clot formation, fibroblasts and endothelial cells migration, 

keeping a moist environment and protecting the wound [103]. Aside of wound healing applications, 

collagen’s properties have also exploited in periodontal GBR [41]. For instance, BioMend® and 

BioMend® Extended TM  are bovine-derived type I collagen membranes for GBR that have been 

developed by Zimmer Denta Inc [104].  



18 

 

To improve the integration of non-absorbable meshes within the body and to reduce the related side 

effects, in the last years natural materials have been also adopted as coating agents [101]. Collagen, 

chitosan, cellulose and other ECM components are among the most used [3,18]. The behaviour of a 

chitosan-coated PP meshes was investigated by Udpa et al. The authors observed a superior 

attachment of myoblasts with respect to fibroblasts, which led to the formation of a functional 

muscular tissue. Also, even if neutrophils were anyhow recruited, they resulted to be inactive, leading 

to the arising of a very gentle immune reaction [105].  

Faulk et al. investigated the long-term in vivo (rat model) remodelling in response to the adoption of 

an ECM-coated PP mesh for hernia application, in terms of both biochemical and biomechanical 

feedbacks. Their results confirmed the efficacy of ECM-coating in respect of un-coated devices, 

particularly, at 14 days post implantation the macrophages response was mild and after 180 days 

collagen deposition was minimal [106].  

4.4 Grafts 

According to the Baylón classification, third generation meshes includes biologic prostheses also 

called grafts [3]. Biological prostheses are natural and highly biocompatible meshes  that could be 

easily populated by cells and then degrade to leave new tissue [3]. Grafts can be divided into three 

categories according to their origin [18]: autografts (autologous pieces of tissue), allografts (human-

derived cadaveric pieces of tissue) and xenografts (animal-derived pieces of tissues) [107]. Allograft 

and xenografts are obtained by dermis decellularization in order to remove cells from the tissue, 

leaving just the organized collagen architecture (ECM) and producing a structure that can be generally 

called ADM [10]. These types of matrices have been very often used in hernia [18], PFDs [108], BR 

[100] and wound healing applications [93] aiming to reach an integration level of the prosthesis with 

the native tissue with minimal or no negative response. Some of the most common source of ADM 

are rectus fascia, fascia lata [109], human dermis, porcine dermis and porcine small intestine 

submucosa (SIS) [3]. Aside from dermal substitutes, epidermal grafts have also been used for wound 

healing applications. While the use of ADM requires a pre-decellularization of the dermis, using 

epidermal substitutes requires keratinocytes expansion and cultivation [93]. Even if there are reported 

advantages related to the use of grafts, such as rapid host revascularization and cell repopulation [10], 

there are also several drawbacks, which include limitations related to the donor site and tissue 

harvesting, and post-surgery pain in the case of autografts, possibility to develop infections and prion 

disease in the case of allografts and xenografts [108,110]. 

 

5. Drug-eluting surgical mesh implants  
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Lately, drug-eluting implants have gained great attention due to the numerous advantages with respect 

to older ways of drug administration and diseases management. One of the most important advantages 

is the possibility to sustain and control the medication release for long periods without affecting the 

drug stability [111]. Due to different fields of applications of surgical meshes, the most suitable drugs 

to use may vary according to the specific disease. However, it could be possible to differentiate these 

drugs into antibiotics, antimicrobials agents and nature/biology-derived antibacterial molecules. 

Therefore, this section will cover a general overview of some of the most used drugs and antimicrobial 

agents for drug-eluting antibacterial meshes. 

5.1 Antibiotics 

Antibiotics have been extensively used for bacteria-specific treatment [112]. Rifampicin is a semi-

synthetic antibiotic that exerts activity against a wide range of bacteria, among which S. Aureus [113]. 

It has been exploited with promising results by Reinbold et al. to prepare rifampicin-loaded PLGA 

microspheres to be used as coating for surgical mesh in hernia management. Meshes treated with the 

new coating material exerted a prolonged drug release profile (60 days) and an antibacterial activity 

which lasted 30 days [114]. Another class of antibiotics very often used is fluoroquinolones (e.g. 

ofloxacin, ciprofloxacin, levofloxacin), a broad-spectrum antibiotics active against gram-positive and 

gram-negative bacteria [115]. Guillaume et al.  investigated the antibacterial behaviour of an 

ofloxacin/PCL coated PP mesh for soft tissue applications (hernia and PFDs). The device successfully 

achieved a sustained antibiotic release profile for up to 4 days with no burst release. Antibacterial 

tests carried on E. Coli resulted in a potent antibacterial activity, showing an inhibition zone diameter 

equal to 39 mm [116]. Metronidazole, instead, have been used to counteract periodontitis-related 

infections [16]. Another class of very used antibiotics exploited in GBR are tetracyclines (e.g. 

minocycline (7-dimethylamino-6-dimethyl-6-deoxytetracycline)) since they exhibit an anti-

inflammatory, antibacterial, anti-collagenase activity, as well as osteoclasts and metalloproteinase 

inhibition, which is important in bone regeneration applications [117]. In a study by Ma et al., 

minocycline-loaded chitosan nanoparticles have been incorporated into a collagen/chitosan 

membrane to be used in GBR treatment. In vitro drug release tests showed that antibiotic release rate 

was sustained for up to 7 days, with an initial burst release. Antibacterial activity was assessed in 

vitro against Porphyromonas Gingivalis and Fusobacterium Nucleatum, observing a bacteriostatic 

rate of 95.3% and 92.1% respectively, and higher antibacterial potential with respect to antibiotic-

free membranes. In vitro biocompatibility assay (using MC3T3-E1 osteoblasts and L929 fibroblasts) 

was proven. Finally, from the in vivo studies using a rat model, the membranes’ ability to guide bone 

regeneration was observed, leading to the formation of new bone tissue after 4 weeks [118].  
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Other antibiotics include gentamicin, which has been adopted against staphylococcal infections, and 

vancomycin, used as an alternative to treat methicillin-resistant Staphylococcus Aureus (MRSA) 

[15]. Unfortunately, the increasing employment of antibiotics, has gradually led to the development 

of antibiotic resistance [112]. To enlarge their activity spectrum, multi-therapy, which consist in the 

administration of a combination of drugs, is a useful strategy [15]. However, there is still a strong call 

for new therapeutic approaches.  

5.2 Antimicrobial agents 

Metallic nanoparticles (MNPs) could be another solution to confer antibacterial properties to mesh 

implants. Their mechanism of action is still under investigation, but it is thought by the most that their 

antibacterial activity could potentially derive from a natural toxicity that arise from nanoparticle 

surface dissolution or oxidative stress via the production of reactive oxygen species (ROS) on the 

nanoparticles’ surface [119]. The antibacterial behaviour of MNPs-loaded PCL wound dressing was 

investigated by Muwaffak et al., whose assessed the efficacy of Silver-loaded (Ag-loaded), Zinc-

loaded (Zn-loaded) and Copper-loaded (Cu-loaded) meshes, finding out a higher activity of Ag and 

Cu against S. Aureus [120]. Ions incorporation could be an additional advantage also for meshes 

intended for GBR procedures. In a review by Florjanski et al., it has been reported that silica and 

titanium nanoparticles could enhance bone regeneration, while silver has the potential to exert good 

antimicrobial properties [117]. In fact, the effectiveness of Ag MNPs for GBR was also studied by 

Chen et al. which tested two different methods to perform Ag MNPs coating (sonication or sputtering) 

on collagen membranes in order to investigate their antimicrobial activity against S. Aureus and P. 

Aeruginosa, biocompatibility (with C3H101/2 mice embryonic MSC) and bioactivity. Sonication was 

found to be the most promising method to coat Ag since membranes obtained in this way showed the 

most promising results in comparison to sputtering, both in terms of antibacterial behaviour and 

cytotoxicity at a concentration of 1 mg/ml sonication coating. Additionally, for both the types of 

coating methods, superior osteogenic activity and in vitro anti-inflammatory behaviour were observed 

if compared with the uncoated membranes [121]. Ag was found to be affective also against other 

bacterial infections very common in periodontitis (Aggregatibacter Actinomycetemcomitans and 

Porphyromonas Gingivalis). In fact, in a study by Marques et al. membranes made of natural rubber 

latex (NRL) and Ag MNPs were developed with promising results in terms of antibacterial activity, 

cell viability and bone formation. In vitro tests were performed using human deciduous dental pulp-

derived mesenchymal stem cells (CDLH1 line) on three different samples (negative control, NRL, 

and NRL-AgNP) showing the highest percentage of cell viability (98%) for NRL-AgNP membranes. 

Additionally, in vivo studies (Rattus Norvegicus Albinus) were carried on to further investigate the 
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device’s cytocompatibility and tissue’s immune reaction, demonstrating a reduced inflammation with 

respect to NRL membranes and GBR properties [122].  

In addition to MNPs, antiseptics can be included in the category of antimicrobial agents. Among 

them, chlorhexidine (CHX) have been employed both in hernia and dental applications, thanks to its 

activity against gram-positive, gram-negative and anaerobic bacteria, showing promising results 

[123].  

Pe´rez-Ko¨hler et al. assessed the antibacterial potential of CHX-loaded PP mesh against S. Aureus, 

S. Epidermis and E. Coli for hernia repair applications. They developed a new coating material made 

of N,N-dimethyl-N-benzyl-N-(2- methacryloyloxyethyl) ammonium bromide and CHX (1 % w/w). 

The antibacterial activity, as well as drug release rate and cytotoxicity were tested. Slightly better 

antibacterial behaviour was observed against S. Aureus and S. Epidermis but, in general, no adhesion 

of bacteria was found onto these meshes. CHX release profile was found to be quicker in the first 5h 

and then slower and sustained up to 72h. AlamarBlue® assay showed no cytotoxicity, however a 

reduced fibroblasts metabolic activity was observed [123]. The efficacy of chlorhexidine as 

antibacterial agent in dental applications is well known. Inoue et al. produced a CHX-loaded 

periodontal membrane made of bacterial 2,3 dialdehyde cellulose and cyclodextrin, showing a 

prolonged release (even with a burst release at the beginning) and adequate activity against S. Aureus, 

E. Coli and C. Albicans [124]. However, MNPs, as well as antiseptics, may possess some drawbacks, 

such as toxicity [119] and possibility to develop allergic reactions [125].  

5.3 Naturally-derived antimicrobial agents and biomolecules 

In order to achieve a better integration of the mesh implant with the surrounding tissue and with less 

cytotoxic effects, biology/nature-based antimicrobial molecules are up-and-coming. Honey, essential 

oils, chitosan and plant-derived substances are just few examples, often employed in wound healing 

applications. For example, Wang et al. combined the antimicrobial features of chitosan and honey 

with gelatine, at different concentrations, in order to create a hydrogel to be used in the management 

of burns. Antibacterial assay showed that the best outcomes were obtained for the hydrogel composed 

by 0.5g of chitosan, 20g of honey and 20g of gelatine, with a bacterial growth inhibition rate equal to 

100%. The synergistic activity of the employed substances contributed to create an acidic 

environment able to entrap and neutralize bacteria. Additionally, toxicological analysis and in vivo 

studies (rat model) demonstrated the hydrogel’s higher wound closure percentage in respect of 

commercially available dressings (MEBO®) [126]. 

Mancuso et al., developed a PCL fibrous antibacterial mesh for soft tissue application by layer-by-

layer deposition of Manuka honey (see Figure 3). Results showed that the addition of Manuka honey 

to the formulation did not alter the physico-chemical properties of the scaffold and the layer-by-layer 
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functionalization allowed its controlled release from the PCL fibres. The implant showed good 

cytocompatibility and proliferation for fibroblasts (human telomerase reverse transcriptase 

immortalized fibroblasts from non-malignant myoma, healthy skin human fibroblasts) and 

endothelial cells (primary human umbilical vein endothelial cells), and a concentration-dependent 

antimicrobial activity against S. Aureus, E. Coli and P.Aeruginosa [127]. 

Another promising approach to ameliorate the interaction between the surgical device and the human 

body is to include growth factors within the implant. For example, bone morphogenetic protein 

(BMP) and platelets have been successfully used in the treatment of periodontitis [16]. In a clinical 

study by Jung et al. the performances of rhBMP-2-coated membranes were assessed in 11 patients 

after a 6 months period. Hystomorphometric analysis results showed 37% of newly formed bone at 

the treated site and 76% of mature lamellar bone [128]. Ansarizadeh et al. designed a new platelet-

rich fibrin (A-PRF)-loaded scaffold made of chitosan and collagen. Mechanical properties, 

degradation rate, cell viability (using mouse bone marrow mesenchymal stem cells (MSCs)) and 

osteogenic activity were investigated. The authors modelled the young modulus, the degradation rate 

and cell viability as variables dependent upon chitosan, collagen and A-PRF concentration, using a 

polynomial equation. From the performed experiments and numerical simulation, the optimal 

membrane composition was found to be the one made of a chitosan/collagen weight ratio equal to 4 

and a A-PRF concentration equal to 0.58 mg/ml [129]. In a study carried on by Wang et al. fibroblast 

growth factors (FGF) were grafted, via oxygen plasma treatment, onto the surface of a fibrous poly-

L-lactic acid (PLLA) mesh. The device, to be used in PFDs treatment, showed improved 

biocompatibility, collagen deposition and cells attachment, and less inflammatory response compared 

to untreated PLLA. Also, grafting via plasma treatment did not alter its mechanical properties [130]. 
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Figure 3: (A) Scanning electron microscopy (SEM) and (B) atomic force microscopy (AFM) images of LbL-functionalised PCL electrospun 

meshes by using Manuka honey (MH) as polyelectrolyte at different concentrations (1.5, 3, 6, and 12% w/v, respectively); adapted from Mancuso 

et al. [127] 
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6. Manufacturing 

The encapsulation of antimicrobial agents and drugs is just one of the possible approaches that could 

be exploited in order to produce meshes with antibacterial properties. Another way of proceeding 

could be “simply” based on the correct selection of the material, as well as the choice of the most 

suitable mesh design (i.e. morphological properties) [15]. To be effective against infections, mesh 

implants should possess a pores’ dimension much larger than 75 μm (macroporous meshes), so that 

to allow the entrance of bacteria, as well as of immune cells [131]. Additionally, macroporous mesh 

implants have shown a better response in terms of scar formation, resulting in less production of non-

functional fibrotic tissue with respect to meshes with small pores (microporous) [70].   

Another aspect that should be considered is the weight or density of the employed mesh, since it could 

affect the final biomechanical behaviour. Based on the same raw material (i.e polypropylene), 

heavyweight meshes (density > 90 g/m2) have proven to be stiff and often microporous, on the other 

hand, lightweight meshes (density < 50 g/m2), are more flexible, while still exerting mechanical 

strength, and usually macroporous [3,18].  

Finally, filaments types and their spatial organization could strongly influence the outcomes. It has 

been proven than multifilament meshes are more prone to develop bacterial infections and less 

responsive in terms of cellular ingrowth [108]. Moreover, it is well known in tissue engineering that 

fibres orientation is a factor that strongly influences the interactions between the native tissue and the 

implant [132].   

In order to satisfy these requirements, in addition to material selection, the adoption of the most fitting 

manufacturing method is crucial to produce patient-specific mesh implants, with tailorable 

physicochemical and biomechanical properties. Among these technologies, electrospinning allows to 

manufacture fibrous architectures with very good ECM-mimicking abilities, as well as topical drug 

delivery systems (DDS) [133]. On the other hand, additive manufacturing (AM) could be successfully 

employed in meshes production to create customized drug-eluting devices with pre-determined and 

reproducible morphological features [134]. These manufacturing methods allow to overcome the 

widely reported limitations of traditional approaches, including knitted and woven techniques. Poor 

customisability and especially the inability to resemble the biomechanical properties of the native 

tissue have been the main drawbacks of knitted meshes. Additionally, the high number of post-

operative complications arising from the use of knitted meshes is another limiting factor of this 

traditional method [3,18]. Therefore, new manufacturing approaches have been recently introduced, 

aiming to produce patient-specific custom devices with tailorable biomechanical as well as functional 

properties (i.e. antibacterial and/or bioactive potential).  Table 4 provides an overview of the main 

materials, medications and manufacturing methods exploited to produce surgical meshes.  
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6.1 Electrospinning   

Electrospinning is one of the most employed manufacturing techniques for the fabrication of drug 

loaded devices [135]. It exploits electrostatic forces to produce sub-micron fibres starting from 

polymeric solutions (solution electrospinning, see Figure 4-A) or melts (melts electrospinning, see 

Figure 4-B) [136].  

 

Figure 4: Schematic representation of A) solution electrospinning and B) melt electrospinning 

set-up and C) collector types to influence fibres orientation. 

A polymeric jet forced out of a syringe (spinneret) and towards a collector, thanks to the application 

of a voltage difference. Fibres are formed subsequently to solvent evaporation or cooling down of the 

melt [137]. To obtain the desired morphological features, in terms of fibres diameter and orientation, 

it is possible by altering process parameters (e.g. voltage, tip-to-collector distance, polymer feeding 

rate) and external parameters (e.g. polymeric solution physicochemical properties, ambient 

temperature and humidity) [138], but also by changing and designing new collectors (see Figure 4-

C), which allow the opportunity to produce a wide range of different mesh architectures, including 

randomly oriented fibres, aligned flat fibres, aligned tubular fibres etc. [133].  
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Electrospinning has been extensively used in tissue engineering applications due to the ability to 

create very thin fibres and fibrous architectures that have proven to properly mimic ECM [139]. 

Additionally, electrospinning provides also an easy and effective way to encapsulate drugs and 

molecules within these architectures [133]. Drugs encapsulation can be performed in several ways, 

such as surface functionalization (e.g. coatings, layer-by-layer and grafting), blend, multiaxial and 

emulsion electrospinning. Coatings, layer-by-layer functionalization and grafting could be 

successfully employed to load bioactive molecules within the mesh. The main issue with these 

encapsulation methods is that they are often multiple steps procedures. Conversely, electrospinning 

allows for the direct inclusion of medications during the spinning process [133].   

6.2 Blend electrospinning 

Blend electrospinning consist in the solubilisation (or dispersion) of the bioactive molecules in the 

polymeric solution to spin [140]. Hall-barrientos et al., carried on several studies about the 

interactions of electrospun drug-loaded polymeric meshes for hernia repair applications, testing PCL, 

PLA and collagen [139,141]. One of their studies provides comparison of PCL and PLA fibrous 

meshes and evaluation of the biological response and antibacterial activity. The authors tested two 

different drugs (Irgsan (IRG, triclosan) and Levofloxacin (Levo)) with several mesh combinations 

(PCL–drug, PCL–collagen–drug, PLA–drug and PLA–collagen–drug). The obtained results showed 

good outcomes for PLA and PCL meshes and minimal bacterial infection, with higher cells adhesion 

and proliferation for Levo-loaded PCL meshes. IRG-loaded meshes show a minimal, or even absent, 

cells attachment and viability [142]. In fact, many research groups are now carry on several studies 

about the safety of triclosan, which is suspected to be dangerous for human health [143]. 

Electrospun mats have been very widely adopted also in wound healing management, since they not 

only promote cells adhesion, but also allow gas exchange and fluid absorption. García-Salinas et al., 

developed a PCL electrospun anti-inflammatory matrix loaded with essential oils (carvacrol (CAR), 

thymol (THY), tyrosol (TYR) and squalene (SQU)) for wound healing applications, finding that 

THY-loaded matrices showed the most effective behaviour against inflammations in vitro [20].  

Even if blend electrospinning is a really easy way to load molecules into fibres, it has some 

disadvantages, which include possible denaturation of the bioactive substance in presence of solvents, 

but also a possible non-homogeneous drug distribution within the implant [140]. 

6.3 Multiaxial electrospinning 

Multiaxial electrospinning can be used to reach a control over the medication release from the fibre 

[136]. It allows the production of core-sheath and hollow fibres by using a spinneret equipped with 

two (coaxial electrospinning) or three (triaxial electrospinning) concentric needles, through which is 
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possible to spin different polymeric solutions and drugs at the same time [144]. He et al., designed a 

dual DDS periodontal membrane via coaxial electrospinning loaded with naringin (NAR), aiming to 

promote osteo-differentiation and bone growth, and metronidazole (MNA), to counteract infections. 

PLGA was used as sheath material to encapsulate MNA, while polyvinylpyrrolidone (PVP) was 

selected as core material to encapsulate NAR. The device showed an enhanced antibacterial activity 

against Fusobacterium Nucleatum with respect to un-loaded fibres, and stimulated cell growth [145]. 

Prado-Prone et al. also employed coaxial electrospinning for the development of antibacterial wound 

mat made of PCL (core) and loaded with Zn nanoparticles (ZnNPS) (shell) (Figure 5). Antibacterial 

tests were carried on against S. Aureus and E. Coli, observing a major activity against gram-positive 

(S. Aureus) bacteria. The effects of UVA light exposure (prior to bacteria inoculation) on mats were 

studied too, resulting in an even more effective antibacterial activity [146]. 

Hansesn et al, also tested the performances of coaxial fibres against solid fibres (obtained by blend 

electrospinning) for PFDs applications. In this study, the performances of PCL hollow and solid 

fibres, loaded with FGF, connective tissue growth factors (CTGF) and rat mesenchymal stem cells 

(rMSC) was investigated in vivo by using a rat model. The results highlighted the inability of hollow 

fibres to provide mechanical support during collagen deposition, due to their fast degradation. In fact, 

among all the tested meshes, these ones were associated with the highest level of complications (first 

of all herniation) [147]. 

 

 

Figure 5: Zn-loaded PCL coaxial fibres developed by Prado-Prone et al. and their mechanism of 

action [146]. 
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6.4 Emulsion electrospinning 

Core-shell fibres can be produced by spinning an emulsion rather than a solution [148]. The use of 

the correct solvents is crucial in both emulsion and multiaxial electrospinning due to the necessity to 

spin more solutions at the same time. Solvents that do not cause their mutual precipitation are needed, 

so a good choice could be exploiting immiscible solutions [149]. To stabilize these solutions, the 

employment of surfactants could be useful [144,150], however their presence may alter the 

mechanical properties of the final device [151] as well as its adhesion properties [144]. Mangir et al. 

loaded L-ascorbic acid (AA) and Ascorbate-2-Phosphate (A2P), which have been proven to increase 

collagen production, into PLA electrospun fibres using emulsion electrospinning. Their aim was to 

asses any improvements in terms of collagen production and its impact on mechanical properties of 

the device. The developed mesh actually enhanced collagen production, with slightly better results 

for A2P releasing mesh, but the mechanical properties were affected by the inclusion of surfactants 

[151]. 

All the mentioned techniques are solution-based as all employed polymeric solutions. An important 

point to consider when using solution-based electrospinning techniques is the toxicity of most 

solvents used in the process (e.g. chloroform, tetrahydrofuran, dimethylformamide). Using solvent-

free configurations, such as melt electro-writing (see section 6.8) could be a valuable option [152].  

6.5 Additive manufacturing 

AM technologies are based on the layer-by-layer building up of the final structure starting from digital 

data. This information can be obtained through a computer tomography (CT) or magnetic resonance 

(MRI) and can be subsequently elaborated in order to generate a digital design file by means of 

computer aided design (CAD) software, thus allowing the creation of complex 3D architectures with 

predictable geometric features (e.g. pore volume, interconnectivity and distribution) [153,154] (see 

Figure 6) [155]. It has become very attractive in the biomedical field due to its cost-effectiveness, 

possibility to obtain personalized devices in relatively fast times and to process both composites and 

biomaterials.  

Selective laser sintering (SLS) and stereolithography (SLA) are light-based AM techniques that have 

been used often in the biomedical field. In SLS, a laser beam is selectively directed on a powder bed 

to fuse a thin layer of them in the desired shape. The process is repeated layer by layer, and after 

hardening of the melted powders, a defined 3D structure is obtained. Similarly, SLA, uses light to 

harden photo sensible polymers and built 3D objects after a layered repetition of the same process. 

Even if SLS and SLA proved to be successful in producing biomedical devices, they also present 

some drawbacks, among which there are high processing temperatures and costs for SLS [156,157] 

and a small number of biocompatible photo polymers for SLA [158]. On the other hand, 3D printing 
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is another promising AM technology that have been successfully employed to include bioactive 

compounds and cells directly during printing (see section 6.7) [134,159].  

 

Figure 6: Additively manufactured surgical meshes workflow: from patient data to clinical 

application. 

6.6 Hot melt extrusion (HME) and fused deposition modelling (FDM) 

HME is based on the extrusion of a polymeric melt, which is forced through a die by means of convey 

screws, to form a fibre [160]. This technique have been used in pharmaceutics to include drugs within 

a polymeric carrier [19]. Additionally, HME was the first method employed to produce polymeric 

meshes, in which filaments, once extruded, were knitted according to a specific pattern [3]. Hot melt 

extruded drug-loaded fibres could also be used as feeding polymer during the printing of implants via 

FDM (See Figure 7) [161]. FDM is based on the CAD-controlled layered extrusion of molten polymer 

fibres [158]. It gained attention because of its ability to print devices with good dimensional precision 

and quality, while maintaining low cost and reduced times of production [162].  
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Figure 7: Patient-specific wound dressings; A) Filaments loaded with metals, from left to right: 

plain PCL, Ag (10% w/w)-PCL, Zn (10% w/w)-PCL, Zn (25% w/w)-PCL, Cu (10% w/w)-PCL and 

Cu (25% w/w)-PCL; B) 3D printed Cu-PCL nose dressing; C) Release profiles of Ag (10% w/w)-

PCL, Cu (10% w/w)-PCL, Cu (25% w/w)-PCL, Zn (10% w/w)-PCL and Zn (25% w/w)-PCL in 

PBS (adapted from Muwaffak et al.) [120]. 

Domínguez-Robles et al. used HME and FDM to produce Levo-loaded TPU filaments that were 

subsequently employed in 3D printing of meshes for PFDs as shown in Figure 8. The research group 

studied the mechanical behaviour of the devices, as well as their antibacterial activity. The final data 

has proven to be more flexible and less rigid in respect of PP meshes, but also, to be effective against 

S. Aureus and E. Coli [97].  
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Figure 8: PFD mesh developed by Domínguez-Robles et al. A) CAD project with relative mesh 

dimension; B) flexibility of TPU meshes; C) Levo-loaded TPU meshes; D) SEM images of Levo-

loaded TPU vaginal meshes [97]. 

FDM was also used by Qamar et al. to produce ciprofloxacin-impregnated meshes for hernia repair. 

Two types of material were processed (PP and PVA) and meshes were printed with different pore 

geometries (diamond and square) and dimensions. Their mechanical behaviour, antibacterial activity 

and in vivo biocompatibility were investigated using a rabbit model. Drug was released in both 

meshes for almost 7 hours, with an initial burst release. Considering that for hernia repair applications 

a tensile strength between 16 N/cm2 and 30 N/cm2 is required, PVA meshes showed a better 

biomechanical behaviour compared with PP, since the obtained tensile strength ranged between 17 

N/cm2 and 30 N/cm2. Additionally, it was observed a greater biocompatibility of PVA devices in 

respect of PP, with less fibrous tissue and mild immune reaction [163].  

Baek et al. used FDM and electrospinning to produce a hybrid PCL scaffold for BR, aiming to 

improve implant-tissue interactions. The device showed enhanced flexibility with respect to ADM. 

Furthermore, it induced lipogenic differentiation without any foreign body reaction, thus resulting 

very promising for BR surgery management [164]. 

A multi head deposition system was used to combine and print at 135°C a blend of PCL, PLGA and 

β-tricalcium phosphate (β-TCP) to prepare a dome-shaped 3D membrane for periodontal applications. 

In a study by Shim et al., meshes were subjected to tensile test and in vitro cell proliferation test, in 

vivo (beagle dog model) clinical setting and were also compared to titanium membrane used in clinics, 

proving their equal efficacy in terms of bone formation and osseointegration. The results could open 

the horizon to new frontiers in the use of biodegradable membranes, thus avoiding second surgery 

[165]. 
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Due to the high processing temperatures required, only a limited number of polymers (e.g. 

thermoplastic polymers as TPU and PCL) [134] and drugs can be used to create biomedical implants 

and devices via FDM [158] 

6.7 3D bioprinting 

Extrusion-based 3D bioprinting received a great attention in tissue engineering because of the 

possibility to print a wide range of polymeric-based biomaterials, with or without cells, called bio-

inks, and often loaded with bioactive compounds [159]. A 3D bioprinter is generally composed by a 

dispenser (mechanically or pneumatically driven) which is connected to a robotic stage that can move 

along the three axes (x,y,z), laying down the bio-ink onto a collecting plane, as shown in Figure 9 

[162].  

 

Figure 9: Schematization of material extrusion during 3D bioprinting: A) pneumatically-driven; 

B-C) mechanically-driven [159]. 

One promising field of application of 3D bioprinting is wound healing. For example, with the 

intension to recreate the by-layered structure of the skin, Wang et al. combined high voltage printing 

and 3D bioprinting to design a bi-layered membrane scaffold made of PLGA and alginate in which 

PLGA was used as the superior layer to mimic the epidermis, while alginate was used as the inferior 

layer to mimic the dermis. The obtained implant provided a moist and insulated environment for the 

wound. Additionally, it successfully acted as barrier against S. Aureus, it showed good 

biocompatibility (with murine L929 cells) and it accelerated wound healing in vivo (rat model, 

complete healing in 12 days), promoting an initial and constructive inflammation, and stimulating 

vascularization and collagen deposition [166]. Another device was developed by Afghah et al., whose 

included silver nitrate particles in the formulation to provide antibacterial effects to the dressing. They 

printed a PCL-block-poly (1,3-propylene succinate) (PCL-PPSu) mats and investigated its 

degradation rate and hydrophilicity. Moreover, in vitro cytotoxicity assays using human dermal 
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fibroblasts and antibacterial tests against S. Aureus, C. Albicans, E. Coli, P. Aeruginosa were carried 

on.  The obtained results made it clear that at a concentration of 1% wt/wt of silver nitrate, the 

dressing’s antibacterial behaviour was significantly enhanced, especially against E. Coli and C. 

Albicans. Also, the inclusion of silver nitrate in the formulation did not alter the cytocompatibility of 

the used materials [167].  

3D bioprinting has greatly evolved towards the production of complex scaffolds, however it still has 

some limitations such as low printing speed and needs for complex bio-inks and multi-material 

architectures. In fact, even considering all the progress done within the bioprinting field, re-creating 

biological structures can be difficult, since tissues and organs possess way more complicated 

architectures, with different mechanical properties, sizes as well composition at the cellular level 

[159]. 

6.8 Melt electro-writing (MEW) 

MEW is a manufacturing technology that combined working principles from electrospinning and 

AM. MEW exploit voltage differences to “write” electrospun scaffolds with pre-determined 

architecture and geometrical features (Figure 10) [133].  

However, there is a substantial difference between solution-based electrospinning and MEW. 

Electrospinning requires the arising of fluids instabilities (whipping instability) to draw the fluid out 

of the spinneret and towards the collector. When on the other hand, MEW based on the concept 

according to which the application of an electric field between the nozzle and the collector, stabilizes 

the jet, avoiding instabilities. This allows to continuously lay down polymeric filaments with different 

diameter by using low flow rates and just one nozzle [168]. Aside from the electric field, some other 

parameters must be tuned in order to achieve a controlled and reproducible flow. The feeding rate to 

the spinneret should match the one of the stabilized polymer jet in order to avoid fibre pulsing, which 

can cause an unstable flight path. Also, the velocity of the moving collector (the spinneret is fixed) 

should be higher than the speed of the jet. This velocity is called critical translation speed (CTS): 

when operating above its value, fibres could potentially reach sub-micron sizes. However, in this 

condition non-linear fluid patterns may arise. Thus, the majority of MEW-produced scaffolds possess 

fibres with a diameter that ranges between 2μm and 50μm [168,169].  

 



34 

 

 

Figure 10: Examples of different patterns and scaffolds that can be obtained via MEW (Scale 

bars = 100 µm A–D, 500 µm E–H, 50 µm I, 200 µm J–L, and 100 µm M–P) [169]. 

MEW could be preferred in respect of solution-based electrospinning, since it allows to produce better 

fibres both in terms of morphology and drug delivery mechanism (no burst release) [137]. However, 

it presents some limitations that are mainly due to high processing temperatures, that limits the 

number of materials and drugs which can be used [137]. 

Despite its disadvantages, MEW was used by Hewitt et al. to produce a melt electrospun PCL scaffold 

loaded with milk proteins (MPs) to be used in wound healing applications. Their aim was to assess 

the feasibility of the manufacturing process and investigate in vitro scaffold’s performances (wound 

healing assay). The authors, were able to write PCL/MPs powders blend at a temperature of 85°C and 

obtain good results in terms of both protein release (up to 21 days) and tissue regeneration [170]. 
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Dubey et al. used PCL in the development of a reinforced membrane for GBR. PCL was melt-

electrospun and then covered with a layer of Gelatin-Methacryloyl (GelMA) and amorphous 

magnesium phosphate (AMP). The authors assessed the physico-chemical and biomechanical 

properties of the device, and its in vivo (rat model) performances. The results showed that the 

reinforced membrane possessed high stiffness (can be modulated by altering the chemical 

composition of the mesh), high rate of mineralization, osteogenic gene expression and in vivo bone 

formation. Moreover, the presence of the layer of GelMa and AMP, reduced the in vivo degradability 

of the implant [171]. Finally, MEW was combined with 3D bioprinting to manufacture a melt 

electrospun PCL mesh for PFDs applications. In a study by Paul et al., meshes produced using MEW 

were covered with a layer of 3D bioprinted aloe Vera/alginate (AV/ALG) hydrogel loaded with 

endometrial mesenchymal stem cells (eMSCs) in order to enhance the antibacterial and anti-

inflammatory behaviour of the construct. Thanks to the improved in vivo compatibility and tissue 

integration, this implant could be successfully employed to treat POP by also using autologous 

eMSCs from the patient [172]. 
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Table 4: Summary table of the main materials, drugs and manufacturing methods employed in the production of meshes for hernia, PFDs, 

GBR, wound healing and BR surgery. 

Application Materials Drugs Manufacturing methods References 

Hernia 

 Non-absorbable Polymers 

PP, PET, PTFE/ePTFE 

 Absorbable Polymers 

PLGA, PGA, Polyglactin, Polylactide, PCL, PLA, PVA 

Natural Materials 

ADM, Chitosan 

 Others 

Titanium 

 Antibiotics 

Rifampicin, Fluoroquinolone 

(Ofloxacin, Ciprofloxacin, 

Levofloxacin), Gentamicin, 

Vancomycin 

 Antiseptics 

Chlorhexidine, Triclosan 

Blend electrospinning, FDM, 

HME 

[3,18,99,105,

114,116,123,

142,163], 

PFDs 

 Non-absorbable Polymers 

PP, PET, ePTFE, TPU 

 Absorbable Polymers 

PLLA, PGA, Polyglactin, PLA 

 Natural Materials 

ADM, Chitosan, Alginate, Others, Aloe Vera 

 Antibiotics 

Levofloxacin, Ofloxacin 

 Biomolecules 

FGF, CTGF, Ascorbic acid 

Blend electrospinning, Coaxial 

electrospinning, Emulsion 

electrospinning, HME, FDM, 

MEW, 3D bioprinting 

[5,19,97,105,

108,116,130,

147,151,172] 

GBR 

 Non-absorbable Polymers 

PTFE/ePTFE 

 Absorbable Polymers 

PLA, PDLLCL, PLGA, PDLLA, PLGA, PVP, PCL 

 Natural Materials 

Bacterial cellulose and cyclodextrin, Collagen, GelMA 

 Others 

Titanium 

 Antibiotics 

Metronidazole 

 Antiseptics 

Chlorhexidine 

 Antibacterial agents 

Ag MNPs 

 Natural antibacterial 

Β-TCP, AMP, Naringin 

Coaxial electrospinning, 

Extrusion-based 3D bioprinting, 

MEW 

[7,16,42,69,1

04,124,145,1

65,171,173] 

Wound healing 

 Absorbable Polymers 

PVA, PLGA, PCL 

 Natural Materials 

Collagen, Alginate, Chitosan 

 Antibiotics 

Ciprofloxacin 

 Antibacterial agents 

MNPs (Ag, Zn, Cu) 

 Natural antibacterial 

Essential oils, Honey, Milk proteins 

Blend electrospinning, Coaxial 

electrospinning, High voltage 

printing, 3D bioprinting, MEW 

[45,85,88,12

0,126,146,16

6,167,170,17

4] 

BR 

 Non-absorbable Polymers 

PP, TPU 

 Absorbable Polymers 

Polyglactin, Glycolide and trimethylene carbonate, PCL 

 Natural Materials 

ADM 

 Others 

Titanium 

 

- 

FDM, Electrospinning [6,50,77,98,1

00,164] 
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7. Regulatory Considerations 

Due to the high number of post-operative complications, the use of vaginal meshes for the treatment 

of POP and SUI was reviewed by FDA [175]. The process started in 2011 with a discussion about 

the effectiveness and safety of these devices [176] and resulted in the withdrawal of some products 

from the market in 2019 [175]. 

Recently, new regulations have been adopted by the European Parliament as well as FDA, according 

to which surgical vaginal meshes have been reclassified from class II to class III (high risk) medical 

devices [177]. PFDs meshes have been discontinued in some countries, such as Australia and New 

Zealand [13,14] and, as indicated by the National Institute for Health and Care Excellence (NICE), 

they should be adopted only as last resort, making patients aware of all the possible complications 

[178]. The use of meshes for the treatment of POP is still on-going in the UK, although new 

regulations have been put in place by the Medicines and Healthcare products Regulatory Agency 

(MHRA). These include a tight post-marketing surveillance of the implants, which is based on the 

recording of any mesh-related adverse events, via Yellow Card Scheme, as well as the introduction 

of a periodic summary update reports (PSUR) [179]. Different considerations can be made for graft-

derived slings for SUI surgery, since they are still considered as a treatment option in many countries. 

Specifically, slings derived from autologous or heterologous tissues are actually preferred in 

comparison to vaginal meshes because of the abundance of positive data collected following their use 

[34,180] and limited recorded issues post implantation.  

Meshes for hernia have been also subjected to some investigations in order to evaluate their safety 

and feasibility. In a Cochrane review about the outcomes of groin hernia repair with and without 

meshes, the superiority of mesh-based treatments in comparison to traditional surgery (in terms of 

recurrence rate, complication rates, duration of the surgery and post-operative recovery) was 

concluded [181]. Moreover, in 2019 a review from the Welsh Chief Medical Officer confirmed the 

safety and the employability of hernia meshes [12]. Regardless, and given the controversial data 

derived from the use of meshes for PFDs, FDA is continuing specific investigations about the use of 

hernia meshes, monitoring the outcomes of all the marketed devices and encouraging patients to 

report any kind of adverse event via MedWatch, which is the FDA Safety Information and Adverse 

Event Reporting program [182]. Regarding the use of meshes for BR surgery, FDA has started to pay  

attention also on these type of meshes, although currently there are no regulations in place since more 

data are needed to establish their feasibility and safety [1]. 

Wound dressings are subjected to some regulations too, however these are less restrictive in 

comparison to those for vaginal and hernia meshes. These guidelines mainly regard honey and silver 

antimicrobial dressings [183]. Honey dressings must not be used on patients with an extreme 
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sensitivity to honey and bee product in general, and should be employed very carefully in diabetic 

patients [184]. Silver dressings must be used only in case of evident bacterial infection and to treat 

complicated wounds. Also, due to the possible toxicity of silver [185], they should not be used on 

acute wounds, on children, during pregnancy and on patients with hepatic or renal impairment [186].  

Finally, some important considerations must be done on the manufacturing methods, especially on 

3D printing. This kind of manufacturing process has gained great consideration during the last decade 

and has been successfully used by surgeons to treat some life-threatening conditions. In light of this, 

FDA is currently working on the definition of guidelines for 3D printed devices, in order to ensure 

their safety for usage in clinical practice [187]. In 2017, the U.S. Department of Health and Human 

Services, the FDA, the Centre for Devices and Radiological Health and the Centre for Biologics 

Evaluation and Research drafted a document with some manufacturing and testing considerations to 

be followed during the production of a 3D printed medical devices, which included: 

 precise identification of process conditions (including environmental factors) and production 

workflow; 

 information about materials, employed computer aided design (CAD) software, employed 

machine, product design, post-processing conditions; 

 process validation, i.e. process reproducibility; 

 in case of personalized devices, information about patients’ clinical parameters, imaging 

techniques and images’ quality, and any changes applied to pre-existed devices and 

manufacturing process must be documented [188].  

The guidelines listed above have been provided to manufacturers as recommendations for device 

design, manufacturing and testing [189]; however, FDA is still working on more accurate regulations 

for AM processed and 3D-printed medical devices.  

8. Conclusion and future directions 

The employment of surgical meshes in clinical practice has revolutionized the way to approach some 

specific health conditions. Before the use of meshes, sutures were the main solution to manage hernia 

defects [190] and PFDs [35]. Passive dressings, such as gauzes, were mainly used to treat chronic 

wounds [48]. Implant muscles’ coverage was the only choice in BR [38]. Periodontitis treatment 

mainly relied on the control of infection and disease progression [42]. Unfortunately, due to the high 

number of side effects and post-operative complications, the use of meshes in clinical practice is 

currently controversial and subjected to several limitations. Particularly, despite mesh implants 

employed in hernia repair are generally considered safe, they are still under careful observation [2], 

while those used in PFDs have been banned and/or are subjected to tight and strict regulations [177]. 
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Membranes used in GBR are unable to properly mimic the complex structure of the periodontium 

and more insights are required to assess the long-term stability of the regenerated bone tissue [42]. 

Additionally, further improvements are needed to design smart drug-eluting wound dressings [48] 

with a competitive cost [45]. Moreover, despite the interesting and promising field of application of 

meshes for BR, little is known about their use, and with very limited research studies available. 

As highlighted in the current review paper, most of the cited studies are at first experimental stages, 

proving that more tests must be carried out in order to prove in vivo feasibility of mesh implants. 

Moreover, human experimentation seems to be still far for some of these devices. However, the 

potential that mesh technology holds is high, especially considering the paucity of alternative 

treatments for these pathologies [5]. So, addressing the existing challenges is crucial.  

Despite the steps forward made in the design of antibacterial meshes, a better understanding of the 

complex tissue-device interactions is needed in order to propose new strategies aiming to modulate 

the immune reaction and infections and to achieve a better biomechanical compatibility [191]. To this 

end, exploiting the use of 3D bioprinting and MEW, in order to manufacture multi-material and/or 

multi-architectural devices, might be a promising approach to move forward and thus develop future 

implant with patient-specific and tailorable properties. Additionally, with the purpose to improve 

device bio-integration and tissue-mimicking ability, efforts should be placed in finding new 

combinations of antibacterial agents, biomolecules and cells to be loaded into surgical meshes. Even 

though we are still far from the ideal mesh implant, the promise of the latest literature can certainly 

be considered an interesting starting point for future developments in this field. 
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