
Noname manuscript No.
(will be inserted by the editor)

Knowledge-Driven Graph Similarity for Text
Classification

Niloofer Shanavas · Hui Wang · Zhiwei
Lin · Glenn Hawe

Received: date / Accepted: date

Abstract Automatic text classification using machine learning is significantly
affected by the text representation model. The structural information in text
is necessary for natural language understanding, which is usually ignored in
vector-based representations. In this paper, we present a graph kernel-based
text classification framework which utilises the structural information in text
effectively through the weighting and enrichment of a graph-based representa-
tion. We introduce weighted co-occurrence graphs to represent text documents,
which weight the terms and their dependencies based on their relevance to text
classification. We propose a novel method to automatically enrich the weighted
graphs using semantic knowledge in the form of a word similarity matrix. The
similarity between enriched graphs, knowledge-driven graph similarity, is cal-
culated using a graph kernel. The semantic knowledge in the enriched graphs
ensures that the graph kernel goes beyond exact matching of terms and pat-
terns to compute the semantic similarity of documents. In the experiments
on sentiment classification and topic classification tasks, our knowledge-driven
similarity measure significantly outperforms the baseline text similarity mea-
sures on five benchmark text classification datasets.

Keywords Automatic text classification · Document similarity measure ·
Graph-based text representation · Graph enrichment · Graph kernels ·
Supervised term weighting · SVM

Niloofer Shanavas
Ulster University,
School of Computing,
Jordanstown,
BT37 0QB,
United Kingdom
Tel.: +44-7586750660
E-mail: shanavas-n@ulster.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/372997294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Niloofer Shanavas et al.

1 Introduction

Research on automatic text classification has gained importance due to the
information overload problem and the need for faster and more accurate ex-
traction of knowledge from huge data sources. Text classification assigns pre-
defined labels to documents based on their content. An important step in
automatic text classification is the effective representation of text. Bag-of-
words is the most commonly used text representation scheme and is based on
term independence assumption, where a text document is regarded as a set
of unordered terms and is represented as a vector. It is simple and fast, but
ignores the structural information in text such as the syntactic and semantic
information. In contrast, the graph-based representation scheme is much more
expressive than the bag-of-words representation, and can represent structural
information such as term dependencies. It has been shown that graph-based
representation can outperform bag-of-words representation (Valle and Ozturk
(2011), Malliaros and Skianis (2015), Hassan et al. (2007), Wang et al. (2005),
Schenker et al. (2003), Shanavas et al. (2016a), Shanavas et al. (2016b)).

Document similarity is used in many text processing tasks such as text clas-
sification, clustering and information retrieval. Document similarity is usually
measured as the distance/similarity between the vector representations of text
documents under the assumption that terms are independent and unordered,
thus the structural information in text is lost. Since the association between
terms in text contributes towards the meaning of the text document, consider-
ing the structural information in measuring similarity can potentially improve
the accuracy of document classification.

A graph kernel measures the similarity between graphs based on the com-
parison of graph substructures. Using a graph kernel to measure document
similarity enables the consideration of structural information in text. The
similarity value computed by a graph kernel is dependent on the informa-
tion represented in the graphs. Therefore, the question of how to represent
text using a graph is crucial to the graph kernel approach to similarity-based
text classification. Two main challenges in this approach are (1) the effective
representation of the structural information in text and (2) the efficient utilisa-
tion of the rich information in the graph representation to compute similarity
based on the main content of the documents.

In this paper, we present a graph-based text classification framework ad-
dressing these challenges. The text document is initially represented by a
weighted co-occurrence graph. Then it is transformed to an enriched docu-
ment graph by automatically creating similar nodes and edges (or associa-
tions), using a similarity matrix based on word similarities. Since a supervised
term weighting method is used to weight the terms and their associations, the
matching terms and patterns contribute to document similarity based on their
relevance. The graph enrichment enables the similarity measure to go beyond
exact matching of terms and associations. We use an edge walk graph kernel
to utilise the information in the enriched weighted graphs for calculating the
similarity between text documents. The kernel function takes as input a pair of
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weighted co-occurrence graphs and gives as output a similarity value based on
matching relevant content of the text documents. The kernel matrix is built by
computing the similarity between every pair of text graphs, which is then used
to train SVM, a kernel based classifier, for learning and predicting the classes
of documents. Our proposed text classification framework aims to represent
text document more richly and utilise such rich information efficiently, there-
fore we can expect this approach to have improved performance, advancing
the state-of-the-art in text classification. Hence, the novel contributions made
in this paper are (i) the proposed weighting of the graph (ii) the automatic
enrichment of graphs and (iii) the application of the new graph-based text
representation to build the knowledge-driven similarity measure.

The rest of the paper is organised as follows. Section 2 discusses related
work. Section 3 introduces the proposed weighted graph representation of text
documents. Section 4 presents the method for automatic graph enrichment
using a knowledge base. Section 5 describes the utilisation of the information
in the proposed graphs using graph kernels. Section 6 presents the experiments
and results. Finally, Section 7 concludes the paper.

2 Related Work

There are works on kernel methods (Shawe-Taylor et al. (2004)) that allow
us to compute the similarity between structured objects such as trees, graphs
and sequences. Text can be viewed as structured objects and the kernels for
structured objects can be applied to compare the text documents for different
text processing tasks such as information retrieval, text classification and text
clustering.

Graph kernels are instances of the R-convolution kernels (Haussler (1999))
that provide a way for comparing discrete structures. R-convolution kernels
compare objects by decomposing the objects into parts and combining the
results of the comparisons of the parts of the objects. Different substructures
such as random walks, shortest path, cycles, subtrees have been considered to
compute the similarity between graphs. Gartner et al. (Gärtner et al. (2003))
defined the random walk graph kernel approach that counts all pairs of match-
ing walks in the two graphs. Subtree kernels count the common subtree pat-
terns in the graphs (Ramon and Gärtner (2003)). Kernels based on cyclic
patterns consider common cycles in the graphs (Horváth et al. (2004)). Borg-
wardt et al. (Borgwardt and Kriegel (2005)) defined the shortest path graph
kernel that compares all the shortest paths in the graphs.

Lodhi et al. (Lodhi et al. (2002)) proposed the idea of string kernels for
measuring document similarity. A string kernel compares ordered subsequences
of characters in the document which need not be contiguous. Similarly, Can-
cedda et al. (Cancedda et al. (2003)) worked with word-sequence kernel that
considers sequences of words instead of characters. The word-sequence ker-
nels compute similarity based on the number of matching word sequences and
non-contiguous subsequences are penalized.
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The information in knowledge bases such as WordNet (Miller (1995)) and
Wikipedia can be utilised to improve the performance of text classification.
Siolas et al. (Siolas and d’Alché Buc (2000)) introduced semantic smoothing
by incorporating a-priori knowledge fromWordNet into text classification. The
semantic smoothing of tf-idf feature vectors is performed using a smoothing
matrix that contains the semantic similarity between words obtained using
WordNet. This results in the increase in the feature value of the terms that
are related semantically. Siolas et al. showed that the introduction of semantic
knowledge in SVM and k-NN improves the classification performance. There
are other works (Bloehdorn et al. (2006), Nasir et al. (2011)) that used Word-
Net for designing a semantic smoothing kernel for text classification. They
calculated the similarity between words based on the semantic relationship of
these terms in WordNet. Cristianini et al. (Cristianini et al. (2002)) incorpo-
rated into a kernel the semantic relations between terms calculated using LSI.
Wang et al. (Wang and Domeniconi (2008)) developed semantic kernels by
embedding the knowledge derived from Wikipedia and used it to improve the
performance of document classification.

Supervised semantic smoothing kernels exist that utilise class information
in building a semantic matrix (Wang et al. (2017), Altınel et al. (2015b), Al-
tınel et al. (2015a)). A sprinkled diffusion kernel that uses both co-occurrence
information and class information for word sense disambiguation is presented
in (Wang et al. (2017)). In this approach, the smoothing helps in increasing
the semantic relationship between terms in the same class. But, it does not
distinguish the common terms between classes. Class Meaning Kernel (CMK)
(Altınel et al. (2015b)) is a supervised semantic kernel that considers the
meaningfulness of terms in the classes using Helmholtz principle from Gestalt
theory. In order to increase the importance of class specific terms compared
to common terms, the semantic smoothing is done using the semantic ma-
trix built from class-based meaning values of terms. Class Weighting Kernel
(CWK) (Altınel et al. (2015a)) smooths the representation of documents us-
ing class-based term weights that calculates the importance of the terms in
the classes. Hence, there are different variants of semantic kernels with vari-
ations in the design of the semantic smoothing matrix. Since a document is
represented as a vector and is based on a term independence assumption, these
semantic kernels (Siolas and d’Alché Buc (2000), Bloehdorn et al. (2006), Nasir
et al. (2011), Cristianini et al. (2002), Wang and Domeniconi (2008), Wang
et al. (2017), Altınel et al. (2015b), Altınel et al. (2015a)) do not consider term
dependencies such as the order of words or the distance between words in the
computation of similarity between documents.

Walk-based kernels that are products of node kernels have been proposed
that captures semantic similarity between words using word embeddings. Sri-
vastava et al. (Srivastava et al. (2013)) developed an approach that considers
both syntactic and semantic similarity through a random walk-based kernel. It
extends beyond label matching as word embeddings (SENNA) are used to rep-
resent words. Kim et al. (Kim et al. (2015)) proposed a convolution sentence
kernel based on word2vec embeddings. They smooth the delta word kernel to
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capture the semantic similarity of words. The similarity between sentences is
obtained by combining the similarity of all the phrases. Although these ap-
proaches go beyond label matching, there is a high computational cost due to
the calculation of distance between all possible pairs of words in the sentences.

Bleik et al. (Bleik et al. (2013)) used the graph kernel approach to compare
biomedical articles represented as graphs. They mapped the biomedical doc-
uments into concept graphs using Unified Medical Language System (UMLS)
database and used graph kernel functions to compute the similarity between
the text documents. Goncalves et al. (Gonçalves and Quaresma (2009)) rep-
resented text documents as graphs using discourse representation theory. The
graph-based semantic representations of documents are then compared using
a graph kernel based on direct product graph. Nikolentzos et al. (Nikolent-
zos et al. (2017)) used a modified shortest path graph kernel to compute the
similarity of two text documents represented as graph-of-words. The graph-
of-words representation of text document is converted to shortest path graph.
The edges in the shortest path graph connect vertices if the shortest distance
between them is below a threshold d and each edge is labelled by the inverse
of the shortest distance between the vertices that the edge connects. The sim-
ilarity between the text documents is based on the number of matching terms
and takes into account the distance between the terms in the documents. Our
work differs from theirs in the graph-based representation of the text docu-
ments and the information considered while calculating the similarity between
graphs. The two main advantages of using the proposed enriched co-occurrence
graph representation of text for document similarity are (i) it considers the
relevant content of each document as the terms and associations are weighted
ensuring that irrelevant information in text is not taken into account while
calculating the similarity between documents that affects the categorization
of documents and (ii) it matches synonymous terms and similar patterns.

3 Graph Representation of Text

In this section, we introduce the proposed graph representation of text.

3.1 Proposed Weighted Co-occurrence Graph Representation

The first step in the proposed text classification approach is the construction
of a graph for each of the documents to be classified. We represent each text
document as a weighted co-occurrence graph. The nodes represent the unique
terms in the document and the edges connect nodes that co-occur within a
predefined sliding window of fixed size. We weight the nodes and the edges
based on the relevance of the terms and their associations respectively.

The relevance of the terms is determined using the supervised term weight
factor - supervised relevance weight (srw) that we proposed in (Shanavas et al.
(2016b)). The supervised term weight factor gives higher weight to terms that
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help in distinguishing the documents in different classes. It is calculated from
the information on the distribution of the training documents in the predefined
classes.

The calculation of srw for each term t involves three steps. Step one is the
calculation of class_rel_prob(t, Ci) for each class Ci which is given in Eq. (1)
where a, b and c denote the number of documents in class Ci that contain the
term t, the number of documents in class Ci that do not contain the term t and
the number of documents not in class Ci that contain the term t respectively.
Hence, class_rel_prob(t, Ci) determines the concentration of term t in class
Ci compared to its concentration in other classes. The number of documents
in class Ci that do not contain the term t is considered so that higher weights
are not assigned to terms in classes having more training documents.

class_rel_prob(t, Ci) = log2

(
2 +

a

max(1, c)

)
× log2

(
2 +

a

max(1, b)

)
(1)

Step two is the calculation of the average densities of the term t in the
classes as shown in Eq. (2) where C is the total number of classes and Ni
is the total number of documents in class Ci. The sum of densities of the
term t in the classes is divided by the number of classes to obtain the average
density of the term t. The inverse of the average densities of the term is used
in the supervised term weight calculation for reducing the over weighting of
commonly occurring terms.

avg_density(t) =

∑C
i=1

(
a
Ni

)
C

(2)

Finally, step three calculates srw for a term t as shown in Eq. (3). The
class_rel_prob(t, Ci) value for a term t is determined for each class Ci.
max_class_rel(t) is the maximum of the class_rel_prob(t, Ci) values for
a term t.

srw(t) = max_class_rel(t)× log10

( 1

avg_density(t)

)
(3)

The weights of nodes and edges are calculated using supervised term weights.
The weight of each node v (representing term t), denoted by wnode(v), is
calculated as in Eq. (4) where f(t) is the frequency of term t in the document
that the graph represents.

wnode(v) = f(t)× srw(t) (4)

We use edge weights to represent the strength of the association between
the co-occurring words. For two connecting nodes vi and vj representing terms
ti and tj respectively, with an edge e = (vi, vj) ∈ E, the weight for e, denoted
by wedge(e), is calculated as



Knowledge-Driven Graph Similarity for Text Classification 7

wedge(e) = λ×
√

srw(ti)× srw(tj) (5)

where λ is the number of times that the terms ti and tj co-occur in the docu-
ment within a fixed size sliding window.

The advantage of using the supervised term weight factor for weighting
the nodes and edges is the reduction in the weights of the irrelevant nodes
and relationships. Hence, the information in our proposed enriched graph rep-
resentation enables the similarity measure to take into account the relevant
terms and associations shared between documents. After representing each
document by a weighted co-occurrence graph, the next step is the enrichment
of the co-occurrence graph using a similarity matrix, which is explained in
Section 4.

4 Automatic Enrichment of Graphs

There are many methods to calculate the semantic similarity between words,
such as ontology, thesaurus and word embedding-based approaches. We utilise
the similarities between words obtained using word embeddings to build a word
similarity matrix. We used a similarity matrix that only contains similarity val-
ues greater than a threshold T (set as 0.9 in our experiments). This similarity
matrix is used to automatically enrich the weighted co-occurrence graph built
for each document in order to add similar nodes (called as node enrichment)
and similar edges/patterns (called as edge enrichment). For example, during
node enrichment, if the co-occurrence graph has a node that denotes the term
‘likes’, then the terms in the similarity matrix that are similar to ‘likes’ and are
not in the co-occurrence graph are added automatically as new nodes; these
nodes are then assigned weights based on the weights of similar nodes. During
edge enrichment, if the co-occurrence graph has an edge connecting ‘likes’ and
‘hot’ corresponding to the pattern ‘likes hot’, similar patterns such as ‘loves
warm’ are added automatically by connecting the nodes ‘loves’ and ‘warm’
and the edges are assigned weights based on the weights of similar patterns.
The automatic enrichment of graphs consisting of node enrichment and edge
enrichment is explained in Sections 4.1 and 4.2 respectively. The steps to con-
vert the weighted co-occurrence graph to an enriched graph is illustrated in
Fig. 1. The algorithm for automatic enrichment of the weighted co-occurrence
graph using a similarity matrix S is described below (in Algorithm 1).

4.1 Node Enrichment

The similarity matrix S = (sij)p×p is a p× p matrix where p is the number of
unique terms in the training documents and sij is the similarity between the
word embeddings of terms ti and tj obtained using Word2Vec. The nodes in
the document graph are represented by a node vector n = [n1, . . . , np] where ni
is the weight of the nodes calculated using Eq. (4). The enriched node vector
is obtained by multiplying n by the similarity matrix as shown in Eq. (6).
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Algorithm 1: Automatic enrichment of weighted co-occurrence graph
using similarity matrix S

Input: G - weighted co-occurrence graph
Output: M

∧

- adjacency matrix of the enriched graph
Initialize: n = [n1, . . . , np] - node vector where ni is the weight of the nodes
1: procedure ENRICH(G)
2: n

∧
= n× S

3: M1 = A× S . A is the adjacency matrix of G
4: M2 = M1 × S
5: M = M1 + (B2 −B1)�M2 . B1 and B2 are the boolean matrices of M1 and

M2 respectively

6: M
∧

= M+


n
∧
1 0 0 . . . 0
0 n

∧
2 0 . . . 0

...
...

...
. . .

...
0 0 0 . . . n

∧
p


7: return M

∧

8: end procedure

Fig. 1 Steps to convert the weighted co-occurrence graph to an enriched graph

Hence, node enrichment is done with a semantic kernel (Shawe-Taylor et al.
(2004)) that uses supervised term weighting and a semantic matrix built from
word embedding-based semantic similarity between words.

n
∧
= n× S (6)
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In Eq. (6), new nodes that are semantically similar to the existing nodes
are added if not present in the graph, and the weights of the nodes are as-
signed/updated as given below in Eq. (7). Let Θ(vi) be the set of the nodes
which are semantically similar to node vi that represents the term ti. The
newly added nodes have the initial weight denoted as wnode(vi) equal to 0 and
are assigned weights based on the weights of the similar nodes. The weights
of the existing nodes are updated if there are similar nodes in the graph.

w
∧
node(vi) = wnode(vi) +

∑
vj∈Θ(vi)

(sij × wnode(vj)) (7)

4.2 Edge Enrichment

The proposed graph enrichment method helps in considering not only the se-
mantic terms shared but also the relationships. The edge enrichment is done
so that document similarity goes beyond exact matching of patterns in docu-
ments. The edge enrichment method uses similarity matrix to transform the
adjacency matrix representation of a document graph to an enriched represen-
tation.

The weighted co-occurrence graph is represented as an adjacency matrix
A. Edge enrichment is done by utilising the adjacency matrix A and the
similarity matrix S. During edge enrichment, similar edges/patterns are added
and the weights of the edges are assigned/updated. Edge enrichment using the
similarity matrix S converts the adjacency matrix A to M as given below in
Eq. (8) where M1 = A × S and M2 = M1 × S. It is ensured that M1 is
a symmetric matrix before M2 is calculated. M1 and M2 are converted to
boolean matrices B1 and B2 respectively by setting non zero values in M1

and M2 to 1. We obtain only the newly added elements of M2, i.e. the zero
elements in M1 that are changed to non-zero elements in M2, by computing
(B2 −B1)�M2 where � corresponds to the element-wise product of matrices.

M = M1 + (B2 −B1)�M2 (8)

Eq. (9) shows the computation of the final adjacency matrix M
∧

which is
obtained by adding M with diagonal matrix from the enriched node vector
n
∧

= [n1
∧
, . . . , np
∧

]. M
∧

is the adjacency matrix representation of the enriched
graph.

M
∧

= M+


n
∧
1 0 0 . . . 0
0 n
∧
2 0 . . . 0

...
...

...
. . .

...
0 0 0 . . . n

∧
p

 (9)
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4.3 Example to illustrate node enrichment and edge enrichment

Initially, a similarity matrix is built from the unique words in the training
documents. Suppose the unique words obtained from the training documents
are ‘beverages’, ‘drinks’, ‘hot’, ‘john’, ‘likes’, ‘loves’ and ‘warm’. The similar-
ity matrix for the toy example is given in Fig. 2. The two documents to be
compared in the example are ‘John loves hot drinks’ and ‘John likes warm
beverages’. Even though the sentences are similar, similarity measures based
on term overlap/keyword matching do not give accurate similarity value as
only one word in the documents match. The proposed automatic graph en-
richment method builds enriched graphs with similar structures for documents
with similar meaning resulting in accurate similarity calculation.

beverages drinks hot john likes loves warm



beverages 1 0.9 0.0 0.0 0.0 0.0 0.0
drinks 0.9 1 0.0 0.0 0.0 0.0 0.0
hot 0.0 0.0 1 0.0 0.0 0.0 0.8
john 0.0 0.0 0.0 1 0.0 0.0 0.0
likes 0.0 0.0 0.0 0.0 1 0.9 0.0
loves 0.0 0.0 0.0 0.0 0.9 1 0.0
warm 0.0 0.0 0.8 0.0 0.0 0.0 1

Fig. 2 The similarity matrix for our toy example using seven words where the values
correspond to the similarity between words

The initial weighted co-occurrence graph representations of the documents
(obtained with a predefined sliding window of size 2) are given below in Fig.
3 and Fig. 4. The initial weights of the nodes and edges are assumed as 1 in
this example. In actual cases, the weights of nodes and edges are calculated as
in Eq. (4) and Eq. (5) respectively.

Fig. 3 Co-occurrence graph representation of ‘John loves hot drinks’ with the initial weights
of nodes and edges assumed as 1

During node enrichment (that corresponds to Eq. (6)), new nodes are added
with weights based on the weights of the similar nodes as shown in Fig. 5 and
Fig. 6. In Fig. 5, the nodes corresponding to the words ‘likes’, ‘warm’ and
‘beverages’ are the newly added nodes which are semantically similar to the
existing nodes that represent the words ‘loves’, ‘hot’ and ‘drinks’ respectively.
Similarly, in Fig. 6, the nodes that denote the words such as ‘loves’, ‘hot’ and
‘drinks’ are the nodes added during the node enrichment step. These newly
added nodes are assigned weights based on the weights of the similar nodes in
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Fig. 4 Co-occurrence graph representation of ‘John likes warm beverages’ with the initial
weights of nodes and edges assumed as 1

the graph. For example, in Fig. 5, the node ‘likes’ is assigned a weight of 0.9
which is obtained by computing the product of the weight of the similar node
‘loves’ and the value of its similarity to the node.

Fig. 5 Node enrichment of graph of ‘John loves hot drinks’ that adds similar nodes and
this step corresponds to Eq. (6)

Fig. 6 Node enrichment of graph of ‘John likes warm beverages’ that adds similar nodes
and this step corresponds to Eq. (6)

The graph is represented as an adjacency matrix before enriching the edges.
The adjacency matrices in Fig. 7 and Fig. 8 denote the graphs in Fig. 5 and
Fig. 6 respectively. These are symmetric matrices with values that correspond
to the weights of edges in the graphs.

Edge enrichment is carried out by utilising the similarity matrix. During
edge enrichment, similar patterns are added and weighted based on the weights
of the existing edges. For example, for the ‘hot drinks’ edge in the graph in
Fig. 5, the patterns that are similar to it such as ‘hot beverages’ and ‘warm
drinks’ are added with the initial transformation using similarity matrix (which
correspond to elements in M1 in Eq. (8)) as shown in Fig. 9. In the subsequent
transformation using similarity matrix, the ‘warm beverages’ edge is added
(which corresponds to an element inM in Eq. (8)) as given in Fig. 17. Similarly,
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beverages drinks hot john likes loves warm



beverages 0.0 0.0 0.0 0.0 0.0 0.0 0.0
drinks 0.0 0.0 1.0 0.0 0.0 0.0 0.0
hot 0.0 1.0 0.0 0.0 0.0 1.0 0.0
john 0.0 0.0 0.0 0.0 0.0 1.0 0.0
likes 0.0 0.0 0.0 0.0 0.0 0.0 0.0
loves 0.0 0.0 1.0 1.0 0.0 0.0 0.0
warm 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fig. 7 Adjacency matrix representation of ‘John loves hot drinks’

beverages drinks hot john likes loves warm



beverages 0.0 0.0 0.0 0.0 0.0 0.0 1.0
drinks 0.0 0.0 0.0 0.0 0.0 0.0 0.0
hot 0.0 0.0 0.0 0.0 0.0 0.0 0.0
john 0.0 0.0 0.0 0.0 1.0 0.0 0.0
likes 0.0 0.0 0.0 1.0 0.0 0.0 1.0
loves 0.0 0.0 0.0 0.0 0.0 0.0 0.0
warm 1.0 0.0 0.0 0.0 1.0 0.0 0.0

Fig. 8 Adjacency matrix representation of ‘John likes warm beverages’

for the ‘warm beverages’ edge in the graph in Fig. 6, the patterns that are
similar to it such as ‘warm drinks’ and ‘hot beverages’ are added with the
initial transformation using similarity matrix (which correspond to elements
in M1 in Eq. (8)) as shown in Fig. 10. In the subsequent transformation using
similarity matrix, the ‘hot drinks’ edge is added (which corresponds to an
element in M in Eq. (8)) as given in Fig. 18. The boolean matrices in Fig.
13, Fig. 14, Fig. 15 and Fig. 16 are obtained by setting the non zero values
of matrices in Fig. 9, Fig. 10, Fig. 11 and Fig. 12 to one. The final adjacency
matrix representations of the graphs (which corresponds to M

∧

in Eq. (9))
are shown in Fig. 19 and Fig. 20. The adjacency matrix representations are
converted to the enriched graphs as given in Fig. 21 and Fig. 22. Hence, the
two documents have similar enriched graph structures which lead to accurate
calculation of similarity between the text documents. The advantage of using
graph kernels for text similarity is that we can compare terms (represented
by nodes) and patterns (represented by edges) in documents effectively and
efficiently. The proposed graph enrichment enables the graph kernels to go
beyond exact matching of terms and patterns.

beverages drinks hot john likes loves warm



beverages 0.0 0.0 0.9 0.0 0.0 0.0 0.0
drinks 0.0 0.0 1.0 0.0 0.0 0.0 0.8
hot 0.9 1.0 0.0 0.0 0.9 1.0 0.0
john 0.0 0.0 0.0 0.0 0.9 1.0 0.0
likes 0.0 0.0 0.9 0.9 0.0 0.0 0.0
loves 0.0 0.0 1.0 1.0 0.0 0.0 0.8
warm 0.0 0.8 0.0 0.0 0.0 0.8 0.0

Fig. 9 Matrix M1 for ‘John loves hot drinks’
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beverages drinks hot john likes loves warm



beverages 0.0 0.0 0.8 0.0 0.0 0.0 1.0
drinks 0.0 0.0 0.0 0.0 0.0 0.0 0.9
hot 0.8 0.0 0.0 0.0 0.8 0.0 0.0
john 0.0 0.0 0.0 0.0 1.0 0.9 0.0
likes 0.0 0.0 0.8 1.0 0.0 0.0 1.0
loves 0.0 0.0 0.0 0.9 0.0 0.0 0.9
warm 1.0 0.9 0.0 0.0 1.0 0.9 0.0

Fig. 10 Matrix M1 for ‘John likes warm beverages’

beverages drinks hot john likes loves warm



beverages 0.0 0.0 0.9 0.0 0.0 0.0 0.72
drinks 0.0 0.0 1.64 0.0 0.0 0.0 1.60
hot 1.8 1.81 0.0 0.0 1.8 1.81 0.0
john 0.0 0.0 0.0 0.0 1.8 1.81 0.0
likes 0.0 0.0 0.9 0.9 0.0 0.0 0.72
loves 0.0 0.0 1.64 1.0 0.0 0.0 1.60
warm 0.72 0.8 0.0 0.0 0.72 0.8 0.0

Fig. 11 Matrix M2 for ‘John loves hot drinks’

beverages drinks hot john likes loves warm



beverages 0.0 0.0 1.6 0.0 0.0 0.0 1.64
drinks 0.0 0.0 0.72 0.0 0.0 0.0 0.9
hot 0.8 0.72 0.0 0.0 0.8 0.72 0.0
john 0.0 0.0 0.0 0.0 1.81 1.8 0.0
likes 0.0 0.0 1.6 1.0 0.0 0.0 1.64
loves 0.0 0.0 0.72 0.9 0.0 0.0 0.9
warm 1.81 1.8 0.0 0.0 1.81 1.8 0.0

Fig. 12 Matrix M2 for ‘John likes warm beverages’

beverages drinks hot john likes loves warm



beverages 0.0 0.0 1.0 0.0 0.0 0.0 0.0
drinks 0.0 0.0 1.0 0.0 0.0 0.0 1.0
hot 1.0 1.0 0.0 0.0 1.0 1.0 0.0
john 0.0 0.0 0.0 0.0 1.0 1.0 0.0
likes 0.0 0.0 1.0 1.0 0.0 0.0 0.0
loves 0.0 0.0 1.0 1.0 0.0 0.0 1.0
warm 0.0 1.0 0.0 0.0 0.0 1.0 0.0

Fig. 13 Matrix B1 for ‘John loves hot drinks’



14 Niloofer Shanavas et al.

beverages drinks hot john likes loves warm



beverages 0.0 0.0 1.0 0.0 0.0 0.0 1.0
drinks 0.0 0.0 0.0 0.0 0.0 0.0 1.0
hot 1.0 0.0 0.0 0.0 1.0 0.0 0.0
john 0.0 0.0 0.0 0.0 1.0 1.0 0.0
likes 0.0 0.0 1.0 1.0 0.0 0.0 1.0
loves 0.0 0.0 0.0 1.0 0.0 0.0 1.0
warm 1.0 1.0 0.0 0.0 1.0 1.0 0.0

Fig. 14 Matrix B1 for ‘John likes warm beverages’

beverages drinks hot john likes loves warm



beverages 0.0 0.0 1.0 0.0 0.0 0.0 1.0
drinks 0.0 0.0 1.0 0.0 0.0 0.0 1.0
hot 1.0 1.0 0.0 0.0 1.0 1.0 0.0
john 0.0 0.0 0.0 0.0 1.0 1.0 0.0
likes 0.0 0.0 1.0 1.0 0.0 0.0 1.0
loves 0.0 0.0 1.0 1.0 0.0 0.0 1.0
warm 1.0 1.0 0.0 0.0 1.0 1.0 0.0

Fig. 15 Matrix B2 for ‘John loves hot drinks’

beverages drinks hot john likes loves warm



beverages 0.0 0.0 1.0 0.0 0.0 0.0 1.0
drinks 0.0 0.0 1.0 0.0 0.0 0.0 1.0
hot 1.0 1.0 0.0 0.0 1.0 1.0 0.0
john 0.0 0.0 0.0 0.0 1.0 1.0 0.0
likes 0.0 0.0 1.0 1.0 0.0 0.0 1.0
loves 0.0 0.0 1.0 1.0 0.0 0.0 1.0
warm 1.0 1.0 0.0 0.0 1.0 1.0 0.0

Fig. 16 Matrix B2 for ‘John likes warm beverages’

beverages drinks hot john likes loves warm



beverages 0.0 0.0 0.9 0.0 0.0 0.0 0.72
drinks 0.0 0.0 1.0 0.0 0.0 0.0 0.8
hot 0.9 1.0 0.0 0.0 0.9 1.0 0.0
john 0.0 0.0 0.0 0.0 0.9 1.0 0.0
likes 0.0 0.0 0.9 0.9 0.0 0.0 0.72
loves 0.0 0.0 1.0 1.0 0.0 0.0 0.8
warm 0.72 0.8 0.0 0.0 0.72 0.8 0.0

Fig. 17 Matrix M for ‘John loves hot drinks’

beverages drinks hot john likes loves warm



beverages 0.0 0.0 0.8 0.0 0.0 0.0 1.0
drinks 0.0 0.0 0.72 0.0 0.0 0.0 0.9
hot 0.8 0.72 0.0 0.0 0.8 0.72 0.0
john 0.0 0.0 0.0 0.0 1.0 0.9 0.0
likes 0.0 0.0 0.8 1.0 0.0 0.0 1.0
loves 0.0 0.0 0.72 0.9 0.0 0.0 0.9
warm 1.0 0.9 0.0 0.0 1.0 0.9 0.0

Fig. 18 Matrix M for ‘John likes warm beverages’
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beverages drinks hot john likes loves warm



beverages 0.9 0.0 0.9 0.0 0.0 0.0 0.72
drinks 0.0 1.0 1.0 0.0 0.0 0.0 0.8
hot 0.9 1.0 1.0 0.0 0.9 1.0 0.0
john 0.0 0.0 0.0 1.0 0.9 1.0 0.0
likes 0.0 0.0 0.9 0.9 0.9 0.0 0.72
loves 0.0 0.0 1.0 1.0 0.0 1.0 0.8
warm 0.72 0.8 0.0 0.0 0.72 0.8 0.8

Fig. 19 Final adjacency matrix representation of ‘John loves hot drinks’ obtained after
graph enrichment, corresponding to M̂ in Eq. (9)

beverages drinks hot john likes loves warm



beverages 1.0 0.0 0.8 0.0 0.0 0.0 1.0
drinks 0.0 0.9 0.72 0.0 0.0 0.0 0.9
hot 0.8 0.72 0.8 0.0 0.8 0.72 0.0
john 0.0 0.0 0.0 1.0 1.0 0.9 0.0
likes 0.0 0.0 0.8 1.0 1.0 0.0 1.0
loves 0.0 0.0 0.72 0.9 0.0 0.9 0.9
warm 1.0 0.9 0.0 0.0 1.0 0.9 1.0

Fig. 20 Final adjacency matrix representation of ‘John likes warm beverages’ obtained
after graph enrichment, corresponding to M̂ in Eq. (9)

Fig. 21 Enriched co-occurrence graph of ‘John loves hot drinks’ obtained after graph en-
richment

Fig. 22 Enriched co-occurrence graph of ‘John likes warm beverages’ obtained after graph
enrichment

5 Graph Kernel Based Text Classification

In this section, we explain the calculation of similarity between the enriched
graph representations of text and then briefly describe the classification pipe-
line.
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5.1 Graph kernels for measuring document similarity

The kernel approach allows the extension of linear algorithms to non-linear
models, and helps in the application of algorithms to structured representation
such as strings, trees and graphs. The kernel function is a dot product in
an implicit feature space. This helps in replacing the dot products in kernel
machines and hence, kernel methods solve the problem of direct application of
existing pattern recognition algorithms to graphs (Bunke and Riesen (2011)).

A kernel measures the similarity between objects. The kernel matrix cre-
ated should satisfy the two important mathematical properties of matrix sym-
metry and positive semi-definiteness (Vishwanathan et al. (2010)). To com-
pare two documents di and dj represented by enriched weighted co-occurrence
graphs Gi = (Vi, Ei) and Gj = (Vj , Ej) respectively, we use an edge walk
kernel (Borgwardt and Kriegel (2005), Nikolentzos et al. (2017)) as shown in
Eq. (10) to compare the edges in both the graphs. The edge walk kernel is
explained below in Eq. (10), (11) and (12). The normalization factor is the
product of the frobenius norms of the adjacency matrices Ai and Aj of the
graphs Gi and Gj respectively so that the similarity value is not affected by
the number of nodes and edges in the graph. ||Ai||F and ||Aj ||F correspond
to the frobenius norms of the adjacency matrices of the graphs Gi and Gj
respectively. Let ui and vi be the vertices that belong to the set of vertices Vi
in Gi, ei be the edge linking ui and vi in Gi, uj and vj be the vertices that
belong to the set of vertices Vj in Gj , ej be the edge connecting uj and vj in
Gj . k

(1)
walk is a kernel that compares edge walks of length 1 in the graphs Gi

and Gj . It is the product of the kernel function on the edge and the two nodes
that the edge connects as defined in Eq. (11).

k(di, dj) =

∑
eiεEi,ejεEj

k
(1)
walk(ei, ej)

||Ai||F × ||Aj ||F
(10)

k
(1)
walk(ei, ej) = knode(ui, uj)× kedge(ei, ej)× knode(vi, vj) (11)

A delta kernel function, knode, is used for comparing the vertices and is
equal to 1 if the terms corresponding to the vertices are the same and 0 if the
terms are different. kedge is a kernel function for comparing the edges in the
graphs and is defined in Eq. (12). It is the product of the weight of the edge
ei in Gi denoted as wedge(ei) and the weight of the edge ej in Gj denoted as
wedge(ej). Hence, the numerator in Eq. (10) is equivalent to the sum of the
elements in the element-wise product of the adjacency matrices Ai and Aj .

kedge(ei, ej) =

{
wedge(ei)× wedge(ej) if eiεEi ∧ ejεEj
0 otherwise

(12)

The delta kernels are positive definite. The kernel k(1)walk is a product of the
delta kernels multiplied by a positive number, thus preserving positive defi-
niteness. The edge walk kernel function is a sum of the positive definite kernels
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divided by a positive number. Hence, the positive definiteness is preserved and
it is a valid kernel. The similarity between every pair of graphs is determined
using the edge walk kernel, and the values obtained are used to build a kernel
matrix. The most common kernel-based classifier is SVM (Leopold and Kin-
dermann (2002)). The kernel matrix is then used with SVM classifier to learn
and predict the classes of the document. The worst case time complexity of the
graph kernel is O(n+m) where n is the number of unique nodes (or the size of
the vocabulary) and m is the number of edges. Hence, it is higher than that of
the document similarity measure with bag-of-words representation (unigram
features) whose time complexity is O(n).

5.2 Graph kernel-based text classification pipeline

The proposed graph kernel-based text classification pipeline is shown in Fig.
23. The documents are initially represented as weighted co-occurrence graphs
where the nodes represent the unique terms and the edges represent the as-
sociation between the words co-occurring within a predefined sliding window
of size 2. The supervised term weight factor is utilised to assign weight to
nodes and edges. These graphs are enriched automatically using a similarity
matrix built with similarity values obtained using word embeddings. A graph
kernel-based on edge matching is employed to calculate the similarity between
a pair of documents. The similarity values are then used to build a kernel
matrix. The kernel matrix is fed to a SVM to learn and predict the classes of
the documents.

Fig. 23 Graph kernel-based text classification pipeline

6 Experiments and Results

In this section, we describe the experiments performed on sentiment analysis
and topic classification tasks to evaluate the performance of the proposed
knowledge-driven graph similarity measure for text classification. The datasets
used are briefly explained below.
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– Sentence Polarity Dataset - This dataset consists of 5331 positive and 5331
negative movie reviews (Pang and Lee (2005)).

– Subjectivity Dataset - This dataset consists of 5000 subjective and 5000 ob-
jective sentences on movie reviews labelled according to their subjectivity
status (Pang and Lee (2004)).

– News - This dataset is a collection of 32602 short text documents which
are news collected from RSS feeds of the websites - nyt.com, usatoday.com
and reuters.com and classified based on their topics. The topics are sports,
business, US, health, sci&tech, world and entertainment. The document
consists of the title, description, link, id, data, source and category of the
news. We have used only the description and category of the news (Vitale
et al. (2012)).

– Multi-domain sentiment dataset - This dataset consists of 8000 product
reviews obtained from amazon.com where the products are books, dvd,
electronics and kitchen (Blitzer et al. (2007)). There are 1000 positive re-
views and 1000 negative reviews for each of the four product domains.

– 20 Newsgroups1 - The 20 Newsgroups dataset contains 20,000 newsgroup
documents classified into 20 different categories.

In the proposed method, each document is represented as a weighted co-
occurrence graph where the nodes represent the unique terms in the document
and edges link words that co-occur within a predefined sliding window. The
weight of the node is stored in the self-loop which corresponds to the impor-
tance of the term based on its relevance in classifying the text documents.
Nodes that correspond to unimportant terms have lower weight than nodes
that represent the main content of the document. Similarly, the edges that
connect co-occurring words have weights that are dependent on the relevance
of the co-occurring words. The graphs are then enriched using a word simi-
larity matrix that contains similarities greater than or equal to 0.9. The text8
corpus (obtained from Wikipedia)2 is used to build the word2vec model for
deriving the word embedding vectors. The similarity values of the top five
similar words for each unique word in the training set are used to create the
similarity matrix. The threshold for the similarity between the word vectors
is set as 0.9 to obtain the closely related terms or synonyms. The graph en-
richment process can become slow with increase in the size and density of the
similarity matrix. The different ways to increase the speed of the enrichment
process are given below:
(i) Set a threshold for the similarity values in the similarity matrix. This would
result in a sparse matrix reducing the time for matrix operations in graph en-
richment.
(ii) Build a similarity matrix with only the most relevant features which would
reduce the size of the matrix.
(iii) Also, the graph enrichment process for different documents could be done

1 http://ana.cachopo.org/datasets-for-single-label-text-categorization
2 http://mattmahoney.net/dc/textdata.html
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in parallel since they are not dependent on each other. This would make it
considerably faster.

We have compared the proposed approach with Linear Kernel, Cosine
Similarity, Sorensen Similarity (Ralaivola et al. (2005)), Tanimoto Similarity
(Ralaivola et al. (2005)), Radial Basis Function (RBF) kernel, Class Mean-
ing Kernel (CMK) (Altınel et al. (2015b)), Class Weighting Kernel (CWK)
(Altınel et al. (2015a)) and the Shortest Path Graph Kernel (spgk) (Borg-
wardt and Kriegel (2005), Nikolentzos et al. (2017)) method which is a graph
kernel approach for text classification with a different graph representation
of text. Linear kernel, Cosine similarity and RBF kernel are computed with
tf-idf weighted feature vectors of documents. The Sorensen similarity and Tan-
imoto similarity measures are calculated with boolean vectors of documents.
In CMK and CWK, the documents are represented as tf weighted vectors and
the semantic smoothing is then done using semantic matrix built from meaning
values of terms and supervised term weights respectively. In the shortest path
graph kernel method, the co-occurrence graph is converted to a shortest path
graph with edges connecting nodes having shortest paths below a threshold
d and the edges are labelled by the inverse of the shortest path between the
nodes. The evaluation metrics used to assess the performance of text classifica-
tion are precision, recall and F1 score. The performance of shortest path graph
kernel with different values of d has been evaluated. The proposed method is
also experimented with co-occurrence graphs built using predefined sliding
window w of sizes 2, 3 and 4. The kernel matrices are built with the similar-
ity values obtained using Linear kernel, Cosine Similarity, Sorensen Similarity,
Tanimoto Similarity, RBF kernel, CMK, CWK, spgk and proposed method.
The row in the kernel matrix represents the similarity of a document to be
classified with the documents in the training set. Each kernel matrix is fed
to SVM to evaluate the performance of text classification using the similarity
measure.

The proposed similarity measure is implemented using python. The net-
workx, gensim and scikit-learn are the python packages used to create the
graphs, word2vec model and the kernel SVM respectively. Table 1 shows
the precision, recall and F1 scores obtained for the sentiment classification
datasets. Table 2 shows the precision, recall and F1 scores obtained for the
topic classification tasks. Table 4 shows the performance of the proposed
method with co-occurrence graphs built using predefined sliding window w
of sizes 2, 3 and 4. The results reported in these tables are obtained by 10-fold
cross validation except for the 20 Newsgroups dataset that has a standard
train/test split. The validation set is 20 percent of the training set and is used
to optimize the value of the parameter C in SVM. The best value of C from
the set of values {0.01,0.1,1,10,100,1000} is then used to classify the documents
in the testing set.

Tables 5 and 6 compare the classification performances (using train/test
split) of the proposed method and the supervised semantic kernels i.e. CMK
and CWK for sentiment and topic classification tasks. Since CMK and CWK
require long training time, the performance is evaluated by splitting the dataset
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into training and testing set in the 80:20 ratio. The default value of 1 for pa-
rameter C in SVM is used to classify the documents. In text classification
with CMK and CWK, attribute selection (as reported in their experiments
(Altınel et al. (2015b) Altınel et al. (2015a))) is applied using mutual informa-
tion to select the best 2000 terms. CWKwfs and CMKwfs correspond to the
supervised semantic kernels CWK and CMK without performing this feature
selection. There is a considerable improvement in the performance of these
semantic kernels without feature selection.

The proposed approach significantly outperforms the baseline similarity
measures for text classification on all datasets in terms of precision, recall
and F1 score as shown in Tables 1, 2, 5 and 6. Table 3 shows the information
considered by the proposed approach for the computation of similarity between
documents. The advantage of the proposed graph kernel approach for text
classification is that it considers the contextual information and is not based
on word independence approach as in vector space models. The similarity
measure compares the relevant structural information in the documents and
computes the semantic similarity between the documents. This is possible due
to the semantic information available in the enriched graph representations of
the documents. Table 4 shows that there is no considerable difference in the
performance with an increase in the size of the predefined sliding window used
to build the co-occurrence graphs. Fig. 24 presents the results of document
classification (in terms of F1 score) using the proposed method and linear
kernel with different proportions of training set such as 0.1, 0.5 and 0.9. It
shows that the proposed method consistently outperforms the linear kernel
even with a small training set (of 10 percent).

Fig. 24 Classification performance with different sizes of training set
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Table 1 Precision, Recall and F1 scores for sentiment classification tasks using different
similarity measures
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d=1 d=2 d=3 d=4

Polarity
Precision 77.15 77.15 76.65 77.36 77.09 77.13 77.18 77.43 77.77 81.47
Recall 77.12 77.11 76.60 77.33 77.07 77.10 77.14 77.39 77.74 81.42
F1 77.12 77.11 76.59 77.32 77.06 77.10 77.13 77.39 77.74 81.42

Subjectivity
Precision 90.98 91.12 90.21 90.86 91.07 90.82 91.02 90.85 90.85 92.74
Recall 90.94 91.08 90.18 90.84 91.03 90.80 91.00 90.82 90.83 92.73
F1 90.94 91.08 90.18 90.84 91.03 90.80 91.00 90.82 90.83 92.73

Books
Precision 80.58 80.91 79.88 79.85 80.29 80.85 81.13 81.11 80.55 86.12
Recall 80.44 80.77 79.69 79.74 80.09 80.74 81.09 81.04 80.49 86.04
F1 80.42 80.79 79.66 79.72 80.06 80.72 81.09 81.03 80.48 86.04

Dvd
Precision 81.70 82.61 79.67 80.59 81.88 80.63 81.86 81.30 81.34 87.40
Recall 81.55 82.50 79.50 80.50 81.70 80.50 81.75 81.25 81.25 87.20
F1 81.53 82.49 79.47 80.49 81.68 80.48 81.73 81.24 81.24 87.19

Electronics
Precision 80.72 80.25 81.07 82.36 80.29 83.07 83.38 84.13 84.05 86.01
Recall 80.45 80.05 81.00 82.30 79.95 83.00 83.30 84.05 84.00 85.90
F1 80.41 80.01 80.99 82.29 79.98 82.99 83.29 84.04 83.99 85.89

Kitchen
Precision 84.96 85.78 85.18 85.52 85.27 85.78 85.86 85.82 86.07 90.20
Recall 84.90 85.70 84.95 85.35 85.20 85.70 85.75 85.70 85.95 90.10
F1 84.89 85.69 84.92 85.33 85.19 85.69 85.69 85.74 85.94 90.09

In the underlined datasets, the improvements of the proposed method over linear kernel are
statistically significant at p<0.01 using sign test.

Table 2 Precision, Recall and F1 scores for topic classification tasks using different simi-
larity measures
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d=1 d=2 d=3 d=4

20NG
Precision 80.33 83.44 83.77 83.58 80.52 81.72 81.64 81.41 81.44 85.10
Recall 79.23 83.03 83.27 82.97 78.59 80.92 80.72 80.55 80.56 84.19
F1 79.31 83.03 83.27 82.95 78.94 81.01 80.79 80.59 80.60 84.36

News
Precision 82.49 82.89 81.34 81.39 82.63 80.88 80.92 80.91 81.01 84.39
Recall 82.44 82.83 81.29 81.40 82.55 80.85 80.89 80.90 81.00 84.30
F1 82.34 82.76 81.16 81.30 82.40 80.72 80.74 80.74 80.85 84.20

In the underlined datasets, the improvements of the proposed method over linear kernel are
statistically significant at p<0.01 using sign test.
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Table 3 Advantages of the proposed method. Information considered for the computation
of similarity between documents

Information con-
sidered
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Importance of
terms based
on class in-
formation
(Supervised
term weight)

No No No No No No Yes Yes Yes

Co-occurrence
information No No No No No Yes No No Yes

Importance of
associations No No No No No Yes∗ No No Yes†

Incorporation
of external
knowledge

No No No No No No No No Yes

Semantic
similarity of
terms and
associations

No No No No No No No No Yes

* Based on the distance between words.
† Based on the number of co-occurrences and relevance of the terms. Distance is not taken
into account since terms that co-occur closely are only considered.

Table 4 Precision, Recall and F1 scores for the proposed method with graph representation
built using predefined sliding window of different sizes

Dataset Proposed method
w=2 w=3 w=4
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Polarity 81.47 81.43 81.42 81.38 81.35 81.34 81.15 81.11 81.11

Subjectivity 92.74 92.73 92.73 92.81 92.80 92.80 92.63 92.62 92.62

Books 86.12 86.04 86.04 86.24 86.14 86.13 85.75 85.64 85.63

Dvd 87.40 87.20 87.19 87.54 87.35 87.34 87.05 86.90 86.89

Electronics 86.01 85.90 85.89 86.82 86.70 86.69 86.63 86.50 86.49

Kitchen 90.20 90.10 90.09 89.90 89.80 89.79 90.02 89.90 89.89

20NG 85.10 84.19 84.36 85.17 83.91 84.18 85.15 83.54 83.88

News 84.39 84.30 84.20 83.87 83.76 83.65 83.72 83.58 83.44
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Table 5 Comparison of precision, recall and F1 scores of sentiment classification tasks using
supervised semantic kernels
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Polarity
Precision 62.56 77.49 63.16 75.89 78.38
Recall 62.07 77.46 62.68 75.82 78.36
F1 61.69 77.46 62.33 75.81 78.35

Subjectivity
Precision 82.83 91.43 81.73 90.10 91.46
Recall 82.75 91.40 81.60 90.10 91.45
F1 82.74 91.40 81.58 90.10 91.45

Books
Precision 66.29 72.61 72.21 76.73 81.96
Recall 66.17 72.43 71.93 76.69 81.95
F1 66.11 72.37 71.85 76.69 81.95

Dvd
Precision 69.57 78.00 71.93 76.50 84.32
Recall 69.50 78.00 71.50 76.50 84.25
F1 69.47 78.00 71.36 76.50 84.24

Electronics
Precision 74.00 79.50 74.02 81.05 81.51
Recall 74.00 79.50 74.00 81.00 81.50
F1 74.00 79.50 73.99 81.00 81.50

Kitchen
Precision 75.71 83.27 82.32 83.35 91.25
Recall 75.50 83.25 82.25 83.25 91.25
F1 75.45 83.25 82.24 83.24 91.25

Table 6 Comparison of precision, recall and F1 scores of topic classification tasks using
supervised semantic kernels
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20NG
Precision 73.84 79.76 69.29 73.78 85.01
Recall 73.56 79.19 68.98 73.52 83.94
F1 73.55 79.12 69.00 73.49 84.15

News
Precision 71.34 83.04 69.24 78.60 83.95
Recall 71.05 83.15 68.66 78.56 84.02
F1 71.04 83.06 68.27 78.42 83.89
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7 Conclusion

Graph-based representations of text are effective for text classification as they
can model the structural information in text, which is required to understand
its meaning. Considering the structural information in text when calculating
the similarity between documents can improve the performance of text clas-
sification. In this paper, we focused on building a text graph model that rep-
resents the structural information in text effectively, which helps to compare
documents based on their main similar content. Supervised term weighting is
utilised to weight the terms and their associations, so that the matching terms
and patterns contribute to document similarity based on their relevance. The
graph enrichment is carried out with the word similarity matrix to consider
semantically similar terms and associations, going beyond exact matching of
document content. We employed a graph kernel function that utilises the rich
information in the enriched weighted graphs to compute the similarity between
text documents accurately for improving the performance of classification task.
Our experimental results on sentiment analysis and topic classification tasks
show that the proposed graph kernel-based approach for text classification
detects and exploits the structural patterns in text to compute the semantic
similarity between text documents, resulting in a significant improvement in
text classification performance. The similarity matrix used in the enrichment
could be improved by designing it based on the application, in order to utilise
domain knowledge and increase the accuracy of the similarity measure. An in-
teresting future work is to use an ontology-based similarity matrix with more
accurate similarity values to enrich the graph and consider the similar con-
cepts and relationships in measuring document similarity. The proposed text
classification framework can be adapted for different domains by designing
the similarity matrix based on the domain. The graph enrichment method can
be extended to calculate similarity between text documents for other applica-
tions such as document clustering, information retrieval and relevance-based
document ranking.
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