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1 Introduction

Understanding the prospects for large-field inflation in consistent quantum gravity theories
is an important question made urgent by the improving measurements of the polarization
of the cosmic microwave background [1, 2].

In low-energy effective theories of axion fields, the presence of shift symmetries makes
it feasible to compute and control the scalar potential over super-Planckian distances. At
the same time, such theories are plausibly constrained by quantum-gravitational limits on
continuous global symmetries. For this reason, axion inflation is a promising setting for
examining the impact of quantum gravity on large-field inflation.

General quantum gravity arguments suggest that there is a tension between super-
Planckian axion periodicities and the computability and convergence of the associated
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instanton sums [3, 4]. In theories with small characteristic periodicities f �Mpl, the con-
tributions of higher harmonics to the axion potential are typically suppressed by powers of
e−Mpl/f , so the leading — and most readily computable — instantons control the potential,
but at the same time the axion fundamental domain is small in Planck units. Large-field
axion inflation is then possible only through axion monodromy [5, 6], which we will not
consider in this work, or through collective excitations of multiple axions [7]. On the other
hand, for f & Mpl the potential is not typically determined by the instantons carrying
minimal axion charges: rather, the sum over the entire charge lattice becomes relevant.
We term this situation a breakdown of the leading instanton expansion. It is important to
recognize that such a breakdown does not necessarily signal an inconsistency of the theory,
and may only present a limitation on our ability to compute.

The Weak Gravity Conjecture (WGC) [4] provides a precise incarnation of the apparent
tension between large periodicities and the leading instanton expansion. The WGC asserts
that in a consistent effective theory of one or more abelian gauge fields coupled to gravity,
there must exist certain extremal or superextremal states, i.e., states whose charge-to-mass
ratio equals or exceeds that of an extremal black hole.1 The corresponding conjecture for
axion fields is that there must exist certain instantons whose axion charge-to-action ratio
Q/S exceeds f/Mpl, i.e., there must exist instantons with S ≤ QMpl/f . We refer to such
instantons as superextremal.

In its most mild form, the WGC amounts to the convex hull condition of [8]: for
any direction Q̂ in the charge lattice, there exists an instanton of charge Q and action
S or a collection of instantons of total charge Q =

∑
i Qi and total action S =

∑
i Si

satisfying S ≤Mpl|Q|/f . As a result, it does not place any direct restrictions on low-energy
effective field theory: one could imagine that the instantons that satisfy the conjecture have
large charges Q and large actions S, so that they give negligible, exponentially-suppressed
corrections to the instanton potential.

However, stronger forms of the WGC have the potential to place meaningful con-
straints on models of axion inflation. In recent years, much work has been devoted to
identifying which, if any, is the correct version of the WGC. These different versions are
distinguished primarily by which states are required to be superextremal: for example, the
lightest charged state, the state with the smallest nonzero charge, etc. Counterexamples
to many of the proposed strong forms have been discovered in string theory, but several
lines of evidence point to others being true: in particular, all known quantum gravity the-
ories seem to possess not just one, but rather an infinite tower of superextremal particles
charged under a given U(1) (see e.g. [9–15]). In the axion context, this translates to an
infinite tower of superextremal instantons. These strong forms go under the name Tower
WGC (TWGC) [16], if one simply requires an infinite tower of superextremal instantons,
or Sublattice WGC (sLWGC) [9, 17], if one further requires that these superextremal in-
stantons fill out an entire sublattice of the charge lattice.2

1To simplify our language we will write “superextremal” instead of “(super)extremal”, with the under-
standing that precisely extremal states are included.

2In principle, even the TWGC and sLWGC are not sufficient to constrain low-energy effective theories,
as one could suppose that the tower of superextremal instantons begins at a very large charge Qmin � 1.
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While the evidence for the TWGC and sLWGC has been mounting, there has not yet
been a systematic study of the constraints imposed by these conjectures. In this work, we
will explore the constraints imposed by these conjectures on several toy models of axion
inflation. We will see that some models, such as isotropic N -flation [18], are in tension with
the T/sLWGC, provided that the tower of superextremal instantons is sufficiently dense in
the charge lattice. But other models, including Kim-Nilles-Peloso (KNP) alignment [19],
clockwork [20–22], and a modified version of N -flation, can be constructed so as to evade
all constraints from the T/sLWGC. Furthermore, as has long been appreciated, the bounds
imposed by the WGC on axion decay constants do not place meaningful restrictions on
models of axion monodromy inflation, as these models do not require super-Planckian decay
constants.

Our analysis shows that no proposed strong form of the WGC is strong enough to
exclude all low-energy effective theories that support large-field axion inflation. Even so,
it does not offer any insight as to whether models of this sort actually arise in quantum
gravity. Addressing this challenging question may require a direct top-down approach,
perhaps in compactifications of string theory.

The organization of this paper is as follows: in section 2, we introduce the toy models
of axion inflation that we will investigate in subsequent sections, and we review the relevant
forms of the WGC. In section 3, we derive constraints on axion inflation models, showing
in particular that the volume of the fundamental domain of axion field space is bounded
by the sLWGC. It follows that isotropic N -flation is incompatible with the sLWGC. On
the other hand, this volume bound does not rule out the possibility of a large effective
decay constant in some direction of axion field space, and indeed, we show in section 4
how to construct models of KNP alignment, clockwork, and modified N -flation that are
compatible with the sLWGC. Our conclusions, as well as directions for future research,
appear in section 5. In appendix A, we summarize the prospects for ultraviolet completion
in string theory of the effective theories discussed herein. Appendix B contains more details
of the saddle-point computation of section 3.

2 Axions and lattices

2.1 Preliminaries

An axion is a scalar field φ with an exact discrete shift symmetry φ ∼= φ+2πnf , n ∈ Z. By
“exact”, we mean not just that the potential is periodic, V (φ+2πf) = V (φ), but moreover
that φ and φ + 2πf are physically equivalent, i.e., the shift symmetry is gauged. This
redundancy has physical consequences, as even Planck-suppressed operators must respect
this symmetry. While this gauged shift symmetry can be spontaneously broken, as in
models of axion monodromy, we will only consider the case where it is preserved, as in the
original Natural Inflation scenario [23].

However, at present the evidence from string theory weighs against this possibility, and we will assume in
this work that Qmin is not large.
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The general two-derivative effective Lagrangian for a single axion takes the form

L = −1
2K(φ)(∂φ)2 − V (φ) , (2.1)

for K(φ) > 0. Since all one-dimensional metrics are flat, we can set K(φ) = 1 by a
field redefinition. In this canonically normalized basis, the period 2πf takes on physical
significance. Note that, although V (φ) = V (φ + 2πf), f is not fixed by the smallest
period of V (φ). For instance, in theories with extended supersymmetry the potential often
vanishes, V (φ) = 0, yet the axion decay constant f remains well defined: it is fixed by the
period of the discrete gauge symmetry φ ∼= φ+ 2πf .3

An alternate perspective is provided by the lattice basis, θ ≡ φ/f . In this basis, the
two-derivative effective action takes the form

L = −1
2f

2(∂θ)2 − V (θ) , θ ∼= θ + 2π . (2.2)

Here the period of the discrete shift symmetry θ ∼= θ+ 2π is fixed and the axion decay con-
stant can be read off from the normalization of the kinetic term. The difference between
the canonically normalized basis and the lattice basis is analogous to the difference be-
tween canonical and holomorphic normalizations for gauge fields. Indeed, there is a direct
connection, as we will see below.

In the lattice basis, it is straightforward to generalize to the case of N axions θi, each
with a discrete shift symmetry θi ∼= θi + 2π. A general two-derivative effective Lagrangian
now takes the form

L = −1
2Kij(θ)∂µθi ∂µθj − V (θi) , θi ∼= θi + 2π , (2.3)

where Kij(θ) is a positive-definite field-space metric. For simplicity, we will assume that
Kij(θ) is flat, so that we can take it to be constant after a field redefinition. If we then
canonically normalize, φa ≡ fai θi, where Kij = fai fja, our effective Lagrangian is

L = −1
2δab ∂µφ

b∂µφb − V (φa) , φ ∼= φ+ 2πf i . (2.4)

The N periods f i generate the period lattice Γ∗ = spanZ{f i}, in terms of which the discrete
shift symmetry can be written concisely as

φ ∼= φ+ 2πΓ∗ . (2.5)

For a single axion, we have Γ∗ = fZ, and so the period lattice Γ∗ is the appropriate N -
axion generalization of the axion decay constant. This lattice can also be thought of as a
magnetic charge lattice, since the charges of codimension-two defects — i.e., cosmic strings
— satisfy the quantization condition

1
2π

∮
S1

dφ ∈ Γ∗ . (2.6)

3Similarly, in potentials generated via gaugino condensation, the period of the potential is enhanced
by the dual Coxeter number of the gauge group G, so that the inferred decay constant is feff = c2(G)f .
However, this misses the fact that other light states appear as one moves around the axion’s fundamental
domain φ→ φ+ 2πf , and the true ground state energy is invariant under this shift.
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We may then define the axion fundamental domain as the field space accessible to the
axions modulo periodic identification, which is given by RN/(2πΓ∗). Its volume is

volφ = |2πΓ∗| = (2π)N |Γ∗| , (2.7)

where |Γ∗| denotes the volume of the N -torus RN/Γ∗, also called the unit cell volume of Γ∗.
It is crucial to note that both the lattice basis θi and the canonically normalized basis

φa are ambiguous. In the former case, there is a GL(N,Z) ambiguity θi → M i
j θ
j that

preserves the periods θi ∼= θi + 2π but acts non-trivially on K → (M−1)>KM−1. Thus,
it is really a misnomer to refer to “the” lattice basis; there are many! Quantities like “the
eigenvalues of K in the lattice basis” are not well defined for this reason; they are not
GL(N,Z) invariant and so the answer depends on which lattice basis we choose.

In a canonically normalized basis this GL(N,Z) ambiguity acts on the periods f i →
(M−1)jifj , but leaves both φ and the period lattice Γ∗ invariant. Instead, there is an O(N)
rotational ambiguity φa → Λabφb that acts on both φ and Γ∗. Because it appeals to
geometric intuition, and because rotational invariants are much easier to characterize than
GL(N,Z) invariants, we will usually find it convenient to work in a canonically normalized
basis.

So far, we have only discussed the axion kinetic term in detail. We argued that if
the field-space metric is flat, the physical information in the kinetic term can be naturally
encoded in the period lattice Γ∗. We now turn to the potential. The potential must
be well-defined on the axion fundamental domain, and so it is necessarily periodic with
V (φ+ 2πΓ∗) = V (φ). In the lattice basis, the most general potential has the form

V (θ) =
∑

`1,...,`N

Z`1,...,`N e
i`iθ

i
, (2.8)

for some complex coefficients Z`1,...,`N . The potential V (θ) is real, and so the coefficients
must satisfy Z−`1,...,−`N = Z∗`1,...,`N . Schematically, the coefficients are of the form

Z` = A`e
−S`+iδ` , (2.9)

where we call S` the action of the instanton of charge `, A` is some prefactor, and δ` is
a phase. Moving to a canonically normalized basis, `iθi = Q · φ, where Qa = (f−1)ia`i.
Expressed in terms of Q, the sum over `1, . . . , `N becomes a sum over the lattice generated
by (f−1)i. Since (f−1)i · fj = δij , this lattice is simply the charge lattice Γ dual to the period
lattice Γ∗, and thus

V (φ) =
∑
Q∈Γ

ZQ eiQ·φ , Z−Q = Z∗Q . (2.10)

Note that the dual of a lattice Γ is defined by Γ∗ ≡ {y | ∀x ∈ Γ, x · y ∈ Z }, hence the
symmetry V (φ+ 2πΓ∗) = V (φ) is manifest.

Since Γ∗ is the lattice of magnetic charges, it is natural to think of Γ as the lattice of
electric charges. Indeed, treating the axion φ as a zero-form gauge potential, we expect
zero-dimensional electrically-charged objects with an axion coupling S = Qφ(x). These are
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nothing but instantons. To see their effect, let |φ0〉 denote the axion eigenstate φ̂(x)|φ0〉 =
φ0|φ0〉. We form charge eigenstates

|Q〉 := 1
|2πΓ∗|

∫
|2πΓ∗|

dNφ eiQ·φ|φ〉 , (2.11)

where the integral is over the N -torus RN/(2πΓ∗). By charge conservation, we conclude
that an instanton of charge Q1 connects |Q〉 with |Q + Q1〉. In doing so, it generically
generates terms in the potential of the form eiQ·φ.4

Note that the precise notion of an instanton assumes a large action expansion. In
performing a path integral, one must sum over all instantons in the theory, and in the case
where the instanton actions are small, the distinction between two instantons of charge
Q and one instanton of charge 2Q becomes unclear. However, the sum over distinct
topological sectors labeled by the charge Q still makes sense, and in some cases one can
explicitly resum the instantons to obtain sensible results. Resummation of this sort plays
an important role in the study of dualities (see, for instance [25–27]).

2.2 Sublattice Weak Gravity Conjecture

The mildest version of the Weak Gravity Conjecture (WGC) holds that, in any d-dimen-
sional abelian gauge theory coupled to gravity with gauge coupling e, there must exist a
superextremal state, i.e., a state whose charge-to-mass ratio is greater than or equal to that
of an extremal black hole [4],

|eq|/m ≥ (|Q|/M)ext ∼ 1/M (d−2)/2
pl;d . (2.12)

The WGC is supported by numerous examples in string theory, and there are no known
counterexamples. However, this mild form of the WGC suffers from inconsistencies: it is not
necessarily preserved under Higgsing [12] (see also [28, 29]) or dimensional reduction [17].
Thus, an effective theory resulting from either of these procedures will still satisfy the WGC
only if some stronger condition is imposed on the original theory. In the case of dimensional

4Strictly speaking, the potential in (2.8) is not broken up into an “instanton” expansion, but as an
expansion in topological sectors. By definition, the potential V (φ) is the energy per unit spatial volume, as
a function of φ, of whatever sector in the theory is generating the axion’s potential. This can be written as

V (φ) = lim
V→∞

1
V
∑
Q∈Γ

〈0|H′|Q〉 eiQ·φ ,

where H′ is the Hamiltonian of that sector, |Q〉 is the “topological vacuum” or “pre-vacuum” of that
sector, and V is the spatial volume, cf. [24]. Clearly, the transition element V−1〈0|H′|Q〉 is the Fourier
coefficient ZQ.

In contrast, instantons are generally identified as the saddles of a Euclidean path integral. Instantons of
all charges will thus contribute to this transition element. For instance, a charge Q′ instanton can pair with
one (or many) instantons with net charge Q − Q′ to contribute to ZQ. However, when these instantons
are well-localized and have large action, the charge Q instanton dominates and one may identify SQ with
ZQ ∝ e−SQ as the “instanton action”.

In this paper, we will abuse terminology and refer to the sum over topological sectors as the sum over
instantons, but we emphasize that our expansion of the path integral in terms of semi-classical saddles is
only a reliable guide to the dynamics of the theory when those saddles have large action.

– 6 –
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reduction, the low-energy theory obeys the WGC if one demands that the original theory
satisfies the Sublattice Weak Gravity Conjecture (sLWGC) [9]: for any gauge theory coupled
to gravity with charge lattice Γ, there exists a sublattice Γext ⊂ Γ of finite index such that
for each q ∈ Γext, there is a (possibly unstable) superextremal particle of charge q.

The sLWGC is satisfied in toroidal orbifold compactifications of heterotic/type II string
theory, and it follows (at tree level) from modular invariance in perturbative string the-
ory [9].5 It is also related to the phenomenon of “gauge-gravity unification” studied in [12].

In this paper, we apply the WGC and sLWGC to four-dimensional theories of axions.
For this, we must generalize the WGC from one-form gauge fields to zero-form axions,
replacing charged particles with charged instantons, the gauge coupling e with the inverse
of the axion decay constant f , and the particle mass m with the instanton action S. Thus,
for a four-dimensional theory of a single axion with decay constant f , the generalized WGC
implies the existence of an instanton of charge Q whose action S satisfies

|Q|
fS

&
1
Mpl

. (2.13)

Here and henceforth we restrict ourselves to d = 4, so Mpl ≡Mpl;4. This generalized zero-
form version of the WGC follows essentially from naïve dimensional analysis, but it can
be given a more rigorous justification by relating to the one-form version via dimensional
reduction [17] or T-duality (within the context of string theory) [30]. The inequality (2.13)
is not precise in the zero-form case, as there is no exact analog of an “extremal black hole”
in this case (see, e.g., [17, 31–35] for some attempts in this direction). However, for the pur-
poses of this paper, we will take “superextremal” instantons to be those satisfying a sharp
bound, |Q|/(fS) ≥ 1/Mpl. Any order-one factors thereby omitted will not qualitatively
affect our results.

As discussed above, the precise notion of an instanton, and hence the precise statement
of the sLWGC, breaks down when the instanton action S becomes of order unity. In some
cases, one can still make precise statements even in the small action limit by relating
the axion version of the WGC to the WGC for higher-form objects. For instance, in the
context of extranatural inflation [36], the WGC for axions in four dimensions is related
to the WGC for one-form gauge fields in five dimensions, which makes sense even when
the four-dimensional instanton actions are small [37, 38]. More generally, however, it is
not entirely clear why the axion version of the sLWGC should be true, or what form the
conjecture should take outside of the large action limit.

The implications of the mild WGC for models of axion inflation have been studied
extensively (see e.g. [4, 30, 31, 37–45] and references therein). In this work, we turn our
attention to the implications of the sLWGC, which is a much stronger restriction on axion
theories. Generalized to the theory of zero-form axions in (2.4) with charge lattice Γ, the
sLWGC holds that there must exist a sublattice Γext ⊂ Γ of finite index such that for each
` ∈ Γext, there is an instanton of charge ` satisfying

|Qa| ≡ |(f−1)ia`i| ≥M−1
pl , (2.14)

where |Qa| ≡ (Q2
1 + . . .+Q2

N )1/2 is simply the Euclidean norm of Qa.
5See also [10] for a similar argument, interpreted in the context of AdS3/CFT2.
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An important question for our purposes is how sparse the sublattice Γext is allowed
to be. If it is too sparse, the sLWGC will place no meaningful restriction on low-energy
physics, as the particles satisfying the bound will be heavy objects located far out on the
charge lattice. However, in all known string theory examples the sublattice is not very
sparse.

In this paper, we will assume that Γext = Γ, so that every site in the instanton
charge lattice is occupied by a superextremal instanton. A theory with Γext = Γ is said
to satisfy the Lattice Weak Gravity Criterion (LWGC), and not all theories satisfy this
criterion [4, 9]. For our purposes, however, the difference between the LWGC and the
sLWGC can be justifiably neglected provided that the Γext is not too sparse, as it simply
introduces further order-one factors into our analysis, which we will ignore.

3 Inflation constrained by the LWGC

In this section, we derive constraints on models of axion inflation that satisfy the sLWGC,
as formulated in (2.14).

By demanding that the potential is not dominated by high-frequency, LWGC-man-
dated contributions, we argue in section 3.1 that the volume of the axion fundamental
domain must be smaller than the volume of a hypersphere with Planckian radius. This
volume bound is derived in the continuum limit, in which the charge lattice Γ is small
enough that lattice sums can be approximated by integrals. We argue that this bound pre-
vents isotropic N -flation from realizing controlled super-Planckian displacements, and we
extend this conclusion beyond the continuum limit in section 3.2. Finally, we explore how
theories with non-trivial lattices are either constrained by, or skirt past, these constraints
in section 3.3.

3.1 The volume bound

In this section, we derive a bound on the volume of the axion fundamental domain. As
we will see, this bound will apply in a certain continuum limit, in which the sum over
instantons can be approximated as an integral.

We begin with a Lagrangian, in a canonically normalized basis, of the form,

L = −1
2δab ∂µφ

a ∂µφb − Λ4 ∑
Q∈Γ

ZQ exp (iQ · φ) . (3.1)

We assume that the potential is randomly drawn from an ensemble, where the magnitudes
of the Fourier coefficients are independent and normally distributed, with |Q|-dependent
variances

〈|ZQ|2〉 = e−2µ|Q| , (3.2)

and that their phases are independently and randomly distributed over [0, 2π). Here, |Q|
is the standard Euclidean 2-norm |Q| =

√
δabQaQb. Intuitively, we should think of the

potentials as being generated by the nonperturbative effects of an unknown ultraviolet
theory, which we randomize over to reflect our ignorance. As discussed in section 2, the

– 8 –
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size of the axion’s fundamental domain is encoded in the structure of the charge lattice
and, very roughly, we can think of µ|Q| ∼ α(Mpl/f)|n|, where α ∼ O(1) and n ∈ ZN .
This interpretation is exact for isotropic N -flation — that is, when Γ∗ is a cubic lattice —
which we analyze in detail in section 3.2.

Our goal is to characterize the structure of such random potentials, and one measure
is to ask: how flat is the potential in a particular direction, ē? For almost any direction, we
can take ē to be a site in the field space lattice. This ensures that the potential is periodic
along that direction, and we can study its structure via the Fourier harmonics,

1
2π

∫ 2π

0
dψ V (ψ ē) e−inψ =

Q·ē=n∑
Q∈Γ

ZQ . (3.3)

We will focus on the harmonic variances

σ2
n(ē) =

Q·ē=n∑
Q∈Γ

e−2µ|Q| . (3.4)

To simplify our notation we typically write σ2
n(ē) as σ2

n, leaving the dependence on the
direction ē implicit.

The harmonic variance σ2
n measures the extent to which the n-th harmonic contributes

to the potential along ē. Since we assumed that 〈ZQ〉 = 0, the n-th harmonic is suppressed
if σ2

n � 1, and otherwise not (absent a statistical fluke). It is worth noting that all
information about (3.1) along ē ∈ Γ∗ is now encoded in both the charge lattice Γ and ē.

Intuitively, the LWGC can constrain the size of axionic fundamental domain because,
once we make this domain too large, a swarm of instantons contributes to the potential
and greatly reduces the distance one can smoothly traverse. In this limit, the sum (3.4)
receives contributions from an enormous number of sites in the charge lattice, and thus it
is not feasible to directly evaluate the sum. Fortunately, the Poisson summation formula
provides a dual representation of a sum over the N -dimensional lattice Γ in the form of a
sum over its dual lattice Γ∗:∑

Q∈Γ
f(Q) = 1

|Γ|
∑

Q̄∈Γ∗

∫
RN

dNQf(Q) exp
(
2πiQ · Q̄

)
=
∑

Q̄∈Γ∗
f̂(Q̄) . (3.5)

This alternative representation can be an extremely useful way to organize the data in the
sum, since if the sum over f(Q) is very slowly convergent, then the sum over its Fourier
transform f̂(Q̄) will converge very quickly.

It will be convenient to work with the generating function of harmonic variances
along ē,

Wē(ψ) =
∑
Q∈Γ

e−2µ|Q|+2πiψ(Q·ē) , (3.6)

such that
σ2
n =

∫ 1

0
dψWē(ψ) e−2πinψ . (3.7)
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Applying (3.5) to (3.6) yields an alternative representation of the generating function,

Wē(ψ) = 1
|Γ|

∑
Q̄∈Γ∗

µ

π(N+3)/2

Γ
(
N+1

2

)
[
(Q̄ + ψē)2 + (µ/π)2

](N+1)/2 , (3.8)

and thus an alternative representation of the harmonic variances,

σ2
n = 2µ

π|Γ||ē|
∑

Q̄∈Γ∗/ē

[
n2|ē|−2

Q̄2
⊥ + (µ/π)2

]N/4
cos

(
2πn ē · Q̄

ē2

)
KN

2

(2πn
|ē|

√
Q̄2
⊥ + (µ/π)2

)
.

(3.9)
Here we have introduced the quantity

Q̄2
⊥ ≡ Q̄2 − (ē · Q̄)2

ē2 , (3.10)

which measures the length of Q̄’s component perpendicular to the direction ē, while Γ∗/ē
is the sublattice formed by identifying any two lattice vectors Q̄ and Q̄′ in Γ∗ that differ
by a multiple of ē.

As is clear from (3.5), the origin of the dual lattice point Q̄ = 0 is simply the continuum
limit of the sum (3.4). Interestingly, in this limit the harmonic variances depend only on
the length of |ē|,

σ2
n = 2µ

π|Γ||ē|

(
nπ

µ|ē|

)N/2
KN

2

(2µn
|ē|

)
+ . . . (3.11)

and not on the actual structure of the lattice, and so (3.11) is a universal result that applies
to all members of this ensemble, as long as the continuum approximation applies. The
continuum approximation is valid as long as the shortest vectors in Γ are sufficiently small
so that many instantons contribute to the original sum (3.4). As we make these shortest
vectors larger, other terms in (3.9) will become important and correct the continuum
approximation.

Since we are primarily interested in the large-N limit, it will be convenient to approx-
imate the modified Bessel function using

Kν(x) ∼ Γ(ν)
2

(2
x

)ν
e−x

2/4ν
(
1 +O

(
x/ν3/4)) ν →∞ , (3.12)

the first term of which, in practice, is a very good approximation to the summand as long
as N & 10. This allows us to rewrite the harmonic variances (3.9) in terms of the volume
of the axionic fundamental domain as

σ2
n '

2µ
π|ē|N

( volφ
volDN (2µ)

)
e−2n2µ2/(N |ē|2) ∑

Q̄∈Γ∗/ē

e−2π2n2Q̄2
⊥/(N |ē|

2)

[1 + π2Q̄2
⊥/µ

2]N/2
cos

(
2πn ē · Q̄

ē2

)
,

(3.13)
where we denote the volume of an N -ball with radius 2µ by volDN (2µ).6 From this form,
we see that the smallest non-zero values of (πQ̄⊥/µ)2 control the validity of the continuum

6Specifically, volDN (r) = πN/2rN/Γ(N/2 + 1).

– 10 –



J
H
E
P
1
1
(
2
0
2
0
)
1
6
6

approximation. Corrections are thus non-universal and depend on the detailed structure
of the sublattice Γ∗/ē. However, the continuum approximation becomes more accurate for
the higher harmonics since these receive contributions from many more sites in the charge
lattice.

If we make the axionic fundamental domain smaller and smaller, the Poisson-resummed
series expansion will eventually break down, and one is better off using the original expan-
sion in (3.4). The situation is especially complicated in the intermediate regime in which
some directions in the lattice have small |Q| while others have large |Q|: in this case,
one must Poisson-resum certain directions in the lattice, but not others. In this work, we
will ignore the complications of this intermediate regime and deal exclusively with the two
limiting cases: either all |Q| are large, so that the sum in (3.4) can be well-approximated
by a small number of terms, or else the continuum approximation is valid. Understanding
the intermediate regime requires a significant amount of mathematical machinery, which
will be unpacked in a subsequent work [46].

Working within the continuum limit, the ratios of the harmonic variances are roughly

σ2
n

σ2
1
' e−2n2µ2/(N |ē|2) ' 1 for n�

√
N |ē|
µ

. (3.14)

That is, the variances are independent of n and are all roughly equal to one another
up to a certain point, after which they decay rapidly. It follows that for an effective
decay constant feff = |ē|, harmonics of wavelength 2πfeff/n ∼ 2πMpl/

√
N will introduce

significant corrections to the inflaton potential. This outcome is the exact opposite of what
naïvely occurs in N -flation, in that here increasing N actually decreases the effective field
range along the ē direction by a factor of 1/

√
N .

By requiring that the variance in (3.13) satisfies σ2
n � 1 and using the continuum

approximation7 (truncating to the Q̄ = 0 term in the sum) we derive the volume bound8

volφ . volDN (2µ) , (3.15)

in the large N limit. That is, the requirement that higher harmonics of wavelength .Mpl
do not contribute significantly to the inflationary potential implies — in theories obeying
the LWGC — that the volume of the axionic fundamental domain is bounded by the
volume of a ball of radius Mpl (up to order one factors), and not by a cube with Planckian
side-length. Specifically, we find the bound

volφ
(2πMpl)N

.
1√
πN

[√
2e
πN

µ

Mpl

]N
(3.16)

in the N →∞ limit.
7The continuum approximation improves for larger n because more instantons contribute to the sum.

Thus, even when the approximation fails for small n, the volume bound remains valid.
8We are assuming that |ē| is not exponentially large in N . If |ē| were exponentially large, then it would

almost certainly be nearly parallel to a lattice vector ē′ whose length is not exponentially large. It is thus
unlikely that we can avoid the LWGC-mandated higher harmonics in this way.
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The bound (3.16) immediately implies that isotropic N -flation (i.e., a model with a
cubic charge lattice Γ, see figure 1) fails in theories obeying the LWGC. If we violate (3.16),
the effective field range will be cut down to ∼Mpl/

√
N in all directions. Conversely, if we

satisfy (3.16) by an order-one amount in radius, so that

volφ = volDN (r) , (3.17)

for r/2µ < 1 an order-one fraction, then the Poisson-resummed expansion (3.9) breaks
down and the leading-order instantons will dominate the potential, provided these are
not actually dominated by small sublattices of Γ. This last point in particular suggests
that we could get an LWGC-compatible trans-Planckian field range by making the axion
fundamental domain “pointy”, with a large field range in one direction balanced by a
slightly smaller field range (the difference is subleading at large N) in the other directions.
We show this is true in section 4.4.

We caution, however, that the volume constraint (3.16) should be interpreted as a
necessary rather than sufficient condition for inflation compatible with the LWGC: a model
may satisfy the volume bound, yet still suffer from higher harmonics that restrict field
traversals to be sub-Planckian. For instance, consider a model with Kij = f2

i δij , and set
f1 6= f2 = f3 = . . . = fN , with

N∏
i=1

fi
Mpl

.
1√
πN

[√
2e
πN

µ

Mpl

]N
, (3.18)

so that the volume bound (3.16) is satisfied. One might attempt to generate a super-
Planckian field range in the ē = (1, 0, 0, . . . , 0) direction by taking f1 �Mpl. However, the
LWGC implies that the instantons of charge (n, 0, . . . ., 0), whose action is linearly reduced
by the stretching f1 �Mpl, contribute harmonics of the right size to keep the effective field
range sub-Planckian. More generally, even if the potential is flat with a super-Planckian
field range in a certain direction, it remains to be checked that this is (or is close to) a
gradient flow, as required for slow-roll inflation.9 Thus, the prospects for kinetic alignment
are not clear from this stage of our analysis, though the volume constraint (3.15) already
gives one non-trivial constraint.

3.2 Isotropic N-flation

We have argued above that the LWGC implies the bound (3.16) on the volume of the
axion fundamental domain, which is clearly violated by isotropic N -flation models. The
derivation of (3.16) crucially relied on the continuum approximation, which approximates
the sum over the charge lattice as an integral. In this subsection we will leverage the
simplicity of N -flation’s charge lattice (cf. figure 1) to compute the harmonic variances to
leading order in 1/N for all f , and thus extend beyond the continuum approximation our
finding that isotropic N -flation is incompatible with the LWGC.

9For instance, any path in an exact moduli space is flat and can have trans-Planckian length, but
exhibiting gradient flows over trans-Planckian distances is more difficult.
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Figure 1. The charge lattice for isotropic N -flation. Here, the blue dots indicate charge sites with
marginally superextremal instantons, i.e., those that barely satisfy the WGC bound, and the red
dot indicates the origin Q = 0.

For simplicity of notation, we will work in the lattice basis defined in (2.3), such that

L = −1
2f

2δij ∂µθ
i ∂µθj − Λ4 ∑

`∈ZN
Z` exp (2πi` · θ) . (3.19)

As in section 3.1 and (3.2), the Fourier coefficients Z` are randomly distributed in phase
such that 〈Z`〉 = 0 and

〈|Z`|2〉 = e−2α|`| , (3.20)

where α = µ/f is an O(1) constant. We are interested in inflating along ē = (1, 1, . . . , 1),
as pictured in figure 1. As in the previous section, the variances are defined by

σ2
n =

`·ē=n∑
`∈Γ

e−2α|`| =
∑
s

k(N,n)
s e−2α

√
s , (3.21)

where we have now organized the sum in terms of a multiplicity factor k(N,n)
s that counts the

number of lattice sites satisfying `·ē =
∑
i `i = n and `2 = s. Specifically, this combinatorial

factor counts the number of sites that contribute to the n-th harmonic and sit at a distance√
s from the origin, and can be written as the sum of multinomial coefficients,

k(N,n)
s =

∑
{ra}

N !∏
a ra!

. (3.22)

Here, ra ≡ |{ i | `i = a }| denotes the number of components of ` that are equal to a, and
the sum is restricted by the conditions

ra ≥ 0 ,
∑
a

ra = N ,
∑
a

ara = n ,
∑
a

a2ra = s. (3.23)

Computing the harmonic variances in N -flation thus reduces to a (relatively) simple com-
binatorial problem. It is crucial here that the charge lattice is (hyper)-cubic, and general
lattices will require more technology [46].
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We will estimate k(N,n)
s in three ways. First, we can approximate it in the continuum

limit by replacing the sum over ZN with an integral over RN ,

σ2
n '

∫
RN

dN` e−2α|`| δ (ē · `− n) = vol SN−2
√
N

∫ ∞
n/
√
N

dv v
(
v2 − n2

N

)N−3
2

e−2αv . (3.24)

Setting v =
√
s, we see that k(N,n)

s is simply the measure of the integral

k(N,n)
s ' volSN−2

√
N

[
s− n2

N

]N−3
2

. (3.25)

Second, we approximate k(N,n)
s by restricting the sum (3.22) to “small charge” instantons,

i.e., those with `i = 0 and ±1 for all i. The multiplicity is then the multinomial coefficient

k(N,n)
s '

(
N

k1, k2, N − s

)
= Γ(N + 1)

Γ
(
k1 + 1

)
Γ
(
k2 + 1

)
Γ(N − s+ 1)

, (3.26)

since we may choose, for each s, k1 = (s + n)/2 of the charge vector `’s N entries to be
+1 and k2 = (s − n)/2 of the entries to be −1, and k(N,n)

s counts the number of ways to
do this.

Finally, we estimate k(N,n)
s by a saddle point approximation. The details of this com-

putation are too technical to be presented here and can instead be found in appendix B.
In the large N limit, the multiplicities are well approximated by

1
N

log k(N,n)
s ' log θ(w; q)− σ log q − ν logw +O

(
N−1 logN

)
. (3.27)

Here, the Jacobi theta function

θ(w; q) =
∑
a∈Z

qa
2
wa , (3.28)

can be interpreted as a thermodynamic free energy, which is a function of the “chemical
potentials” w and q. The values of these chemical potentials are determined implicitly in
terms of s and n by the equations

σ ≡ s

N
= ∂ log θ(w; q)

∂ log q , (3.29)

and
ν ≡ n

N
= ∂ log θ(w; q)

∂ logw . (3.30)

These equations can be solved numerically to explicitly evaluate the multiplicity (3.27) for
a given s and n.

Since feff =
√
NMpl in an isotropic N -flation model, we are interested in the variances

σ2
n for n .

√
N . In theN →∞ limit, this corresponds to taking ν → 0. In this limit, we can

numerically compute the k(N,n)
s as a function of σ under each of the three approximations

in (3.25), (3.26), and (3.27). The results are plotted in figure 2. We see that the continuum
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Figure 2. Instanton multiplicities k(N,n)
s computed in the continuum limit (green), the `a ∈ {0,±1}

approximation (red), and the saddle point approximation (thick, blue) for ν = 0.

limit agrees with the “exact” result computed by saddle point approximation for large
s/N (far out on the lattice), whereas the sum over instantons of small charge agrees with
the saddle point result for small s/N . There is an intermediate range in which all three
approximations agree, providing strong evidence that our approximations correctly capture
the behavior of the isotropic N -flation model.

Successful N -flation requires that f �Mpl/
√
N , which in turn implies α�

√
N . On

the other hand, the large-N limit of the volume bound implies that the harmonic variances
are exponentially large whenever

α .

√
πN

2e . (3.31)

This means that in the regime of interest, the integral in (3.24) is dominated by terms with
|`| � n, so the continuum limit is valid. This, in turn, means that the volume bound we
derived in (3.15) applies, so we conclude that

feff =
√
Nf .Mpl . (3.32)

That is, isotropic N -flation is incapable of producing a parametrically super-Planckian
effective decay constant for any choice of instanton action.

We should contrast how the LWGC rules out isotropic N -flation with previous work [40]
that excluded it by assuming the convex hull condition. The argument of [40] relies upon
“perturbative control” over the axionic potential, requiring both large instanton actions
(S & 1) and that the potential is dominated by a finite number of important contributions.
These assumptions allow the authors to define an effective diameter of the axion field space
and to constrain it using the convex hull condition.

However, this kind of argument has an important loophole, closely connected to our
work. In the presence of many large-charge instantons with S ∼ Mpl/f , it is no longer
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necessary for the “leading” small-charge instantons to satisfy the convex hull condition,
as the large-charge instantons accomplish this [31, 38].10 This invalidates the assumptions
of [40], and it is natural to wonder whether isotropic N-flation is thereby rescued from
the swampland. We have shown that this is not the case, as the very same large-charge
instantons generate harmonics that ruin the flatness of the potential (see also [38]), albeit
in a more non-trivial way than the small-charge instantons do in [40].

On the other hand, the general argument given in [40] is not limited to isotropic N -
flation, and as we show explicitly in section 4.4, it is possible to get a large axionic field
range while satisfying the convex hull condition (implied by the LWGC), contrary to [40].
The difference in our conclusions is precisely due to the loophole discussed above.

3.3 Random matrix N-flation

In the previous section, we saw that the LWGC strongly constrains isotropic N -flation.
These constraints are severe because in isotropic N -flation the axion fundamental domain is
a hypercube, whose volume is famously much larger than that of an inscribed hypersphere.
A hypercube’s side-length must be much smaller than a hypersphere’s radius for the two to
have comparable volume. It is thus natural to ask if we can achieve parametrically super-
Planckian displacements, consistent with the LWGC, by changing the shape of the axion
fundamental domain, or alternatively by changing the kinetic matrix Kij in the lattice
basis. In this section, we consider what happens when the kinetic matrix is drawn from a
random matrix ensemble. Since this matrix must be positive definite, a natural possibility
is to take Kij to be a Wishart matrix, or alternatively an inverse-Wishart matrix (i.e., K−1

ij

is a Wishart matrix).
We begin by reviewing the definition and relevant properties of a Wishart matrix.

Consider an N ×M matrix A whose entries are normally distributed with mean 0 and
variance σ2,

Aij ∼ N (0, σ2) . (3.33)

Define the N ×N matrix K by
K = AA>. (3.34)

K is then said to be an N ×N Wishart matrix with M degrees of freedom, while K−1 is
then said to be an inverse-Wishart matrix.

Consider an ensemble E of N×N matrices. Suppose that E is statistically rotationally
invariant, so that the corresponding normalized eigenvectors ψa point in directions that
are uniformly distributed on SN−1. Then, in the large N limit, the components ψ(i)

a ,
i = 1, . . . , N , are distributed as

√
Nψ

(i)
a ∈ N (0, 1), with N (0, 1) denoting the normal

distribution with mean 0 and variance 1. Intuitively, a single component of order unity is
possible only if many other components are atypically small. More geometrically, nearly all
eigenvectors point approximately along a diagonal direction in some hyperoctant, rather
than being nearly parallel to a Cartesian basis vector. This is not surprising, since there
are 2N diagonals but just N basis vectors. This phenomenon is known as eigenvector

10In fact, this “loophole” is commonly exploited in real string theory examples, at least in the better
understood realm of the ordinary (charged particle) WGC [17].
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delocalization in random matrix theory, and has been proved to hold in a number of random
matrix ensembles [47, 48], including the Wishart ensemble. It was argued in section 4 of [49]
that this phenomenon may play an important role in generating large diameters in string
theory.11

Returning to the axion model in (2.3), let us work in the lattice basis and suppose
that the kinetic matrix Kij is drawn from a Wishart ensemble; that is, Kij is a Wishart
matrix (we leave the variance unspecified for now). Let f2

i be the i-th eigenvalue, with
f1 < f2 < . . . < fN . The fundamental domain of axion field space is an N -cube in the
lattice basis. Eigenvector delocalization tells us that the eigenvector ψN with eigenvalue
f2
N points along a nearly diagonal direction [48], along which F has diameter 2π

√
N . As a

result, the diameter of the fundamental domain is

D ≡ 2πfeff ≈ 2πfN
√
N , (3.35)

where the ≈ becomes an equality in the case of perfect alignment. An important caveat is
that we have estimated the diameter of the field space, but it is not always the case that
there is an approximately flat direction of the potential nearly parallel to the long diameter
of the field space.

For a Wishart kinetic matrix Kij , we have [51, 52]

exp
〈

log
(∏

f2
i

)〉
=
(
〈fN 〉2

4N

)N
Γ(N + 1) , (3.36)

where 〈. . .〉 indicates an expectation value in the Wishart ensemble. Using Stirling’s ap-
proximation we find

log
(
volφ/MN

pl

)
= N log

(
π√
e
〈fN 〉

)
+O(logN) , (3.37)

so the volume bound (3.16) reads

〈fN 〉 . 23/2eµπ−1/2N−1/2 , (3.38)

so that parametrically,
〈fN 〉 . O(N−1/2) . (3.39)

On the other hand, from (3.35) we have the firm limit D ≤ 2πfN
√
N , and so

D . O(1) , (3.40)

when Kij is a Wishart matrix.
Now, suppose instead that the kinetic matrix Kij is an inverse-Wishart matrix. We

define the aspect ratio A of the kinetic matrix by

A = fN
(detK)1/2N = fN

(
∏
fi)1/N . (3.41)

11Related ideas are examined in [50], by means of new methods for analyzing many-axion landscapes.
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The point of considering this quantity is that for two different matrices (or matrix ensem-
bles) J , K, the maximal diameters allowed by the volume bound have the ratio

DJ
DK

= AJ
AK

. (3.42)

We will now show that

A(inverse Wishart) ≈ NA(Wishart) . (3.43)

For J a Wishart matrix with associated variance σ2, we have

〈f2
N 〉W = 4Nσ2 . (3.44)

On the other hand, we argued above that〈∏
fi
〉1/N

W
≈ 〈fN 〉W2

√
e
, (3.45)

so that
A(Wishart) ≈ 2

√
e ∼ O(1) . (3.46)

The corresponding inverse Wishart matrix ensemble has

〈f2
N 〉IW = N

cσ2 , (3.47)

with c ≈ 0.30. Thus,

A(inverse Wishart) = 〈fN 〉IW
〈
∏
fi〉1/NIW

≈ 〈fN 〉IW ×
〈∏

fi
〉1/N

W
=

√
N

cσ2 ×
1

2
√
e

√
4Nσ2 . (3.48)

In this approximation,
A(inverse Wishart) ≈ N√

ce
. (3.49)

Hence, when K is an inverse Wishart matrix, the volume bound (3.16) translates to

D . O(N) , (3.50)

so parametric enhancement of the diameter is compatible with the volume bound.
The reason this enhancement can occur in the case of an inverse-Wishart but not a

Wishart kinetic matrix is that the inverse-Wishart eigenvalue distribution has a heavier
tail than the Wishart eigenvalue distribution: there is a significant probability for one or
more eigenvalues of an inverse-Wishart matrix to be much larger or much smaller than
the average. As a result, the fundamental domain will be squashed in some directions
and stretched in others, thereby allowing the diameter in some directions to be very large
while the total volume is small. For a Wishart kinetic matrix, on the other hand, the
fundamental domain is shaped more like a cube, so no side length can be parametrically
large unless the volume is too.
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Once again, we stress that the volume bound we have employed here is a necessary but
not sufficient condition for a theory to satisfy the LWGC. Indeed, we derived the volume
bound in the continuum approximation, but if the volume bound is obeyed, and if one
eigenvalue of the kinetic matrix is parametrically super-Planckian, then the product of
the other eigenvalues must be parametrically sub-Planckian. In this limit, the continuum
approximation, and therefore the volume bound itself, becomes suspect, and technology
beyond the scope of the present paper is needed. We conclude from our analysis that
parametrically super-Planckian diameters for Wishart kinetic matrices are inconsistent
with the LWGC, while the prospects for inverse-Wishart kinetic matrices are yet unclear.
Nonetheless, by moving beyond the continuum approximation, we will show in the following
section that there exist models of stretched N-flation in which one eigenvalue of the kinetic
matrix is taken to be parametrically larger than the others in a manner that is consistent
with the LWGC.

4 Inflation compatible with the LWGC

In the previous section, we found that some simple models of axion inflation are highly
constrained by the LWGC, and in particular by the volume bound (3.15). However, per our
discussion in section 3.3, the volume bound does not completely rule out parametrically
super-Planckian field displacements. In this section, we show how loopholes in the above
constraints allow models of axion inflation — including KNP alignment, clockwork, and
modified N -flation — to evade these bounds. Many of these models require rather special
structures in the effective theory, and it is not obvious that they can be realized in an
ultraviolet-complete framework like string theory. Still, the fact that they exist as effective
theories demonstrates that the LWGC alone is insufficient to rule out models of axion
inflation with super-Planckian field displacements, even in the absence of monodromy.

4.1 Coherent instanton sums

In the previous section, we assumed that the instanton phases were randomly distributed,
so that 〈ZQ〉 = 0. The first loophole in the LWGC constraints occurs when the phases are
not random, but are fixed so that the contributions to the potential sum in a coherent way.

We begin with a single-axion theory with charge lattice Γ = {n/f |n ∈ Z}, whose
potential in the canonically normalized basis is

V (φ) =
∑
n

Zne
inφ/f , (4.1)

where we take
Zn = Z∗−n = V1e

−αn+iδn , n > 0 , (4.2)

and Z0 = V0. The Lagrangian is then

L = −1
2(∂φ)2 − V0 − 2V1

∞∑
n=1

e−αn cos
(
nφ/f + δn

)
. (4.3)
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Figure 3. Coherent sum potentials with α� 1 for various values of δ. A sum over instantons with
equal phases produces a smooth potential capable of supporting large-field inflation.

In a single-axion theory, the LWGC implies that α & Mpl/f so that, for f � 1,
O(f/Mpl) terms in the sum contribute appreciably to the potential. If the phases δn are
independently and randomly distributed, incoherent addition of O(f/Mpl) summands will
generically spoil the flatness of the potential on super-Planckian distances, and large-field
inflation will be impossible. However, the story is very different if we take all of the phases
to be equal, δn ≡ δ. In this case, we can explicitly compute the sum in (4.3),

V (φ) = V0 + V1

(
cos(φ/f + δ)− e−α cos δ

coshα− cosφ/f

)
. (4.4)

Note that the transformation δ → δ + π is equivalent to V1 → −V1, so we may assume
that V1 > 0 without loss of generality. Similarly, the transformation δ → −δ is equivalent
to φ → −φ, so we may without loss of generality focus on the part of the potential with
V ′(φ) > 0, so that φ decreases over the course of its slow-roll. We further suppose that
V0 is chosen so that the potential vanishes at its minimum. For concreteness, we will set
f = Mpl/α. Now, we have an entire family of potentials parametrized by V1, δ, and α. For
α� 1, the first term in the sum in (4.3) dominates, and as expected we get a simple cosine
potential with sub-Planckian decay constant. More interesting is the α � 1 limit, which
the LWGC typically constrains. However, in this limit the potential, to leading order in
α, is

V (φ) = 2V1
α

(Mpl cos δ/2− φ sin δ/2)2

M2
pl + φ2 . (4.5)

In this limit, α simply contributes to the overall scaling of the potential and can therefore
be absorbed into the overall normalization V1. If we assume this normalization is fixed by
the observed value of the power spectrum, we are left with just a single-parameter family
of potentials, labeled by δ. This potential is shown in figure 3 for several values of δ.
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We can compute the phenomenology of these models in the slow-roll approximation.
The slow-roll parameters ε and η are defined by

ε ≡
M2

pl
2

(
V ′

V

)2
η ≡M2

pl
V ′′

V
, (4.6)

and the number of e-folds is given by

N∗ =
∫ φ∗

φend

dφ
Mpl

1√
2ε
. (4.7)

We can then compute the spectral index and tensor-to-scalar ratio to first order in the
slow-roll approximation,

ns = 1 + 2η∗ − 6ε∗ , r = 16ε∗ , (4.8)

where the ∗ indicates that we are evaluating at horizon crossing, roughly 50–60 e-folds
before the end of inflation.

The phenomenology of this family of models is in comfortable agreement with con-
straints from measurements of the CMB, as shown in figure 4. For δ between 3π/64 and
9π/8, the spectral index (measured at a pivot scale 50 e-folds before the end of inflation)
lies between ns ≈ 0.96 and ns ≈ 0.98, and the tensor-to-scalar ratio lies between r = 0.001
and r = 0.010. These values are compatible with the constraints determined by Planck,
which found ns = 0.9649± 0.0042 (68% CL) and r < 0.10 (95% CL) [1].

One might worry that the precise notion of an instanton, and hence the WGC bound
we are invoking, breaks down in the α < 1 limit we considered here (see footnote 4 in
section 2). However, as discussed in section 2.2, we could imagine that these instantons
descend from five-dimensional charged particles, in which case the WGC bound — and
the instanton sum — makes sense even for small values of the action. Indeed, in such a
scenario, the phases δn are given simply by (−1)F [53], so if the tower of charged particles
are all light bosons (or fermions), they will give rise to the same coherent sum behavior we
have seen here.

One can also generalize this single-axion model to a theory with multiple axions, in-
cluding an isotropic N -flation model. In this case, the effective decay constant in the
diagonal direction is enhanced by a factor of

√
N relative to the decay constant f in the

basis directions, so the parameter α ∼Mpl/f and the effective decay constant feff =
√
Nf

can be large simultaneously.

4.2 KNP alignment

The second loophole relies on using multiple “species” of instantons, some of which provide
a much larger contribution to the inflationary potential than others. This can occur if, for
instance, these special instantons have a much larger prefactor A` or a much smaller action
S` than others. In what follows, we consider the latter possibility and use this “multiple
species loophole” to realize the two-axion alignment mechanism of Kim, Nilles, and Peloso
(KNP) [19]. In particular, we will consider the model described in [37].
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Figure 4. The predicted values of the spectral index ns and tensor-to-scalar ratio r for various
values of δ at a pivot scale 50 e-folds and 60 e-folds before the end of inflation, compared with the
Planck 1σ and 2σ exclusion limits. For a wide range of values 3π/64 . δ . 9π/8, the predicted
values agree well with the data.

Let us first describe why this type of alignment can enhance the effective field range,
as the idea will also be useful for the following section. Throughout this paper, we have as-
sumed that the axion potential is generated by summing over a fully populated (sub)lattice
of instantons — this is the natural situation for a set of periodic scalars. However, it may
be the case that, for some physical reason, this sum truncates so that only N charges
Qk contribute, where k = 1, . . . , N . Then, the canonically-normalized Lagrangian takes
the form

L = −1
2δab ∂µφ

a ∂µφb − Λ4
N∑
k=1

(
1− cos(Qk,aφa/f)

)
. (4.9)

Here we have, for simplicity, assumed that these terms share the same prefactors ZQ, with
phases such that the potential is minimized at φi = 0. We can quickly characterize the
maximum effective field range in (4.9) by studying the eigenvalues of the axionic mass
matrix,

M2
ab ≡

Λ4

f2

N∑
k=1

Qk,aQk,b . (4.10)

We may define the effective axion decay constants in terms of the eigenvalues of this mass
matrix,

f2
eff,k = Λ4 eigkM−2

ab , (4.11)
as we may also think of this quadratic approximation as descending from the potential

V (φi) = Λ4
N∑
k=1

(
1− cos(ϕk/feff,k)

)
, (4.12)
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Figure 5. KNP alignment consistent with the LWGC. Here, the blue dots indicate charge sites
with marginally superextremal instantons, the red dot indicates the origin Q = 0, and the large
green dots of charge (1, 0), (N, 1) indicate charge sites with very superextremal instantons, whose
potential contributions dominate the inflationary potential and produce a large effective decay
constant.

where the ϕk represent linear combinations of the φa corresponding to eigenvectors of Mab.
We must stress that the definition of the effective axion decay constants is basis-dependent
and ceases to make sense once we deviate from the specific form of (4.9), though it will be
helpful in what follows.

The KNP alignment mechanism12 relies on a clever choice of charges Qk,a to attain
a very large effective axion decay constant. Let us consider the example presented in [37]
and pictured in figure 5. Here, two instantons with charges (1, 0) and (N, 1) generate
the potential. Because these contributions are very nearly parallel, the (1,−N) direction
in field space will be much lighter, and have much larger effective axion decay constant
feff,1 ∼ Nf , than the orthogonal direction, with feff,2 ∼ f/N .

From figure 5, we can see how the LWGC constrains KNP alignment: the success of the
model depends crucially on the truncation in (4.9), which allows us to ignore lattice sites
that are much closer to the origin — and thus potentially much more important — than
the instanton with charge (N, 1). Once we include the complete lattice sum, any alignment
will be destroyed, unless we make the “aligning” species of instanton much stronger than
the rest of the lattice sum.

It will be useful to understand how a background lattice of LWGC-fulfilling instantons,
pulled from the ensemble discussed in section 3.1, can affect this type of extra-species KNP
alignment. The extremal instantons contribute to the harmonic variance

σ2
n =

∑
`2∈Z

e−2α(Mpl/f)
√

(n+`2N)2+`22 , n > 1 , (4.13)

where we have taken µ = αMpl and ē = f(1,−N) in (3.4). The most significant harmonics
12KNP alignment has also been called lattice alignment to distinguish it from kinetic alignment, as in [54].

In kinetic alignment, the non-trivial structure appears in the kinetic matrix instead of the charge lattice.
Of course, these two cases are related to one another via a basis transformation.
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are n = 1, which gets its main contribution from the `2 = 0 term

σ2
1 ' e−2αMpl/f , (4.14)

and n = kN , whose main contribution comes from instantons with charge (0,−k)/f ,

σ2
kN ' e−2αkMpl/f . (4.15)

These harmonics are sub-Planckian in scale for f . Mpl, and can be controlled by taking
f/Mpl � 1. For instance, if we demand a power law suppression σ2

n . 1
np , we must

have that
f .

2
p logNMpl , (4.16)

which in turn implies that the effective axion decay constant is bounded by

feff .
2N

p logNMpl . (4.17)

Thus, even after including a lattice of LWGC-fulfilling instantons, the effective field range
is still super-Planckian for N � 1.

We conclude that the KNP alignment mechanism is consistent with the LWGC. How-
ever, it is clear that if the instanton factors ZQ are drawn from a random distribution with
〈|ZQ|2〉 ∼ e−2αMpl|Q| as in section 3.1, rather than by postulating light instantons with
charges (1, 0)/f and (N, 1)/f by hand, then the likelihood of getting a suitably aligned po-
tential is extremely low. Furthermore, it is unclear if there exists a mechanism to enhance
certain instanton contributions over others, especially in a theory coupled to gravity. Thus,
although this model is not incompatible with the LWGC, finding an ultraviolet completion
seems quite non-trivial and so it may yet reside in the Swampland.

4.3 Clockwork alignment

As discussed in the previous section, KNP alignment relies on a special structure in the
truncated charge matrix Qk,a, cf. (4.9), to achieve an enhanced effective decay constant.
The clockwork mechanism, first proposed by [20–22], can be thought of as KNP alignment
iterated to achieve vastly super-Planckian effective axion decay constants from multiple
sub-Planckian axions. In this section, we will first review what makes this mechanism tick
and then describe how the LWGC constrains it.

We will focus on the construction presented in [22], which achieves the charge matrix

QCW
k,a =



−1 3 0 0 · · · 0 0
0 −1 3 0 · · · 0 0
0 0 −1 3 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · −1 3
0 0 0 0 · · · 0 c


, (4.18)
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via a specially crafted pattern of spontaneous symmetry breaking, though their specific
ultraviolet completion will not be relevant to our story.13 They find that the largest
effective decay constant (4.11) is exponentially enhanced in the number of axions N ,

f2
eff = f2

(
1 + 8

c2

) 32N − 1
64 , (4.19)

and they give an elegant explanation for this anomalously large eigenvalue based on an
emergent translational symmetry. However, it will be useful to work with an alternative
explanation that will make it obvious that the clockwork mechanism cannot survive the
LWGC unless it relies on the previous section’s “multiple species” loophole.

Where does the anomalously large eigenvalue (4.19) come from? We can answer this
by first noting that the determinant ∣∣∣detQCW

k,a

∣∣∣ = |c| , (4.20)

is both independent of N and becomes unity when c = ±1. For these special values of c,
this charge matrix is a member of GL(N,Z). For general c, (4.18) thus parameterizes a
family of matrices “near” this element, in the sense that small changes in c still keep the
determinant (4.20) close to one.

Elements of GL(N,Z) are special in that their determinants, ±1, are anomalously
small. For example, if the charge matrix is instead a random N × N Bernoulli matrix,
whose entries are ±1, the log of the absolute value of its determinant is normally distributed
about log

√
(N − 1)! with variance log

√
N [55]. Clearly, large integer matrices with unit

determinant are very rare!
Since the mass matrix is essentially the square of the charge matrix QCW

k,a , we may
attribute its anomalously small eigenvalue to its similarly small determinant — since all
other eigenvalues range from (3−1)2 to (3+1)2, the smallest must be exponentially small to
ensure the determinant is close to unity. It is easy to generate examples of charge matrices
Qk,a that realize clockwork-style alignment — take one’s favorite element of GL(N,Z) and
perturb it in a way that does not appreciably disturb the determinant.14

Unfortunately, the clockwork mechanism clearly fails once we include a lattice of
charges.15 The fact that the charge matrix is very nearly an element of GL(N,Z) means
that we have expressed the charge lattice in an extremely misleading basis — there are
lattice sites that are much closer to the origin, and thus provide large corrections to the
Lagrangian, that we have ignored in our truncation to (4.9). As in figure 5, these ignored-
but-dominant contributions will drastically reduce the effective field range over which we
can inflate.

13See also appendix A for comments on the prospects for finding such a completion in string theory.
14It is not always the case that an element of GL(N,Z) has a single anomalously small eigenvalue, as

we can simply consider the inverse of (4.18) which has many small eigenvalues and a single enormous one.
It is thus more appropriate to say that these matrices typically have an enormous hierarchy between one
eigenvalue and the rest.

15One might hope that the field theory realization presented in [22] avoids these constraints, as it does not
rely on instantons to construct its potential. However, as we explain in appendix A, ultraviolet realizations of
this model that rely on extra-dimensional locality are susceptible to similar problems — there are important
desequestering effects that must be suppressed in order to realize (4.18).
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We can again circumvent this problem if we assume that the lattice sites generating
the clockwork alignment are members of a different, dominant species. Constraints similar
to (4.17) then follow if we assume that the LWGC is instead satisfied by a background lattice
of instantons, which again allows for super-Planckian effective field ranges. However, we
should again emphasize that we lack a compelling mechanism to enhance particular lattice
sites over others. Furthermore, even with such a mechanism, one would need to explain
why this type of iterated alignment — which comes at an enormous statistical price —
would be generated by the enhanced species.

4.4 Stretched N-flation

In section 3.2, we argued that isotropic N -flation cannot achieve parametrically super-
Planckian displacements while simultaneously satisfying the volume bound (3.16) required
by the LWGC. However, in section 3.3 we found that the volume bound could be circum-
vented by skewing the axion fundamental domain. Non-hypercubic fundamental domains
can simultaneously obey the volume bound and contain a direction that is parametrically
super-Planckian. That analysis came with a caveat, however, as the volume bound is only
meaningful when the continuum approximation applies, and there may be directions that
should not be Poisson resummed if the fundamental domain is extremely skewed. Properly
analyzing these cases requires technology [46] beyond the scope of this work. In this sec-
tion, we will go beyond the continuum approximation for a simple variation of N -flation,
which we term stretched N -flation, using the techniques of section 3.2, and we will show
that this model indeed produces parametrically super-Planckian directions consistent with
the LWGC.

As the name suggests, the general idea is to stretch isotropic N -flation to accommodate
both the volume bound and a parametrically super-Planckian direction. Isotropic N -
flation’s charge lattice is generated by

f −1 = 1/f , (4.21)

so that Q = f −1` = (f −1)ia`i is in the charge lattice Γ for all ` ∈ ZN , cf. section 2. The
stretched charge lattice is instead generated by

f −1 = f −12 1 + 1
N

( 1
f1
− 1
f2

)
d>d , (4.22)

where d = (1, 1, . . . , 1) is the isotropic charge lattice’s minimal length lattice vector in
the diagonal direction. Clearly, the stretched lattice (4.22) reduces to the isotropic charge
lattice when f1 = f2 = f . However, when f1 6= f2, the lattice is stretched along the
ē = f −1d direction, so that the new diagonal has length

|ē| =
√
Nf1 =

√
Nβf2 , (4.23)

while the volume of the unit cell,

|Γ| = f2
f1

1
fN2

= β

(
α

µ

)N
, (4.24)
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Figure 6. The charge lattice for stretched N -flation. One direction in field space is stretched
relative to the others, leading to a charge lattice that is slightly squashed in one direction. At large
N , this allows a parametrically-enhanced effective decay constant in the stretched direction while
satisfying the LWGC.

is more sensitive to f2 than to f1. Here we have defined the dimensionless parameters
α ≡ µ/f2 ' Mpl/f2 and β ≡ f2/f1. The new, stretched charge lattice is schematically
depicted in figure 6.

Using (4.23) and (4.24), the continuum limit harmonic variances (3.9) are

σ2
n '

2α
π
√
N

(
βπn

α
√
N

)N
2
KN

2

(2αβn√
N

)
, (4.25)

which simplify in the large-N limit and are, crucially, independent of β,

σ2
n '
√
π

αe

(
πN

2α2e

)N−2
2
, αβn� N

2
√

2
. (4.26)

We can thus heavily stretch the lattice along the diagonal by taking β � 1 while, at
the same time, keeping the harmonic variances under control, with σ2

n � 1, by fixing
α �

√
πN/(2e) to satisfy the volume bound. If we define α = α̂

√
N , we find that the

length of the diagonal is |ē| 'Mpl/(α̂β) and can be vastly super-Planckian,

|ē| �Mpl when β ≡ f2
f1
� 1 and α̂ ' Mpl√

Nf2
�
√
π

2e . (4.27)

If f2 is not sufficiently small, the volume of the fundamental domain will be too large and
dangerous higher harmonics will reduce the field range.

As alluded to in section 3.3, the continuum approximation can fail if there are some long
directions in the charge lattice Γ. We should thus worry that (4.25) does not accurately
capture the true magnitude of the LWGC-mandated higher harmonics, as the lattice is
stretched more and more. However, as in section 3.2, we can also compute the harmonic
variances by restricting the lattice sum to the instantons of smallest charge.16 As we saw

16We could also use the richer saddle-point approximation developed in appendix B. However, this does
not substantially change the result.
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in figure 2, this provides information beyond the continuum limit and is a useful estimate
of the terms in (3.9) that we have dropped.

Similar to (3.21), the harmonic variances can be written as

σ2
n =

∑
s

k(N,n)
s e−2α

√
s+(β2−1)n2/N , (4.28)

where k(N,n)
n denotes the number of lattice sites Q = f −1` that are a distance `2 = s away

from the origin in ZN . The smallest charge s = n instantons thus contribute

σ2
n ∼

(
N

n

)
e
−2α

√
n−(1−β2)n2

N , (n ≤ N) , (4.29)

and, in particular,
σ2
N ∼ e−2αβ

√
N . (4.30)

To keep this harmonic suppressed relative to the leading n = 1 term, we must have that

β & 1/
√
N , (4.31)

so that the field range is limited to

|ē| ' Mpl
α̂β

.
√
NMpl . (4.32)

Thus, unlike its isotropic sibling, stretched N -flation may realize a parametrically super-
Planckian field range consistent with the LWGC.

5 Conclusions

We have studied axion potentials resulting from summation over a lattice of instantons.
This allowed us to analyze the constraints that the (s)LWGC imposes on axion inflation.

We showed that if one requires that higher harmonics in the potential are suppressed,
the LWGC implies a bound on the volume of the fundamental domain of axion field space.
This volume bound was invisible in analyses that approximated the axion potential by a
sum over the instantons with the smallest charges: resummation was necessary to reveal the
constraint. Isotropic N -flation is incompatible with the volume bound, but we exhibited
a new model, stretched N -flation, that enjoys parametric enhancement of the axion field
space while remaining consistent with the volume bound, and more generally with the
LWGC. We also showed that a coherent sum of instantons with no relative phases could
produce a phenomenologically-viable potential.

We also examined the impact of the LWGC on the KNP alignment mechanism and the
clockwork mechanism. We showed that these constructions can support large-field inflation
while remaining compatible with the LWGC only in theories with at least two “species” of
instantons: then the LWGC can be fulfilled by a lattice of instantons that make sublead-
ing contributions to the potential, while a few instantons of a different species create an
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aligned sector that dominates in the potential. We pointed out that such structures ap-
pear statistically improbable in ensembles of effective theories, especially for the clockwork
mechanism.

In summary, the LWGC — the strongest conjectured version of the WGC — imposes
severe constraints on certain models of large-field axion inflation. Nevertheless, the LWGC
is not sufficient to rule out all effective theories of large-field axion inflation, even those
without monodromy.

Although a complete understanding of instanton effects in solutions of string theory
remains out of reach, certain broad properties of effective theories arising in string theory
may be universal. One of these is the existence of towers of super-extremal instantons,
which in some parameter ranges cannot be truncated to a small set of leading terms.
The results of this work are statements about effective field theories of this sort, and not
directly about string theory. An important task for the future is to determine whether the
models discussed here that evade the LWGC can be embedded in an ultraviolet-complete
framework like string theory.
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A Axion inflation in string theory

In the main text, we have analyzed the impact of the WGC on inflation in effective theories
of axions coupled to gravity. Although much of the evidence for the WGC rests on proper-
ties of presently-known solutions of string theory, thus far we have made little use of such
ultraviolet information. We have instead treated the WGC as an infrared test, specifically
as a (candidate) necessary condition for ultraviolet completion in quantum gravity, and we
have imposed no other restrictions on the infrared theory.

However, it is probable that string theory does impose additional restrictions, so that
the WGC alone is insufficient to ensure that an effective theory admits an ultraviolet
completion in string theory. To identify the classes of effective theories that actually arise
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in string theory, a practical approach is top-down construction, i.e., the enumeration of
solutions of string theory.

In this appendix we will describe the prospects for finding, in solutions of string theory,
the effective theories of large-field axion inflation that were discussed in the preceding
sections. We should mention at the outset that certain broad properties of axion effective
theories are strongly supported in string theory. In particular, the existence of many axions
with periodic scalar potentials generated by nonperturbative effects is a generic finding in,
for example, compactifications of type II string theories on Calabi-Yau orientifolds. The
more difficult question is whether the patterns of couplings and characteristic scales that
allow for large-field inflation arise in a computationally accessible regime.

At the time of writing there is no universally acclaimed de Sitter solution of string
theory, though there are scenarios that have withstood intense scrutiny, and within which
many workers expect that solutions can be found. Inflationary solutions are more difficult
to construct than de Sitter solutions, because of the nontrivial dependence on time. Our
remarks here should therefore be understood as characterizing properties of the effective
theories that can be derived from compactifications of string theory, rather than properties
of a (not yet constructed) ensemble of totally explicit inflationary solutions.

A.1 Enumeration of axion theories

We will focus our comments on axions arising from the Ramond-Ramond four-form C4
in flux compactifications of type IIB string theory on O3/O7 orientifolds of Calabi-Yau
threefolds, in the regime of weak coupling and large volume, because moduli stabilization
is comparatively well understood in this context. In principle, one could aim to enumerate
axion effective theories in this corner of string theory as follows. First, identify a tractable
category of compactification manifolds, such as orientifolds of complete intersection Calabi-
Yaus, or orientifolds of Calabi-Yau hypersurfaces in toric varieties [56]. Select one such
manifold, X, and compute the triple intersection numbers and the Kähler cone of X. At a
point in Kähler moduli space that lies well inside the Kähler cone, the kinetic matrix Kij

for C4 axions is determined by the leading-order Kähler potential, which involves only the
triple intersection numbers and the Kähler moduli vevs, and so the axion kinetic couplings
are fully specified.

Next, to compute the axion potential, one needs to identify four-cycles in X that have
the correct number of fermion zero modes to support Euclidean D3-brane contributions to
the superpotential [57] or the Kähler potential. At present only a small subset of superpo-
tential terms are well-understood. Moreover, the axion charges of possible superpotential
terms are constrained to lie inside a subregion of the charge space, corresponding to the
cone of effective divisors in H4(X,Z), and so even a complete understanding of the super-
potential would not suffice to test criteria such as the LWGC that involve the full charge
lattice. Charges outside the cone of effective divisors could be carried by non-BPS Eu-
clidean D3-branes wrapping non-calibrated four-cycles, and these could contribute to the
Kähler potential, or to higher F-terms [58]. However, hardly anything is known about such
non-BPS instantons — see for example [59].
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Even if one could compute or model all the significant instanton contributions to
the effective action, a remaining limitation is that the properties of the axion potential
vary from one compactification to another, and within a single compactification they vary
from point to point in the moduli space. There is no canonical measure for sampling the
resulting array of effective theories. For this reason it is more feasible to investigate which
axion theories can arise in string compactifications than it is to discuss the relative rarity
of different classes of theories. Even for the broadest properties, such as the number of
axions, few robust statements about relative likelihood are now available.

A.1.1 Hierarchical axion couplings

One general finding [60] is that within the region of control of the α′ expansion, there are
large hierarchies in the sizes of cycles in X. This phenomenon can be traced to the fact
that the Kähler cone of X typically has a small opening angle when h1,1(X) � 1. The
hierarchies in cycle sizes lead to hierarchies in the kinetic term and, more dramatically,
in the magnitudes of nonperturbative superpotential terms corresponding to Euclidean
D3-branes wrapping different cycles.

One might hope that for sufficiently large h1,1, matrices such as the kinetic matrix Kij

can be well-approximated as elements of suitable random matrix ensembles, such as the
Wishart and inverse-Wishart models examined in section 3.3. The utility of such modeling
depends on how large h1,1 needs to be for a random matrix description to be accurate,
and on whether the random matrix ensemble is simple enough to be well-understood. A
rather optimistic guess would be that Gaussian (i.e., Wigner) and Wishart ensembles,
and close relatives, could give useful models starting around h1,1 ∼ 10–20. The reality
is more challenging: correlations in the underlying geometric structures, and heavy-tailed
eigenvalue distributions [61] stemming from the hierarchy in cycle sizes noted above, have
precluded precise matches to simple random matrix models, at least in the regime h1,1(X) .
30 that has been well-studied. It remains possible that universality will take hold when
the number of axions is much larger, of order hundreds.

A.1.2 Alignment

As noted above, a complete accounting of all instanton terms in N = 1 compactifications is
a distant goal, so any attempts to exhibit alignment or clockwork models in string theory
are necessarily preliminary.

Alignment in compactifications on Calabi-Yau hypersurfaces with h1,1 ≤ 4 was con-
sidered in [62], via a simplified model of the charge matrix Qij . No significant alignment
was found. For larger h1,1 the charge matrix can in principle support a large degree of
alignment, but at the same time the typical compactification volume necessary for control
of the α′ expansion grows as a power of h1,1. The resulting reduction of the scale of the
kinetic term, and so of the axion periodicities in Planck units, often erases any gains due
to alignment.

While it is possible that super-Planckian field ranges due to KNP alignment can occur
in Calabi-Yau hypersurfaces with h1,1 � 1, this appears unlikely to be a common feature.
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A.1.3 Clockwork and sequestering

Clockwork structures seem contrived from the viewpoint of the axion charge matrices seen
in Calabi-Yau compactifications of string theory. However, one of the original arguments
in favor of clockwork is largely bottom-up, relying on locality in an extra dimension [22],
and one might be tempted to expect an ultraviolet completion in string theory, for example
involving an array of D-branes spaced out around an extra dimension.

We would like to point out that, even setting aside the particular symmetry struc-
tures required in [22], it is not clear that the requisite degree of sequestering of sectors is
possible in a string compactification. The difficulty is that unwanted couplings between
spatially-separated sectors can be induced by light fields propagating in the bulk of the
extra dimension(s). If all charged fields in the bulk had masses at least as large as the
Kaluza-Klein scale, then Yukawa suppression of their propagators would ensure adequate
sequestering, as proposed in [63]. This sort of extra-dimensional locality is a critical as-
sumption made in [22], and the question now is whether it arises in string theory.

In the context of the mediation of supersymmetry breaking, sequestering of one sector
from another via separation along an extra dimension has not been convincingly established
in string theory. The essential difficulty is that string compactifications involve light moduli,
as well as light states of stretched open strings, that are not heavy enough to be neglected.
In particular, scenarios based on warped sequestering [64], which is the gravity dual of
conformal sequestering [65], have been shown [66, 67] to be spoiled by moduli-mediated
effects. This finding is not surprising from the viewpoint of inflationary model-building: it
is an incarnation of the η problem.17

We conclude that the proposed mechanisms for realizing clockwork in string theory
face significant obstacles. While we have no grounds for suggesting that clockwork cannot
arise in string theory, we do expect such models to be rare at best.

B Saddle point approximation for isotropic N-flation

In this appendix, we supplement the analysis of section 3.2 by computing the variance of the
n-th harmonic in an isotropic N -flation model by means of a saddle point approximation.
The variance takes the form

σ2
n =

∑
s

k(N,n)
s e−2α

√
s , (B.1)

where k(N,n)
s is a multiplicity factor that counts the number of lattice sites satisfying:∑

i

`i = n ,
∑
i

`2i = s . (B.2)

Note that
s± n =

∑
i

`i(`i ± 1) ∈ 2Z>0 , (B.3)

so s− |n| is non-negative and even.
17See chapter 4 of [68] for a summary.
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The multiplicity factor that appears is a sum of multinomial coefficients:

k(N,n)
s =

∑
{ra}

N !∏
a ra!

, (B.4)

where ra ≡ |{i|`i = a}| denotes the number of a’s appearing in ~̀, and the sum is restricted
by the conditions

ra > 0 ,
∑
a

ra = N ,
∑
a

ara = n ,
∑
a

a2ra = s . (B.5)

We estimate k(N,n)
s by finding the saddle point of this multidimensional sum. Let r̂a denote

the location of the saddle. We then have:
N !∏
a ra!

= e−S , S = Ŝ+
∑
a

(ra− r̂a)ψ(r̂a + 1) + 1
2
∑
a

(ra− r̂a)2ψ(1)(r̂a + 1) + . . . (B.6)

Here the deviations δa ≡ ra − r̂a are constrained by
∑
a a

pδa = 0 for p = 0, 1, 2. The
saddle-point conditions

∑
a δaψ(r̂a + 1) = 0 have the solution:

ψ(r̂a + 1) = logM + a logw + a2 log q , (B.7)

where the constants M , w and q will determine N,n and s.
Having found the saddle point, we now consider the integral near the saddle point.

We have
S = Ŝ + 1

2
∑
a

δ2
aψ

(1)(r̂a + 1) + . . . (B.8)

where the δa are constrained by
∑
a a

pδa = 0 for p = 0, 1, 2, as above. To evaluate the deter-
minant in the Gaussian integral, we start be considering the simpler problem of evaluating
the determinant for

S = Ŝ + 1
2
∑
a

∆2
aψ

(1)(r̂a + 1) + . . . (B.9)

where the ∆a are unconstrained. From this, we obtain the rough estimate:

∑
{ra}

N !∏
a ra!

∼ N !
∏
a

√
2π

ψ(1)(r̂a + 1)
· 1

Γ(r̂a + 1) . (B.10)

However, this is incorrect because we have integrated over three extra variables. To account
for this, we make the change of variables ∆a → ub,

∆a =
∑
|b|61

ubA
b
a +

∑
|b|>1

ubB
b
a , (B.11)

where

Aba = 1
ψ(1)(r̂a + 1)

2∑
p=0

λbpa
p ,

Bb
−1,0,1 =

{
−b(b− 1)

2 , b2 − 1,−b(b+ 1)
2

}
, (B.12)

Bb
b = 1 . (B.13)
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Here λbp is chosen such that ∑
a

Abaa
p = bp , (p = 0, 1, 2) , (B.14)

This ensures that the Jacobian for the change of coordinates is one. In particular, changing
variables from ua to ûa = ∆a for |a| > 1 (keeping ua = ûa for |a| 6 1) gives a triangular
Jacobian matrix with ones on the diagonal. We have

∆a =
∑
|b|61

ubÂ
b
a +

∑
|b|>1

ûbB
b
a , (B.15)

where Âba is now a 3× 3 matrix, which is fixed by the observation that∑
a

Âbaa
p =

∑
a

Abaa
p = bp , (p = 0, 1, 2) , (B.16)

since
∑
aB

b
aa
p = 0 for p = 0, 1, 2 by construction. This implies that Âba = δba, hence the

Jacobian for the change between ∆a and ûa is again triangular with ones on the diagonal.
The constraints

∑
a a

pδa = 0 for p = 0, 1, 2 on the physical integration variables are
equivalent to ua = 0 for a = 0,±1. Moreover, we have

S = Ŝ+ 1
2
∑
a

ψ(1)(r̂a+1)
∑

|b|,|b′|61
AbaA

b′
aubub′+

1
2
∑
a

ψ(1)(r̂a+1)
∑

|b|,|b′|>1
Bb
aB

b′
aubub′ , (B.17)

since the cross terms vanish by construction. Thus, the correct result can be obtained from
the estimate (B.10) by dividing by the Gaussian integral over the extra variables u0,±1:

∑
{ra}

N !∏
a ra!

' N !
√

detAbb′

(2π)3

∏
a

√
2π

ψ(1)(r̂a + 1)
· 1

Γ(r̂a + 1) , (B.18)

where Abb′ is the 3× 3 matrix

Abb
′ =

∑
a

AbaA
b′
aψ

(1)(r̂a + 1) . (B.19)

To evaluate this determinant, note that the constraint (B.14) can be rewritten as:

2∑
p=0

λbpβp+r = br , (r = 0, 1, 2) , (B.20)

where
βp ≡

∑
a

ap

ψ(1)(r̂a + 1)
. (B.21)

In this notation, we have as well

Abb
′ =

2∑
p,p′=0

λbpλ
b′
p′βp+p′ . (B.22)
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Thus,
detA =

(
detλbp

)2
(detβp+p′) = 4

detβp+p′
, (B.23)

where indices b run over −1, 0, 1, p, p′ run over 0, 1, 2, and we use det bp = 2.
To further simplify the above result, we use Stirling’s approximation for r̂a � 1.

We have
ψ(r̂a + 1) ' log

[
r̂a + 1

2 +O

( 1
r̂a

)]
, (B.24)

so that
r̂a 'Mqa

2
wa − 1

2 . (B.25)

This implies in particular that

N '
′∑
a

[
Mqa

2
wa − 1

2

]
, n '

′∑
a

a

[
Mqa

2
wa − 1

2

]
, s '

′∑
a

a2
[
Mqa

2
wa − 1

2

]
.

(B.26)
Here we indicate with a prime that these sums must be cut off. The same cutoff should
be used for (B.18) and (B.21) above. A reasonable cutoff is r̂a & 0 (where we assume that
|q| < 1 to make the result sensible); as long as the same cutoff is used for each sum/product,
the result should not greatly depend on the exact choice of cutoff.

We likewise have:

ψ(1)(r̂a + 1) ' 1
r̂a + 1

2
' 1
Mqa2wa

,

Γ(r̂a + 1) '
√

2π
(
r̂a + 1

2

)r̂a+ 1
2
e−(r̂a+ 1

2) '
√

2π(Mqa
2
wa)Mqa

2
wae−Mqa

2
wa . (B.27)

Working everything out, we find:

k(N,n)
s ' NN+ 1

2 e
amax−amin+1

2

πMNqswn
√

det06p,p′62 βp+p′
(B.28)

where we apply N ! '
√

2πNNNe−N .
The explicit dependence on M and amax − amin can be eliminated as follows. Define

θp ≡ βp/M =
′∑
a

apqa
2
wa . (B.29)

We then have,

N 'Mθ0 −
amax − amin + 1

2 =⇒ N

M
' θ0

1 + amax−amin+1
2N

. (B.30)

Provided that amax − amin + 1�
√
N , (B.28) simplifies to

k(N,n)
s ' θN0

πNqswn

[
det

06p,p′62

θp+p′

θ0

]−1/2
. (B.31)
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The above saddle point calculation can be simplified if we drop all but the leading
terms in the N → ∞ limit with q and w fixed. This amounts to removing the cutoff
and the −1/2 constant term from the sums in (B.26) and ignoring the term in brackets
in (B.31). Thus we find

1
N

log k(N,n)
s ' log θ(w; q)− σ log q − ν logw +O

( logN
N

)
,

σ ≡ s

N
' θ(2)(w; q)

θ(w; q) +O

(
(logN)3/2

N

)
,

ν ≡ n

N
' θ(1)(w; q)

θ(w; q) +O

( logN
N

)
, (B.32)

where we used acut = O
(√

logN
)
, as above, and

θ(p)(w; q) ≡
∞∑

a=−∞
apqa

2
wa , (B.33)

with θ(w; q) the Jacobi theta function and θ(p)(w; q) its derivatives.
Note that (B.32) takes the form of a thermodynamic system. In particular, note that

σ = ∂

∂ log q log θ(w; q) , ν = ∂

∂ logw log θ(w; q) . (B.34)

Thus, if we treat N log θ(w; q) as a thermodynamic potential with the natural variables
logw and log q, then log k(N,n)

s is the related potential with conjugate natural variables
s = Nσ and n = Nν, related by the usual Legendre transform:

log k(N,n)
s = N log θ(w; q)− s log q − n logw . (B.35)

In this way, we can think of log q and logw as chemical potentials associated to s and n,
with associated thermodynamic potential N log θ(w; q).18

We consider two special limits. In the limit qw±1 � 1, we can approximate:

σ ' q(w + w−1)
1 + q(w + w−1) , ν ' q(w − w−1)

1 + q(w + w−1) , (B.36)

so that

w '
√
σ + ν

σ − ν
, q ' 1

1− σ

√
σ2 − ν2

4 . (B.37)

Using this, we obtain:

1
N

log k(N,n)
s ' −σ + ν

2 log σ + ν

2 −σ − ν2 log σ − ν2 −(1−σ) log(1−σ)+O(σ4 log σ) . (B.38)

18We can also treatN and logM as thermodynamically conjugate variables, as follows. Applying Stirling’s
approximation, we have log k

(N,n)
s
N ! = N − N logM − s log q − n logw. The potential F = N = Mθ(w; q)

satisfies ∂F
∂ logM = N , ∂F

∂ logw = n, and ∂F
∂ log q = s, so log k

(N,n)
s
N ! is the Legendre transform, similar to

before. Moreover, F −N logM = N log θ − logN !, so switching variables from M to N gives us back the
thermodynamic potential N log θ considered above, up to a q and w independent additive factor.
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This is exactly what one obtains from the approximation in (3.26):

k(N,n)
s ∼

 N
s+n

2 , s−n2 , N − s

 , (B.39)

which comes from counting instantons with `a ∈ {0,±1}.
Let us instead consider the limit qw±1 → 1. In this case, it is appropriate to apply the

S-duality transformation:

ϑ(ζ; τ) = e−
πiζ2
τ

√
−iτ

ϑ

(
ζ

τ
,−1

τ

)
, (B.40)

where we write ϑ(ζ; τ) = θ(e2πiζ ; eπiτ ). Let us redefine t = −iτ and z = −iζ, so that

ϑ(iz; it) = e
πz2
t

√
t
ϑ

(
z

t
,
i

t

)
. (B.41)

We have ϑ(p)(ζ; τ) ≡ θ(p)(e2πiζ ; eπiτ ) = 1
(2πi)p∂

p
ζϑ(ζ; τ), so that

ϑ(1)(iz, it) = −e
πz2
t

t3/2

[
zϑ

(
z

t
,
i

t

)
+ iϑ(1)

(
z

t
,
i

t

)]
,

ϑ(2)(iz, it) = e
πz2
t

t5/2

[
z2ϑ

(
z

t
,
i

t

)
+ 2izϑ(1)

(
z

t
,
i

t

)
+ t

2πϑ
(
z

t
,
i

t

)
− ϑ(2)

(
z

t
,
i

t

)]
. (B.42)

From this, we obtain:

σ ' 1
t2

z2 + t

2π + 2iz
ϑ(1)

(
z
t ,
i
t

)
ϑ
(
z
t ,
i
t

) − ϑ(2)
(
z
t ,
i
t

)
ϑ
(
z
t ,
i
t

)
 , ν ' −1

t

z + i
ϑ(1)

(
z
t ,
i
t

)
ϑ
(
z
t ,
i
t

)
 . (B.43)

We have

ϑ(p)
(
z

t
,
i

t

)
' δp,0 + 2e−

π
t


cos

(
2πz
t

)
p even

− sin
(

2πz
t

)
p odd

. (B.44)

Because of the leading e−
π
t , in the t→ 0 limit we can approximate:

σ '
(
z

t

)2
+ 1

2πt , ν ' −z
t
. (B.45)

Hence
t ' 1

2π(σ − ν2) , z ' − ν

2π(σ − ν2) . (B.46)

We then find:

1
N

log k(N,n)
s ' 1

2 log t−1 + πz2

t
+ πσt+ 2πνz ' 1

2 log[2πe(σ − ν2)]

' 1
2 log

[
2πe
N

(
s− n2

N

)]
, (B.47)

which matches the continuum limit (3.25).
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