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a b s t r a c t 

A dataset of chemical-gene interactions was created by ex- 

tracting data from the Comparative Toxicogenomics Database 

(CTD) with the following filtering criteria: data was ex- 

tracted only from experiments that used human, rat, or 

mouse cells/tissues and used high-throughput approaches for 

gene expression analysis. Genes not present in genomes of 

all three species were filtered out. The resulting dataset in- 

cluded 591,084 chemical-gene interaction. All chemical com- 

pounds in the database were annotated for their major uses. 

For every gene in the database number of chemical-gene in- 

teractions was calculated and used as a metric of gene sensi- 

tivity to a variety of chemical exposures. The lists of genes 

with corresponding numbers of chemical-gene interactions 

were used in gene-set enrichment analysis (GSEA) to iden- 

tify potential sensitivity to chemical exposures of molecu- 

lar pathways in Hallmark, KEGG and Reactome collections. 

Thus, data presented here represent unbiased and search- 

able datasets of sensitivity of genes and molecular pathways 

to a broad range of chemical exposures. As such the data 

can be used for a diverse range of toxicological and regula- 

tory applications. Approach for the identification of molecu- 
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lar mechanisms sensitive to chemical exposures may inform 

regulatory toxicology about best toxicity testing strategies. 

Analysis of sensitivity of genes and molecular pathways to 

chemical exposures based on these datasets was published 

in Chemosphere (Suvorov et al., 2021) [1] . 

© 2020 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

Specifications Table 

Subject Toxicology 

Specific subject area Computational toxicology 

Type of data Table 

Graph 

How data were 

acquired 

Data on chemical-gene interactions were extracted from the Comparative 

Toxicogenomics Database (CTD) and processed using MS Excel and Gene Set 

Enrichment Analysis (GSEA) 

Data format Raw and analysed 

Parameters for data 

collection 

Primary source of the data (raw data) for our study is CTD 

( http://ctdbase.org/ ). To identify in an unbiased manner molecular mechanisms 

sensitive to chemical exposures we extracted from the CTD data on 

chemical-gene interactions coming from high-throughput transcriptomic 

studies only. Additionally, we restricted our data to only experiments with 

three organisms (humans, mice and rats) - the major sources of toxicological 

information to assess risks of toxicity for humans. 

Description of data 

collection 

The raw data for this study is the CTD ( http://ctdbase.org/ ). CTD team have 

extracted from the CTD only data with our filtering criteria. Further, genes not 

present in genomes of all three species (Mus musculus, Rattus norvegicus and 

Homo sapience) were filtered out. Chemicals were manually annotated for 

their major uses. For annotation, search was done in Wikipedia, PubChem and 

PubMed. The resulting dataset was used to identify genes, molecular pathways 

and disease categories sensitive to chemical exposures using bioinformatics 

tools. 

Data source location Primary data source (raw data): Comparative Toxicogenomics Database CTD 

( http://ctdbase.org/ ) 

Institution: North Carolina State University 

City/Town/Region: Raleigh, NC Country: USA 

Data accessibility Repository name: Mendeley Data 

Data identification number: 10.17632/65fcympd2j.2 

Direct URL to data: https://data.mendeley.com/datasets/65fcympd2j/2 

Related research article A. Suvorov, V. Salemme, J. McGaunn, A. Poluyanoff, M. Teffera, S. Amir, 2020, 

Unbiased Approach for the Identification of Molecular Mechanisms Sensitive to 

Chemical Exposures, Chemosphere, 

https://doi.org/10.1016/j.chemosphere.2020.128362 

Value of the Data 

• These data will be useful for the identification of toxicity testing strategies based on the 

understanding of toxicity pathways and for the understanding of contribution of chemical 

exposures to different health conditions. 

• These data will be beneficial for a broad range of toxicologists, for specialists in assessment 

of health risks associated with chemical exposures, and for a broad range of medical special- 

ists seeking for the understanding of the role of chemical exposures in a variety of health 

conditions. 

• Our datasets provide information connecting chemical exposures with molecular pathways, 

as such they can be used to generate new hypotheses and to design new experiments to 

establish causative links between chemical environment and health. 

http://creativecommons.org/licenses/by/4.0/
http://ctdbase.org/
http://ctdbase.org/
http://ctdbase.org/
https://data.mendeley.com/datasets/65fcympd2j/2
https://doi.org/10.1016/j.chemosphere.2020.128362
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• These data may be used to develop new priorities in the understanding of the role of chem- 

ical exposures in global public health. 

1. Data Description 

GSEA was designed for the analysis of transcriptomic data, where changes in gene expression 

following treatment go in both directions (increase and decrease in expression). The list of genes 

is ranked in accordance with expression change values, and usually comparable number of genes 

have negative and positive values of differential expression. In our study, we ranked all 17,338 

genes in accordance with their chemical-gene interaction numbers – figure A. All these values 

are positive. To make this dataset more suitable for GSEA the same number was subtracted from 

values of chemical-gene interactions for every gene, to achieve equal negative and positive area 

under the curve for these values distribution – figure B. 

Dataset: Annotated chemical-gene interactions.xlsx (Mendeley Data, DOI: 

10.17632/65fcympd2j.1 [2] ) 

The data on chemical-gene interactions obtained from high-throughput toxicological genomic 

experiments with human, mouse, or rat cells and tissues was extracted from the Comparative 

Toxicogenomic Database (CTD, http://ctdbase.org/ ) on 08.24.2018. Further, we removed from the 

database 11,204 genes that are not present in the genome of all 3 species (human, rat and 

mouse). At the next step chemical compounds were annotated for major uses with informa- 

tion from Wikipedia, PubChem, and PubMed. Based on textual annotation every compound was 

assigned one to three annotation terms out of the following list: pharmaceutical, recreational 

drug, research, warfare, endobiotic, agricultural, cosmetics, environment, food components, in- 

dustrial, and pollutant. The resulting dataset includes 591,084 individual chemical-gene interac- 

tions. Each line in the dataset contains information about one unique chemical-gene interaction 

and includes the following columns: chemical term (chemical name), gene term (gene name), 

action direction (“+ ” – expression increase in response to exposure, “−” – expression decrease 

in response to exposure, “1” – non-specified change in expression in response to exposure), tax- 

onomy (Rattus, Homo or Mus), PMID (PMID number of the original source of data), use1, use2 

and use3 (up to 3 annotation terms related to major uses of the chemical compound), use de- 

scription (textual description of the major uses of the chemical compound). 

Dataset: Number of chemical-gene interactions per gene.xlsx (Mendeley Data, DOI: 

10.17632/65fcympd2j.1 [2] ) 

The dataset created at the previous step was used to determine number of chemical-gene 

interactions for every gene, including total number as well as number of activating and sup- 

pressive chemical-gene interactions. We hypothesize, that the number of chemical gene interac- 

tions can be used as a measure of the gene sensitivity to chemical exposures. Each line in the 

dataset contains information about one unique gene and includes the following columns: gene 

(gene name), suppressive (total number of suppressive chemical-gene interactions), activating 

(total number of activating chemical-gene interactions), not specified (total number of chemical- 

gene interactions with non-specified direction of gene expression change), total (total number of 

chemical-gene interactions). 

Dataset: Enrichment of molecular pathways with genes sensitive to chemical expo- 

sures.xlsx (Mendeley Data, DOI: 10.17632/65fcympd2j.1 [2] ) 

The list of genes with the total number of chemical-gene interactions for every gene was 

used as an input for the Gene-Set Enrichment Analysis (GSEA, https://www.gsea-msigdb.org/ 

gsea/index.jsp ) against Hallmark, KEGG, and Reactome datasets, to identify molecular pathways 

highly enriched with genes sensitive to chemical exposures. We suggest, that the normalized 

enrichment score (NES) for every enriched pathway is a measure of the pathway’s sensitivity to 

chemical exposures. Each line in the dataset contains information about one unique molecular 

pathway/biological category and includes the following columns: collection of gene sets (Hall- 

mark, KEGG or Reactome), gene set name (name of a pathway or biological category, gene set 

http://ctdbase.org/
https://www.gsea-msigdb.org/gsea/index.jsp
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size (number of genes in the gene set), enrichment score, normalised enrichment score, nominal 

p-value, and FDR q-value. 

2. Experimental Design, Materials and Methods 

A dataset was created by extracting data on chemical-gene interactions from the CTD [3] on 

08.24.2018 using the following filtering criteria. First, data was extracted only from experiments 

that used high-throughput approaches for gene expression analysis (microarray, RNA-seq). In 

addition, we selected data only from experiments that used human, rat, or mouse cells or tis- 

sues for gene expression analysis in in vitro and in vivo studies. Further, we removed from the 

database 11,204 genes that are not present in genome of all 3 species (human, rat and mouse). 

To identify these genes we first constructed lists of genes for which gene/species combinations 

in the database are represented by only one or two species, but not all three. Further, using 

Panther [4] , we mapped these lists to genomes of species not represented in gene/species pairs 

in the database to test if this pair was missing due to the insensitivity of the gene to chemical 

exposures in a particular species, or if this pair was missing due to the fact that this gene is not 

present in the genome of the species. The resulting database included 591,084 entries, each rep- 

resenting one chemical-gene interaction (significant change in expression of a gene in response 

to exposure to a chemical compound) reported in a published study. 

At the next step, all chemical compounds in the database were manually annotated to iden- 

tify their major uses. To obtain this information, a search was conducted using the name of the 

chemical as the keyword in Wikipedia, PubChem, and PubMed. Based on the obtained descrip- 

tive annotation, every compound was categorized in accordance with the following terms: phar- 

maceutical, recreational drug, research, warfare, endobiotic, agricultural, cosmetics, environment, 

food components, industrial, and pollutant. The term “pharmaceutical” was used for all drugs, 

including prescription, over the counter, and traditional medicines. Chemicals that are currently 

going through preclinical and clinical trials were also categorized as “pharmaceutical”. The term 

“research” was used for chemicals which are mainly used for research purposes, such as com- 

ponents of molecular biology or analytical chemistry protocols. Some of these chemicals, such 

as protein kinase inhibitors, for example, have been or are currently tested as candidate phar- 

maceutical drugs. Given that information about preclinical testing is not always readily avail- 

able [5] , we assigned both “pharmaceutical” and “research” annotation terms to them. The term 

“recreational drug” was used for compounds currently used as recreational drugs, their major 

metabolites, and compounds that are not currently used as recreational drugs but which pos- 

sess these properties, making them potential recreational drugs. The term “warfare” was used 

for compounds used as chemical weapons. The “endobiotic” annotation term was assigned to 

molecules synthesized in mammalian organisms as normal components of healthy physiology, 

such as cholesterol, hormones, bile acids, and others. The term “agricultural” was used for fer- 

tilizers and pesticides. The term “cosmetics” was used for a broad range of chemical compounds 

used in cosmetics and perfumes. The annotation term “environment” was used for oxygen and 

ozone. The term “food component” was used for a broad range of compounds that can be found 

in food, such as dietary nutrients, food additives, byproducts of food processing, and others. 

The term “industrial” was used to annotate a broad range of chemicals used as intermediates 

or final products in a variety of industrial processes, applications, and final products resulting 

from industrial process. Finally, the term “pollutant” was used for these chemicals which do not 

have current uses but are produced by natural processes and human activity such as products 

of incomplete combustion of organic material, air and water pollutants, toxins produced by algal 

blooms and similar. For chemicals that fell into multiple categories, we used up to three annota- 

tion terms reflecting the most common uses. All authors of the manuscript annotated an equal 

number of chemicals, and all annotations were then checked by the corresponding author to 

ensure uniformity of annotation approaches. 

For every gene in a dataset, we calculated the total number of chemical-gene interactions. 

Each individual interaction used for this calculation was one line in the dataset and represented 
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Fig. 1. Explanation of data preparation for GSEA analysis. 

a unique combination of the original study, biological model, and chemical compound. Simi- 

larly, for each gene, we calculated the total number of activating (gene expression increases in 

response to exposure) and suppressive (gene expression decreases in response to exposure) in- 

teractions. 

The lists of all genes with their respective chemical-gene interactions numbers were further 

used for gene set enrichment analysis (GSEA). This approach is particularly effective for the iden- 

tification of biologically significant changes in activity of the whole pathway or other biological 

category, as its enrichment function stems from all, even small, changes in multiple members of 

a gene set (pathway) [6] . The details of the method and statistical approaches used by GSEA are 

described elsewhere [ 7 , 8 ]. In short, an enrichment score (ES) of a gene-set (group of genes from 

the same biological category) is calculated to reflect the degree to which the gene-set is over- 

represented at the top or bottom of the entire ranked list of genes. Thus, GSEA uses as an input 

the entire available list of genes, rather than a shortlist produced by arbitrary thresholds. The ES 

is calculated by walking down the gene list and increasing a running-sum statistic when a gene 

from the gene-set is encountered and decreasing it when genes not in the gene-set are encoun- 

tered. The final ES is the maximum deviation from zero encountered in the random walk. ES 

are further normalized to account for the size of the gene-set. Resulting normalized enrichment 

scores (NES) can be compared across many gene-sets regardless their size. Originally, GSEA was 

developed to characterize the cumulative shift of all genes in a particular pathway towards an 

increase or decrease of expression. As such, it was designed for an input in which values of gene 

expression changes have semi-symmetrical distribution, where comparable numbers of genes are 

up- and downregulated. To prepare datasets suitable for GSEA, we subtracted the same number 

from the values of chemical-gene interactions for every gene, to achieve an equal negative and 

positive area under the curve for these values ( Fig. 1 ). The resulting gene lists were uploaded 

to GSEA and were analyzed against three independent open-access databases of pathways: Hall- 

mark [9] , Reactome [ 10 , 11 ] and KEGG [12] . The following stringent criteria were used to identify 

molecular mechanisms most and least sensitive to chemical exposures: normalized enrichment 

score (NES) ≥ 1.9 or ≤ −1.9 and FDR q ≤ 0.05. Interpretation of GSEA plots is shown in Fig. 2 . 
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Fig. 2. GSEA plot interpretation (based on example of enriched ‘PPAR signalling pathway’ from KEGG collection of 

datasets): 1 − running enrichment score for the gene set; 2 − vertical lines show where the members of the gene set 

appear in the ranked list of genes; 3 and 4 – list of genes ranked based on values for chemical-gene interactions from 

the gene with highest values of interactions (left of the plot) to gene with smallest number of interactions (right of the 

plot). Number of interactions is shown in the heat-bar (3) and in the bar plot (4). Values of chemical-gene interactions 

were adjusted to achieve equal negative and positive area under the curve for these values distribution – see Fig. 1 . 

Analysis of sensitivity of genes and molecular pathways based on the datasets presented in the 

current paper was published recently [1] . 
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