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ABSTRACT 

IMPROVING UNDERSTANDING OF FOREST COMMUNITIES AND 
BIODIVERSITY WITH 

MULTI-DIMENSIONAL LANDSCAPE GRADIENTS 
 

SEPTEMBER 2020 
 

BENJAMIN J. PADILLA, B.S., GORDON COLLEGE 
 

M.S., THE OHIO STATE UNIVERSITY 
 

M.Ed., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by: Dr. Chris Sutherland 
 
 

 This dissertation was motivated by a desire to understand the effects of habitat 

degradation and urbanization on a single species in a single study system in western 

Massachusetts, the red-backed salamander (Plethodon cinereus), but along the way 

unexpected conceptual and methodological hurdles caused the work to grow into a multi-

species, multi-region, and multi-scale endeavor. As I designed my dissertation research 

and began considering approaches to quantifying heterogeneity and human influence in 

my study landscape, I recognized inconsistencies in methods used to define and quantify 

landscape metrics, particularly in urban systems. To investigate further, I conducted a 

critical review of the literature to describe the current practices of landscape 

quantification in urban systems and to identify any patterns or trends. The review 

highlighted the fact that variability among definitions of ‘urban’ stems from inconsistent 

decision making around a set of core principles in landscape ecology, and I used these to 

establish a standardizing framework for landscape gradient quantification. I then applied 

this framework to 10 ecologically distinct metro-regions across the United States and 
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revealed a consistent pair of gradients that offer an updated multi-dimensional 

perspective of landscape heterogeneity that intuitively advances the one-dimension 

perspective dominating exiting approaches to studying ecological responses across 

gradients of human influence. Having developed a framework for gradient definition, and 

extending the single-axis lens through which ecological enquiry is made, I applied these 

approaches to first investigate environmental drivers of avian community size and 

structure, and second, to critically evaluate the validity of the red-backed salamander as 

an indicator for biodiversity in human-dominated landscapes. 

 Inconsistencies in definitions of “urbanization” are commonly attributed to the 

lack of general theory describing ecosystem function in urban landscapes. In Chapter 1, I 

review the literature on urban landscape quantification to identify patterns and best 

practices that could improve the process by which urban landscape gradients are defined 

and quantified. This review of 250 research articles revealed striking methodological 

consistency that aligns with the best practices of gradient definition in landscape ecology, 

these are: (1) selection of features to represent the urban landscape, (2) identification of 

associated spatial data to characterize these features, and (3) selection of an ecologically 

appropriate spatial scale. However, the review also highlighted apparent inconsistencies 

in urban gradient definition that arise from ad-hoc and ambiguous decision making at 

each of these stages, and demonstrated that ecologically justified and transparent decision 

making can standardize gradient definition and contribute to improved understanding of 

ecosystem processes in human-dominated landscapes (Padilla & Sutherland, 2019).

 In Chapter 2, I address the lack of standardized heterogeneity metrics that can be 

used to jointly measure multi-regional ecological responses that has hindered the 
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generalization of urban stressors on ecological communities. I coupled the transparent 

methodological framework developed in Chapter 1 with a multivariate statistical analysis 

of land use data to quantify landscape structure in 10 medium sized cities representing the 

dominant ecoregions of the United States to determine whether consistent and 

biologically meaningful landscape metrics emerge across spatial domains. This work 

revealed two dominant axes of spatial variation that are intuitively consistent with the 

characteristics of human-dominated landscape mosaics but are overlooked when defining 

landscapes along a single axis of variation. In the context of representative landscapes in 

the United States, these gradients describe variation in the characteristic physical (soft to 

hard) and natural (brown to green) structure of landscapes influences by human activity. 

To develop the ecological relevance of the dual-axis landscape definition, I explored the 

response of American robin (Turdus migratorius) occupancy to these gradients across the 

10 cities. This case study demonstrated that robins generally respond similarly and 

strongly to both landscape axes and that a multi-dimensional perspective reveals 

ecological nuance that may otherwise be overlooked. 

 In Chapter 3, I apply the concepts developed in the previous two chapters to my 

study system in western Massachusetts. I tested two leading theories regarding how 

habitat fragmentation in human-dominated landscapes impacts species communities: 

island biogeography theory, and spatial heterogeneity. In the case of island biogeography, 

I expected species diversity to linearly decline as the degree of fragmentation and human-

modification to the landscape increased, whereas, spatial heterogeneity would result in a 

quadratic response where species diversity is greatest in moderately disturbed landscape 

mosaics. These hypotheses were evaluated with data on the bird communities collected at 
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42 sites in a 3-year field study that were analyzed using a hierarchical model that allows 

for estimation of site-specific abundance of each species and species richness while 

simultaneously accounting for imperfect detection. This analysis revealed a strong non-

linear community response to both axes of the multi-dimensional landscape (soft-hard 

and brown-green) that suggested increased heterogeneity promotes higher species 

abundance as well as species richness. At the species level, there was variation that 

corresponded with variation in known habitat preferences and life history traits. These 

results suggest that variation in species richness follows expectations of the spatial 

heterogeneity hypothesis that predicts greatest diversity in moderately disturbed 

landscape mosaics. I hypothesize that this process results from a greater diversity of 

habitat types available in landscape mosaics, and greater structural complexity within 

forest fragments that are characteristic of heterogenous mosaics. 

 Finally, in Chapter 4 I provide a rare empirical assessment of the indicator species 

concept. Specifically, I evaluate the red-backed salamander (Plethodon cinereus) as an 

indicator of forest biodiversity in human-dominated landscapes. During my 3-year field 

study, in addition to avian community data, I collected occurrence and abundance data 

for trees, soil invertebrates and red-backed salamanders at each of the 42 sites. These data 

were analyzed using a joint-species distribution model to evaluate the salamander’s 

indicator potential under the premise that species within a community will generally 

exhibit a shared response to gradients of human influence, and that an ideal indicator 

species represents an exemplar of the shared community response. I compared this novel 

approach to indicator species selection with a commonly used metric for identifying 

indicator species. Despite the frequency with which salamanders are promoted as 
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indicators of forest condition, my results provided no evidence that they are effective 

indicators for biodiversity based on established conceptual underpinnings of indicator 

species. As with the avian community, biodiversity showed a non-linear response to the 

dual axes of human influence where richness is highest in heterogenous landscape. 

Species that were identified as candidate indicators were species characteristic of edge 

habitat and dense forests which are common in human-dominated landscape mosaics. 

 In summary, my dissertation provides much needed methodological 

improvements to landscape gradient quantification in human-dominated systems and 

demonstrates the applicability of this framework both at a national scale, as demonstrated 

across the United States, and the local scale as demonstrated in my field system in 

Western Massachusetts. This framework results in a multi-dimensional perspective of 

landscape heterogeneity that extends does a better job of representing complex 

landscapes beyond single-axis measures that confound two intuitive gradients of human 

influence. I have demonstrated how such a multi-dimensional perspective sheds light on 

the processes driving the landscape scale patterns of biodiversity and can be used to build 

evaluate process-based conceptual models for identifying indicator species. In doing so, 

this work presents a standardizing framework for landscape gradient quantification in 

human dominated landscapes, an identification of the existence of unifying measures of 

human influence, and a demonstration of how coupling this approach and a multi-

dimensional perspective offers an general framework for understanding spatial variation 

in ecological communities that exist in human dominated landscape mosaics.    
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CHAPTER 1 
 

A STANDARDIZED FRAMEWORK FOR TRANSPARENT QUANTIFICATION 

OF URBAN LANDSCAPE GRADIENTS 

1.1 Introduction 

The global human population has now surpassed 7.5 billion and is expected to 

reach 10 billion by 2050 (United Nations 2017). This growth has resulted in landscapes 

that are becoming increasingly dominated by sprawling urban centers. As a result, once 

natural landscapes are being impacted by increasing population density, impervious 

surface (McKinney, 2008), and environmental pollutants (McDonnell & Hahs, 2013). 

Urbanization is also known to directly impact ecosystems by altering species diversity 

(McKinney, 2008), resource availability (A. D. Rodewald & Shustack, 2008), 

metapopulation dynamics (Padilla & Rodewald, 2015) and increasing potential for 

species invasion (Rija et al., 2014). At the same time, urbanization impacts human social 

and economic systems, both positively (e.g. better job opportunities, Foley et al. 2005), 

and negatively (e.g. overpopulation, poverty, Zhou et al. 2017). As a key point of 

intersection between social and natural ecosystems, management of urban landscapes is 

vital for successful conservation of global biodiversity, and developing a thorough 

understanding of ecological function in urban systems will ensure future urban 

development is ecologically, economically, and socially sustainable (Pataki, 2015; 

Shochat et al., 2006).  

Presently, however, a general understanding of urban ecosystem function is 

limited, in large part, by a lack of consensus on the conceptual definition of ‘urban’ 

(Fischer et al., 2015). Several authors have advocated for a systemization of terminology 
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and methods in urban ecology, in particular the way urban landscapes are defined, to 

achieve a better understanding of the effects of urbanization on ecosystems and 

ecosystem function (Mcintyre et al. 2000, Theobald 2004, McDonnell and Hahs 2008, 

Caryl et al. 2014, LaPoint et al. 2015). Regardless, since its formalization in 1990 

(McDonnell & Pickett, 1990), the urban gradient concept has been widely used for 

investigating how ecosystem function responds to human dominated landscapes. Unlike 

common ecological gradients (e.g., temperature or elevation), measures of urbanization 

are exclusively user-defined and generated using data or data products that are assumed 

to represent urban associated features. As a result, urban gradients are said to be highly 

variable, generally inconsistent, and difficult to compare or replicate (Hahs & 

McDonnell, 2006; McDonnell & Hahs, 2008; Short Gianotti et al., 2016; Theobald, 

2004).  

A number of previous reviews of the urban gradient literature report several 

inconsistencies and variability in urban landscape definition. McIntyre et al. (2000) first 

noted the vague nature of urban landscape definitions and called for methodological 

consistency. Others have since criticized the subjectivity of commonly used but poorly 

defined categories of urbanization (Theobald, 2004), the analytic simplicity of the 

gradient generation, and the large variation in spatial scales used to investigate urban 

influence (du Toit & Cilliers, 2011; McDonnell & Hahs, 2013; Moll et al., 2019; 

Muderere et al., 2018). In response a number of attempts have been made to unify the 

conceptual and methodological domain of urban gradient definition. These range from 

simple classifications based on human population density (Marzluff et al., 2001), to 

complex composite measures incorporating demanding remote sensing methods 
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(Cadenasso et al., 2007), or locally specific but difficult to source, demographic and 

socio-economic data (Hahs & McDonnell, 2006). Until now these approaches, each with 

their own merits, have failed to result in community-wide consensus, and it is important 

to understand why. 

Notably, there appears to be no de facto reason that urban-rural gradients should 

be treated differently than any other natural gradient, and in fact, there exists a set of ‘best 

practice’ principles in landscape ecology for general gradient definition (Turner et al., 

2015). Rather than revisit the inconsistencies that exist in urban-rural gradient definition, 

instead I ask how well urban-rural gradient definitions adhere to existing best practices in 

landscape gradient definition:  

1) identify relevant landscape content and typology 

2) select representative spatial data 

3) determine appropriate spatial scale and resolution 

Here I review the recent urban ecology literature to identify how well authors followed 

this decision framework, and in doing so, attempt to identify similarities rather than 

differences, in the way urban gradients are defined. What naturally emerges is an 

improved understanding of urban gradient ecology as a discipline of landscape ecology is 

a decision framework for quantifying landscape gradients in human dominated systems 

that, and a decision framework that if explicitly acknowledged, is consistent, repeatable, 

and transparent. 

1.2 Review of the Urban Gradient Literature 

I conducted a Web of Science [5.2.1] search for peer reviewed publications over 

the last decade (January 2007 through January 2017) using the topic search terms 
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[“Urban Gradient” OR “Urban Rural Gradient” OR “Rural Urban Gradient”] and the 

Web of Science categories related to [“ecological and natural sciences”], which yielded 

1,641 articles. Based on a reading of the abstracts, only articles were retained that 

explicitly invoked the urban gradient concept, yielding a final sample of 250 articles 

representing wide taxonomic, geographic, and intellectual distribution – these are the 

focus of this review. This review focused specifically on characterizing and quantifying 

the suite of decisions being made within the three components of the best practices for 

gradient definition in landscape ecology: (1) the landscape, i.e. identifying the physical, 

environmental, and demographic components thought to characterize urban context ; (2) 

the data, i.e., selecting and sourcing of data used to represent the urban context; (3) the 

spatial scale, i.e., determine the spatial scale  of the urban influence. A glossary and 

concept key in Table 1.1 provides detailed definitions of all associated terms. 

First, I recorded whether and how researchers identified the urban landscape 

using the following broad classifications (sensu Mcintyre et al. 2000): anthropogenic (e.g. 

housing, roads, agriculture), natural (e.g. forest, grassland), demographic (e.g. human 

population), and environmental (e.g., ambient noise, soil chemistry). In addition to which 

specific landscape features were used to characterize urbanization, I also recorded 

whether a single or multiple landscape metrics were used to characterize the urban 

gradient (e.g., only percent impervious surface or impervious surface and road 

proximity). Author-defined definitions of urban were also recorded when they were 

reported in the text,  e.g., ‘≥50% impervious surface’ (Judith et al., 2013), and when such 

a definition was not reported, I derived a definition based on the features used.  
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Second, I recorded the type and source of data selected to quantify urbanization. 

Data types were assigned to one of four categories: open-sourced remote sensed, user 

generated remote sensed, data collected in situ, and other/unknown. I also recorded 

whether researchers used a subjective (e.g. qualitative assessment of ortho-imagery) or 

objective (quantitatively defined) classification, whether the resulting gradient was 

continuous or categorical, and whether the gradient was defined by compound 

multivariate metrics, or single univariate metrics.  

Finally, I recorded several metrics associated with the spatial scale of the gradient 

definition and analysis. I recorded the landscape model as one of six categories (Table 

1.1): landscape level, grid cell, patch level, site level, site/patch with buffer, and point 

and radius; the spatial extent defined by the total area encompassed by study system, and 

the scale of landscape analysis (e.g., grid size, buffer width, radius, see spatial grain in 

Table 1.1). Lastly, I recorded whether decisions of spatial scale were biologically 

justified by the authors. 

 In addition to reviewing gradient-specific components, I also recorded a number 

of general features of the research, including the location (state and country), the focal 

taxa, and whether the primary inference objective focused on ‘pattern’ (e.g., patterns of 

diversity along urban gradient), or on ‘process’ (e.g., identifying mechanisms driving 

patterns along gradient). The Concept Key (Table 1.1) provides expanded definitions for 

all of the themes, key words, and classifications used to conduct the review. 
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Table 1.1: The key to and definition of terms used in the review to code and quantify concepts. 

 

CONCEPT KEY 
The Landscape: features selected to describe change in urbanizing landscapes  
(i) Physical, demographic, and environmental aspects of urbanizing landscapes 

- Anthropogenic Land Cover ~ physical feature of the landscape that has been modified by human influence 
such as agriculture, pasture, housing, or industry 

- Natural Land Cover ~ physical feature of the landscape that is not a result of direct human modification such 
as forest cover or waterways 

- Demographic / Social ~ direct human component that is not structural, such as population or political 
boundaries  

- Ecological / Environmental ~ local environmental characteristics, such as temperature or soil chemistry  
(ii) Definition of urbanization 

- Conceptual, or material definition of ‘urban’ used in establishing landscape gradient. Recorded as a brief 
description of urban context either explicitly or implicitly defined by the authors 

The Data: quantitative and qualitative metrics used to analyze features of the urbanizing landscape 
(i) Data type 

- Remote-sensed / GIS data ~ collected using remote techniques such as satellites, typically geo-spatial; often 
freely available and open-source, may be generated by the user 

- Field data ~ collected on site by researchers; may represent features of the ecological, demographic, or 
physical landscape 

- Demographic / other ~ census data, topographic maps, or historical records 
(ii) Objective / subjective 

- Objective: urbanization value determined via analysis of quantifiable data 
- Subjective: urbanization value assigned without use of data, or, data applied after establishing urban gradient 

(iii) Analytical approach 
- Univariate ~ gradient developed using a single landscape feature or data variable, typically represented as 

percent cover, or population 
- Multivariate ~ gradient developed using more than one landscape feature or data metrics; analytical 

approaches may include: relative proportions of land-uses, or statistical ordination techniques 
- Categorical ~ discrete binning of study locations into ‘urban’ categories based on data analysis or subjective 

assignment (e.g., urban, sub-urban, rural) 
- Continuous ~ non-discrete numeric representation of landscape such as percent cover of landscape feature or 

derived from analytical output	
The Spatial Scale: landscape conceptual model, spatial extent, and spatial  
(i) Landscape conceptual model 

- Landscape ~ urbanization is analyzed and quantified continuously across the entire spatial extent 
- Gridded landscape ~ landscape extent divided into grid cells each of which is analyzed individually 
- Patch level ~ urbanization analyzed for individual focal patches containing one or more study location, the 

landscape beyond patch boundary is not considered 
- Site level ~ urbanization analyzed for each study location individually, landscape beyond site boundary is not 

considered 
- Patch and buffer ~ patch, or site level, incorporating landscape features beyond patch/site boundary at a 

predetermined buffer distance 
- Point and radius ~ study site or observation point, incorporating landscape features within a predetermined 

radius distance from each point 
(ii) Spatial extent ~ the full extent of the study landscape for which the urban landscape gradient is analyzed 
(iii) Spatial grain ~ the specific scale or scales (i.e. Meters, etc.) At which the gradient is analyzed 
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1.3 Results 

I reviewed a total of 250 urban gradient articles from 121 peer-reviewed journals, 

with the most common being Urban Ecosystems (n=28) and Landscape and Urban 

Planning (n=21, Appendix A.1). The number of relevant publications was four times 

greater in 2016 than a decade previous (51 in 2016 vs. 12 in 2007). Our analysis included 

research conducted on all continents excluding Antarctica (Figure 1.1.A), however the 

geographic distribution of research was highly skewed towards North America (n=104) 

and Europe (n=71), with Asia (n=26), Latin America (n=20), and Africa (n=7) being 

underrepresented. Most studies took place in the United States (n=96), followed by 

Australia (n=18), France (n=13), and Hungary (n=10). Our sample included large cities, 

e.g. New York, NY, USA, as well as much smaller towns and villages such as 

Phalaborwa, South Africa (Coetzee & Chown, 2016). All major taxa were represented 

(Figure 1.1.B), although birds comprised more than a third of all studies (n=87), followed 

by invertebrates (n=53), and plants (n=35). Far fewer studies examined the effects of 

urbanization on herpetofauna (n=20), fish (n=8), or multiple taxa simultaneously (n= 

13). 

The urban landscape was universally defined using one or more anthropogenic, 

natural, demographic, or environmental features, including instances where landscape 

features were not explicitly identified by researchers. The majority used physical 

landscape features to inform definition of urbanization (>80%), with the most frequent 

being types of human dominated land-use or physical structures (e.g. residential housing, 

agriculture, or number of buildings; n=195), while natural landscape features (e.g. forest 

types, waterways) were less common (n=124). Demographic or environmental variables 
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were used far less frequently, and when they were used, it was in addition to 

anthropogenic or natural landscape features. Based on classification into 4 broad classes 

of urban-defining features, very rarely were multiple feature classifications used to define 

urbanization (only 22.4% used > 1 feature type), and all four feature types were used in 

only 6 studies (2.4%, Figure 1.3.A).   

 
 
Figure 1.1: (A) The global distribution of urban gradient research from 2007 to 2017. The majority (n = 
96) were conducted in the United States. Ten or more studies were conducted in only four countries: 
United States (96), Australia (18), France (13), and Hungary (10). This map highlights the lack of urban 
gradient research in regions such as sub-Saharan Africa, Central America, and Southeast Asia, where 
rates of urbanization are highest. (B) The number of studies by taxa. ‘Herps’ includes both reptiles (n = 8) 
and amphibians (n = 12). ‘Multi-taxa’ studies are those that included more than one species of different 
taxa, while ‘Ecosystem’ studies analyzed a suite of data to capture ecosystem level response.  

 

Landscape data was used to quantify the urban gradient in the majority of the 

studies reviewed (79.6%); the remaining (n=51) studies generally selected study 

locations along an assumed gradient of urbanization informed by subjective assessments 

such as a pond’s proximity to the nearest building (Villasenor et al., 2017) or 

presence/absence of housing subdivisions (Botch & Houseman, 2016). Remote-sensed 

data, GIS data, and ortho-imagery, either open-source or user-generated, were 

unsurprisingly the most frequently used data types. Data recorded in situ (e.g., 
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environmental variables collected at the study sites) and other assorted data types (e.g. 

census records, topological maps) were less common. In some cases (9.2%) authors were 

not explicit, or were otherwise unclear, about the type or source of the data used to define 

the urban gradient. 

 
Figure 1.2: The three-step framework for urban gradient definition, incorporating landscape 
conceptualization, data characterization, and scale selection in adherence to accepted methods in 
landscape ecology. To the right of the framework diagram is a visualization of urbanization output, 
interpretation, and ecological analysis once the landscape gradient framework has been implemented. 
 

Based on definitions of objectivity (Table 1.1), the majority of researchers 

(65.2%) were objective in their gradient definition. Surprisingly, around 20% of the 

studies reviewed used a subjective definition of an urban gradient, instead relying on a 

qualitative determination (e.g., qualitative assessment of study locations), or qualitative 

categorization of the landscape. Multiple data variables (e.g. % impervious and % forest 

cover; 70.8%) were used to characterize the urban gradient more often than a single 

feature. Authors used categorical gradients more often than continuous (50.0% vs, 36.0%, 
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respectively, Figure 1.3.C). The number of categorical classes ranged from 2 to 10 

(median = 4).  

 
 
Figure 1.3: (A) The number of landscape features used in gradient definition. Proportions on each bar 
represent the percentage of studies using a given landscape feature type. (B) pie chart showing the 
distribution of data types used by studies reviewed. (C) pie chart showing categorical vs. continuous 
gradients. ‘Combination’ refers to studies where urbanization was considered as both a continuous and 
categorical predictor variable. 

 

 Spatial context of reviewed articles showed a great deal of variation both in how 

the urban context of a site was quantified and in the spatial scale used to define that urban 

influence. The two most common extent definition categories were point and radius 

(27.2%) and site level (26.4%) studies. These approaches vary significantly in their 

treatment of the landscape, the former incorporating features of the surrounding 

landscape matrix (ecology of cities), while the latter solely considers characteristics of the 

site itself (ecology in cities). The spatial scale used to define the area over which the 

urban influence is quantified varied drastically, ranging from a minimum of 20 m to a 
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maximum of 100 km (mean=2655 m). More surprisingly, over two-thirds of all studies 

(68.8%) did not offer any ecological, environmental, or analytical justification for the 

spatial scale used. In testing whether the choice was implicit based on species ecology 

(e.g., resource use or home range), I found no relationship between spatial scale used and 

mean taxonomic body size which I used as a proxy for home range size (Appendix A.4).  

1.4 Discussion  

Urban-exurban regions, characterized by a high degree of physical, ecological, 

and social heterogeneity are complex landscapes expected to exert strong influence on 

biological communities. However, a lack of consistency in defining urban heterogeneity 

has limited the generality of ecological inference in human dominated landscapes (Li & 

Wu, 2004; McDonnell & Hahs, 2008; Theobald, 2004). Although often considered to be 

“novel ecosystems”, it is important to recognize that, in truth, they represent spatially 

heterogeneous spatial patterns like any traditional landscape. My review highlighted the 

fact that researchers consistently follow this general framework for landscape 

quantification, however, transparency, forethought, and ecological justification in the 

decision making was regularly lacking. The apparent differences in urban gradient 

definition that has been the focus of much criticism in previous reviews, therefore arise 

from when and how the same decisions are made, and can be attributed to specifics of the 

study system, species, or research objectives. I argue that apparent inconsistencies can in 

fact can be attributed to a lack of transparency in reporting and ecological justification in 

specific decisions. I advocate for the continued development of urban gradients following 

the established best practices in landscape ecology, but that these decisions be part of a 

transparent reporting process: (1) define of the characteristics of the landscape of interest, 
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(2) select data that appropriately represent that definition, and (3) select the spatial scale 

that best matches underlying ecology. Doing so will encourage the consistency and 

clarity required for reproducible and relatable urban gradients, while maintaining 

flexibility for diverse taxonomic or geographic focus. 

1.4.1 Defining the Landscape 

Step 1 in the decision framework is a formal identification of the landscape 

features that that define areas as being more or less urban. Even when urbanization is 

based on ones’ assumptions (i.e. is subjective), researchers implicitly use landscape 

features to classify the urban gradient. Changes to the physical landscape are among the 

most obvious impacts of urbanization and are almost universally used when quantifying 

urban landscapes. Therefore, it is unsurprising that variation in the extent of human-

altered land-uses (e.g., agriculture, Verboven et al. 2012) or measures of human presence 

(e.g., impervious surface, Buxton and Benson 2016) are used to define it. When 

anthropogenic features weren’t used, their inverse, the extent of natural land-cover, was 

used such as forest cover (Gortat et al. 2015, Haggerty and Crisman 2015), or fragment 

age (Magle et al., 2010). Some commonly used demographic variables such as city 

population depend upon socially constructed delineations or political boundaries with 

little ecological relevance. While such socio-political boundaries should certainly be 

considered in management of urban landscapes, they rarely overlap with meaningful 

ecosystem boundaries and should be avoided when evaluating ecosystem processes 

(Dallimer & Strange, 2015). Site-specific ecological or environmental data are valuable 

in that they often represent the most proximate drivers of ecological pattern, however 

because they are site-specific, cannot easily be extended to other systems (McDonnell & 
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Hahs, 2008). To reduce some of the variation in urban gradients local environmental 

features should be included in addition to a more generalizable suite of physical 

landscape variables (see example in Appendix A.5). 

1.4.2 The Data 

The majority of studies (80.4%) used landscape data in their quantification of the 

urban gradient, although there was variability in the types of data selected, and how those 

data were analyzed. In recent decades, the availability of high quality remote-sensed 

geospatial data has increased and offers a reliable data source for research in spatial 

ecology; unsurprisingly more than 70% of studies used some form of remote sensed data. 

Though some researchers used raw ortho-imagery to calculate customized geospatial 

statistics, in most cases, researchers relied on freely available land-use and land-cover 

databases developed at either the national (e.g. National Land Cover Database Homer et 

al. 2015, South African National Land Cover, Luck et al. 2010), or regional scale (e.g. 

Puerto Rico GAP Analysis Project, Gould et al. 2008) to generate quantitative measures 

of variation in urbanization. Creating personalized metrics directly from raw ortho-

imagery may offer more control over thematic and spatial resolution, but these methods 

are neither intuitive nor accessible for most ecologists, and are often location or context-

specific (Pettorelli et al., 2014). On the other hand, standardized national or regional 

datasets (e.g. Anderson Classification System for NLCD, Homer et al. 2015), while 

potentially coarse and imperfect, are highly reproducible. The ability to conduct spatial 

analysis using published data products that are freely available and have associated data 

processing procedures have obvious benefits, including reproducibility, transferability, 
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and standardization, all of which should be considered when producing a landscape 

gradient (McDonnell & Hahs, 2013).   

The majority of studies reviewed (more than 70%) used multiple spatial data 

variables in landscape quantification, thereby increasing the likelihood that it will 

represent the true heterogeneity of the landscape (Hahs & McDonnell, 2006). Multiple 

variables were used in gradient quantification both as simple additive combinations of 

land cover classes (Lee et al. 2015), and more complex multivariate analyses like 

principle components analysis (Paukert & Makinster, 2009; Shustack & Rodewald, 2008; 

Smallbone et al., 2011), factor analysis (van der Walt et al., 2015), or cluster analyses 

(McLaughlin et al., 2014; Schmiedel et al., 2015). Multivariate approaches are preferred 

for quantifying spatially heterogeneous landscapes (Frazier & Kedron, 2017b; McGarigal 

et al., 2009); they are regularly used in landscape ecology to generate statistically 

meaningful landscapes (Li & Wu, 2004),or to reduce multiple highly correlated data into 

few,  multivariate indices that describe variability in a landscape (Frazier & Kedron, 

2017b; Hahs & McDonnell, 2006). It was unsurprising to find that studies using a 

multivariate approach were moderately more likely to observe a significant effect of 

urbanization on ecological process than those using a single variable (p = 0.076, 

Appendix A.4). National land-use and land-cover datasets (e.g., NLCD), in spite of 

potential downsides, offer a number of key benefits such as ease of access and quality 

control. Furthermore, landscape metrics such as this type of land-use and land -cover 

data, are naturally multi-colinear yet are important drivers of ecological process. Though 

they have been criticized for creating potentially misleading indices (Frazier & Kedron, 

2017b) multivariate approaches are extremely valuable for consolidating the complex 
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reality of heterogeneous landscapes into a meaningful metric (Wu & Hobbs, 2002). For 

these reasons, using accessible land-use and land-cover data with a multivariate analytical 

approach is ideal for urban gradient quantification.   

1.4.3 The Spatial Scale  

 Any spatial analysis of landscape data should consider both the spatial extent 

(area of analysis) and spatial grain (resolution of analysis). We recorded five possible 

approaches used to define the spatial extent that differ conceptually in how area is 

defined (see Table 1 for details). The patch mosaic paradigm (site or patch level) views 

habitat as islands a sea of unsuitable landscape matrix ignoring conditions outside of the 

focal patch, whereas the gradient approach (landscape level) considers an entire 

heterogeneous landscape as a continuum of variously suitable habitat. In the context of 

urban landscapes, the former has been criticized for viewing patches of urban green space 

as set apart from the surrounding urbanization without integrating the complex social and 

physical characteristics of the landscape (Cadenasso et al., 2007). This ‘ecology in cities’ 

approach differs from the ‘ecology of cities’ gradient view in which ecological processes 

are viewed as interacting parts of an urban ecosystem (Boone et al., 2014; Zhou et al., 

2017). While more than a quarter adopted the patch mosaic approach, the majority of 

studies in my review adopted the continuous gradient definition, an approach I see as 

better aligning with our current understanding of how ecological communities are 

adapting to urban settings (i.e., the ecology of cities, McPhearson et al. 2016). 

Given that the choice of spatial scale is known to influence ecological response 

(Guisan et al., 2007; Martin, 2018), the dramatic variability in the spatial scales used in 

studies reviewed was surprising, a finding that has been corroborated by recent reviews 
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(Moll et al., 2019). Perhaps more alarming, however, was the nearly ubiquitous lack of 

justification for spatial scale used, more than two thirds of articles in this review (68.8%) 

offered no clear ecological justification for the spatial scale selected in analysis. When 

defining a gradient of influence, such as how urban a specific location is based on the 

surrounding area (e.g., grid cell size or buffer radius), the gradient itself is sensitive to 

data resolution and spatial scale, and these should be chosen to reflect that scale that 

matches the ecological processes of interest. For instance, more mobile species with large 

home ranges require a larger spatial scale than less mobile organisms, and a global land-

cover database at a 1-km resolution should not be used to create an urbanization gradient 

at a 500-m scale. As an example, two studies investigating response of gray squirrel 

(Sciurus carolinensis) to urbanization used drastically different scales to assess 

urbanization (2-km surrounding focal urban parks, vs, the town in which focal park is 

located; Parker and Nilon 2012; Sarno et al. 2015); in this case, a more thoughtful 

consideration of the ecology of the species may have resulted in more similar 

urbanization analysis, and hence increases comparability. Scale of gradient analysis is 

one of the most significant drivers of variation and strength of ecological response both in 

conventional (i.e. natural) (McGarigal et al., 2016; Turner et al., 1989; Zeller et al., 2017) 

and urban systems (Cunningham & Lindenmayer, 2017; Locke et al., 2016) making it the 

most consequential decision involved. With this in mind, lack of consideration and 

ecological justification of spatial scale in urban gradient definition is especially 

concerning.  

1.4.4 Towards a Global Understanding of Urban Ecology 
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 My review of the contemporary urban ecology literature highlights the fact that 

analysis of urban landscapes is conceptually similar to that of any landscape pattern, and 

that any observed differences likely arise as a function of the ecological context within 

which the decisions are made. Rather than advocate for a novel and unique definition of 

‘urban’, instead I advocate for increased candor and transparency in the shared decisions 

made in each step of the process. This clarity will serve to improve replicability and 

reproducibility of research in urban ecology, moving the community closer to a general 

understanding of ecological and ecosystem function in urban-exurban landscapes.  

 In an attempt to improve standardization in urban ecology, several authors have 

worked to develop a single unifying metric to define ‘urban’, yet widespread adoption 

has not occurred (Cadenasso et al., 2007; Hahs & McDonnell, 2006; Short Gianotti et al., 

2016; Theobald, 2004). Each of these proposed methods have a number of valuable 

components, and yet fall short for several reasons. They lack ecological intuition and 

accessibility due to their computational or methodological complexity, for example, the 

reliance on detailed census and economic data that may not be available in all areas, and 

requires reclassification of Landsat imagery (Hahs & McDonnell, 2006). While valuable 

in many respects, these approaches do not offer flexibility in the process, nor do they 

encourage transparency for efficient repeatability. Adhering to the recommended 

standardized landscape gradient framework that emerges from this review ensures best 

practices from landscape ecology will be applied in urban gradient quantification. 

Additionally, it enforces critical consideration and justification when making heretofore 

implicit decisions, and will facilitate a progression toward increased transferability and 

reproducibility between definitions of urban landscapes.   
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 Urbanization is a global issue that is most accelerated in south Asia and sub-

Saharan Africa, yet, only 13.3% of studies reviewed were conducted in Africa or Asia, 

revealing a striking geographic mismatch in where the effects of urbanization is 

investigated and where it has its greatest impact. It is vital to better understand ecosystem 

function on the front lines of urbanization in order to inform sustainable development 

practices. This mismatch exists taxonomically as well: the literature is replete with 

research describing distribution and abundance of urban birds and some groups of insects 

(34.8% and 21.2% respectively), yet other groups, including reptiles and amphibians 

(0.8%) that are declining globally in response to anthropogenic influences, are vastly 

underrepresented (Figure 1.B). To fully understand ecosystem function in urbanizing 

landscapes it is vital to take a community-based approach and understand response of all 

taxa exposed to urban influences.  

 Human dominance of the global ecosystem has ushered in a new geological epoch 

defined by the human species – The Anthropocene (Zalasiewicz et al., 2010). 

Urbanization and human development continue to transform and degrade ecosystems, 

while species extinction rates have reached new highs. In the face of such rapid global 

change, it is increasingly clear that our future, and the future of global biodiversity, is tied 

to our ability to design and implement ecologically and socially sustainable cities. This 

endeavor requires a thorough understanding the complex interactions playing out in 

social-ecological systems, the ecology of cities. An overarching theory of urban ecology 

is hampered in part by inconsistencies in research methods and terminology surrounding 

definitions of ‘urban’. By reducing the variance in urban landscape quantification through 
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intentional thought and transparency, we can move toward improved reproducibility and 

comparability of urban landscape metrics, move closer to a sustainable urban future.  
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CHAPTER 2 
 

MULTI-DIMENSIONAL LANDSCAPE GRADIENT DEFINITIONS FOR 

HUMAN DOMINATED LANDSCAPES 

 
2.1 Introduction 

As the human population and associated ecological footprint expands, the effect 

of high rates of landscape transformation on resource and habitat availability, habitat 

quality, and species distributions is of increasing concern (Scheiner & Willig, 2008). In 

order to predict how natural systems are likely to respond to continued change, informed 

conservation and ecosystem management requires an understanding of how ecological 

processes respond to the underlying structure of heterogeneous landscapes (Turner, 

1989). That is, landscape pattern must be understood and quantified in such a way to be 

explicitly linked to the ecological process. Nevertheless, well documented variability in 

the quality, complexity, and ecological relevance of conceptual descriptions and 

quantitative measurements of landscape structure contribute to a lack of general and 

scalable understanding of how ecology responds to landscape heterogeneity, particularly 

along gradients of human modification (Li & Wu, 2004; Wu & Hobbs, 2002).  

The need for ecologically relevant measures of landscape heterogeneity prior to 

understanding drivers of ecosystem response has been recognized for decades (Watt, 

1947), and over time numerous theoretical and applied solutions have been posited (du 

Toit & Cilliers, 2011; Gustafson, 2018; Li & Wu, 2004; Wu & Hobbs, 2002). The patch 

mosaic, or fragmentation paradigm defines landscape heterogeneity as a mosaic of 

suitable habitat patches of different quality situated within an un-suitable matrix (Zhou et 

al., 2014). This binary (habitat vs. not-habitat) representation of the landscape has proven 
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valuable in many contexts, especially in regions of high spatial heterogeneity (Frazier & 

Kedron, 2017b). However, because the complex landscape mosaic to coarse binary 

categories has been criticized as an oversimplification that fails to consider the 

importance of inherent complexity and of the surrounding matrix (Frazier & Kedron, 

2017b; Gustafson, 1998; Uuemaa et al., 2013).  

Efforts to improve ecological relevance and realism of landscape 

characterizations has led to the development of models thought to better represent the 

continuous nature of landscape heterogeneity and ecological processes (Eigenbrod et al., 

2011), including the variegation model (A. S. McIntyre & Barrett, 1992), continuum 

model (Fischer's 2006), and surface metrics (McGarigal et al. 2009). These, among 

others, extend a patch-centered perspective to incorporate the composition of the entire 

landscape, thereby extending ecological realism. Regardless of the metrics used, 

Costanza et al. (2019) argue that successful integration of ideas in spatial ecology across 

systems and scales requires an improved appreciation for what landscape descriptors are 

measuring, and how they relate to ecosystem processes.  

In spite of recognized shortcomings in landscape metrics, there is support for the 

role of spatial heterogeneity in human dominated landscapes shaping ecological 

responses. In particular, species richness has been shown to decrease with increasing 

human-mediated disturbance in birds (Chace & Walsh, 2006; Sacco et al., 2015), 

invertebrates (Bennett & Gratton, 2012; Smith & Schmitz, 2016), plants (Adhikari et al., 

2012; McMullin et al., 2016), and more (Cavia et al., 2009; Shu et al., 2016), often with a 

peak in areas of intermediate disturbance (Ackley et al., 2009; Clucas & Marzluff, 2015). 

Species specific responses, however, are variable and depend on the ecology of the 
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species in question (Banaszak-Cibicka & Zmihorski, 2012; Lizée et al., 2011; Marzluff, 

2017). Fragmentation and human population density have also been linked to decreases 

in movements and home range size in many species (Burdett et al., 2010; Marsh et al., 

2004; Munshi-South et al., 2016; Patrick & Gibbs, 2010). Much of the literature, 

however, has shown very little support for relationship between various ecological 

processes and changes in the landscape (e.g., Aida et al., 2016; Cameron, Culley, Kolbe, 

Miller, & Matter, 2015; Dahirel, Seguret, Ansart, & Madec, 2016), or uncertain results 

(e.g., Hedblom & Soderstrom, 2010; Lee & Carroll, 2015), suggesting that observed 

responses to gradients of human influences may be context- or locale-specific and lack 

the generality that is required to advance ecological understanding in urbanizing systems.   

Attempts to bolster the applicability and scalability of spatial metrics has led to 

landscape metrics that are almost exclusively represented as one-dimensional axes of 

variation despite the fact that landscape heterogeneity is highly dimensional 

(Cunningham & Lindenmayer, 2017; Hobbs, 1997), and as such, ecological processes are 

likely to respond to that underlying complexity. Thus, collapsing highly dimensional 

spatially structured landscapes into a relatively simple one-dimensional axis of variation 

is likely to fall short in terms of ecological realism, thus limiting the ability to infer links 

between landscape pattern and ecological process. Overlooking the underlying 

complexity of ecosystem function in heterogeneous landscapes is likely to have important 

consequences regarding how ecological processes are understood and managed in the 

Anthropocene. We propose an extension of the typical one-dimensional approach to 

landscape characterization in favor of the development of landscape measures that 

explicitly acknowledge the multiple dimensions of landscape heterogeneity. 
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In this paper, I evaluate the utility and ecological interpretability of a multi-

dimensional approach to defining landscape heterogeneity for making inferences about 

species distributions in human dominated landscapes. The generality of multi-

dimensional gradients is then demonstrated by jointly analyzing a set of urban-exurban 

landscapes in ten demographically similar but ecologically distinct cities in the United 

States and identify two significant and biologically intuitive axes of variation. We then 

demonstrate the ecological relevance of these axes by evaluating distribution patterns of 

the American robin (Turdus migratorious), a widespread generalist species commonly 

associated with areas of human activity, and highlighting the importance of quality 

landscape metrics in species management and ecosystem conservation. 

2.2 Methods 
I selected ten geographically distributed medium sized cities across the United 

States (population between 200,000 and 500,000), representing distinct Level I 

ecoregions as defined by the U.S. EPA (Omernik, 1995). These were Worcester, 

Massachusetts, Lexington, Kentucky; Jackson, Mississippi; Lincoln, Nebraska; Lubbock, 

Texas; Salt Lake City, Utah; Albuquerque, New Mexico; Bakersfield, California; 

Portland, Oregon; and Spokane, Washington (Fig. 1). For each city, I extracted 30-m 

resolution 2016 National Land Cover Database (Yang et al., 2018) for a 50-by-50 

kilometer window surrounding the city center. This spatial extent was selected because it 

extended well into exurban regions, and thus represented the full extent of landscape 

heterogeneity for each city. I used freely available NLCD data to facilitate reproducibility 

of the approach, and to reflect dominant landcover types from ‘natural’ (e.g., forests, 

wetlands) to human ‘modified’ (e.g., industrial, pastures). Details for each city are 

provided in Table 2.1. 
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Figure 2.1:Map of entire study extent with locations of all study cities for landscape quantification and 
ecological case study. Background colors represent unique Level 1 EPA Eco-Regions. Study cities are 
represented by red points. 
 

Landscape analyses followed the landscape quantification framework of Padilla 

and Sutherland (2019). In accordance with this framework, Table 2.2 provides definitions 

of, and justification for decisions made regarding landscape features, data, and spatial 

scales. Landscapes of study cities were characterized by a mosaic of natural (forests and 

wetlands) and un-natural (crop and developed) land-cover, as such, I selected NLCD data 

because it captures natural and human modified land cover and land use.  
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Table 2.1: List of ten urban-exurban regions used for landscape comparisons, including population size 
(2010 census) and US-EPA Ecoregion. 
 

City, State Population Level I Ecoregion Open 
Water 

Devel. Forests Scrub 
Grass 

Crop 
Pasture 

Worcester, MA 185,877 ER5 – Northern 
Forests   

3.33% 23.15% 65.51% 2.54% 6.11% 

Spokane, WA 208,916 ER6 – NW 
Forested 
Mountains  

1.23% 14.46% 31.31% 31.91% 20.62% 

Salt Lake City, 
UT 

200,591 ER6 – NW 
Forested 
Mountains  

11.02% 23.00% 36.37% 23.34% 5.29% 

Portland, OR 583,776 ER7 – Marine 
West Coast Forest  

3.12% 37.06% 23.43% 7.85% 28.54% 

Lexington, KY 323,780 ER8 – Eastern 
Temperate Forests 

0.56% 15.31% 16.65% 1.03% 66.44% 

Jackson, MS 164,422 ER8 – Eastern 
Temperate Forests 

4.85% 30.11% 43.29% 12.16% 18.87% 

Lubbock, TX 255,885 ER9 – Great Plains 0.15% 12.58% 0.23% 14.89% 72.15% 
Lincoln, NE 287,401 ER9 – Great Plains 1.54% 13.02% 5.86% 29.4% 50.82% 

Albuquerque, 
NM 

560,218 ER10 – North 
American Deserts 

0.23% 17.66% 15.96% 67.71% 3.37% 

Bakersfield, 
CA 

383,679 ER11 – 
Mediterranean 

0.51% 13.96% 1.19% 37.93% 46.41% 

 

Each pixel in the 30-m resolution NLCD raster is classified as a single cover type. 

We extracted binary surfaces of each class (1 if focal class, 0 if otherwise) and, to 

account also for the landscape surrounding a given location, i.e., to quantify the 

landscape context. A spatially weighted average for each pixel was computed using a 

Gaussian kernel, resulting in a continuous surface ranging from 0 (no focal class within 

smoothing kernel) to 1 (smoothing neighborhood entirely focal class). This was done for 

each NLCD category, resulting in a smoothed surface for each. The width of the kernel is 

set by a bandwidth parameter, s, and should be determined by the ecological process in 

question (Boyce et al., 2017). A 500-m spatial scale was selected for this analysis based 

on the typical breeding home range size of the case study focal species, the American 

robin, established in the literature (Knupp et al., 1977). I tested sensitivity of landscape 

quantification to smoothing scale by replicating the analysis at 1,500-m (Appendix B). 
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All analysis was done in R Version 3.5.3 (R Core Team, 2019) and Gaussian smoothing 

used the ‘smoothie’ package (Gilleland, 2013). 

To identify dominant patterns of variation in these data, we used Principal 

Components Analysis (PCA). PCA synthesizes multivariate datasets, such as the category-

specific smoothed NLCD surfaces described above, into concise measures that describe 

dominate sources of variation and are well suited to large and potentially correlated 

datasets. Prior to PCA analysis, a single data matrix was produced from the spatially 

weighted smoothed raster surfaces of each land-cover class where each column consisted 

of smoothed pixel values for a single NLCD class. I conducted PCA on landscape data for 

each city individually and also for all cities combined such that variation across all cities 

was captured and values directly comparable. Dominant principal components (i.e., 

≥10% variance explained) were identified and closely examined for ecological relevance. 

Finally, for the dominant components explaining ≥10% of the total variance, I produced a 

spatially explicit gradient of habitat heterogeneity where the value for each pixel in the 

resulting raster surface is PCA weighted average calculated as the sum of that pixel’s 

smoothed NLCD values multiplied by the corresponding PC weight.  

 I tested the hypothesis that multi-dimensional measures of landscape 

heterogeneity have the potential to offer improved inference about ecological processes 

using observational data for the American robin (Turdus migratorious), a widespread 

generalist species widely considered to be human-adaptive. Robin detection histories 

were analyzed using a single season hierarchical occupancy model which simultaneously 

makes inference on occupancy while accounting for imperfect detection (Mackenzie et 

al., 2002). Stationary, complete checklists (non-reporting of a species assumed to be non-
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detection) from April 1st through September 30th 2018 were extracted from the Cornell 

Lab of Ornithology’s eBird database (Sullivan et al., 2009) using the R package ‘auk’ 

(Strimas-Mackey & Hochachka, 2018), and detection data from all cities were pooled. 

Because there was substantial variation in the number of sampling locations in each city, 

the data were randomly thinned to a maximum of 250 locations to improve balance and 

reduce regional bias (Appendix B.1).   

 Hierarchical occupancy models consist of two sub-models, a logit-linear model 

describing detection probability (p) by location and sampling event, and a site-specific 

logit-linear model for occupancy (Y). I considered the following potential effects on 

detection probability: city (a categorical factor for a given city), sampling date, and 

sampling date squared (i.e., a quadratic effect to allow for moderate nonlinearity), and 

each of the two dominant landscape gradients (unique to each sampling location). Date 

was scaled (0 – 18) such that a one unit increase in date reflected 10 calendar days to 

improve parameter interpretation and aid model convergence. For the occupancy 

component, a city effect, each of the dominant landscape gradients, and all combinations 

of city-gradient interactions were considered (Table 2.3). 

 I adopted a two-stage modeling approach whereby I fit and compared all possible 

combinations of detection covariates, each with the most complex model for the 

occupancy component. Using Akaike’s Information Criterion (AIC) to rank models, the 

best supported model for detection was carried over to the second stage where I 

compared models for occupancy. Finally, the model selected for inference was evaluated 

by examining model residuals and performing goodness of fit tests. Occupancy analysis 

was conducted in the package ‘unmarked’ (Fiske & Chandler, 2011), while AIC model 



 

28 

selection and goodness of fit tests were done using the ‘AICcmodavg’ package 

(Mazerolle, 2019). All analyses, were conducted in R Version 3.5.3 (R Core Team, 

2019). 

Table 2.2: Decisions made within landscape gradient framework for analyzing urban landscapes in jointly 
across study cities and in the city-specific analysis. This follows the framework outlined in Padilla & 
Sutherland 2019. Justification provided here is in light of my dual analytical goals. 
  

Decision Justification 

1) Landscape 
Features 

Physical land-cover 
and demographic land-
use 

‘Land-cover’ categories (i.e. forest, shrub) track 
changes in ‘natural’ landscapes, while ‘land-use’ 
(devel., crop) tracks the human footprint and 
approximate population density 

2) Spatial Data 
Remote-sensed, 
National Land Cover 
Data (2016) 

NLCD land-cover data is readily available and is 
a consistent data-source to represent landscape 
features in all 10 study cities  

3) Spatial Scale 500-m and 1,500-m 
Gaussian kernel  

Spatial extent (50 x 50-km) chosen to capture 
sufficient spatial and ecological heterogeneity. 
Primary spatial grain (500-m kernel) selected to 
represent breeding home range of American 
robin. 1,500-m as a common scale in ecological 
research selected to compare effects of scale. 

 

2.3 Results  
Aggregate landscape composition across all cities was fairly balanced between the 

three dominant land cover categories – developed, forests, and agriculture (Table 2.1) and 

contained fifteen of the nineteen Anderson Land-Cover classes used by the NLCD, the 

remaining four (‘Perennial Ice-Snow’, ‘Dwarf Scrub’, ‘Sedge-Herbaceous’, ‘Lichen’) are 

restricted to Alaska or high elevation locations. City specific landscape composition, 

however, was variable; forested classes dominated Worcester and Spokane (39.08%, 

30.22%), Albuquerque was largely scrubland (46.81%), Lexington dominated by pasture 

(62.31%), and agriculture in Lincoln, Bakersfield, and Lubbock (47.61%, 42.2%, and 

72.15%, respectively). 
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Table 2.3: Model selection tables for both detection and occupancy components of the American 
robin analysis. Detection was assessed with the global occupancy model and the best model for 
detection was used in all models for occupancy. 

 Detection Model Structure K AICc DAICc Wt - LogLik 

1  ~  city*date+date2+HS+BG                ~ Y 63 6544.02 0.0 1 -3206.45 
2  ~  city*date+HS+BG                          ~ Y 62 6611.83 67.81 0 -3241.44 
3 ~  city*HS                                             ~ Y 60 6998.33 454.31 0 -3436.84 
4 ~  city                                                    ~ Y 43 7001.75 457.73 0 -3456.69 
5 ~  date                                                   ~ Y 42 7038.66 494.64 0 -3476.20 
6 ~  BG                                                    ~ Y  42 7450.53 906.51 0 -3682.13 
7 ~  1                                                        ~ Y 41 7450.69 906.67 0 -3683.27 
8 ~  HS                                                     ~ Y 42 7452.32 908.30 0 -3683.03 
 

Occupancy Model Structure K AICc DAICc Wt - LogLik 

1  ~  r        ~ city*HS+BG 44 6530.44 0 0.91 -3219.98 
2  ~  r        ~ city*(HS+BG) 53 6535.21 4.77 0.09 -3212.80 
3  ~  r        ~ city*HS 43 6542.84 12.40 0 -3227.23 
4  ~  r        ~ city*(HS*BG) 63 6544.02 13.58 0 -3206.45 
5  ~  r        ~ city+HS*BG 36 6567.86 37.42 0 -3247.10 
6  ~  r        ~ city+HS+BG 35 6572.90 42.46 0 -3250.67 
7  ~  r        ~ city+HS 34 6578.90 48.46 0 -3254.71 
8  ~  r        ~ city*BG+HS 44 6580.24 49.80 0 -3244.88 
9  ~  r        ~ HS*BG 27 6580.55 50.11 0 -3262.81 
10  ~  r        ~ city*BG 43 6581.49 51.05 0 -3246.56 
11  ~  r        ~ city+BG 34 6582.03 51.59 0 -3256.27 
12  ~  r        ~ city 33 6587.86 57.42 0 -3260.23 
13  ~  r        ~ BG 25 6490.33 59.89 0 -3269.76 
14  ~  r        ~ HS+BG 26 6591.46 61.02 0 -3269.29 
15  ~  r        ~ HS 25 6600.95 70.51 0 -3275.07 
16  ~  r        ~ 1 24 6601.16 70.72 0 -3276.21 

 

Principal components analysis of combined smoothed NLCD data yielded three 

important axes of variation explaining 37.1% of the variation in the combined landscape 

(Table 2.3), and between 42.60% and 54.89% in the individual city analysis (Appendix 

B.1). The first principal component explaining the largest proportion of data variation for 

the combined data (16.7%) was strongly negative for developed land-cover classes 

(impervious surfaces), with neutral or positive loadings for natural classes (forested, 

open, and agricultural, Table 2.4). Thus, this first descriptor of landscape pattern can be 
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interpreted as a transition from hard (characterized by impervious surfaces) to soft 

(unpaved natural or agricultural) landscapes; which we refer to as the hard-soft gradient.  

The second principal component explained 11.2% of the variation and showed a 

strong differentiation between types of non-impervious (soft) landscape types. 

Specifically, this axis distinguishes between human modified but un-developed areas 

(cultivated croplands) from more natural areas (forests or wetlands). This axis is 

intuitively interpretable as a shift from modified agricultural landscapes, to un-developed 

natural regions, a brown-green gradient. While the hard-soft axis does not distinguish 

between dominant types of soft landscapes, the second accounts for this variation 

between brown and green areas and represents an important second axis of variation.  

The third principal component explained 9.3% of the total variation and was not 

used to produce a gradient surface as I only produced spatial metrics for principal 

components explaining greater than 10% of the total variance. Like the second axis, PC3 

reflected a divergence between modified and un-modified undeveloped areas. While PC2 

differentiated natural deciduous and mixed forests from modified croplands, the third axis 

is a gradient from evergreen forests and scrub, to pastures (Table 2.4). Both PC2 and 

PC3, therefore, can be interpreted as brown-green in different habitat and land-use types.  

Due to the inherent complementarity of the two dominant components, this 

approach considers these axes together, however, it is worth considering these in the 

context of existing approaches. Hard-soft is consistent with traditional urban gradients 

focusing on the built environment (e.g., impervious surface or housing density) 

(McDonnell & Hahs, 2008; Moll et al., 2019; Padilla & Sutherland, 2019). Brown-green, 
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on the other hand, is a less common measure of human modification and is typical only in 

research in agricultural landscapes.  

Table 2.4: Dominant Principal Component axes. Variables with significant weight are in boldened. The 
first two axes were selected based on the a minimum 10% of total variation explained. 

NLCD Layer Obs. 
Freq. 

PC1 PC2 PC3 

Std.Dev.  1.581 1.295 1.182 
Variance Explained (%)  16.7 11.1 9.3 

Water 11 - OpenWater 2.70% 0.042 0.030 -0.04 
Developed 21 - DevelOpen 6.49% -0.360 0.055 0.017 

 22 - DevelLow 6.72% -0.545 0.047 -0.040 
 23 - DevelMid 4.78% -0.553 0.015 -0.125 
 24 - DevelHigh 1.61% -0.392 -0.007 -0.148 

Barren 31 – Barren 0.79% 0.039 -0.017 -0.116 
Forest 41 - ForestDeciduous 10.17% 0.119 0.469 0.171 

 42 - ForestEvergreen 8.96% 0.154 0.269 -0.349 
 43 - ForestMixed 2.14% 0.087 0.433 0.001 

Shrubland 52 - Scrub/Shrub 10.56% 0.151 -0.012 -0.554 
Herbaceous 71 -Grass/Herb 10.85% 0.140 -0.339 -0.282 
Cultivated 81 - Pasture/Hay 11.25% 0.053 0.082 0.446 

 82 - Crop/Cultivated 19.41% 0.119 -0.491 0.387 
Wetlands 90 - WoodyWetl. 2.81% 0.043 0.378 0.157 

 95 - HerbaceousWetl. 0.77% 0.032 0.075 -0.039 
 

As a test of whether these axes are consistent at more local scales, the same 

analysis of NLCD data was conducted for each city independently as well. City specific 

analyses revealed the same dominant axes of variation as the combined analysis 

(Appendix B.2). As expected, the component weights of NLCD classes and absolute 

values of axes differed, nevertheless, interpretation of these axes remained consistent.  

 These landscape gradients, hard-soft and brown-green were applied in a case 

study with the American robin. This analysis included data from 1,703 sampling 

locations (sites) in all cities (range: 31 in Bakersfield to 250 in Worcester, Albuquerque, 

Portland, and Salt Lake City). There were a total of 5,779 sampling visits in all cities 

across all sites, with a mean number of visits per site of 1.95 (range: 1–172, Appendix 
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B.1). The overall proportion of sites with a minimum of one observation was 43.05%, 

which varied by city from 38.7% in Spokane, to 48.2% in Bakersfield (Appendix B.1).  

Site-specific landscape gradient outputs (hard-soft and brown-green) were 

included as covariates in the occupancy models, resulting in a total of 27 candidate 

models for detection probability noting that date2 was only included in models with date. 

These were fitted with the global occupancy model (Table 2.3).	Of the 27 detection 

models considered, eight fully converged, of those the top model (AICc weight=1.0) 

included additive effects of both landscape gradients, a quadratic effect of date and a city 

by date interaction (Table 2.3). In the second step, the best supported detection model 

was used to evaluate 16 candidate occupancy models. Here, a single model held the 

majority of support (AICcwt=0.91, Table 2.3) and included the effects of both landscape 

gradients, city, and an interaction city and hard-soft. The two best supported models 

showed consistent patterns in robin detectability and occupancy, however, standard errors 

were much larger in the second ranked model. Model evaluation and model-based 

predictions were carried out on the top ranked full model for detection and occupancy: 

𝑙𝑜𝑔𝑖𝑡*𝜌#$, = 𝑐𝑖𝑡𝑦# ∗ 𝑑𝑎𝑡𝑒#$ + 𝑑𝑎𝑡𝑒#$% 	+	𝐻𝑆# + 𝐵𝐺# 

𝑙𝑜𝑔𝑖𝑡(𝜓#) 	= 	 𝑐𝑖𝑡𝑦# 	∗ 𝐻𝑆# + 𝐵𝐺# 

Where HSi, BGi, and cityi are the site-specific covariates for each sampling location, i, 

and dateij is the survey date for sampling location, i, in survey, j.   

There was a significant quadratic effect of survey date, such that detection 

probability increased, reached a peak, and declined (Figure 2.2; Appendix B.2). Robin 

detection varied significantly along the brown-green axis, with robins more likely to be 

observed in more ‘green’ landscapes (0.14 ± 0.05), and showed a negative relationship 
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with hard-soft, though confidence intervals overlapped zero (-0.38 ± 0.04). Date of peak 

detectability ranged from April 1st in Bakersfield (date = 0.0) to July 23rd in Portland 

(date=11.3), while peak detection probability ranged from 0.330 in Worcester, to 0.871 in 

Jackson. 

 

Figure 2.2: Robin Detection probability as a function of survey date for each city predicted from the top 
model. Grey shaded area represents 95% confidence intervals and solid is the expected value.  

 

Mean robin occupancy varied slightly by study city, increasing significantly along 

the brown-green axis (0.52  ±  0.01). Regions characterized by less impervious surface, 

according to the hard-soft axis, had slightly higher occupancy probability (0.032  ±  

0.57), however the direction and magnitude of this response varied regionally (Figure 

2.2). Examination of model residuals and a Chi-Square goodness of fit test showed 

adequate model fit. 

2.4 Discussion 
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Analysis of spatially heterogeneous landscapes surrounding ten metropolitan regions 

revealed two statistically important and ecologically intuitive axes of variation which 

challenges the conventional one-dimensional approach to investigating ecological 

responses in human-dominated landscapes. Despite regional variation in landscape 

composition and configuration (Table 2.1, Appendix B.1) the dual-gradient approach I 

present here consistently distinguished between two distinct types of anthropogenic 

influences: a hard-soft gradient capturing a continuum of the built human environment, 

and a brown-green gradient capturing the human agricultural footprint (Figure 2.3). This 

analysis of the robin data demonstrates that in addition to being fundamental properties of 

the landscape, these axes provide insight about species distribution across the landscape 

that would have been overlooked if viewed through a single-axis lens. This multi-

dimensional perspective highlights the importance of considering the complexity of 

human-dominated landscapes and identifies a triangular distribution of human influence 

that presents an intuitive and generalizable framework for understanding patterns of 

ecological function and developing management strategies.  
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Figure 2.3: An example of the triangular distribution captured by a multi-dimensional landscape definition 
that differentiates between urban, agricultural, and natural portions of the landscape along dual axes of 
variation. Hard and soft portions of the landscape are sorted along the vertical axis, while brown and 
green regions along the horizontal. This results in a multi-dimensional perspective where heterogeneity is 
maximized at the center of both axes.  
 

Landscape metrics that are transferable across ecosystem contexts are needed to 

improve understanding of human-dominated ecosystems and effectively synthesize local 

and regional conservation efforts. Attempts to produce universal metrics for human-

footprint or urbanization have thus far failed to result in methodological consistency in 

part due to methodological complexity and data requirements. For example the 

HERCULES method (Cadenasso et al., 2007) requires users to classify the landscape into 

categories of building, surface cover, and vegetation using LiDAR data. Likewise, the 

method proposed by Seress et al. (2014) requires users to classify satellite imagery 

categorically as buildings, vegetation, or roads to train a semi-automated model. Metrics 

proposed as generalizable for use in human-natural systems also tend to focus on one axis 

of variation such as the built environment. Recently, a human modification gradient 

(Kennedy et al., 2019) was produced that incorporates all aspects of the human footprint, 

however, it results in a single metric making it difficult to decompose the relative effects 
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of agriculture or urbanization. This multi-dimensional approach offers a flexible 

alternative that balances regional adaptability with local specificity and ecological 

realism to better understand mechanistic relationships between landscape structure and 

ecological process (Frazier & Kedron, 2017a; McDonnell & Hahs, 2008). We use an 

established multi-variate statistical approach to succinctly describe spatial heterogeneity 

and employ readily available NLCD data to incorporate complexity of the entire 

landscape into a clear and consistent dual axis of human-influence.  

As the human population continues to grow, the urban, industrial, and agricultural 

infrastructure must be restructured to ensure future ecological integrity. Debate over how 

to do this in practice has led to sensitive concepts of land management such as land-

sharing (the integration of natural systems into the mix of human land-uses) versus land-

sparing (concentrating natural and human systems in large individualized blocks). Indeed, 

this discussion has typically focused on agricultural (Phalan et al., 2011), and urban 

(Norton et al., 2016) systems in isolation, when as demonstrated here, urban, agricultural, 

and natural landscapes represent three distinct aspects of landscape heterogeneity 

complex. Viewing the land-sharing versus land-sparing debate through a multi-

dimensional lens of landscape heterogeneity views the landscape mosaic in a fully 

integrated agro-urban-natural system, highlighting the need for a fully integrated 

conservation landscape. Furthermore, the species that will benefit or suffer most from 

decisions related to how landscapes are managed is context-specific (Stott, 2016). Here 

the multidimensionality of that context is highlighted such that changes along one axis 

can result in unintended consequences as a result of responses to the other (Figure 2.4). 

Determining how to design a conservation strategy and manage a heterogeneous regional 
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landscape for this species would require that the entire human-natural mosaic be 

considered and could be facilitated with a multi-dimensional approach to landscape 

context.  

American robins are widely considered to be urban-adaptive and are thought to 

benefit from hard landscapes with human habitation (Evans et al., 2015; Morneau et al., 

1995). However, my results consistently predicted higher occupancy in more forested 

(green) regions over areas predominantly agricultural (brown), while the effect of the 

hard-soft axis on robin occupancy varied by city both in terms of magnitude and direction 

(Figure 2.4). This regional variation in the effect of hard-soft on robin occupancy 

demonstrates the need to consider and decouple multiple dimensions of landscape 

heterogeneity. As a synanthropic species, it is reasonable to assume that robins would 

prefer hard regions of the landscape near human habitation, however, these results 

suggest that the synanthropic nature of robins is more nuanced. While highly adaptable 

and able to exploit many habitat types, natural areas in close proximity to urbanization 

(i.e., ‘green’ and ‘hard’) appear preferable over those in more agricultural landscapes. 

Prior research in heterogeneous temperate forested regions has reported higher presence 

and survival of robins in residential yards, woodlots and golf courses (Blair, 2004; 

Malpass et al., 2018), while studies in agricultural landscapes found that robins were 

more common in habitat fragments surrounded by urbanization than those surrounded by 

agriculture (Rodewald & Bakermans 2006). 
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Figure 2.4: Surface plots depicting robin occupancy on both the brown-to-green (x axis) and hard-to-soft 
(y axis). Red portions represent areas of low occupancy, blue high occupancy. Variation in surface reflects 
values for the gradients in each city. Points represent sampling locations. 

 

Robin occupancy was demonstrably influenced by dual axes of human-modification 

across the continental United States. This suggests that a continued reliance on one-

dimensional landscape descriptors may result in ecosystem pattern being misinterpreted 

as inherent stochasticity (e.g., noise), when in fact it reflects unmodeled response to an 

overlooked component of the landscape. Bearing this in mind, management decisions that 

consider only a single aspect of the human-natural landscape may overlook or 

misinterpret ecological response and result in ineffective conservation plans (Fischer et 

al., 2006). A multi-dimensional framework mitigates this by offering complimentary 

metrics that provide more nuanced understanding of ecological response.  
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All measures of landscape heterogeneity are imperfect representations of reality and 

therefore fall short to varying degrees, and it is unlikely that any single metric will be 

ideally suited to every question of ecological pattern and process (Frazier, 2019). 

Adopting the multi-dimensional perspective can help move toward a more general 

understanding of landscape mosaics, and yet, oversimplified one-dimensional measures 

such as percent forest cover, or percent impervious surface continue to dominate the 

literature (Padilla & Sutherland, 2019). Identifying causal relationships between observed 

between spatial pattern and ecological process is often difficult, however, the multi-

dimensional perspective of spatial heterogeneity has the potential to improve upon 

existing approaches and produce ecologically relevant landscape metrics that have the 

potential to provide valuable insight into the underlying ecological responses in human 

dominated landscapes. 
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CHAPTER 3 
 

DRIVERS OF AVIAN COMMUNITY STRUCTURE ALONG A MULTI-

DIMENSIONAL LANDSCAPE GRADIENT 

 
3.1 Introduction 

Spatial variation in the structure and composition of landscapes result in 

associated shifts in ecological communities. Identifying the drivers of geographic 

variation in community size and structure has been an enduring challenge in ecology 

since the days of Darwin (Roughgarden, 2009). In heterogenous landscapes disturbed by 

varying degrees and types of human influence, an improved understanding of the ultimate 

drivers of biodiversity is necessary to ensure long-term persistence of ecosystem function 

(Sol et al., 2014). Though human-dominated systems have long been considered as 

fundamentally distinct ecologically, numerous existing theories developed in natural 

systems are applicable in highly modified and fragmented landscape mosaics (Parris, 

2018). The theory of island biogeography, for example, is applicable in both naturally 

and artificially fragmented systems and has been used to suggest that smaller habitat 

fragments more distant from “mainland” patches in space or due to an impermeable 

landscape matrix would be less species rich, following expected species area and 

isolation patterns (Davis & Glick, 1978; Itescu, 2018; Marzluff, 2008). Ultimately, 

however, the effects of habitat fragmentation on biodiversity remains a point of conflict 

because landscape mosaics often increase spatial heterogeneity of available habitat types 

at the landscape scale, which may increase species diversity (Fahrig, 2017; Roth, 1976; 

Turner, 2005).  
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The debate over whether the biodiversity of landscape mosaics is driven more by 

island biogeography theory or spatial habitat heterogeneity remains strong (Fahrig et al., 

2019; Rybicki et al., 2020) as a growing body of literature has corroborated patterns in 

line with both hypotheses in mammals (Beasley & Maher, 2019), plants (Aronson et al., 

2014), invertebrates (Bogyó et al., 2015) and birds (Chace & Walsh, 2006; Marzluff, 

2008, 2017; Oliveira Hagen et al., 2017). Avian diversity in landscape mosaics has been 

particularly well studied, and broadly speaking has shown that as patches become smaller 

and more functionally isolated, species diversity, and functional and phylogenetic 

diversity shift toward more generalist and synanthropic species (Evans et al., 2018; La 

Sorte et al., 2018; Pagani-Núñez et al., 2019; Shochat et al., 2010). Others have reported 

a non-linear response of species diversity, abundance, and trait diversity such that bird 

diversity is greatest in heterogeneous landscape mosaics (Chace & Walsh, 2006; 

Marzluff, 2017) in support of the theory that habitat modification and fragmentation can 

increase habitat heterogeneity and species richness at the landscape scale (Fahrig et al., 

2019). However, because much of this research has relied on relatively simple metrics to 

quantify structure and composition of the landscape mosaic that do not accurately 

represent true complexity of the landscape the reliability and generality of observed 

patterns is incomplete (McDonnell & Hahs, 2008; Padilla & Sutherland, 2019). 

Conventional metrics used to quantify landscape heterogeneity in human-dominated 

systems (e.g., percent forest cover Marzluff, 2008, human population Clucas & Marzluff, 

2015, city size Batáry et al., 2018) tend to focus on the effects of a single aspect of the 

landscape, such as urbanization or agriculture, when in fact these are often interspersed as 

a mosaic that includes natural habitat. A recent effort to improve spatial metrics for 
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ecological research in human-dominated landscapes (Padilla and Sutherland 2020) 

demonstrated that multi-dimensional landscape gradients better represent complex 

landscapes and can improve understanding of ecological process. As such, taking a multi-

dimensional approach can offer a more nuanced understanding of the effects of patch size 

and isolation vs. habitat heterogeneity on biodiversity.  

 Here, I use a Bayesian multi-species hierarchical model for species abundance to 

identify patterns expected under two contrasting theories of the effects of heterogeneous 

landscape mosaics on bird biodiversity in human-dominated landscapes – island 

biogeography theory and spatial habitat heterogeneity. If patterns of species occurrence 

follow island biogeography (H1) I would expect biodiversity to decrease linearly from 

natural to more un-natural agricultural or urban landscapes as fragmentation and 

functional isolation of available habitat increases. Conversely, in the case of spatial 

habitat heterogeneity (H2) I expect biodiversity to be highest in mixed use mosaics where 

the diversity of available habitat is greatest. Using multi-dimensional spatial metrics to 

describe the effect of human-mediated landscape modification, I further explore variation 

in species-specific responses as community diversity and composition shifts along 

gradients of human-mediated landscape modification. 

3.2 Methods 

3.2.1 Study system 

This study consisted of 42 forested study sites located along the Connecticut 

River valley in western Massachusetts, from the Connecticut border in the south (-

72.5764, 42.0606) to the Vermont border in the north (-72.5408, 42.6523). My objectives 

were to analyze the composition of bird communities in remnant and regenerating forests 
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rather than those within the surrounding urban, suburban, or agricultural landscape 

matrix. Therefore, only sampling locations that were located within forests were 

included. To ensure that I adequately captured sites that represented the full extent of 

landscape variation, sites were systematically selected by generating 1000 points in 

forests across the study landscape from which 50 sampling locations were 

probabilistically selected based on their values for two landscape axes (see section 3.2.2). 

Eight sites were subsequently removed because of accessibility issues, resulting in 42 

sites sampled over three years (Figure 3.1).  

 
Figure 3.1: Map of study sites (points) with the regional context in Massachusetts (inset top-right). The 
gradient surface below sampling points represents the multi-dimensional landscape gradients. 
 

Sampling locations were relatively in-tact mixed-deciduous eastern broadleaf 

forest fragments situated in a human-dominated landscape matrix of urban, suburban, and 
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agriculture, and were dominated by overstory trees such as sweet birch (Betula lenta), 

white pine (Pinus strobus), red oak (Quercus rubra), and red maple (Acer rubrum). The 

understory tended to be relatively open and was dominated by leaf-litter cover, 

herbaceous growth such as ferns (e.g., Dryopteris goldiena), and small understory trees 

such as American witchhazel (Hamamelis virginiana) and ironwood (Ostrya virginiana). 

The matrix surrounding sites ranged from urban industrial and commercial, recreation 

(parks), and residential, to croplands or pasture.  

3.2.2 Landscape quantification 

Landscape analyses followed the landscape quantification framework and 

multivariate analysis used in Chapter 2. I used the 30-m resolution National Landcover 

Database (NLCD 2016) to analyze variation in modified (e.g., residential or agricultural) 

and un-modified (e.g., forests or wetlands) portions of the landscape. We extracted binary 

surfaces of each class (1 if focal class, 0 if otherwise) and, to account also for the 

landscape surrounding a given location, i.e., to quantify the landscape context, we 

computed the spatially weighted average for each pixel using a Gaussian kernel, resulting 

in a continuous surface ranging from 0 (no focal class within smoothing kernel) to 1 

(smoothing neighborhood entirely focal class). This was done for each NLCD category, 

resulting in a smoothed surface for each. The width of the kernel, s, was 1000 m which 

was chosen to capture the home range size of breeding birds and because it is a scale that 

has been linked to demographic processes in forest bird communities (Bakermans & 

Rodewald, 2006). To achieve an effective 1000-m smoothing scale with the 30-m pixel 

NLCD data, we set the smoothing parameter, s, to span 16.67 pixels.  
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Finally, I used a Principal Components Analysis (PCA) to identify dominant 

patterns of variation in the smoothed NLCD data. Dominant principal components (≥10% 

variance explained) were identified and closely examined in order to properly interpret 

the ecological interpretation of component loadings. For these dominant components, I 

then produced spatial gradients where the value for each pixel is a PCA weighted average 

calculated as the sum of a cell’s smoothed NLCD values multiplied by the corresponding 

component weight for each NLCD value.  

Table 3.1: Dominant principal component axes produced from landscape analysis. The first two axes were 
used to create spatial gradients based on a 10% variance cutoff. 
 

NLCD Layer PC1 PC2 PC3 
Std.Dev. 1.766 1.296 1.214 

Variance Explained (%) 20.8 11.2 9.8 

Water 11 - OpenWater 0.025 0.019 -0.005 
Developed 21 - DevelOpen 0.406 0.001 -0.032 

 22 - DevelLow 0.509 0.044 -0.039 
 23 – DevelMid 0.493 0.188 -0.078 
 24 - DevelHigh 0.369 0.201 -0.080 

Barren 31 – Barren 0.023 -0.165 0.011 
Forest 41 - ForestDeciduous -0.292 0.382 0.511 

 42 - ForestEvergreen -0.155 -0.116 -0.607 
 43 - ForestMixed -0.261 0.044 -0.431 

Shrubland 52 - Scrub/Shrub 0.057 -0.426 0.244 
Herbaceous 71 -Grass/Herb 0.092 -0.385 0.256 
Cultivated 81 - Pasture/Hay 0.010 -0.341 0.129 

 82 - Crop/Cultivated 0.060 -0.159 0.117 
Wetlands 90 - WoodyWetl. 0.017 -0.406 -0.055 

 95 - HerbaceousWetl. 0.008 -0.311 -0.100 
 

Multivariate analysis of landscape data resulted in two dominant axes of variation 

that together described 32% of the landscape variation (PC1 = 20.8%, PC2 = 11.2%). The 

first dominant axis described a transition from forested and agricultural (soft) regions of 

the landscape to suburban and urban (hard) regions. The second axis varied from open 

pastures and croplands (brown) to more structurally complex low-density residential and 
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forests (green). Together, these two axes describe two dominant patterns of spatial 

variation in human-dominated landscapes. That is, component one distinguishes between 

built urban and suburban areas from undeveloped environment, while component two 

describes the transition in undeveloped areas from agricultural (brown) to forested 

(green) areas of the non-built landscape (Table 1). These axes (gradients) were used as 

predictor variables to understand variation in bird abundance, and are referred to as soft-

hard (PC1) and brown-green (PC2) respectively.  

3.2.3 Bird surveys 

The Bird community was monitored using unlimited radius 10-minute point count 

surveys. In each year from 2017 to 2019, three surveys were conducted at each site 

during the breeding season (June and July) to avoid periods of migration and dispersal 

and avoid systematic violations of closure required for occupancy and abundance 

estimation (see below). All surveys were conducted in the morning between the hours of 

0500 and 0900, and were not conducted during periods of high winds or heavy rains. 

During each survey I recorded survey date and start time, wind speed according to a four-

point Beaufort Scale, and precipitation and cloud cover using a six-point scale.  

3.2.4 Community abundance model 

Abundance and species richness of the avian community was estimated using a 

hierarchical-community abundance model (HCM), which has two key components: 1) an 

ecological state process model describing variation in the state variable, in this case 

species-specific abundance, and 2) an observation, or detection process model describing 

variation in detection probability which is conditional on the latent (Dorazio et al., 2015). 

To estimate species-specific effects on abundance and detection, respectively, the HCM 
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assumes that species-level covariate effects are random effects from a shared community-

level distribution. The use of the community random effects distribution allows for 

sharing of data across all species in the community making it possible to estimate species 

specific responses for data-sparse species and even species that may not have been 

detected at a given site due to very low detection rates (Dorazio et al., 2006; Hanioka et 

al., 2018). Our data were limited to three sampling seasons with relatively little species 

turnover, therefore, we were not interested in directly modeling processes of local 

extinction and colonization and did not use a dynamic- HCM, opting instead for an 

‘stacked’ approach where every sampling location in each year is treated as a unique site 

and an effect of year included to account for dependencies.   

I was specifically interested in explaining species- and community-level 

responses to variation in human influence using the improved multi-dimensional gradient 

representation described in Chapter 2. Specifically, I aimed to quantify the relative 

importance of each axis of human influence according to predictions that communities 

are richer in areas of highest heterogeneity. To account for potential non-linear responses 

over the heterogeneity gradient, I included both dominant gradients of human-mediated 

landscape modification to explain variation in detection, as well as their squared for 

abundance. In addition, a site-by-year intercept (𝛽&.()	# ) was also included in both 

process models to allow for variation between years. Abundance of species i at site j (𝜆#$) 

was modeled as: 

log$𝜆!"& = 𝛽#.%&	! + 𝛽(!" ∗ 𝑆𝐻" + 𝛽)!" ∗ 𝐵𝐺" + 𝛽*!" ∗ 𝑆𝐻") + 𝛽+!" ∗ 𝐵𝐺") 

and the detection process as:  

logit&𝑝!"#( = 𝛼$.&'	!	 + 𝛼)!" ∗ 𝑆𝐻𝑗 + 𝛼*!" ∗ 𝐵𝐺𝑗 + 𝛼+!" ∗ 𝑑𝑎𝑦"# + 𝛼,!" ∗ 𝑡𝑖𝑚𝑒"# + 𝛼,!" ∗ 𝑑𝑎𝑦"#*  
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where 𝑆𝐻", 𝑆𝐻"), 𝐵𝐺", and 𝐵𝐺") are the values for the linear and quadratic soft-hard and brown-green 

landscape axes at site j. Species level parameters for detection and abundance, 𝛼# and 𝛽# 

parameters, are drawn from a normally distributed community distribution governed by 

hyper-parameters, e.g., 𝛽+# ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇,- , 𝜎,-
% ). The expected total abundance (Mj) and 

species richness (Rj) at each site was derived within the model as 𝑀$ = ∑ 𝜆#$-
#.+  and 𝑅$ =

∑ [1 − exp*−𝜆#$,]-
#.+ , respectively 

Models were analyzed using MCMC methods using three chains each with 

100,000 total iterations; 25,000 iterations were discarded as a burn-in and chains were 

thinned by every 10th iteration. We considered all chains to have converged when the 

Gelman-Rubin statistic (𝑅N) were less than 1.1 and by visual inspection. All analyses were 

conducted in R version 3.6.2 (R Core Team, 2019). Spatial smoothing and mapping 

analyses were done using the ‘smoothie’ (Gilleland, 2013) and ‘raster’ packages 

(Hijmans & van Etten, 2015), respectively. MCMC analysis and evaluation of the HCM 

was conducted using the ‘nimble’ (de Valpine et al., 2017) and ‘MCMCvis’ packages, 

respectively (Youngflesh, 2018). 

3.3 Results 

A total of 83 species were observed over the three sampling seasons, with 

observed site level diversity ranging from a low of 6 to 33 species at a given site. Species 

were observed from a range of functional and taxonomic groups, including species 

characteristic of mature forests (Blackburnian warbler – Setophega fusca), wetlands 

(wood duck – Aix sponsa), residential or suburban habitats (American robin – Turdus 

migratorious), and scrubby secondary growth (willow flycatcher – Empidonax traillii). 

The mean expected number of occupied sites for each species across all years (126 total) 
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was 41.1 and ranged from 2.8 (Nashville warbler – Leiothlypis ruficapilla) to the most 

frequently occurring 120.8 (tufted titmouse – Baeolophis bicolor). Mean estimated 

species richness at each site was 27.1 and ranged from 17.9 to 39.9, while model derived 

bird abundance (mean = 116.6) ranged from 45.3 to 269.9 birds per site. Both observed 

(2017 = 19.86, 2018 = 18.26, 2019 = 17.05) and model derived species richness (2017 = 

29.54, 2018 = 26.81, 2017 = 24.92) decreased between years, and as expected was 

greater for detection corrected expected values. 

3.3.1 Avian community response  

Community hyperparameters reflected the underlying variability in species 

specific responses. Mean community detection probability increased annually from 2017 

(𝜇. 𝛼&,0+ = 0.073 [0.048, 0.107]) to 2019 (𝜇. 𝛼&,0% = 0.151 [0.107,0.204]). Neither axis of 

landscape heterogeneity had an effect on community mean detection probability. There 

was a negative trend in response to survey day (𝜇. 𝛼!= -0.043 [-0.097, 0.06]) and survey 

time (𝜇. 𝛼" = -0.013 [-0.058, 0.032], Table 3.2). Annual increase in detection probability 

corresponded to a year-by-year decrease in the community mean abundance intercept 

(Table 3.2). Mean abundance showed a decreasing linear trend, and strong negative 

quadratic relationship along both the soft-to-hard (𝜇. 𝛽+  = -0.075 [-0.202,0.058]; 𝜇. 𝛽!  = -

0.115 [-0.193,-0.048]) and brown-to-green axes (𝜇. 𝛽%  = -0.115 [-0.246,0.017]; 𝜇. 𝛽"   = - 

0.193 [-0.299,-0.105]). These results demonstrate that there exists a meaningful aggregate 

community response to one or both landscape axes, reiterating the value of a multi-

dimensional landscape framework (Figure 3.2). 

Predicted richness and total abundance of the avian community summed across all 

species, plainly reflect community level trends. Both richness and abundance increased 
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toward the center of both gradients at locations where habitat heterogeneity is expected to 

be greatest (Figure 3.2). However, species richness declined more steeply than abundance 

toward the edges of the multi-dimensional landscape space, resulting in a “sphere” of 

maximal abundance occupying a larger portion of the landscape than that of species 

richness (Figure 3.2.c and 3.2.d). This is likely due to a subset of species with high 

estimated abundance in portions of the landscape that may be considered marginal in 

terms of species richness.  

Table 3.2: Community hyper-parameters for detection (r) and detection (l). Credible intervals for 
quadratic effects of landscape metrics (𝜇. 𝛽+	and 𝜇. 𝛽,) did not overlap 0. All other hyperparameter 
estimates had credible intervals that overlapped 0 at 95% confidence. 

 Parameter 
Posterior 

mean 2.5% credible 97.5% credible 
p 𝝁. 𝜶𝟏 Soft-Hard 0.0108 -0.137 0.148 
p 𝝁. 𝜶𝟐 Brown-Green 0.0661 -0.067 0.065 
p 𝝁. 𝜶𝟑 Julian Day -0.0430 -0.097 0.006 
p 𝝁. 𝜶𝟓 Julian Day 2 -0.0186 -0.066 0.027 
p 𝝁. 𝜶𝟒 Time -0.0130 -0.058 0.032 
l 𝝁.𝜷𝟏 Soft-Hard -0.0750 -0.202 0.058 
l 𝝁.𝜷𝟑 Soft-Hard 2 -0.1151 -0.193 -0.048 
l 𝝁.𝜷𝟐 Brown-Green -0.1148 -0.246 0.017 
l 𝝁.𝜷𝟒 Brown-Green 2 -0.1928 -0.299 -0.105 

 

3.3.2 Species-specific Response 

Species specific variability in the magnitude and direction of response existed in 

spite of the relatively strong estimated community-level response to both the soft-to-hard 

and brown-to-green axes (Appendix C.1). As anticipated based on the strength of the 

community level quadratic coefficients (Table 3.2), most species showed a non-linear 

peaked or valleyed response. I categorized species on the basis of migratory status (long- 

and short-distance, residents) and explored patterns in species response, however there 

was little meaningful difference. There was, however, a slight difference in the response 

to the soft-to-hard axis (𝛽+) between long- and short-distance migrants with long-distance 
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migrant species showing a more negative response based on an Analysis of Variance (p-

value = 0.0023).  

3.4 Discussion 

3.4.1 Avian community richness and diversity 

My results non-linear community-level response of avian species richness and 

total abundance in human dominated systems, specifically, strong quadratic effects of 

both soft-hard and brown-green gradients. Our results offer support for the hypothesis 

that spatial habitat heterogeneity drives patterns of species diversity and abundance in 

human-dominated landscapes, but provides a refined perspective about how these 

patterns emerge as a function of landscape complexity that can be intuitively described as 

variation across two intuitive axes of human influence. Accordingly, both diversity and 

abundance were highest in the most heterogeneous portions of the multidimensional 

landscape (Figure 3.2). Increased heterogeneity of habitat at the landscape scale provides 

more variety in the types of habitat and resources available, thereby providing niche 

space for a greater diversity of species to exploit. By evaluating species response to 

landscape structure in multi-dimensional framework I demonstrate that habitat 

heterogeneity rather than isolation due to permeability of the landscape matrix drive 

patterns of bird diversity in human-dominated landscapes. 

3.4.2 Species-specific patterns 

These results further demonstrated as expected under the habitat heterogeneity 

hypothesis, species-specific responses to landscape structure was somewhat variable and 

dependent on the ecology of the species in question. As the amount of human-

modification to the landscape increases through fragmentation, urban development, or 



 

52 

agriculture, species with more specialized habitat and resource requirement are expected 

to decrease in abundance while synanthropic species increase in abundance and 

generalists may be able to exploit habitats in all landscapes (Evans et al., 2018; Norton et 

al., 2016). These patterns were broadly recognized here, though this was not fully 

explained by migratory status, a common method of categorizing species specialization 

(Figure 3.3). The way in which ecology and life-history mediate species response is 

exemplified in the following representative species: brown-headed cowbird (Molothrus 

ater), blue jay (Cyanocitta cristata), red-bellied woodpecker (Melanerpes carolinensis), 

mourning dove (Zenaida macroura), veery (Catharus fuscescens), and the American 

goldfinch (Carduelis tristis, Figure 3.4). 

 

 
Figure 3.2: Community level hyperparameters for mean abundance. Response to the soft-to-hard (1.A) and 
brown-to-green (1.B) both showed a strong negative quadric relationship. This results in mean abundance 
highest near the center of both axes, where landscape heterogeneity is expected to be highest. This is 
visualized when expected site-level mean abundance for sampling 

 
Two species, the mourning dove (Figure 3.4.d) and veery (Figure 3.4.e) had 

higher abundance at increased levels of heterogeneity. The veery is a primarily 
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insectivorous long-distance migrant that nests and forages near the forest floor of damp 

mixed-deciduous forests with a dense understory (Heckscher et al., 2020). In spite of 

significant annual declines over the last several decades (Sauer et al., 2017), it can persist 

mixed-used and suburban landscapes that are not extensively fragmented or urbanized 

(Kluza et al., 2000). Like the veery, mourning dove abundance was highest in more 

heterogenous mixed landscapes. However, as a more adaptable species, mourning dove 

are able to inhabit a wide variety of environments including suburban regions with forest 

edge habitat where they benefit from supplemental food (Hayslette & Mirarchi, 2001). 

 Not all species shared the non-linear abundance pattern observed at the 

community level. The blue jay is a species emblematic of mixed forest ecosystems of 

eastern North America that is also common in residential areas where large masting trees 

(e.g., oaks) and supplemental food resources are present. Accordingly, the species has 

generally benefited from residential development, tending toward higher population 

density where housing density is moderate (Kluza et al., 2000). This analysis supported 

these patterns, showing that while the species is expected to be present in all landscapes 

(mean predicted abundance 𝜇. 𝜆 = 6.4), abundance was positively associated with mixed 

forest (green) landscapes and toward moderately modified (soft) landscapes. The red-

bellied woodpecker, like the blue jay, is a relatively common generalist species. But, as 

an obligate insectivore reliant on standing snags for foraging and nesting, it is negatively 

affected by extensive urbanization and agricultural development where fragmentation is 

extensive and remnant patches are small (Zuckerberg et al., 2011). Predicted abundance 

was relatively consistent across the landscape (𝜇. 𝜆 = 2.8) decreasing toward areas 

dominated by higher density urbanization and agriculture and increasing in mixed-use 
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forested landscapes (3.4.c). Some highly adaptable species, however, may not be 

significantly affected by human-mediated landscape modifications, as seen in the 

American goldfinch (Figure 3.4.d). Goldfinch are known to inhabit cultivated fields, 

forests, floodplains, roadsides, and gardens near early-successional forests, and has 

benefitted from human presence and widespread supplemental feeding (A. D. Rodewald 

& Bakermans, 2006). These patterns were clearly reflected in the data, with the species 

consistently abundant throughout the study system, though it slightly decreased in 

landscapes that were extensively forested with less edge or successional habitat, or highly 

urbanized. 

 
Figure 3.3: Species-specific regression coefficients for linear and quadratic effects of soft-to-hard (left) 
and brown-to-green (right). The majority of species reflected community level parameters (Table 3.2) and 
exhibited a negative response to linear and quadratic effects for both landscape metrics. Inset figures at the 
corners represent the expected effect of the landscape gradient on bird abundance for species within that 
plot quadrant.  
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Figure 3.4: While the community-wide response to landscape metrics was quite strong, species-specific 
responses are governed by life-history and of the species in question. The brown-headed cowbird (a), a 
bird of open country that parasitizes songbird nests along woodland edges, is most abundant in locations 
that are entirely agricultural (no forest edge) or entirely wooded, however, they are equally abundant in all 
but the most urban (hard) habitats. Blue jays (b) and red-bellied woodpeckers (c) meanwhile, are fairly 
adaptable and can occupy most landscapes, however their abundance is maximized in softer-green regions 
dominated by forests. Species such as the mourning dove (d) and veery (e) can breed in secondary growth 
forests allowing them to persist in at higher abundance near the mid-point of both gradients where habitat 
heterogeneity is greatest. The veery, however, is far more sensitive than the mourning dove resulting in the 
zone of highest abundance constrained toward the soft end of the landscape. Highly adaptable 
synanthropic species such as the American goldfinch (f) are abundant in all but the most forested and 
urban regions. 
 

3.4.3 Habitat heterogeneity and bird biodiversity 

Analysis of bird communities in a human-dominated landscape reflected a clear 

peak in bird biodiversity mid-way along both axes of landscape modification where 

habitat heterogeneity is expected to be greatest. The effects of landscape modification 

and destruction in the Anthropocene on biodiversity are often thought to be inherently 

negative, however, an increasing body of empirical and theoretic work has highlighted 

the significance of the scale- and context-dependence of these relationships (Carrasco et 
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al., 2018; Stein et al., 2014). With species under threat worldwide, the relevance of 

habitat-biodiversity relationships in conservation and management practices is clear.  

In anthropogenic systems land-sparing versus land-sharing ideas reflect the 

controversy surrounding biodiversity in heterogeneous systems. The land-sparing 

approach leans on island biogeography theory to prioritize large remnant habitat patches 

while centralizing anthropogenic development (e.g., urbanization or agriculture) 

elsewhere. Increased habitat heterogeneity through land-sharing, meanwhile, suggests 

that integrating human and natural landscapes into a mixed-use mosaic is ideal (Droz et 

al., 2019). In this system, bird biodiversity declined as landscapes became more 

homogenous, whether that landscape was predominantly agricultural, urban, or forested, 

and was maximized in the more heterogeneous center both at the community (Figure 3.2) 

and species level (Figure 3.3) suggesting that the a wisely managed land-sharing 

paradigm will meet conventional conservation objectives such as the prioritization and 

maximization of biodiversity (Fahrig, 2017).  

Biodiversity is thought to increase in spatially heterogeneous landscapes due to 

the higher diversity of available ecological niches (Carrasco et al., 2018). In human-

dominated landscapes a mosaic of habitat fragments of varying sizes provides habitat for 

open, edge, and less sensitive interior species while supporting generalist and 

synanthropic species. However, because species with more specialized needs, those with 

large home ranges, or those of particular conservation concern may not be able to exist at 

sustainable densities in a mixed-use landscape, sufficiently large habitat fragments must 

still be present at the landscape scale. Though biodiversity is relatively high, habitat 

fragments in heterogeneous landscapes may act as sinks for some species while excluding 
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others therefore, larger portions of natural habitat that are functionally connected are 

necessary. As an example, Acadian flycatchers, a species in decline over much of its 

range, breeds in urban forest fragments in central Ohio but suffers high rates of nest-

predation and may persist only if they are supported by larger source patches (Padilla & 

Rodewald, 2015).  

3.4.4 Conclusions 

My results support for the hypothesis that biodiversity in human-dominated 

landscapes is driven by spatial habitat heterogeneity, and hence that in human modified 

landscapes, the maintenance of avian diversity would benefit from landscape 

management paradigms that adopt a land-sharing perspective. However, it is important to 

remember that in order to ensure the long-term persistence of all species on the landscape 

prioritizing spatial habitat heterogeneity alone is not sufficient. The species and 

ecosystem processes most likely to be lost under a habitat heterogeneity management 

approach must be identified, and appropriate measures taken to protect sufficient habitat 

on the landscape. As anthropogenic pressures on the ecosystem mount, my results 

highlighting the biological benefits of heterogeneous human-natural landscapes are 

encouraging because they not only provide quality habitat for a diverse suite of 

organisms, but also provide opportunity for people to reap the rich physical, 

psychological, and sociological benefits of nature.  
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CHAPTER 4 
 
EVALUATING THE RED-BACKED SALAMANDER (PLETHODON CINEREUS) 

AS AN INDICATOR FOR BIODIVERSITY IN HUMAN-DOMINATED 

LANDSCAPES 

 
4.1 Introduction 

Effective conservation and management of natural resources requires accurate 

assessments of species population and ecosystem processes are both integral to effective 

conservation and adaptive ecosystem management (Lindenmayer et al., 2015). In most 

instances, however, financial and logistic limitations make it impractical to directly 

measure ecological targets such as complex biological processes, rare and endangered 

species, or biodiversity. Rather, focusing on indices of occurrence or abundance of proxy 

organisms offers a convenient alternative to directly measuring target species or 

processes (Lindenmayer & Likens, 2011). Individual species and taxonomic groups from 

a range of taxa have been used as environmental indicators, including fish (Bergerot et 

al., 2008), invertebrates (Walters et al., 2009), birds (Battisti & Fanelli, 2016), mammals 

(Sutherland et al., 2018), and reptiles (Bal et al., 2018; reviewed by, Caro et al., 2005; 

Lind et al., 2005; Lindenmayer & Likens, 2011). Although criteria for identifying 

indicators vary, in general an effective indicator species is one whose ecological state 

(e.g., occurrence, abundance, fecundity) provides a reliable assessment of habitat quality, 

the state of the local species community or ecosystem condition (Landres et al., 1988).  

In contrast with umbrella or flagship species where managing a single species 

confers benefits to the entire ecosystem (Simberloff, 1998), the state of an indicator 

species is expected to be directly proportional to the state of an ecological target metric 
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(Lindenmayer & Likens, 2011). According to Noss (1990), an indicator species should be 

(1) sufficiently sensitive to environmental perturbations to provide early warning, (2) 

widely distributed (i.e., wide applicability), (3) capable of providing a continuous 

assessment to a range of stressors, (4) easy and cost effective to measure, (5) able to 

differentiate between effects of natural and anthropogenic stressors, and (6) relevant to 

the target ecological phenomenon. While indicators are often selected based on one or 

more of these criteria, the process remains vague with more than 40% of applications 

relying on citing prior literature and 17% failing to provide any selection criteria (Siddig 

et al., 2016). Generally qualitative assessments of candidate species as indicators has also 

resulted in further uncertainty in the development of best practices for indicator species 

selection (Bal et al., 2018; Lindenmayer & Likens, 2011). An indicator can be objectively 

assessed by demonstrating that changes in status of the indicator reliably reflect changes 

in the process of interest. This validation is essential but is often overlooked due to the 

challenges related to monitoring all ecological targets and the indicator simultaneously.  

Amphibians are the most threatened class of extant vertebrate and are of high 

conservation priority globally (Sterrett et al., 2019). Accordingly, many species have the 

ecological and physiological traits characteristic of ideal indicator species (Cosentino & 

Brubaker, 2018; Siddig et al., 2019; Townsend & Driscoll, 2013). For example, anurans 

have been used as indicators of PCB contamination in Kentucky streams (DeGarady & 

Halbrook, 2006), and montane salamanders have been used to identify potential thermal 

refugia in the Cascade Mountains (Garcia et al., 2020). Among amphibians, terrestrial 

salamanders of the species rich family Plethodontidae are considered to be excellent 

indicators of forest condition throughout the Americas because they are dispersal limited, 
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cutaneous respirators, and are sensitive to environmental changes (Clipp & Anderson, 

2014; Welsh & Droege, 2001). In temperate forests of eastern North America, red-backed 

salamanders (Plethodon cinereus) are highly abundant with a broad distribution (Burton 

& Likens, 1975; Milanovich & Peterman, 2016); are effective indicators of 

environmental conditions such as soil mercury (Townsend & Driscoll, 2013) or forest 

disturbance (Siddig et al., 2019); are dominant predators of important soil macro-

invertebrates; and are thought be top-down drivers of critical processes including leaf-

litter decomposition and nutrient cycling (Homyack et al., 2010; Wyman, 1998). Their 

significant role in maintenance of ecosystem function and sensitivity to environmental 

changes, coupled with a well-established and standardized monitoring protocol that is 

relatively easy to implement, make red-backed salamanders excellent candidates for an 

indicator species (Cosentino & Brubaker, 2018; Gade & Peterman, 2019; Mossman et al., 

2019; Pearce & Venier, 2009; Venier et al., 2007). Yet, there have been relatively few 

rigorous quantitative assessments of red-backed salamanders as indicators of ecosystem 

health (Siddig et al., 2019; Townsend & Driscoll, 2013).  

The Indicator Value (IndVal) metric proposed by Dufrêne & Legendre (1997) is a 

conceptually appealing and easily implementable method for assessing indicator species 

that has been used in a range of theoretical and applied contexts (Urban et al., 2012). 

IndVal measures the degree to which the occurrence or abundance of a species is 

indicative of sites within a given typology or for points along a gradient of environmental 

variation (Dufrêne & Legendre, 1997). While perhaps effective for assessing indicators 

of site types or past disturbance, IndVal does not directly take the broader community 

into consideration in its estimation and therefore implicitly assumes that biological 



 

61 

targets such as biodiversity respond to the same environmental categories as the indicator 

(Sattler et al., 2014). In forests of the northeastern United States where the invasive 

hemlock wooly adelgid (Adelges tsugae) are causing rapid decline of eastern hemlock 

(Tsuga canadensis) IndVal was used to demonstrate that red-backed salamanders were 

significant indicators of intact hemlock forests, while eastern newts (Notaphthalmus 

viridescens) were more indicative of experimental hemlock removal plots (Siddig et al., 

2019). However, because no additional ecosystem components were considered in this 

case, the assertion that properties of ecosystem condition are related to salamander 

abundance is incomplete as there lacks a formal process model linking the two. 

Furthermore, IndVal requires course categorization of environmental changes that in 

reality exist along a continuum (see Chapters 2 and 3). Therefore, IndVal cannot quantify 

ecological responses over continuous gradients that are valuable in the context of applied 

species, biodiversity, or ecosystem management in a changing world.  

In light of the many limitations of IndVal, improved methods for jointly assessing 

the response of indicator species and species communities across environmental gradients 

are needed to optimize the selection of, and assess the performance of, indicator species 

as biodiversity conservation tools.  In general, the process of evaluating an indicator 

species should begin by identifying objectives including relevant ecological stressors 

(e.g., global climate change) and management goals (e.g., climate refugia, Figure 4.1). 

With these objectives in mind, appropriate indicator species are selected and evaluated 

according to how well the indicator links stressors to ecosystem targets (Bal et al., 2018; 

Lindenmayer et al., 2015; Siddig et al., 2016). This critical final step of scientific 

evaluation and assessment is often overlooked, but it is imperative to ensure that changes 
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in indicator is related both to the ecosystem target and the environmental threat. If the 

relationships between the environment, indicator, and ecosystem targets are not formally 

tested, management decisions may be misdirected and risks inappropriate allocation of 

conservation and management resources (Lindenmayer et al., 2015). 

 
Figure 4.1: Conceptual diagram describing role of an indicator species in adaptive management. First, an 
ecosystem stressor of concern is identified (far left). Next, a desired management objective (far right) 
thought to be at risk due to ecosystem threats (hashed arrow). Finally, environmental factors thought to be 
mediated by the ecosystem threat (landscape gradients, middle left) are measured and directly related to 
the occurrence or abundance of an indicator species (red-backed salamander, middle right) whose 
response is assumed to be proportional to that of the management objective. Here we include the additional 
component of indicator assessment by directly measuring the impact of environmental covariates on the 
management objective (curved arrows). Hashed lines represent assumed or inferred relationships while 
solid lines represent those that are directly measured and assessed. 
 

Here an indicator species conceptual process model (Fleming et al In Review) is 

adapted to empirically evaluate the red-backed salamander (Plethodon cinereus) as an 

indicator of the effects of anthropogenic landscape modification on biodiversity in 

northeastern forests (Figure 4.1) and compare such an approach to the widely applied 

IndVal metric. I use species richness as a measure of forest condition because 

biodiversity is an important aspect of ecological integrity and resilience and is known to 

be affected by human-dominated urban and agricultural mosaics (Beninde et al., 2015; 

Turrini & Knop, 2015). Variation of species richness and species associations (i.e., 

residual co-occurrence) for trees, birds, soil macroinvertebrates, and red-backed 
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salamanders along a human-dominated landscape gradient are estimated using a joint 

species distribution modelling framework to evaluate the red-backed salamander’s 

indicator potential. My approach to indicator assessment is centered on the premise that 

species within a community will exhibit a shared environmental response, in this case to 

gradients of human influence, and that an ideal indicator species represents an exemplar 

of the shared community response, i.e., will exhibit a stronger than average response and 

be measured with greater precision. Red-backed salamanders play are sensitive to 

environmental conditions such as temperature and moisture that have an effect on many 

species in the community. Therefore, I expect salamanders to indicate for changes in 

species diversity (sensu forest condition) as both are expected to change along gradients 

of human-influence.   

4.2 Methods 

4.2.1 Study System 
The study system comprises forty-two forested study sites in western 

Massachusetts, USA, extending from the Connecticut border in the South (-72.5764, 

42.0606) to the Vermont border in the North (-72.5408, 42.6523). All sampling locations 

were located in forest fragments situated along a range of landscape contexts defined by 

the degree of surrounding heterogeneity because my objectives were to identify 

indicators of biodiversity in forested habitats rather than the non-forested matrix. To 

ensure that the full extent of landscape variation was captured, I systematically selected 

sites by randomly generating 1000 points in forests across the study landscape in which 

access permission was likely to be granted and selecting 50 locations that ensured 

representative sampling of the two landscape axes of interest (see section 4.2.2 
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Landscape Quantification). Eight sites were removed because of accessibility issues, 

resulting in 42 sites sampled over three years (Figure 4.2). 

 
Figure 4.2: Map of study sites (points) with the regional context in Massachusetts (inset top-right). The 
gradient surface below sampling points represents the multi-dimensional landscape gradients. 
 

Sampling locations were relatively in-tact mixed-deciduous eastern broadleaf 

forest fragments situated in a human-dominated landscape matrix of urban, suburban, and 

agriculture, and were dominated by overstory trees such as sweet birch (Betula lenta), 

white pine (Pinus strobus), red oak (Quercus rubra), and red maple (Acer rubrum). The 

understory tended to be relatively open and was dominated by leaf-litter cover, 

herbaceous growth such as ferns (e.g., Dryopteris goldiena), and small understory trees 

such as American witchhazel (Hamamelis virginiana) and ironwood (Ostrya virginiana).  
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4.2.2 Landscape Quantification 

Landscape analyses followed the transparent landscape quantification framework 

of Padilla and Sutherland (2019). The 30-m resolution National Landcover Database 

(NLCD 2016) was used to analyze variation in modified (e.g., residential or agricultural) 

and un-modified (e.g., forests or wetlands) portions of the landscape. For each NLCD 

class, a binary raster surface (1 if focal class, 0 if otherwise) was created to which I 

applied a Gaussian kernel density spatial smoothing to estimate the spatially weighted 

average for each pixel. This resulted in a continuous surface ranging from 0 (no focal 

class within smoothing kernel) to 1 (smoothing neighborhood entirely focal class). The 

width of the smoothing kernel is set by a bandwidth parameter, s, which should be 

determined by ecological process of interest (Boyce et al., 2017). I selected a 1000-m 

radius smoothing kernel as an appropriate scale of the surrounding landscape, because it 

relevant to the presence and abundance of the species included in the community 

monitoring (see section 4.2.3 Ecosystem Surveys). Using these smoothed raster surfaces, 

a pixel-by-NLCD class matrix of smoothed values, ranging from 0 to 1, was created.  

Finally, I used a Principal Components Analysis (PCA) to identify dominant 

patterns of variation in the smoothed NLCD data. Dominant principal components (≥10% 

variance explained) were identified and closely examined in order to properly interpret 

the ecological interpretation of component loadings. For these dominant components, 

spatial landscape gradients were produced, where the value for each pixel is a PCA 

weighted average calculated as the sum of a cell’s smoothed NLCD values multiplied by 

the corresponding component weight for each NLCD value.  



 

66 

Multivariate analysis of landscape data resulted in two dominant axes of variation 

that together described 32% of the variation in the data (pc1 = 20.8%, pc2 = 11.2%). The 

first dominant axis of variation described a transition from forested and agricultural (soft) 

portions of the landscape to suburban and urban (hard) regions. Meanwhile, the second 

axis varied from open pastures and croplands (brown) to more structurally complex and 

forested landscapes with low or no residential areas (green). Together, these two axes 

describe intuitive patterns of spatial variation in human-dominated landscapes. That is, 

component one describes increasing dominance of the built urban and suburban 

environment, while component two distinguishes between the agricultural (brown) and 

forested (green) portions of the non-built landscape (Appendix D.2). These axes 

(gradients) were used as predictor variables to understand variation in bird abundance, 

and are here referred to as soft-hard (SH) and brown-green (BG) respectively.  

4.2.3 Ecosystem Surveys 

4.2.3.1 Red-backed Salamander 

 I used a natural cover object transect method to sample red-backed salamanders in 

the Spring and Fall 2017, 2018, and 2019. Salamanders were sampled along two 25-m 

long transects extending North (0 degrees) and West (270 degrees) from the site center. 

All cover objects, natural and unnatural, within 2-m of the transect line were searched, 

and any salamanders encountered were placed in an individual zip-top bag. For each 

salamander the individual’s sex (male, female, juvenile), snout-to-vent (SVL) length, and 

color morph (red-backed or lead-backed phase) were recorded.    

4.2.3.2 Avian Community 
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I measured composition of the breeding bird community using unlimited radius 

10-minute point count surveys. In each year for 2017 through 2019, three surveys were 

conducted at each site during the breeding season months of June and July to avoid 

periods of migration and dispersal. All surveys were conducted in the morning hours 

between the hours of 0500 and 0900 eastern standard time and were not conducted during 

periods of high winds or heavy rains.  

4.2.3.3 Soil Macro-Invertebrate Community   

 Macro-invertebrates were sampled at all sites once in 2017. At each site I 

removed 2 cores of leaf-litter and top 3-5 cm piece of 15-cm diameter PVC piping, each 

sample was placed in an individual Ziploc bag, and were then dried using Berlese-

Tullgren funnels to extract macro-invertebrates. Samples were placed in individual 

funnels with reflector lamps set approximately 6-inches above, below each funnel a vial 

containing 70% ethanol was placed to collect macro-invertebrates. Mass in grams of all 

samples was taken before and after drying to compare the wet (pre) and dry (post) mass 

of soil. Finally, all macro-invertebrates in each sample were identified to Order under a 

10-40x magnification dissecting microscope using a dichotomous key (Borror et al., 

1989). 

4.2.3.4 Tree Diversity 

 Dominant vegetation structure was sampled at all sites in 2017 and 2019. In 2017 

I estimated percent canopy cover, leaf-litter cover, woody twig density, and identified all 

trees to species and measured tree DBH (diameter at breast height) in centimeters within 

an 11.3-m radius plot. In 2019 all trees were identified to species and measured DBH 

within a 2-m buffer width along the 25-m salamander transect lines. Detailed descriptions 
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of field methods, including sample datasheets are available in the project handbook 

(Appendix D.1).  

4.2.4 Indicator Species Analysis 

4.2.4.1 Joint-species Distribution Model 

In line with recommended approaches to indicator species selection (Bal et al., 

2018; Lindenmayer et al., 2015), I first identified an ecosystem target of concern to be 

indicated. Species richness was selected as the target metric because it has been proposed 

as a proxy for ecosystem health (Ziter, 2016) and is known to be impacted by human-

mediated landscape modification (Aronson et al., 2014). I analyzed the site- and species-

specific abundance data using a hierarchical joint species distribution modelling (JSDM) 

framework that attributes variation in species abundance and co-occurrence to the 

environmental variation, and residual species-to-species associations (Ovaskainen et al., 

2017a). These models enable simultaneous estimation of large communities by 

borrowing information across species by assuming species-specific regression 

coefficients that follow a multivariate normal distribution governed by shared 

community-level hyper-parameters. This method is also able to estimate positive and 

negative residual species associations by directly estimating pairwise elements of a latent 

covariance matrix, W (Ovaskainen et al., 2016). A single model was fitted in which the 

species abundance of species i at site j (𝜆#$) was modelled as a function of two 

environmental covariates describing key diverging patterns of human-mediated 

modification to the landscape and their respective quadratic terms as follows:  

λ!" = 𝛽#$ + 𝛽%$ ∗ 𝑆𝐻& + 𝛽'$ ∗ 𝐵𝐺& + 𝛽($ ∗ 𝑆𝐻&' + 𝛽)$ ∗ 𝐵𝐺&' 
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Where 𝛽#$ are the species specific intercepts, 𝛽%$ and 𝛽'$ the effects of soft-hard and its 

quadratic, and 𝛽($ and 𝛽)$ estimates for brown-green and brown-green2, and 𝑆𝐻&, 𝑆𝐻&', 𝐵𝐺& and 

𝐵𝐺&' the scaled values of soft-hard and brown-green landscape gradients (and quadratics) at site j. 

Although multiple years and repeat visit surveys were available for some groups (i.e., 

birds and salamanders), I used the maximum observed abundance across all visits and 

years assuming that the collapsed three-year data set would more accurately reflect the 

system state than the single year alternative that is more susceptible to stochastic 

absences or turnover. Furthermore, by using a reduced dataset, this approach is able to 

assess whether a single season of rapid surveys could effectively evaluate an indicator 

species. 

  This model was fitted using a highly efficient MCMC sampler with 3 chains of 

20000 effective post burn-in samples (iterations). Model convergence and fit were 

assessed by visual examination MCMC chains, and when the Gelman-Rubin statistic (𝑅N) 

were less than 1.1.  

4.2.4.2 Indicator Species Selection 

 Finally, I sought to use both methods to determine the value of the red-backed 

salamander as an appropriate indicator and identify alternative indicator candidates. 

Using the output from the joint-species distribution model, potential indicators were 

identified as those whose distributional pattern were best explained by the suite of 

environmental covariates selected to characterize anthropogenic stressors (Figure 4.1). 

This was done by calculating the proportion of total variance explained by the JSDM 

attributed to the four covariates (i.e., the soft-hard and brown-green gradients with 

polynomial terms). Specifically, species-specific R-squared values were multiplied by the 
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percent of that variance explained by structural parameters which was calculated using 

the variance partitioning function in the HMSC package. I then ranked species by the 

absolute variance explained by the environment model. 

The potential indicators identified in the JSDM were then compared to species-

specific IndVal scores (Dufrêne & Legendre, 1997), which is the product of a species’ 

specificity (i.e., mean abundance in sites of a given type in relation to all sites) and 

its fidelity (i.e., relative frequency of occurrence in a given site type). Because the 

ecological target metric was species richness, sites were grouped into categories of 

species richness based on the 30th and 70th percentile, resulting in categories of sites with 

29 – 40 species (13 sites), 40 – 47 species (19 sites), and 48 – 54 species (10 sites). 

Indicators were ranked according to the p-value associated with the IndVal score, a 

relative measure of their ability to ‘indicate’ the most species rich category. Through this 

comparison, I seek to determine (1) whether there is support for red-backed salamander 

as an indicator of species richness in northern forests by either method, and (2) whether 

there is consistency in indicator species selection using both approaches.  

All analyses were conducted in R version 3.6.2 (R Core Team, 2019). The 

package ‘Hmsc’ was used for JSDM analysis (Ovaskainen et al., 2016), and the 

‘indicspecies’ package was used for IndVal analysis (De Cáceres & Legendre, 2009). 

4.3 Results  

4.3.1 Observed Data 

In total I observed 151 species and species groups across all taxa, with 83 bird 

species, 39 species of tree, and 28 invertebrate groups in addition to red-backed 

salamanders. The number of species observed at each site ranged from 29 to 54 with a 
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mean of 44.3 species per site. The most diverse site was characterized by a mixed stand 

of small to medium sized trees (mean DBH = 13.02), with a relatively high density of 

snags, while the least diverse site was a stand composed almost entirely of a single 

species (> 70% white pine). Indicator candidate, the red-backed salamander was observed 

in 36 of 42 sites, with a mean abundance of 2.3 salamanders per site and a maximum of 

10 salamanders.  

4.3.2 Community and Species Response 

Evaluation of model fit confirmed convergence, with no significant 

autocorrelation in MCMC chains and an overall mean Gelman-Rubin statistic < 1.01. 

Most of the variation in species abundance across sites was explained by changes in 

abiotic landscape structure along dual axes of human-dominance (mean = 78.6%) rather 

than by biotic species associations or additional latent factors. Accordingly, there was 

very little support for species-to-species associations as significant drivers of abundance 

and diversity in the study system (mean posterior support = 0.018) and estimates for 

species associations were approximately equally split between positive (51.3%) and 

negative (48.7%). The 62 species-species associations with at least 95% posterior support 

were similarly fairly evenly split between positive (53.2%) and negative (46.8%). These 

results suggest that within the observed species community, abiotic environmental factors 

are, relatively speaking, more prominent predictors of community assemblage than biotic 

species interactions. Species-specific pseudo R-square values ranged from 0.07 to 0.96 

with a mean of 0.159.  

At the community level, variation in abundance reflected a clear quadratic 

response for both soft-hard and brown-green axes (Table 4.1). Accordingly, the majority 



 

72 

of species in the data reflected similar non-linear patterns of abundance (Figure 4.2). 

Red-backed salamander abundance was strongly influenced by landscape structure, 

particularly along the soft-hard gradient (𝑆𝐻& = 0.27 [-0.5, -0.03], 𝑆𝐻&' = 0.21 [-0.001,0.42]; 

Table 4.1). In contrast with the majority of the species in the community however, 

predicted salamander abundance was higher at the more extreme soft and hard ends of the 

gradient, rather than in the more heterogeneous center (Figure 4.3).  

 
Figure 4.3: Species-specific estimates for soft-hard (left) and brown-green (right) landscape gradients and 
their respective polynomials. Though there was some variability, species generally followed a similar trend 
of increased abundance in the more heterogeneous center of the gradients. Red-backed salamander (shown 
by the red dot) response was somewhat of an outlier in comparison with the majority of the species 
community (community-estimates shown by green triangle) calling into question its function as an indicator 
of forest biodiversity. 
 

4.3.3 Indicator Species Selection 

Selection of indicators based on variance partitioning of the joint-species 

distribution model resulted in seven species with the portion of variance accounted for by 
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the landscape gradients with four species in the top 2.5%, red oak (Quercus rubra), 

coopers hawk (Accipiter cooperi), black-and-white warbler (Mniotilta varia), and indigo 

bunting (Passerina cyanea, Table 4.2). Despite the fact that red-backed salamander 

abundance was strongly influenced by the environment (Table 4.1) it was not among the 

species identified as indicator candidates through variance partitioning.  

IndVal analysis to identify indicator species for species richness revealed four 

species indicative of sites with species richness in the highest 30% (> 47 species), veery 

(Catharus fuscescens, IndVal = 0.803), chestnut-sided warbler (Setophaga pensylvanica, 

IndVal = 0.629), yellow-billed cuckoo (Coccyzus americanus, IndVal = 0.579), and the 

invertebrate order Protura (IndVal = 0.587, Table 4.1).  

Table 4.1: Covariate estimates for the species community as a whole, red-backed salamander, and the four 
species identified by IndVal as potential indicators. Parenthetical values represent 95% of each estimate’s 
posterior distribution. Larger IndVal scores suggest higher indicator potential (max = 1), and p-values 
show certainty determined through a permutation test. Veery, chestnut-sided warbler, yellow-billed cuckoo 
and the invertebrate order Protura were all identified significant indicators for the most species rich sites. 
 

 Soft-Hard Soft-Hard2 Brown-Green Brown-Green2 IndVal 
Community 

Estimates -0.001 (-0.09,0.09) -0.086 (-0.17,-0.01) -0.122 (-0.24,-0.02) -0.142 (-0.23,-0.05) NA 

red-backed 
salamander -0.269 (-0.50,-0.03) 0.209 (-0.01,0.42) -0.222 (-0.50,0.05) -0.101 (-0.11,0.31)  

veery  -0.485 (-0.84,-0.14) 0.049 (-0.29,0.39) -0.714 (-1.2,-0.29) -0.435 (-0.78,-0.11) 0.803 (p = 0.0025) 

chestnut-sided 
warbler -0.129 (-0.63,0.38) -0.137 (-0.62,0.30) -0.44 (-1.0,0.10) -0.316 (-0.79,0.12) 0.629 (p = 0.0032) 

yellow-billed 
cuckoo -0.171 (-0.66,0.31) -0.136 (-0.58,0.29) -0.44 (-1.0,0.10) -0.316 (-0.79,0.12) 0.579 (p = 0.009) 

Proturan 0.605 (0.1,1.13) -0.109 (-0.47,0.25) -0.409 (-0.94,0.12) -0.575 (-1.0,-0.10) 0.587 (p = 0.009) 
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Table 4.2: The seven species in the top 5% of variance accounted for by the environmental landscape 
gradients along with associated covariate estimates for landscape axes. Values in parenthesis represent 
95% of each estimate’s posterior distribution.  

 Soft-Hard Soft-Hard2 Brown-Green Brown-Green2 

red oak 0.122 (-0.12,-0.37) -0.077 (-0.27,0.12) 0.137 (-0.14,0.42) -0.119 (-0.36,0.12) 

coopers hawk  0.027 (-0.47,0.55) -0.056 (-0.49,0.38) -0.434 (-1.1,0.13) -0.15 (-0.62,-0.30) 

black-and-
white warbler -0.171 (-0.57,0.23) -0.083 (-0.27,0.45) -0.401 (-0.92,0.08) -0.294 (-0.69,0.09) 

indigo 
bunting -0.014 (-0.42,0.41) -0.09 (-0.26,0.45) -0.418 (-.96,0.08) -0.304 (-0.71,0.08) 

eastern 
phoebe -0.135 (-0.54,0.28) 0.059 (-0.29,0.41) -0.301 (-0.78,0.17) -0.168 (-.57,0.22) 

cherry spp. 0.347 (-0.1,0.83) 0.225 (-0.1,0.57) -0.034 (-0.59,0.52) -0.241 (-0.71,0.21) 

blue-winged 
warbler -0.186 (-0.75,0.39) -0.044 (-0.52,0.45) -0.389 (-1.1,0.27 -0.362 (-0.92,0.17) 

 

4.4 Discussion 

4.4.1 Red-backed Salamanders as Indicators for Biodiversity 

The red-backed salamander (Plethodon cinereus) has been widely promoted as an 

ideal indicator of ecosystem health, because of their significant ecological role and 

sensitivity to environmental variation (Welsh & Droege, 2001). Though this assertion has 

been established on firm conceptual and ecological grounds, and has propagated through 

the literature, the assumption has not been thoroughly evaluated in practice. I utilized an 

approach to evaluating the red-backed salamander as an indicator for biodiversity that 

was developed around the conceptual basis that a biological community would generally 

exhibit a shared response to environmental stressors, and that an ideal indicator would 

strongly reflect community-wide response (Figure 4.2). I used both joint species 

distribution modeling and the more commonly applied indicator metric, IndVal, and 

found that although salamander abundance was strongly influenced by gradients of 

landscape modification, the linear response was not consistent with the non-linear 

response exhibited by the majority of species in the forest community (Figure 4.3). 
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Furthermore, I found that red-backed salamanders were not among the species with the 

highest percent of the variance in abundance explained by landscape gradients (Table 

4.2), and, contrary to previous findings, was not identified as an indicator of species rich 

sites according to IndVal scores (Table 4.1). 

 
Figure 4.4: A comparison of indicator species for biodiversity in a heterogeneous human-dominated 
landscape. Biodiversity (top right) is maximized toward the midpoint of both landscape gradients, where 
habitat heterogeneity is greatest. Red-backed salamanders (top left) seem to be present at higher numbers 
in forest fragments situated in more homogenous agricultural (brown) and urban (hard) landscapes. Both 
the veery (bottom left) identified in IndVal analysis and the red oak (bottom right) identified through 
variance partitioning, were more emblematic of the biological community and are likely better candidates 
as indicators in my system.  
 



 

76 

At the community level human-modification of the landscape, as measured by 

multi-dimensional landscape gradients, strongly affected patterns of species-specific 

abundance (Table 4.1). The response to landscape heterogeneity was non-linear: species-

specific abundances, and overall species richness were highest in the most heterogeneous 

regions of the landscape which fell approximately at the center of each axis (Figure 4.4). 

Encouragingly, the lack of residual species-species correlation suggests that the quadratic 

effects of both landscape gradients adequately captured species’ habitat associations and 

allowed for a more informed evaluation of species-specific value as an indicator species 

(Appendix D.3). 

Variation in patterns of species distribution and community assembly in 

heterogeneous and human-dominated habitats has been of considerable research interest 

for some time (McKinney, 2002). Biological communities are arranged by a suite of 

interacting biotic (e.g., competition/facilitation) and abiotic (e.g., temperature) filters 

(Ovaskainen et al., 2017b). In human-dominated landscapes where non-native species 

may outcompete native species (García-arroyo et al., 2020) and changes in temperature 

and moisture prevent the establishment of sensitive species (McLean et al., 2005), the 

biotic and abiotic filters differ from those in natural systems and the process of 

community structuring remains poorly understood (Mittelbach & Schemske, 2015). In 

spatially heterogeneous landscapes, increased diversity of habitat types may provide 

more available niche space, thereby reducing competition (Fahrig, 2017), conversely, the 

addition of new species (e.g., non-natives, generalists) that are able to exploit newly 

available niches in these habitats may increase the role of competition (Shochat et al., 

2010). My results showed clear evidence that abiotic filters as described in the multi-



 

77 

dimensional landscape gradients were the most significant drivers of abundance at both 

the community and species level and provided very little evidence that positive or 

negative species associations influence the composition of biological communities in this 

system.  

 Members of the Plethodontid family, especially the red-backed salamander, are 

frequently promoted as ideal indicators because of their abundance, wide distribution, 

and ease of sampling (Ochs & Siddig, 2017; Welsh & Droege, 2001). It was surprising, 

therefore, that these results stand contrary to those predictions and suggest that red-

backed salamanders are not the most ideal indicator of biodiversity in my system (Figure 

4.2). Despite the fact that salamander abundance did show a strong response to 

environmental predictors, particularly along the soft-hard axis, it did not reflect the non-

linear pattern of the community as a whole. In contrast to community diversity and 

species abundance, which are both maximized in more most heterogeneous areas mid-

way along both landscape gradients, salamander abundance was highest in soft 

landscapes, decreasing as the mosaic becomes more heterogeneous, and again increasing 

slightly in more urban hard areas (Figure 4.4). 

 Red-backed salamanders are common across the landscape and are known to 

persist in small habitat fragments, even in inhospitable urban and agricultural landscapes 

(Noël & Lapointe, 2010; Wilk et al., 2020). At the same time, however, the small home 

range and cutaneous respiration of red-backs make them sensitive to small changes in the 

microclimate of the soil and forest floor (Ochs & Siddig, 2017; Pearce & Venier, 2009; 

Sugalski & Claussen, 1997), demonstrating that occupancy and abundance of red-backed 

salamanders is likely driven more by micro-scale rather than landscape-level factors. The 
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species included in this analysis did not represent a comprehensive account of all species 

present in the community, but it does include species from a number of different 

taxonomic groups representing an array of life-histories and existing at a range of scales. 

The contrasting responses to landscape heterogeneity between salamanders and the 

broader community likely reflects these landscape-level versus micro-scale processes.  

 Experimental and observational research has shown red-backed salamanders to 

have small home ranges of 30-m2 or less (Cosentino & Droney, 2016; Hernandez-

Pacheco et al., 2019), with lifetime dispersal distances less than 10-m (Cosentino & 

Brubaker, 2018; Ousterhout & Liebgold, 2010), and are most sensitive to small changes 

in soil conditions, particularly moisture, temperature, and pH (Frisbie & Wyman, 1992; 

Petranka, 1998; Sugalski & Claussen, 1997). Accordingly, occurrence and abundance of 

salamanders across the landscape is likely governed by these fine scale features of the 

micro-habitat. While these may vary along gradients of urbanization and land-use change 

(Pouyat et al., 2008), they are more directly impacted by local variation in forest type, 

canopy cover, and availability of coarse woody debris and leaf-litter (Frisbie & Wyman, 

1992; Homyack et al., 2010; Ochs & Siddig, 2017; Pearce & Venier, 2009). Because of 

their small home-range size red-backed salamanders may be buffered from the negative 

effects of urbanization where they are able to find suitable conditions in the soil micro-

habitat (Norton et al., 2016). In urban parks of central Ohio, for example, the size of 

forest fragments did not affect local salamander abundance, however, there was very little 

evidence for movement between fragments (Wilk et al., 2020).  

 In addition to assessing the effectiveness of red-backed salamanders as indicators, 

I used two additional approaches to identifying potential indicators in my study system, 
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IndVal, and variance partitioning. IndVal (Dufrêne & Legendre, 1997) is a metric that 

identifies indicators based on the specificity and fidelity of each species to site types. 

Based on this measure, four candidate species were identified as indicators for the sites 

with the highest species richness, with the veery, chestnut-sided warbler, and yellow-

billed cuckoo most strongly supported (Table 4.1). These bird species all breed in early 

successional and disturbed habitats, particularly scrubby edges and regenerating forests 

(Hobson & Bayne, 2000), which are often readily available in human-dominated 

landscapes. The final species group, the invertebrate order Protura are small organisms 

that reside in moist soil and leaf-litter feeding on detritus and fungi (Galli et al., 2019), 

and are an important food resource for organisms, including red-backed salamanders 

(Homyack et al., 2010). 

I also attempted to identify indicators based on the proportion of variance 

explained by environmental covariates in the community abundance model. Five of the 

seven species identified were birds, with three, the black-and-white warbler, blue-winged 

warbler, and indigo bunting known breeders in dense secondary growth and forested 

wetlands (Hobson & Bayne, 2000; Swift et al., 1984), and the remaining two, coopers 

hawk and eastern phoebe, common breeders in fragmented suburban habitats (McNair, 

2016; A. D. Rodewald & Kearns, 2011). The red oak was the species whose response to 

the environment was most strongly supported by the model. This is a dominant species of 

eastern mixed deciduous forests, is a common species of residential neighborhoods, and 

generally has benefitted from human-mediated landscape alteration (Nock et al., 2013). 

Each of these species is characteristic of, or able to persist in, the forest types common in 
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the heterogeneous landscape mosaic toward the center of the landscape gradients, and 

therefore are exemplars for the community wide response (Figure 4.3).  

 

4.4.2 Indicators of Biodiversity in Human-Dominated Landscapes 

My aims were to evaluate the ability of red-backed salamanders to act as an 

effective indicator of biodiversity in a human-dominated landscape, I found no support 

for the hypothesis that red-backed salamanders are an effective indicator species for 

biodiversity. However, several interesting candidate species were identified both through 

the joint-species distribution modeling (Table 4.2) and IndVal (Table 4.1) analysis. 

Species composition on the landscape is driven by multiple factors operating at a 

hierarchy of scales (Aronson et al., 2016). Many species, especially large charismatic or 

threatened vertebrate species, are more responsive to environmental filters at the 

landscape scale. This analysis included organisms operating at different scales – 

dominant structural vegetation, mobile vertebrate species, and small relatively sessile soil 

macro-invertebrates, and failure of red-backed salamanders likely reflects differential 

responses to micro- versus macro-scale environmental factors (Wilk et al., 2020). 

However, several interesting candidate species were identified both through the joint-

species distribution modeling (Table 4.2) and IndVal (Table 4.1) analysis. 

 IndVal identified four species characteristic of damp, dense and scrubby forests 

including edge habitat and regenerating forests that are characteristic of heterogeneous 

mosaics in human-dominated landscapes where biodiversity is expected to be greatest. Of 

these, the veery (Catharus fuscesens) was the highest ranked indicator for the most 

species rich sites (Table 4.1). This species is a particularly good representative of 
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community response to the ecosystem stressors and may be a good indicator of 

biodiversity (Figure 4.4). Veery are forest breeding birds that nest in forests with dense 

understory structure, and though sensitive to nest predation and parasitism, are able to 

persist in fragmented and residential landscapes because they lead to densification of 

forest vegetation structure (Kluza et al., 2000). As frequent vocalizers with a distinctive 

and song that is quickly learned, the veery is easy to monitor for occurrence or 

abundance. I also used variance partitioning of the joint-species distribution model to 

evaluate salamanders as indicators and found several species with habitat associations 

reflective of the broader community (Table 4.2). The red oak is a dominant component of 

the forest structure in the study region, and acts as a vital habitat and food resource for a 

number of species (Haynes et al., 2009). Unsurprisingly, oaks were more common in 

green rather than brown regions, but broadly speaking represented community response 

to the landscape (Figure 4.4).  

4.4.3 Conclusions 

My results provided no evidence in support of red-backed salamanders as 

indicators of biodiversity. While salamanders may be effective indicators of fine scale 

changes in the forest floor mesocosm and soil micro-environment, they are not able to 

reflect broad changes at the landscape scale (Figure 4.3). The suites of species we 

identified were characteristic of dense secondary growth forests that are typical of 

heterogeneous landscape mosaics. The veery is sensitive to structural (hard) landscape 

development, but is able to persist in forest fragments, while the red oak is most abundant 

in forested regions and is a critical food resource for many species (Figure 4.3), making 

species preferable to the red-backed salamander as indicators of biodiversity. In contrast 
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to the veery whose habitat associations overlap with a majority of other species in the 

community, the red oak may act more as a keystone or foundational species because of 

the important role it plays in the food web. Using species such as these as indicators for 

biodiversity conservation in human-dominated landscapes prioritizes a mixed mosaic that 

includes scrubby forest edges while maintaining sufficient forest interior to preserve 

more sensitive species. Conversely, relying on the red-backed salamander as an indicator 

for the effects of anthropogenic stressors on biodiversity would lead to the incorrect 

assessment that biodiversity in heterogeneous landscape mosaics, where salamander 

abundance is lowest, is at risk.  

While these results did not provide support for red-backed salamanders as 

indicators of biodiversity, I was able to identify several indicator candidates using joint-

species distribution modeling and IndVal. One especially encouraging aspect of this is 

that although my data were collected by a single observer over time, the type of data used 

here could just as easily have been collected in a short time by a team of citizen scientists 

in a ‘bio-blitz’ making it possible for decision makers to use a data driven approach to 

indicator species identification and assessment, and ultimately make informed and 

adaptive management decisions. As the human footprint on the landscape continues to 

grow informed species conservation and management is imperative. I stress that critical 

and objective evaluation of proposed indicators is vital, and demonstrate the process 

using observational abundance data that are increasingly available through citizen science 

platforms such as eBird and iNaturalist and can be leveraged for the mutual benefit of 

human and natural ecosystems.  
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CHAPTER 5 
 

CONCLUDING REMARKS 

The initial aim of this dissertation research was to better understand the effects of 

habitat transformation, particularly urbanization, on a common and environmentally 

sensitive species. However, I immediately recognized that prior to understanding the 

effects of landscape pattern on ecological process, a clear understanding and measure of 

the landscape is required, something that was lacking in human-dominated systems. In 

recognition of this knowledge gap, I developed a transparent framework for standardizing 

landscape gradient quantification in human-dominated systems and applied this 

framework to find a consistent multi-dimensionality to the landscape that is often 

overlooked. Ultimately, however, my goals in this research were to better understand the 

ecological impacts of human-mediated landscape transformation such as urbanization or 

agriculture, I was able to use the multi-dimensional landscape gradients to test theories of 

community ecology and indicator species analyses. I truly hope that this research has an 

impact beyond the halls of academia. The multi-dimensional landscape gradients 

developed here can be used to better inform conservation and landscape management, 

while my own applications in forests of western Massachusetts has provided strong 

evidence that a mixed-use landscape mosaic is beneficial to biodiversity.  

The ecological response of urban-rural landscapes has been extensively studied in 

recent decades. In spite of this, the lack of sound and consistent definitions of these 

landscapes has been repeatedly pointed out and attributed to the equivocal findings in the 

literature. I revisited the relevant literature to review the urban gradient concept, 

however, rather than aiming to illuminate inconsistencies, I sought to identify patterns in 
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line with suggested best practices in landscape ecology. This review highlighted that 

despite observed variability, researchers consistently follow a general decision 

framework for landscape quantification, however, transparent forethought and ecological 

justification was often lacking in making these decisions. Accordingly, in order to 

improve standardization of urban gradients in practice, I called for transparent reporting 

and clear ecological justification for decisions made regarding (1) landscape structure, (2) 

spatial data, and (3) spatial scale. It is my hope that the transparency called for in this 

chapter will lead to methodological improvements and standardization in urban gradient 

definition and ultimately improve general understanding of ecological processes in a 

rapidly urbanizing world.  

Chapter 2 applied the transparent framework outlined in Chapter 1 to quantify 

landscape gradients in 10 ecologically distinct US cities. I used freely available NLCD 

land-cover and land-use data to represent human-mediated and natural landscape features 

which were analyzed using a multivariate approach at a 500-m spatial scale to produce a 

pair of general and intuitive landscape gradients describing structural (soft-hard) and non-

structural (brown-green) types of human-mediated landscape alteration. Together, these 

axes provide a complete multi-dimensional perspective of heterogeneous landscape 

mosaics and proved to be both consistent in various contexts, and effective at predicting 

ecological response. In short, this chapter acts as a critical proof-of concept for the 

transparent landscape gradient framework identified in Chapter 1. by using readily 

available remote-sensed data to represent a broadly applicable set of landscape features 

with an easily implementable analytical method, and demonstrating its reproducibility 
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and ecological relevance, I hope that this work will encourage other researchers to follow 

suit. 

In my third Chapter I focused my efforts exploring the multi-dimensional 

landscape gradient back to my local study system in western Massachusetts to investigate 

the effects of landscape heterogeneity on the structure and composition of bird 

communities.  I tested two prominent theories describing how biological communities 

and biodiversity are impacted by habitat fragmentation and landscape mosaics. These 

theories, island biogeography and spatial heterogeneity, both have strong support in the 

literature and firm conceptual grounding. I used multi-dimensional landscape metrics in a 

hierarchical model for species abundances to test these theories and describe patterns of 

avian diversity in a human dominated landscape. My results showed that bird diversity is 

greatest near the center of both soft-hard and brown-green axes of the multi-dimensional 

gradient, the area of highest heterogeneity, and lends support to the hypothesis that 

biodiversity in fragmented landscape mosaics benefits from the greater habitat diversity 

and niche breadth heterogeneous landscapes provide. The debate over how to best 

manage fragmented landscapes has roiled for several decades and remains a relevant 

topic in ecology. By using a multi-dimensional perspective of the landscape, I 

demonstrated a general non-linear response of birds to the landscape and demonstrate that 

this landscape framework can be used to improve understanding of ecosystem process in 

other contexts as well.  

For my fourth and final research chapter I simultaneously expanded my scope 

beyond bird communities to include tree and invertebrate species, while focusing on a 

single species, the red-backed salamander (Plethodon cinereus). I once again relied on 
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the multi-dimensional landscape gradients to critically evaluate the red-backed 

salamander as an indicator species for biodiversity. The indicator species concept is 

widely used to rapidly assess habitat and prioritize conservation efforts, however, the 

species often used as indicators, including the red-backed salamander, are rarely 

explicitly tested. I used abundance data for red-backed salamanders as well as tree, bird, 

and invertebrate species at 42 sites in western Massachusetts to test the salamander’s 

potential as an indicator of biodiversity. I used a joint-species distribution model on the 

conceptual basis that the biological community would exhibit a shared response, and that 

an ideal indicator would be one whose response to the landscape strongly represented that 

of the species community. Although my results showed a clear community wide 

quadratic response to the multi-dimensional landscape, salamanders did not share this 

pattern with the majority of species on the landscape, suggesting that it is not an effective 

indicator for biodiversity. However, my analyses did reveal several candidate indicators 

that are characteristic of dense forests and edges common in heterogeneous landscapes 

where biodiversity is high. Indicator species are most often selected based on prior use in 

the literature, not critical evaluation. I hope that this work will cause others to pause and 

take time to objectively relate the indicator in question to ecological targets rather than 

relying on even well-founded ecological assumptions.  

Overall, my dissertation was inspired by, and ultimately concluded with the red-

backed salamander. Along the way, the arc of this research provides several important 

contributions to ecological theory and conservation practice in the context of human-

dominated landscapes. First, my review of the urban gradient literature describes a clear 

methodological framework calls for transparency and ecological justification for 
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decisions made when quantifying spatial metrics. Second, within this framework I used 

readily accessible remote-sensed land-cover data and a multivariate statistical approach to 

describe an ecologically intuitive and widely applicable pair of landscape gradients that 

together provide a clearer, multi-dimensional, perspective of human dominated 

landscapes. Together, these can provide much needed methodological standardization 

and improvement to landscape gradient quantification, and to reduce the variability in 

spatial metrics and uncertainty in understanding of the effects on ecosystem process. 

Finally, my evaluation of the red-backed salamander as an indicator species and test of 

theories describing species diversity in heterogeneous systems have both shown that in 

human-dominated landscape mosaics, species diversity is greatest in the moderately 

disturbed regions where spatial heterogeneity of habitat is highest. These results are 

encouraging because they suggest that as the human population continues to expand, 

wisely managed integration of the urban, agricultural, and natural landscapes can provide 

habitat for a large number of species. While large relatively undisturbed habitat tracts will 

still be needed to ensure survival of all species, a land-sharing approach where 

commercial, residential, and agricultural land-uses are integrated in a mosaic with natural 

habitat has the potential to be a valuable conservation tool. Furthermore, by providing 

ready access to nature for men, women and children it has the potential to improve social, 

emotional and physical health, reduce the effects of environmental injustice, and most 

importantly to instill them with a love for the natural world and an ethic of environmental 

stewardship.  
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APPENDICES 
 
 

APPENDIX A – CHAPTER 1: A STANDARDIZED FRAMEWORK FOR 
TRANSPARENT QUANTIFICATION OF URBAN LANDSCAPE GRADIENTS 

Appendix A.1: Full list of search terminology used in Web of Science [5.2.1] 

Search Query:  

TS = (“Urban Gradient” OR “Urban Rural Gradient” OR “Rural Urban Gradient”) 

Web of Science Categories:  

 Environmental Sciences OR Ecology OR Biodiversity Conservation OR 
Parasitology  OR Marine Freshwater Biology OR Environmental Studies OR Mycology 
OR Plant  Studies OR Zoology OR Forestry OR Ornithology OR Entomology OR 
Biology OR  Evolutionary Biology 

Journal Categories: 

 Environmental Sciences; Ecology; Biodiversity Conservation; Parasitology; 
Marine  Freshwater Biology; Environmental Studies; Engineering Environmental; 
Mycology;  Plant Sciences; Zoology; Forestry; Ornithology; Entomology; Biology; 
Evolutionary  Biology 

Appendix A.2: Full citations list of 250 reviewed papers  
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Appendix A.3: Names and counts of 121 journals represented in review 
Journal Name   Journal Name   
Acta Oecologica 2 Diseases of Aquatic Organisms 1 
Acta Ornithologica 1 Diversity and Distributions 4 
American Midland Naturalist 1 EcoHealth 1 
Animal Behavior 1 Ecological Applications 6 
Animal Conservation 3 Ecological Indicators 6 
Applied Herpetology 1 Ecological Modeling 1 
Applied Soil Ecology 1 Ecological Research 1 
Applied Vegetation Science 1 Ecology 2 
Aquatic Microbial Ecology 1 Ecology and Evolution 4 
Archives of Environmental Contamination and 
Toxicology 2 Ecoscience 4 
Asian Herpetological Research 1 Ecosphere 2 
Asian Myrmecology 1 Ecosystems 2 
Austral Ecology 2 Ecotoxicology 1 
Avian Biology Research 1 Emu 1 
Behavior 1 Entomological Science  1 
Behavioral Ecology 2 Environmental Biology of Fishes 1 
Behavioral Processes 1 Environmental Entomology 1 

Biodiversity and Conservation 5 
Environmental Monitoring and 
Assessment 1 

Biological Conservation 6 Ethology 1 
Biological Invasions 3 European Journal of Entomology 3 
Biology Letters  2 Evolutionary Applications 1 
Bird Study 3 Experimental and Applied Acarology 1 
Bulletin of Insectology 1 Florida Entomologist 2 
Canadian Journal of Fisheries and Aquatic Sciences 2 Forest Ecology and Management 1 
Canadian Journal of Forest Research 1 Freshwater Science  1 
Canadian Journal of Zoology 2 Frontiers in Ecology and Evolution 1 
Chelonian Conservation Biology 1 Frontiers in Zoology 1 
Community Ecology 2 Global Change Biology 2 
Comptes Rendus - Biologies 1 Global Ecology and Biogeography 1 
Conservation Biology 2 Herpetologica 1 
Conservation Genetics 1 Herpetological Journal 2 
Contemporary Problems of Ecology 1 Ibis 1 
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Copeia 1 Insect Conservation and Diversity 1 
Current Zoology 1 Integrative and Comparative Biology 2 

 

Journal Name   Journal Name   
International Journal of Remote Sensing 1 Oecologia 1 
International Journal of Sustainable 
Development & World Ecology 1 Oikos 1 
Journal of Animal Ecology 2 Ornitologia Neotropical 1 
Journal of Arid Environments 1 Pedobiologia 1 
Journal of Avian Biology 2 Periodicum Biologorum 1 

Journal of Biogeography 3 
Philosophical Transactions of the Royal 
Society B: Biological Sciences 2 

Journal of Comparative Physiology B 1 Physiological and Biochemical Zoology 1 
Journal of Economic Entomology 1 Plant Ecology  3 
Journal of Evolutionary Biology 1 Polish Journal of Ecology 1 
Journal of Field Ornithology 1 Remote Sensing of Environment 1 
Journal of Geophysical Research 1 River Research and Applications 2 
Journal of Great Lakes Research 1 The Auk 3 
Journal of Insect Conservation 1 The Condor 5 
Journal of Insect Science 1 The Journal of Arachnology 1 
Journal of Mammology 2 The Journal of Wildlife Management 1 
Journal of Medical Entomology 2 The Lichenologist 1 
Journal of Mountain Science 1 The Wilson Journal of Ornithology 2 
Journal of Ornithology 3 Tropical Conservation Science 1 
Journal of Raptor Research 1 Urban Ecosystems 28 
Landscape and Urban Planning 21 Urban Forestry & Urban Greening 2 
Landscape Ecology 10 Water Quality Research Journal of Canada 1 
Mammalian Biology 1 Wetlands 1 
Molecular Ecology 1 Wildlife Research 1 
Neotropical Entomology 1 ZooKeys 2 
North American Journal of Fisheries 
Management 1 Zoologia 1 
Northeastern Naturalist 1 Zoological Studies 1 
Northwest Science  1   
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A.4 – Analysis of Review Data 

We fit a Poisson generalized linear model to evaluate the hypothesis that the number of 

reviewed publications would show an increase over time. The model indicated a 

significant positive effect of ‘year’ (p < 0.001), with an increase on average of 1.13 

publications per year. 

Table 2: Model coefficients for analysis of number of publications reviewed per year. Parameter estimates 
are on the Poisson log scale. 
 
 
 
 
 
 
 
We fit a Negative Binomial generalized linear model to evaluate the effects of focal taxa 

size on the selection of a spatial scale. We expected that, because larger organisms tend 

to have larger home ranges, and thus respond to the landscape at a larger spatial scale, the 

choice of scale would be related to the size species under study. One significant outlier in 

the response (scale > 10000) was removed because it had a large effect on model 

estimates, taxon body size was categorized on a scale of 1 to 4 as follows: 

1. insects and micro-organisms, 

2. small to medium organisms, 

3. medium to large organisms,  

4. very large organisms, trees, or ecosystem level. 

We found no relationship between chosen spatial scale and body size classes (est. scale 

for size classes 1-4: 1338.0, 1339.7, 1338.9, 1341.4) 

 Estimate Std. Error P-value 

Intercept 2.476 0.1612 <2e-16 

Year Effect 0.1212 0.0230 1.42e-07 
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Figure 5: Pairwise comparison, derived from Tukey’s honest significant difference test, of model 
coefficients for spatial scale for each size category. There was no significant difference in spatial scale for 
the largest (4) and smallest (1) sized species, respecively. 
Table 3: Model coefficients for analysis of categorical body size and spatial scale. Parameter estimates are 
on the Negative Binomial  (log-link) scale. Estimates for Size2-4 correspond to the reference level Size1. 
Starred p-value indicates significance at (alpha = 0.05). 

Size Category Estimate Std. Error p-value 

Size1 7.199 0.243 <2e-16* 

Size2 0.489 0.389 0.2095 

Size3 -0.090 0.306 0.7675 

Size4 1.209 0.475 0.0109 

theta (𝜃) 0.6014 0.0698  
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Appendix A.5 - Application of Framework in Context 

We analyzed the landscape surrounding the urban centers of Springfield, MA and 

Columbus, OH to demonstrate the value of analyzing urban-exurban landscapes using a 

candid standardized framework. Urban-exurban landscape gradients were quantified for a 

150-km x 150-km region surrounding Springfield, Massachusetts (42.1015° N, 72.5898° 

W) and Columbus, OH (39.9612 ° N, 82.9988° W) following the three step standardized 

landscape gradient framework (Figure 2.2 in text) for a hypothetical analysis of 

ecological response to landscape change in two common bird species (Northern Cardinal, 

Cardinalis cardinalis and Ovenbird, Seiurus aurocapilla). Decisions made at each step of 

the framework were identical in both regions in order to demonstrate the framework’s 

ability to standardize landscape definition. A step-by-step diagram of our process and 

accompanying table of decisions made within landscape gradient framework can be 

found in Figure A.5.1 and Table A.5.1 respectively.  

 Coverage of natural habitat types, and human land-use and approximate density 

were identified as important features of both landscapes. Land-cover data from National 

Land Cover Database were selected to represent these features because it includes all 

relevant natural and human dominated cover types, and can approximate population 

density through categories of residential development (i.e. High Density Residential vs. 

Low Density Residential). Each NLCD cover type was then extracted as a binary map 

layer, and was subsequently ‘smoothed’ using a moving window kernel-density function 

resulting in the ‘relative influence’ of each cover type at every pixel on the landscape. 

Spatial scale of the smoothing kernel (500-m radius) was determined by the home range 

size of the known home range of focal species based on the established literature. The 
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smoothed values of each cover type for every pixel were then analyzed using Principle 

Components Analysis to estimate dominant trends in land cover across the landscape. We 

examined the dominant component that explained majority of variance, and interpreted 

its application in the landscape context. Finally, the landscape gradient was calculated as 

a PCA weighted index of land cover across the landscape by multiplying the smoothed 

pixel value by PC weights for individual cover types and summing across cover types 

(Equation 1), where SLGi is the Standardized Landscape Gradient value for cell i, LCij is 

the smoothed value for NLCD cover-type j in cell i, and pcwj is the principle component 

weight of cover-type j.  

𝑆𝐿𝐺$ =	,𝐿𝐶$& ∗ 𝑝𝑐𝑤&
&

 

In both regions, the Standardized Landscape Gradient approach described an ecologically 

meaningful pattern in the landscape that differentiated different types of human land use (i.e. 

urbanization and agriculture) from natural habitat (forest; Figure 2.5). 
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Figure A.5.6: The process for quantifying the urban-exurban landscapes in Springfield, MA and Columbus, 
OH. Decisions made within the landscape gradient framework were consistent between regions, and are 
outlined in Table 2. Each panel represents a step in the process used to implement the gradient framework, 
and illustrates that implementation of decisions made within the framework may not occur 
‘chronologically’ in the analytical process. 
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Figure A.5.7: Landscape gradients produced using the three step standardized gradient framework. In both 
regions the framework produced highly meaningful and intuitive gradients of landscape variability. Table 3 
includes PCA variable weights for both regions. 
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Table A.5.1: Decisions made within landscape gradient framework for analyzing urban landscapes in 
Springfield, MA and Columbus, OH. The corresponding step-by-step implementation of these steps is 
outlined in Figure 4. 

SLG Step Decision Justification 

1) Landscape 
Features 

Physical land-cover 
and demographic 
land-use 

‘Land-cover’ categories (i.e. forest, shrub) 
track changes in ‘natural’ landscapes, while 
‘land-use’ (devel., crop) tracks the human 
footprint and approximate population density 

2) Spatial Data Remote-sensed, 
National Land Cover 
Data 

NLCD land-cover data in freely accessible 
and highly vetted. Benefits of accessibility 
and reproducibility outweigh potential pitfalls 
of errors in the data  

3) Spatial Scale 500-m radius Scale of analysis was determined by mean 
home range size of our two focal species 
(Northern Cardinal and Ovenbird) in the 
established literature 

4) Analytical 
Methods 

PCA weighted index Principle Components Analysis incorporates 
variability of all landscape features over the 
landscape and extracts meaningful patterns of 
variation. A weighted index incorporates 
variability of all components into a single 
metric 

 
Table A.5.2: Principle component weights for each NLCD cover type in Columbus, OH 
and Springfield, MA. PC1 explained the most variation in the data, and was used to 
create landscape gradient (seen in Figure D.5). 

NLCD Cover 
Type 

Ohio 
PC1 

Mass. 
PC1 

Std. Dev 1.773 1.850 

Open Water 0.0617 0.0358 

Developed Open 0.4154 0.4201 

Low Developed 0.5068 0.4941 

Med Developed 0.5111 0.4756 

High Developed 0.4198 0.3751 

Barren/Waste 0.0361 0.0662 

Forest Decid. - 0.0147 - 0.3117 
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Forest Everg. - 0.0014 - 0.1054 

Forest Mixed -0.0339 - 0.2469 

Scrub/Shrub 0.0005 0.0598 

Grass/Herb - 0.0339 0.1392 

Pasture - 0.0563 0.0375 

Crop - 0.3493 0.0819 

Wet Woodlands 0.0184 0.0583 

Wet Herbaceous 0.0032 0.0556 
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APPENDIX B – CHAPTER 2: MULTI-DIMENSIONAL LANDSCAPE 
GRADIENT DEFINITIONS FOR HUMAN DOMINATED LANDSCAPES 
 
B.1 – Effects of smoothing scale: 1,500-m scale  
 

To test for sensitivity of landscape quantification approach to choice of smoothing 

scale, we conducted landscape analysis at two kernel scales, 500-m and 1,500-m 

described here. Extending the size of the smoothing parameter increases the 

“neighborhood” surrounding each focal pixel influencing the smoothed value. In this 

way, a larger portion of the surrounding landscape is considered to have a significant 

contribution on the smoothed value of a given pixel. We analyzed all ten study cities in a 

joint analysis at a 1,500-m smoothing scale using the same methods described for 500-m. 

Quantification of landscape heterogeneity at a 1,500-m smoothing scale yielded 

results that were highly comparable with the 500-m scale (Table A.1). The first principal 

component explaining the largest proportion of data variation (s1500 = 19.2%) was also 

strongly negative for developed land-cover classes (e.g, Devel-Mid = -0.531), with 

neutral or positive loadings for forested (Forest-Deciduous = 0.034), open, and 

agricultural (Crop = 0.133) classes. The second principal component (s1500 = 12.9%) 

showed a strong divergence between non-impervious (i.e., soft) landscape types, 

differentiating between those that are highly modified by human activity. Forested 

regions had strongly negative loadings (Forest-Deciduous = -0.481) while croplands had 

strongly positive loadings (Crop = 0.424), and distinguishes between types of non-

structural landscapes. Finally, as in the 500-m analysis, the third principal component 

also distinguished between non-structural landscapes. However, while PC2 separated 

predominantly deciduous forests and wetlands (common in eastern US) from agriculture, 

PC3 separated mixed forests and scrublands (common in western US) from agriculture.  
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While the component weights and NLCD land-use eigen values differed between 

500-m and 1,500-m analyses, the ultimate ecological interpretation of the resulting 

landscape gradients was consistent. In both cases the first component represented a 

gradient from heavily built to non-built environments along hard-to-soft, while the 

second and third represented variation in the non-built environment along an axis of 

green-to-brown.  

B.2 – Effects of local environment 
 
 In addition to our joint (i.e., all cities) analyses, we quantified landscape gradients 

in all study cities independently (Table A.2). Results for city specific analyses were 

remarkably consistent in spite of regional variation in the composition and configuration 

of natural and human-dominated landscapes. This was especially true in the case of the 

first principal component describing the most significant portion of the variation in 

landscape data. In all cities the strongest component described a gradient of variation 

from hard regions characterized by the human-dominated built environment from non-

built soft regions (Table A.2).The second component, however, was more variable and 

depended on the city specific landscape composition. Nevertheless, with the sole 

exception of Albuquerque, where PC2 differentiated wetland habitats from developed 

areas, the interpretation of the second component consistently described variation 

between brown and green regions, respectively. 
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B.3 – American Robin Occupancy Analysis 
 
Table B.3.4:  Total number and final number of sampling locations for each study city. In cases where 
cities had > 250 locations,  we thinned the sampling pool with a random sample of 250 locations. Number 
of sampling events reflects the total number of visits to all sampling locations in a given city, and 
Frequency of Presence is the proportion of those visits where a Robin was observed.  
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Total 
Num. 
Sampling 
Locations 

31 181 593 56 165 581 831 46 581 224 

Final 
Num. 
Sampling 
Locations 

31 181 250 56 165 250 250 46 250 224 

Final 
Num. 
Sampling 
Events 

110 632 791 200 596 853 869 158 830 740 

Freq. of 
‘Presence’ 0.4818 0.4430 0.4349 0.4650 0.446

3 
0.443

1 
0.432

5 
0.462

0 
0.428

9 
0.386

5 
 
 
Table B.3.5: Parameter estimates for Robin detection  probability (r) and occupancy (Y) for the best 
supported model: 𝑙𝑜𝑔𝑖𝑡&𝜌!"( = 𝑐𝑖𝑡𝑦! ∗ 𝑑𝑎𝑡𝑒!" + 𝑑𝑎𝑡𝑒!"* 	+	𝐻𝑆! + 𝐵𝐺! and for occupancy, 𝑙𝑜𝑔𝑖𝑡(𝜓!) 	=
	𝑐𝑖𝑡𝑦! 	∗ 𝐻𝑆! + 𝐵𝐺! . All parameter estimates are on the logit scale.  

Parameter 
(p) 

Estimate Std. 
Error 

p-value Parameter 
(Y) 

Estimate Std. 
Error 

p-value 

(Intercept) 0.5437 1.077 0.614 (Intercept) 0.6216 0.959 0.517 
city.KY 0.9950 1.099 0.365 city.KY 0.5677 0.993 0.568 
city.MA 0.0150 1.087 0.989 city.MA 1.8075 1.186 0.127 
city.MS -1.4501 1.116 0.194 city.MS 3.5543 7.334 0.628 
city.NE 1.2558 1.097 0.252 city.NE 0.7465 0.992 0.452 
city.NM -0.4088 1.127 0.717 city.NM -0.8356 1.009 0.408 
city.OR -0.8127 1.082 0.453 city.OR 1.1564 1.138 0.309 
city.TX -1.4047 1.114 0.207 city.TX 0.4815 1.072 0.653 
city.UT -0.0671 1.082 0.950 city.UT 0.6174 1.017 0.545 
city.WA -0.148 1.094 0.989 city.WA 0.9677 1.077 0.369 
date -0.0187 0.113 0.869 BG 0.5176 0.143 0.00029 
date2 -0.0122 0.0015 6.7e-17 HS 0.0394 0.571 0.945 
BG 0.1421 0.0528 0.007 city.KY:HS 0.2868 0.640 0.654 
HS -0.0379 0.0422 0.369 city.MA:HS -1.7202 0.765 0.025 
city.KY:date 0.1160 0.112 0.302 city.MS:HS -3.8444 5.004 0.442 
city.MA:date 0.0678 0.112 0.547 city.NE:HS -0.0307 0.594 0.958 
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city.MS:date 0.1259 0.115 0.276 city.NM:HS -0.7110 0.623 0.254 
city.NE:date 0.1018 0.112 0.363 city.OR:HS 1.1928 0.912 0.191 
city.NM:date 0.0545 0.117 0.642 city.TX:HS 0.0138 0.792 0.986 
city.OR:date 0.1002 0.1114 0.368 city.UT:HS -0.9415 0.628 0.134 
city.TX:date 0.2958 0.113 0.008 city.WA:HS 1.6107 0.819 0.049 
city.UT:date 0.0940 0.1112 0.398     
city.WA:date 0.0857 0.1124 0.446     
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APPENDIX C – CHAPTER 3: DRIVERS OF COMMUNITY STRUCTURE 
ALONG A MULTI-DIMENSIONAL LANDSCAPE GRADIENT 
 
C.1 – Species-specific parameter estimates 
 
Table C.1: Parameter estimates for abundance (lambda) for all species. For each parameter, the posterior 
mean and 95% credible intervals are reported. 

Species Name Common 
Name Soft – Hard Soft – Hard2 Brown – Green Brown – Green2 

              
Anas platyrhynchos mallard  -

0.075 
-
0.398 0.237 

-
0.138 -0.46 0.16 -0.109 -0.547 0.33 -0.235 -0.682 0.162 

Aix sponsa wood duck -
0.075 -0.39 0.229 -0.13 

-
0.445 0.159 -0.107 -0.537 0.331 -0.247 -0.695 0.148 

Corvus 
brachyrhynchos 

American 
crow 

-
0.115 

-
0.361 0.117 -0.14 

-
0.364 0.07 -0.26 -0.576 0.038 -0.091 -0.305 0.119 

Carduelis tristis American 
goldfinch 0.018 -0.18 0.23 

-
0.031 -0.17 0.107 -0.097 -0.343 0.152 -0.041 -0.204 0.119 

Setophaga ruticilla American 
redstart 

-
0.048 

-
0.321 0.235 0.042 

-
0.227 0.352 0.103 -0.217 0.432 0.094 -0.135 0.331 

Turdus 
migratorious 

American 
robin 0.107 

-
0.094 0.312 

-
0.144 

-
0.266 -0.029 -0.015 -0.234 0.199 -0.071 -0.217 0.071 

Icterus galbula 
 

Baltimore 
oriole 

-
0.054 

-
0.316 0.213 

-
0.119 

-
0.368 0.11 0.007 -0.328 0.377 -0.122 -0.422 0.174 

Strix varia barred owl -
0.036 

-
0.332 0.283 

-
0.076 

-
0.348 0.189 -0.077 -0.51 0.374 -0.222 -0.665 0.179 

Mniotilta varia black-and-
white warbler 

-
0.067 

-
0.331 0.193 

-
0.078 

-
0.312 0.147 -0.28 -0.659 0.056 -0.287 -0.591 -0.014 

Coccyzus 
erythropthalmus 

black-billed 
cuckoo 

-
0.078 

-
0.385 0.219 

-
0.187 

-
0.521 0.107 -0.091 -0.51 0.335 -0.345 -0.821 0.042 

Poecile atricapillus black-capped 
chickadee 

-
0.061 

-
0.253 0.134 

-
0.071 

-
0.198 0.054 -0.087 -0.327 0.153 0.014 -0.128 0.154 

Ceryle alcyon belted 
kingfisher 

-
0.103 

-
0.396 0.172 -0.12 

-
0.391 0.135 -0.078 -0.461 0.311 -0.23 -0.59 0.095 

Polioptila caerulea blue-gray 
gnatcatcher 

-
0.088 

-
0.372 0.189 -0.02 

-
0.262 0.218 -0.145 -0.499 0.194 -0.008 -0.294 0.292 

Molothrus ater brown-headed 
cowbird 

-
0.016 

-
0.283 0.276 

-
0.051 

-
0.277 0.179 0.049 -0.319 0.462 -0.41 -0.83 -0.056 

Vireo solitarius blue-headed 
vireo -0.05 

-
0.351 0.266 

-
0.096 

-
0.404 0.207 -0.077 -0.512 0.384 -0.218 -0.652 0.183 

Dendroica fusca blackburnian 
warbler 

-
0.117 

-
0.454 0.182 

-
0.143 

-
0.464 0.143 -0.123 -0.545 0.302 -0.305 -0.747 0.071 

Cyanocitta cristata bluejay  -
0.004 

-
0.182 0.181 

-
0.134 

-
0.251 -0.02 0.211 -0.067 0.459 0.017 -0.122 0.153 

Certhia americana brown creeper -
0.034 

-
0.326 0.271 

-
0.166 

-
0.477 0.115 -0.145 -0.544 0.238 -0.232 -0.608 0.105 

Dendroica 
caerulescens 

black-
throated-blue 
warbler 

-
0.084 -0.39 0.208 

-
0.074 

-
0.323 0.165 -0.193 -0.615 0.199 -0.193 -0.543 0.123 

Dendroica virens black-
throated-green 
warbler 

-
0.232 

-
0.585 0.047 

-
0.132 

-
0.415 0.131 -0.277 -0.686 0.092 -0.38 -0.727 -0.072 

Vermivora pinus blue-winged 
warbler -0.11 

-
0.432 0.18 

-
0.135 

-
0.446 0.15 -0.144 -0.579 0.278 -0.279 -0.727 0.103 

Branta canadensis Canada goose -
0.072 

-
0.386 0.235 

-
0.148 

-
0.471 0.144 -0.192 -0.623 0.207 -0.16 -0.554 0.233 

Thyothorus 
ludovicianus 

Carolina wren -
0.031 

-
0.314 0.27 

-
0.213 

-
0.532 0.06 -0.066 -0.445 0.343 -0.413 -0.869 -0.04 

Bombycilla garrulus cedar 
waxwing 

-
0.186 

-
0.521 0.084 

-
0.035 

-
0.297 0.254 0.037 -0.305 0.431 -0.212 -0.539 0.091 

Spizella passerine chipping 
sparrow 

-
0.033 

-
0.298 0.246 

-
0.197 -0.47 0.036 -0.027 -0.37 0.34 -0.145 -0.439 0.141 

Chaetura pelagica chimney swift -
0.065 

-
0.378 0.232 -0.11 

-
0.394 0.163 -0.044 -0.457 0.397 -0.275 -0.718 0.115 

Quiscalus quiscula common 
grackle 0.001 

-
0.229 0.256 0.007 

-
0.218 0.251 -0.218 -0.517 0.074 -0.204 -0.486 0.079 
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Accipiter cooperii coopers hawk -
0.071 

-
0.382 0.231 

-
0.169 

-
0.498 0.12 -0.191 -0.621 0.207 -0.2 -0.572 0.142 

Geothlypis trichas common 
yellowthroat 

-
0.229 

-
0.517 0.023 

-
0.195 

-
0.421 0.007 -0.308 -0.625 -0.011 -0.309 -0.546 -0.082 

Dendroica 
pensylvanica 

chestnut-sided 
warbler -0.12 

-
0.433 0.154 

-
0.227 -0.55 0.039 -0.326 -0.762 0.043 -0.209 -0.567 0.128 

Junco hyemalis dark-eyed 
junco 

-
0.083 

-
0.399 0.22 

-
0.141 

-
0.456 0.155 -0.096 -0.525 0.339 -0.276 -0.737 0.122 

Picoides pubescens downy 
woodpecker 

-
0.036 

-
0.262 0.193 

-
0.054 

-
0.231 0.114 -0.061 -0.348 0.22 -0.154 -0.373 0.052 

Tyrannus tyrannus eastern 
kingbird 

-
0.074 

-
0.398 0.237 

-
0.143 

-
0.479 0.154 -0.115 -0.568 0.318 -0.24 -0.686 0.161 

Sayornis phoebe eastern 
phoebe 

-
0.073 

-
0.355 0.202 

-
0.128 

-
0.388 0.106 -0.233 -0.61 0.115 -0.213 -0.538 0.083 

Pipilo 
erythrophthalmus 

eastern 
towhee 

-
0.039 -0.31 0.248 -0.15 

-
0.367 0.049 0.085 -0.29 0.521 -0.29 -0.655 0.034 

Contopus virens eastern wood-
peewee 

-
0.027 

-
0.222 0.177 0.044 

-
0.102 0.188 0.105 -0.202 0.396 0.11 -0.076 0.297 

Sturnus vulgaris European 
starling -0.09 

-
0.409 0.213 

-
0.152 

-
0.468 0.133 -0.076 -0.497 0.354 -0.283 -0.726 0.1 

Spizella pusilla field sparrow -
0.099 

-
0.425 0.203 

-
0.147 

-
0.485 0.158 -0.04 -0.468 0.433 -0.234 -0.691 0.181 

Myiarchus crinitus great-crested 
flycatcher 

-
0.079 

-
0.324 0.162 

-
0.099 

-
0.312 0.106 -0.049 -0.357 0.265 -0.04 -0.282 0.205 

Regulus satrapa golden-
crowned 
kinglet 

-
0.077 

-
0.392 0.234 

-
0.137 

-
0.461 0.164 -0.113 -0.564 0.326 -0.241 -0.699 0.161 

Bubo virginianus great-horned 
owl 

-
0.078 

-
0.399 0.229 

-
0.136 

-
0.466 0.163 -0.1 -0.54 0.342 -0.231 -0.675 0.174 

Dumatella 
carolinensis 

grey catbird -
0.044 

-
0.256 0.173 

-
0.289 

-
0.499 -0.097 -0.076 -0.335 0.177 -0.312 -0.526 -0.108 

Picoides villosus hairy 
woodpecker 

-
0.105 

-
0.392 0.155 

-
0.069 

-
0.317 0.176 -0.107 -0.449 0.244 -0.099 -0.376 0.176 

Catharus guttatus hermit thrush -
0.138 

-
0.466 0.145 

-
0.143 

-
0.439 0.125 -0.103 -0.503 0.3 -0.302 -0.706 0.042 

Carpodacus 
mexicanus 

house finch -
0.074 

-
0.397 0.24 -0.14 

-
0.468 0.16 -0.106 -0.542 0.332 -0.226 -0.657 0.164 

Passer domesticus house sparrow -
0.023 

-
0.323 0.304 

-
0.146 

-
0.475 0.159 -0.027 -0.439 0.438 -0.278 -0.757 0.132 

Troglodytes aedon house wren -
0.058 

-
0.327 0.207 

-
0.297 

-
0.609 -0.041 -0.146 -0.487 0.184 -0.197 -0.486 0.075 

Passerina cyanea indigo 
bunting 

-
0.086 

-
0.379 0.192 

-
0.136 

-
0.425 0.121 -0.256 -0.672 0.106 -0.295 -0.655 0.016 

Charadrius 
vociferus 

killdeer  -
0.078 

-
0.401 0.227 

-
0.133 

-
0.452 0.162 -0.106 -0.537 0.327 -0.232 -0.675 0.168 

Empidonax minimus least 
flycatcher 

-
0.077 

-
0.398 0.231 

-
0.139 

-
0.474 0.163 -0.137 -0.577 0.283 -0.209 -0.632 0.179 

Seiurus motacilla Louisiana 
waterthrush 

-
0.017 

-
0.296 0.289 

-
0.157 

-
0.457 0.117 -0.179 -0.579 0.195 -0.224 -0.601 0.12 

Zenaida macroura mourning 
dove 

-
0.003 

-
0.226 0.235 -0.21 -0.41 -0.025 -0.105 -0.388 0.171 -0.202 -0.415 0.005 

Vermivora 
ruficapilla 

Nashville 
warbler 

-
0.084 

-
0.405 0.223 

-
0.123 

-
0.441 0.173 -0.09 -0.519 0.353 -0.201 -0.615 0.182 

Cardinalis 
cardinalis 

northern 
cardinal 0.05 

-
0.161 0.287 

-
0.186 

-
0.354 -0.026 -0.031 -0.299 0.233 -0.232 -0.425 -0.044 

Colaptes auratus northern 
flicker 

-
0.051 

-
0.294 0.193 -0.13 

-
0.346 0.073 -0.06 -0.36 0.25 -0.092 -0.339 0.153 

Seiurus 
noveboracensis 

northern 
waterthrush 

-
0.076 

-
0.397 0.225 

-
0.136 

-
0.462 0.164 -0.115 -0.563 0.331 -0.241 -0.698 0.156 

Seiurus aurocapilla ovenbird  
-0.09 

-
0.303 0.111 0.092 

-
0.068 0.25 -0.226 -0.486 0.02 -0.03 -0.173 0.108 

Dendroica pinus pine warbler 
0.06 

-
0.177 0.337 

-
0.161 

-
0.372 0.036 -0.116 -0.419 0.195 -0.092 -0.326 0.144 

Dryocopus pileatus pileated 
woodpecker 

-
0.059 -0.34 0.224 

-
0.092 

-
0.355 0.164 -0.173 -0.55 0.184 -0.129 -0.465 0.208 

Dendroica discolor prairie 
warbler 

-
0.098 

-
0.429 0.205 

-
0.151 -0.49 0.153 -0.04 -0.47 0.426 -0.241 -0.695 0.16 

Pheucticus 
ludovicianus 

rose-breasted 
grosbeak  -0.11 

-
0.408 0.161 

-
0.119 

-
0.385 0.128 -0.119 -0.469 0.232 -0.104 -0.391 0.171 
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Sitta canadensis red-breasted 
nuthatch 

-
0.069 

-
0.384 0.239 -0.15 

-
0.483 0.146 -0.114 -0.553 0.328 -0.264 -0.727 0.133 

Melanerpes 
carolinus 

red-bellied 
woodpecker 

-
0.164 

-
0.417 0.072 0.008 

-
0.175 0.189 -0.004 -0.297 0.293 -0.043 -0.258 0.17 

Vireo olivaceus red-eyed vireo -
0.229 -0.45 -0.01 0.183 0.04 0.327 -0.293 -0.542 -0.032 0.1 -0.026 0.223 

Buteo lineatus red-
shouldered 
hawk 

-
0.073 

-
0.394 0.235 

-
0.139 

-
0.468 0.157 -0.116 -0.567 0.328 -0.24 -0.695 0.16 

Archilochus 
colubris 

ruby-throated 
hummingbird 

-
0.076 

-
0.394 0.238 

-
0.139 

-
0.471 0.157 -0.141 -0.593 0.286 -0.2 -0.612 0.173 

Agelaius phoeniceus red-winged 
blackbird 

-
0.014 

-
0.261 0.247 

-
0.032 

-
0.293 0.252 -0.42 -0.802 -0.05 -0.193 -0.51 0.104 

Piranga rubra scarlet tanager -
0.105 -0.34 0.121 0.103 -0.07 0.275 -0.184 -0.465 0.09 0.027 -0.162 0.218 

Melospiza melodia song sparrow -
0.155 -0.42 0.084 

-
0.112 

-
0.334 0.121 -0.17 -0.463 0.112 -0.314 -0.554 -0.089 

Melospiza 
georgiana 

swamp 
sparrow 

-
0.092 -0.41 0.2 

-
0.166 -0.49 0.123 -0.044 -0.457 0.401 -0.295 -0.749 0.09 

Tachycineta bicolor tree swallow -
0.073 

-
0.395 0.24 

-
0.141 -0.47 0.161 -0.131 -0.582 0.299 -0.22 -0.652 0.172 

Baeolophus bicolor tufted 
titmouse 0.026 -0.17 0.231 

-
0.054 

-
0.187 0.075 -0.023 -0.27 0.228 -0.106 -0.267 0.051 

Catharus fuscescens veery  -
0.295 

-
0.622 

-
0.013 

-
0.102 

-
0.328 0.119 -0.486 -0.874 -0.107 -0.376 -0.647 -0.122 

Vireo gilvus warbling 
vireo 

-
0.108 

-
0.397 0.158 

-
0.192 

-
0.473 0.054 -0.121 -0.461 0.217 -0.177 -0.489 0.114 

Sitta carolinensis white-
breasted 
nuthatch 

-
0.096 

-
0.311 0.117 

-
0.052 

-
0.213 0.102 0.026 -0.255 0.306 0.081 -0.099 0.264 

Empidonax traillii willow 
flycatcher 

-
0.093 

-
0.413 0.202 -0.16 

-
0.483 0.127 -0.145 -0.587 0.271 -0.285 -0.729 0.094 

Meleagris 
gallopavo 

wild turkey -
0.081 

-
0.397 0.225 

-
0.131 

-
0.453 0.16 -0.104 -0.547 0.34 -0.225 -0.659 0.168 

Troglodytes 
troglodytes 

winter wren -
0.087 

-
0.405 0.215 

-
0.167 -0.5 0.126 -0.163 -0.598 0.247 -0.247 -0.662 0.116 

Hylocichla 
mustelina 

wood thrush -
0.029 

-
0.229 0.181 0.014 

-
0.122 0.151 -0.17 -0.431 0.074 -0.046 -0.2 0.101 

Coccyzus 
americanus 

yellow-billed 
cuckoo 

-
0.093 -0.41 0.2 

-
0.194 

-
0.533 0.094 -0.184 -0.617 0.21 -0.283 -0.705 0.084 

Sphyrapicus varius yellow-bellied 
sapsucker 

-
0.076 

-
0.397 0.237 

-
0.139 -0.47 0.167 -0.141 -0.574 0.286 -0.198 -0.603 0.164 

Dendroica petechia yellow 
warbler 

-
0.121 

-
0.425 0.156 

-
0.124 -0.39 0.127 -0.02 -0.374 0.37 -0.302 -0.667 0.018 

Vireo flavifrons yellow-
throated vireo 

-
0.077 

-
0.393 0.228 

-
0.139 

-
0.469 0.159 -0.107 -0.544 0.333 -0.235 -0.69 0.166 
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APPENDIX D – CHAPTER 4: EVALUATING THE RED-BACKED 
SALAMANDER (PLETHODON CINEREUS) AS AN INDICATOR FOR 
BIODIVERSITY IN HUMAN-DOMINATED LANDSCAPES 

 
Appendix D.1 – Project Field Handbook 

 
Pioneer Valley Forest Community Assessment 

Project 
2017 Field Handbook 

 
For more information, please contact:  

 
Benjamin Padilla, Graduate Research Assistant 

bjpadilla@umass.edu 
Department of Environmental Conservation  

University of Massachusetts Amherst 
160 Holdsworth Way 
Amherst, MA 01003 

 
 
 
 
 
 

 
 
 
 
 
 
 

Project 
Overview: 

 
Purpose: Ecological communities are facing increasing pressure from anthropological 
advances and land-use change. In the Pioneer Valley, threats from urbanization and 
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agriculture in particular, abut natural and protected land. As these changes progress, tools 
for rapid and reliable assessment of the health of ecological communities is required. This 
project exists to: 

1. Assess	the	ecological	health	of	forest	communities	in	the	Pioneer	

Valley	

2. Evaluate	the	value	of	the	red-backed	salamander	(Plethodon	

cinereus)	as	an	ecological	indicator	species	

3. Validate	the	reliability	of	the	Anthropological	Index	in	predicting	

ecological	changes	

Defining Urbanization: There is surprisingly little consistency among 
ecologists when it comes to describing how urban, or not-urban a place is. 
For example, if you and I were both to give an urbanization score from 1-10 
of a particular forest patch, we would likely give very different scores 
depending on what factors we considered. Using readily available GIS data, 
we have produced a numeric gradient of land-use from forested to urban in 
order to make the process of defining urban landscapes more consistent and 
objective. The purpose of this field project is to evaluate how well this scale 
actually predicts expected changes in ecological communities in the 
Connecticut River Valley.  
 
Indicator Species: Ecological indicator species are used to assess the efficacy 
of management, and provide warning signals for significant ecological shifts 
and pressures that may influence the ecosystem as a whole. Because 
ecological data is often difficult, or expensive to collect, the ability to gain an 
understanding of overall ecosystem health by looking at one species is 
extremely valuable. The red-backed salamander (Plethodon cinereus) is often 
considered to be an indicator of overall forest health, however, the true extent to 
which it does this is not fully known. This project will collect detailed data on 
salamander condition to see how salamander condition correlates to forest 
condition as a whole.   
 

  

Figure 8: A "heat map" of 
urbanization for the study 
region 

Figure 9: The red-backed salamander 
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Study System and Sites: 

Forest communities are evaluated at a total of 50 randomly selected predominantly 
forested study sites on publically accessible land in the Connecticut River Valley of 
Western Massachusetts. The region is a mosaic of forests, agriculture, and urban/sub-
urban regions; forests are diverse, including both bottomland and upland forests. Several 
significant urban areas exist, including Springfield in the south, Northampton and 
Amherst in the center, and Greenfield in the north. Study sites were selected in order to 
oversample transition zones between landscapes (i.e. forest – agriculture, or forest – 
urban), where values of the landscape index exhibit the most variance across spatial 
scales.  
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Figure 11: 50 forested study sites spanning the pioneer  
valley from Gill to Ludlow 

General Site Visit Protocol: 
 
When planning site visits utilize the Site Locations 
and ID document to identify sites located in close 
proximity to each other. Park as far off the road as 
possible, being considerate of private land owners and 
neighbors.  Navigate to site using GPS waypoint and 
descriptions in Site Locations an ID. Site locations are 
marked with brightly colored flagging tape and 
marked with the project ID and site name. Site names 
include a number from 1-50 ordered sequentially from 
north (1) to south (50) followed by town name (often abbreviated) and the conservation 
property on which the site is located (See figure below for example). Replace site 
flagging if it is missing, torn, or otherwise unreadable. Parking locations in Site Locations 

Figure 10: Three examples of study 
sites in different landscapes. 
Springfield's Forest Park (TOP), 
Chicopee State Forest near the 
airforce base (MIDDLE), and Mt 
Toby (BOTTOM) 
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and ID are suggested, if you think there is a better location to park and access the site, 
that is OK, but remember to be respectful of properties and landowners.  
 

Remember, although all of our sites are 
located on publically accessible land 
you may have to navigate through, or 
closely beside privately owned land in 
order to access the site. If a land owner 
questions you politely explain what it is 
that you are doing and why you are 
there. If they ask you to leave, do so. 
Project managers will make 
communication. Please, do not be 

confrontational or rude!!   
 
Being in the woods collecting data is an excellent opportunity to talk to the public. You 
may be asked who you are, why you are there, and what you are doing. More often than 
not they are genuinely curios! Be ready to share, explaining the data you are collecting, 
why it is important, and what it will be used for. Practice those science communication 
skills!  
 
Safety is our number one priority. Counting salamanders and trees is much less important 
than your own personal safety. If you don’t feel safe at a site leave, and tell us what 
happened. If you do not want to return, others can sample that site. Be smart, be kind, be 
safe, and have fun!  

   
  

 
   
 
  

 

PVFC ~ 9.MONT WMA 

Figure 12: Sample Site flagging with project ID (Pioneer 
Valley Forest Communities) and site name. MONT is 
abbreviated Montague (town name) followed by WMA for 
specific conservation property (Wildlife Management 
Area). 

Figure 14: Parking location and route to 
3.GREEN GTD 

Figure 13: Parking location and route to 
17.AMHRST BRICK 
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Field Methods and Protocols 
 Vegetation Surveys 

 
Objectives: To describe species diversity and structural complexity of vegetation.  Some 
organisms may respond most directly to the fine scale changes in habitat structure and 
composition rather than large scale landscape factors such as urbanizations. Furthermore, 
the diversity and composition of forest plant communities, as well as structural 
complexity, is known to change as anthropogenic pressure increases.  
 
Equipment List: 

o GPS	unit	
o Binoculars		
o Clip	board	with	data	sheets	with	veg	survey	protocol	
o Tree	ID	guide	
o Biltmore	Stick	and	DBH	tape	
o Compass	
o Densiometer	 	
o Survey	ropes	with	stake	(marked	at	3m,	6m,	9m)	
o Veg	survey	pole	(marked	at	3m,	6m)	

 
Protocol: 

- From	the	site’s	center	point	extend	ropes	in	each	of	the	four	cardinal	
directions	(N,	S,	E,	W)	using	compass.	

- Record	site	ID,	observers,	date,	etc.		
- Site	Characteristics.	Within	each	quarter	of	the	11.3-meter	radius	plot	

estimate	the	following:	
o Percent	canopy	cover	–	Using	densiometer	
o Percent	cover	of	shrubs	(woody	vegetation	<	2-m	in	height),	

herbaceous	plants,	leaf	litter,	and	bare	rock/soil.		
o Percent	slope	and	aspect	(directional	compass	bearing	of	slope)		
o Be	Sure	to	record	in	the	Notes	section	of	the	data	sheet	if	you	observe	

any	common	exotic	shrubs	such	as	multiflora	rose,	honeysuckle,	or	
privet.		

- Measuring	understory	density	with	pole		
o At	each	marked	3-m	interval	extending	from	the	center	of	the	plot	

count	the	total	number	of	“hits”	on	the	pole	between	marks	0.5	–	1.5-
m	and	1.5	–	3-m.	A	“hit”	is	any	point	where	a	leaf,	woody	twig,	stick,	or	
branch	makes	contact	with	the	pole.	All	woody	vegetation,	such	as	
shrubs	or	trees	are	recorded	as	“stem”	hits,	while	herbaceous	
vegetation	recorded	as	“forb.”	

- Tree	identification		
o Beginning	in	one	quarter	of	the	11.3-m	radius	plot	identify	all	trees	to	

species	and	record	the	number	of	in	each	of	4	DBH	(diameter	at	breast	
height)	categories	
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o DBH	can	be	recorded	using	a	DBH	tape	wrapped	around	the	tree,	or,	
estimating	with	a	Biltmore	stick.	

- Eastern	Hemlocks	infestation	
o Within	a	larger	(est.	30-m	radius)	plot,	all	Eastern	hemlock	should	be	

identified	and	checked	for	presence	of	wooly	adlegid	infestation.	
o Upon	identifying	a	hemlock	examine	a	branch	for	presence	of	adlegid	

infestation.	Adelgids	appear	as	small	clusters	of	white	along	the	
stems/needles	on	the	underside	of	branches.	If	Adelgids	are	not	
observed	on	first	branch,	examine	one	additional	branch	for	evidence	
of	infestation.		

o The	percentage	of	infested	trees	in	each	size	class	will	be	calculated	as	
Ninfected/Nobserved	

o Only	Eastern	hemlocks	with	branches	within	reach	without	a	ladder	
are	to	be	examined	for	adelgid	infestation.	A	maximum	of	100	trees	

are	to	be	examined.		
 
  

Site Characteristics 
% CANOPY SHRUB HERB/FORB LITTER BARE / SOIL OTHER (write in): 

NE       
NW       
SE       
SW       

 EST 
SLOPE 

 ASPECT    

Figure 15: Eastern hemlock infested with wooly adelgid Figure 16: Densiometer used for measuring canopy cover 
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Field Methods and Protocols 
 Amphibian Transect Surveys 

 
Objectives: The red-backed salamander (Plethodon cinereus) is often considered to be an 
indicator for overall ecosystem health. However, the degree to which the health and 
condition of salamander populations actually correlates to overall forest health is not fully 
known. Two 25-m transects will be systematically searched at each study site.  
 
Equipment: 

- GPS	unit	
- Measuring	tape	
- Clip	board	with	data	sheets	
- Ziploc	bags		
- Sharpie	Markers	
- Flashlight	
- Ruler	with	millimeter	scale		
- Cooler	with	ice	packs		
- Tally	Counter	

 
Establishing the Transect: 

- From	the	site’s	center	point	identify	north	(0°),	and	extend	meter	tape	25-m	
from	center	point	following	north	(0°).	

- After	sampling	first	transect,	repeat	following	western	bearing	(270°).		
 
Sampling the Transect:  

- Record	site	visit	data,	including	date,	time,	temperature,	weather,	etc.		
- Systematically	turn	and	replace	all	cover	objects	(rocks,	logs,	etc)	>	6-cm	in	

length	within	1-m	of	each	sited	of	the	transect.	Click	Tally	Counter	for	each	
piece	of	cover	flipped	in	order	to	count	total	number	of	cover	objects	flipped	
on	each	transect.	

o If	two	observers	are	present,	each	can	sample	on	one	side	of	the	
transect	line	

- When	a	red-backed	salamander	is	encountered,	place	into	a	Ziploc	bag	and	
mark	with	plot	code,	transect	direction	(N	or	W),	meter	distance	from	
transect	start,	and	cover	type.	

Understory Density 
NE STEM 

1.5-m 
STEM 
3-m 

FORB 
1.5-m 

FORB 
3-m NW STEM 

1.5-m 
STEM 
3-m 

FORB 
1.5-m 

FORB 
3-m 

Dominant Ground Cover 

3-m     3-m     NE: 
6-m     6-m     
9-m     9-m     NW: 
12-m     12-m     
12-m     12-m     



 

132 

- Place	salamander	in	cooler	to	prevent	overheating.	
- All	other	amphibians	and	reptiles	encountered	during	the	survey	should	be	

recorded,	including	transect	location.	
- All	Scat	encountered	(mammalian)	during	transect	survey	should	be	

recorded	and	identified,	including	transect	location.	If	scat	cannot	be	
identified	in	the	field	photograph	as	best	as	you	can.		

 
Working with Salamanders:  

- Transfer	salamander	data	to	salamander	data	sheet.		
- Record	salamander	morph	with	“S”	for	red-striped,	and	“L”	for	lead-backed	
- Measure	snout-to-vent	length	(SVL)	and	total	length	(TL)	in	mm.	This	should	

be	done	two	independent	times,	ideally	by	two	different	observers.		
- Determine	gender	via	candling	with	a	headlamp/flashlight.	Record	males	as	

“M”	and	females	as	“F”.	If	sex	cannot	be	determined,	record	as	unknown	“U”.	
Juvenile	salamanders	should	be	recoreded	as	“J”.		

o If	male,	check	snout	for	cirri	
o If	female	record	number	of	eggs		

- In	Notes	section	of	data	sheet	record	status	of	tail	(if	stubbed	etc.),	and	any	
other	important	observations.	

- After	measuring	and	recording	data	release	salamanders	under	the	same	
cover	they	were	caught	under.	
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Figure 18: Salamander in Ziploc bag being measured 
and recorded 
 

 
Figure 19: Total length is the length of the salamander from tip of the nose to the tip of the tail. Snout to 
vent length is length from tip of the snout to the vent, indicated by the yellow arrow 

Field Methods and Protocols 
 Terrestrial Invertebrate Sampling 

 
Objectives: Terrestrial invertebrates living in the leaf litter and first soil horizon play an 
integral role in the ecology of forest communities, particularly in regards to nutrient and 

Figure 17: Checking natural cover objects 
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energy cycling. Additionally, these organisms are the primary source of food for small 
vertebrates such as the red-backed salamander. Invertebrate sampling will serve to 
describe changes in arthropod communities across landscape gradients, and an estimate 
of resource availability for red-backed salamanders.  

Equipment List:  

o Compass	and	GPS	
o 4”	PVC	soil	corer	
o Gallon	Ziploc	bags		
o Sharpie	Markers	
o Rulers	
o Rubber	Mallet		
o Tullgren	funnel	(in	lab)	
o Storage	container	(in	lab)	
o 70%	Ethanol	solution	(in	lab)	
o Digital	balance	(in	lab)	
o Invertebrate	identification	key	
o Dissecting	microscope	

 
Sampling Protocol: 

- Field	Protocol	
o Three	sample	cores	will	be	taken	at	two	visits	throughout	the	

sampling	period	
o Standing	at	center	of	the	plot,	spin	compass	for	15-seconds,	stopping	

on	a	specific	bearing.	Follow	compass	bearing	from	plot	center	for	a	
total	of	15	paces.	

o Using	rubber	mallet,	hammer	PVC	soil	corer	into	the	ground,	trying	to	
get	the	corer	approximately	8-inches	into	the	ground.		

o Slice	open	duct	tape	and	measure	leaf	litter	depth	
o Place	sample	in	Ziploc	gallon	bac	and	label	with	plot	and	sample	

number	
o Repeat	three	times	per	plot	

- Lab	Protocol	
o Samples	may	be	stored	in	refrigerator	for	a	maximum	of	48-hours	
o Mass	each	sample	in	grams	prior	to	placing	in	Tullgren	funnel		
o When	placing	sample	in	funnel,	invert	sample	so	that	top	layer	(leaf	

litter)	is	at	the	bottom	of	the	funnel.	Record	drying	start	date	and	
time.	

o Place	sample	in	funnel	for	a	minimum	of	72-hours.		
o Preservative	ethanol	mixture	will	be	labeled	with	plot	and	sample	

information.	All	specimens	in	ethanol	mixture	at	end	of	this	time	may	
be	stored	until	they	are	identified	and	recorded	at	a	later	date.	
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Figure 20: Diagram of Tullgren Funnel. 
 
 
 

Field Methods and Protocols 
 Avian Point Count Surveys 

 
Objectives: To assess breeding bird diversity and abundance at each study site. Many bird 
species exhibit differing responses to environmental degradation and ecosystem changes, 
and respond to landscapes at a variety of spatial scales. Point count surveys will be used 

Figure 21:Sample data sheet for lab identification of invertebrates 
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to describe patterns of bird community diversity and abundance across changes in the 
landscape.  

Equipment: 

o GPS	unit	and	compass	
o Binoculars	
o Clipboard	with	data	sheets	
o Thermometer		

General Protocol:  

- Each	study	site	location	(n=50)	will	be	surveyed	a	total	of	three	times	
during	the	peak	breeding	season	when	territorial	behaviors	and	singing	
are	most	prominent.		

- Surveys	will	take	place	after	peak	migration	time,	during	the	months	of	
June	and	July	2017	to	ensure	true	assessment	of	breeding	bird	
communities.	

- Surveys	may	begin	half	hour	before	sunrise,	and	no	later	than	three	hours	
after	sunrise.		

- Surveys	are	not	to	be	conducted	in	high	winds	(>18	mph)	or	heavy	rain.	
- Each	survey	will	be	10-minute	50-m	radius	point	counts	divided	into	two,	

5-minute	sub	survey	intervals.		
10-Minute Point Count Method: 

- Navigate	to	site	coordinates	using	GPS	
- Wait	for	a	minimum	of	10-minutes	after	arriving	at	a	site	before	

beginning	point	count	
- Record	Site	ID,	Observer	ID,	date,	temperature,	and	weather	codes	and	

survey	start	time	on	data	sheet	
- Begin	Survey:	Track	all	observations	from	the	first	time	of	detection	

through	the	end	of	the	time	interval,	being	sure	not	to	double	count	
individual	birds.		

- All	birds	seen	or	heard	will	be	recorded	as	either	within	50-m	radius,	
beyond	50-m,	or	fly-over	observations.		

- Individual	bird	movements	may	be	tracked	and	recorded	on	the	survey	
area	diagram,	using	reference	symbology	to	indicate	species,	sex,	
behavior,	and	movement.		

- All	species	will	be	recorded	using	AOU	alpha	codes	(i.e.	red-eyed	vireo	–	
REVI)	

- Record	any	relevant	information	and	observations	in	the	provided	Notes	
area	of	data	sheet	

- Record	survey	end	time		
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Figure 22: Symbols for indicating behaviors and movements of individual birds in survey diagram 

 
Figure 23: Point Count Survey data sheet. Environmental observations and visit information above, and 
species recordings below. 
 
 
 
 
 
 



 

138 

D.2 – Principal Components Analysis Results 
 
Table D.1: Dominant principal component axes produced from landscape analysis. The first two axes were 
used to create spatial gradients based on a 10% variance cutoff. 
 

NLCD Layer PC1 PC2 PC3 
Std.Dev. 1.766 1.296 1.214 

Variance Explained (%) 20.8 11.2 9.8 

Water 11 - OpenWater 0.025 0.019 -0.005 

Developed 21 - DevelOpen 0.406 0.001 -0.032 

 22 - DevelLow 0.509 0.044 -0.039 

 23 – DevelMid 0.493 0.188 -0.078 

 24 - DevelHigh 0.369 0.201 -0.080 

Barren 31 – Barren 0.023 -0.165 0.011 

Forest 41 - ForestDeciduous -0.292 0.382 0.511 

 42 - ForestEvergreen -0.155 -0.116 -0.607 

 43 - ForestMixed -0.261 0.044 -0.431 

Shrubland 52 - Scrub/Shrub 0.057 -0.426 0.244 

Herbaceous 71 -Grass/Herb 0.092 -0.385 0.256 

Cultivated 81 - Pasture/Hay 0.010 -0.341 0.129 

 82 - Crop/Cultivated 0.060 -0.159 0.117 

Wetlands 90 - WoodyWetl. 0.017 -0.406 -0.055 

 95 - HerbaceousWetl. 0.008 -0.311 -0.100 

 
 
D.3 – Species Associations Figure 
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Figure D.2.1: Estimated species associations for all 151 species in the model. The lower triangle shows the 
mean parameter estimate, while the upper includes only those with greater than 95% posterior support. 
Red indicates a negative association, while blue a positive association. 
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