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ABSTRACT 

INVESTIGATING THE ACCUMULATION, SUB-ORGAN DISTRIBUTION, AND 

BIOCHEMICAL EFFECTS OF NANOMATERIALS USING MASS 

SPECTROMETRY  

SEPTEMBER 2020 

KRISTEN NICOLE SIKORA 

B.S., UNIVERSITY OF PITTSBURGH 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Richard W. Vachet 

Gold nanoparticles (AuNPs) are attractive materials for use in various biomedical 

applications, such as therapeutic delivery, due to their unique chemical properties and 

modular tunability. Mass spectrometry methods, including laser desorption/ionization 

mass spectrometry (LDI-MS) and inductively coupled plasma mass spectrometry (ICP-

MS) have been successfully used to evaluate the distribution of AuNPs in complex 

biological systems. As new AuNP-based materials are developed for applications in 

therapeutic delivery, it is essential to simultaneously develop analytical techniques that can 

comprehensively assess their behavior in vivo. In this dissertation, novel mass 

spectrometric methods have been developed and utilized to evaluate the uptake, 

distribution, and biochemical effects of AuNPs and AuNP-based delivery materials. First, 

a dual-mode mass spectrometry imaging method was developed to 1) track the distribution 

of inorganic nanodelivery vehicles containing a deliverable therapeutic and 2) correlate the 

distribution of the subsequent biochemical effects with the carrier when injected into mice. 

Next, the correlation of the distribution of the inorganic carrier and biochemical effects 
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were examined and quantified for specific sub-organ regions of tissues. These predicted 

changes were further evaluated for their biochemical relevance. Additionally, unexpected 

biochemical changes were evaluated by injecting mice with nanodelivery vehicles lacking 

an active therapeutic. Finally, a MS method was developed to quantitatively assess NP 

uptake into various cell types.   
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CHAPTER 1 

INTRODUCTION 

1.1 Nanomaterials for Biomedical Applications 

Scientists are continually striving to synthesize novel compounds to improve human 

quality of life. One of the greatest efforts in modern science is the development of materials 

to advance biomedical detection, therapeutic delivery, and disease treatment. 

Nanotechnology, in particular, has been a prime focus of researchers in these fields due to 

the attractive chemical properties of nanomaterials such as high surface-to-volume ratios, 

tailorable core materials, and modular surface properties.1,2 Over the last few decades, 

scientist have made great strides in developing a variety of nanomaterials with variable 

size, shape, morphology, and surface-chemistry tunability.3,4 Due to the chemical and 

physical variety of these compounds, nanomaterials provide countless platforms for 

improving drug delivery,5–10 molecular detection,11 imaging,12–14 sensing,15 and therapy.16–

18  

Monolayer-protected nanoparticles (NPs) have the benefit of being functionalized with 

self-assembling monolayers (SAMs). These modular SAMs provide NPs with additional 

stability, solubility, biocompatibility, and chemical diversity.1,19–23 There are a variety of 

NP cores that are used in conjunction with these SAMs for various applications (Table 

1.1),19 however, gold is the most promising in biological applications due to its low toxicity 

in vitro and in vivo, as well as its strong affinity for ligands containing a thiol group.24,25 

The unique chemical properties allow for gold nanoparticles (AuNPs) to be utilized 
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successfully in drug delivery, imaging, sensing, and therapeutics. A representation of the 

AuNPs utilized in this dissertation can be found in Figure 1.1. 

1.2 Characterization of Monolayer-Protected Gold Nanoparticles 

Monolayer-protected nanomaterials have become ubiquitous in biomedical 

applications, creating a great need for improved analytical techniques to detect, 

characterize, track, and quantify them. To ensure efficacy and safety of these materials, the 

chemical properties of both the NP core and SAMs must be thoroughly evaluated. Atomic 

force microscopy (AFM),26 transmission electron microscopy (TEM),1,27 and scanning 

tunneling microscopy (STM)28 are often utilized to confirm NP core size and shape, but 

they are limited in characterizing the composition of the NP SAMs. X-ray diffraction 

(XRD)29 and small angle X-ray scattering (SAXS)30,31 have also been utilized for 

Table 1.1. Characteristics, ligands, and exemplary applications of various inorganic 

and semiconductor materials as nanomaterials. Figure reproduced from reference 19. 

Core 

Material 
Characteristics Ligands Applications 

Au Optical absorption,  

Fluorescence and 

fluorescence quenching, 

stability   

Thiol, disulfide, 

phosphine, amine 

Biomolecular 

recognition, delivery, 

sensing 

Ag Surface-enhanced 

fluorescence  

Thiol Sensing 

Pt Catalytic property Thiol, phosphine, 

isocyanide 

Bio-catalyst sensing 

CdSe Luminescence, photo-

stability 

Thiol, phosphine, 

pyridine 

Imaging and sensing 

Fe2O3 Magnetic property Diol, dopamine 

derivative, amine 

MR imaging and 

biomolecule 

purification  

SiO2 Biocompatibility Alkoxysilane Biocompatible by 

surface coating 
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characterizing NPs, but there are still limitations to evaluating the SAMs using these 

techniques.  

NMR is commonly utilized for the analysis of AuNP SAMs,1,32 however, the large 

sample size required, and potential peak broadening limit this method from being useful 

for all NPs. Alternatively, UV-Vis33 and Fourier transform infrared spectroscopy (FT-IR)34 

can be used to obtain some information about the SAMs of NPs, although they cannot 

readily resolve information for ligands near the NP core due to peak broadening.  

1.3 Mass Spectrometric Characterization and Detection of Gold Nanoparticles 

Mass spectrometry (MS) is an attractive analytical tool for assessing nanomaterials due 

to the fact that all materials have an innate mass that can be used as an intrinsic barcode for 

detection purposes. Utilizing the universality of this technique to characterize NPs has been 

previously observed through MS methods such as laser desorption/ionization (LDI-MS),35–

41 matrix assisted laser desorption/ionization (MALDI-MSI),42,43 electrospray ionization 

(ESI-MS),44,45 fast atom bombardment (FAB),46 direct analysis in real time (DART-

MS),47,48 and ion mobility (IM-MS).49–51 Mass spectrometry has also been utilized to detect 

and track gold nanoparticles in complex samples such as cells,37,52,53 plants,54 and tissue 

samples.40,53,55–57  

  
Figure 1.1. AuNP monolayer structure used in this dissertation. The R group represents 

the tunable portion of the monolayer. Specific structures will be discussed in later 

chapters. Figure reproduced from reference 19. 
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Our group has previously demonstrated the power of using LDI-MSI to obtain the 

information regarding in-tact AuNP ligands.55,58–60 In LDI-MS, a laser, with a wavelength 

typically at 337 or 355 nm, irradiates the sample of interest. For AuNPs, that laser energy 

is absorbed by the gold core and subsequently transferred to desorb and ionize the surface-

bound ligands. It is this process that allows only in-tact AuNP ligands to be observed. Once 

the ligands are ionized, the analytes are accelerated with the same amount of kinetic energy 

towards a time-of-flight (TOF) mass analyzer where they are separated based on their 

velocities. Based on the equation KE=½mν, smaller ions will reach the detector before 

larger ions. Through this process, m/z values of analytes are determined.61 A visual 

representation of this process can be seen in Figure 1.2 

The multiplex nature of MS allows for the simultaneous detection of multiple AuNP 

species in LDI-MS analysis.37,40,62 This demonstrates the benefits of this method over other 

detection techniques where only single analytes can be measured at a time. Conversely, 

inductively coupled plasma mass spectrometry (ICP-MS) has been utilized by our group 

to obtain elemental information regarding AuNPs in complex biological samples.40,63,64 In 

ICP-MS analysis, total elemental composition is measured by digesting the sample of 

interest into its elemental components. Although specific ligand information is lost, ICP-

 

Figure 1.2. Matrix assisted laser desorption/ionization mass spectrometry schematic. 
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MS is extremely sensitive and quantitative and, therefore, allows for the accurate 

measurement of NP distribution, uptake, and accumulation. LDI-MS and ICP-MS have 

been used in tandem by our group to obtain information regarding the stability of 

naomaterials.40,65,66 By comparing elemental information of the gold from ICP-MS with 

the in-tact ligand information from LDI-MSI, quantitative measurements regarding AuNP 

ligand stability can be readily made.  

1.4 Mass Spectrometric Imaging of Gold Nanoparticles 

The promise of nanomaterials being injected into and circulating within biological 

systems creates the need to develop analytical tools capable of tracking NPs in site-specific 

ways. Utilizing imaging techniques is essential for evaluating nanomaterial efficacy as well 

as biodistribution patterns. Mass spectrometry imaging (MSI) methods provide many 

benefits over other tools utilized to gain site-specific information regarding nanomaterials. 

Unlike methods such as fluorescence67 and radiolabeling,68 mass spectrometry requires no 

labels for NP detection. Magnetic resonance imaging (MRI), Raman spectroscopy, and 

surface plasmon resonance (SPR) have also been previously utilized to monitor NP 

distributions, however they all have limitations in making quantitative and multiplexed 

measurements. 

MSI provides multiplexed, site-specific information of analytes by generating 

molecular images from individual mass spectra (Figure 1.3). Both LDI and LA-ICP-MS 

are capable of providing mas spectrometric images of nanomaterials as our group40,65,69,70 

and others53,71–73 have previously shown. These imaging techniques work by exploiting the 

intrinsic chemical properties of the AuNPs, mentioned above, to successfully evaluate the 

quantitative sub-organ distribution and stability of nanomaterials in tissues. These mass 
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spectrometry imaging methods are powerful and comprehensive analytical platforms for 

the evaluation of AuNPs in vivo.  

1.5 Mass Spectrometric Imaging of Nanoparticle-Based Delivery Vehicles 

Nanoparticle-based delivery vehicles have been a focal point of drug research since the 

1960s (Figure 1.4).74 The development of targeted nano-based drug delivery systems has 

been shown to vastly improve the efficacy of various therapies based on the ability to 

control the distribution pattern, dosage, and rate of therapeutic delivery.74,75 The modular 

nature of monolayer-protected nanomaterials provides a platform for exponential tunability 

and control as can be seen in Figure 1.5. This tunability has been exploited for the 

controlled delivery of therapeutics such as siRNA,6,76,77 hydrophobic drugs,78,79 and 

proteins80 in vehicles such as liposomes81,82 and nanoparticle complexes.6 These particles 

are promising systems for controlled and efficacious therapeutic delivery, however, due to 

 

Figure 1.3. Mass spectrometry imaging workflow. From the top left corner: an 

ionization source is rastered across a sample, producing an individual mass spectrum at 

each spot. Analytes of interest at specific m/z values can be selected for and molecular 

images are formed. Each m/z produces an individual image indicating the site-specific 

information of the analyte which can then be overlaid with other analytes to obtain 

colocalization information. 
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their multifaceted nature, it is necessary to develop detection methods that can 

comprehensively assess where the vehicles accumulate, where the therapeutics function, 

and where the various working components might generate any unpredicted side-effects.  

Tissues are differentiated into sub-organ regions composed of various cell types that 

play different functional roles in shuttling and processing therapeutics. For instance, the 

spleen and liver both have distinguishable sub-organ regions involved in the mononuclear 

phagocyte system which is related to an organism’s immune response.83 Therefore, 

providing sub-organ spatial distinctions to the accumulation of the delivery vehicles, the 

effects of the therapeutics, and the unexpected biological impacts is imperative.   

Current techniques to evaluate the site-specific information of nanodelivery vehicles 

most commonly utilize fluorescent microscopy due to its ability to provide accurate spatial 

resolution of these nanomaterials.76 However, this method is limited in that the materials 

need to be intrinsically fluorescent or otherwise modified in order to be tracked by 

 

Figure 1.4. The development of nanodelivery vehicles over time. Figure reproduced 

with permission from reference 71. 
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fluorescence. This method of analysis also is limited in the number of analytes that can be 

tracked simultaneously. When monitoring the accumulation and biochemical effects of 

nano-delivery vehicles, utilizing a platform capable of monitoring these sub-organ 

distributions in a multiplex manner is crucial. Liquid chromatography coupled with mass 

spectrometry (LC-MS) has been used to monitor the biochemical changes that arise upon 

the injection of nano-based delivery systems,84 however, this technique lacks the ability to 

provide spatial context to these changes. 

MSI has been frequently used to evaluate the distributions of many biomedically 

relevant compounds, including small molecules,85,86 lipids,87 drugs and their metabolites,88 

as well as peptides and proteins;89 however, using these techniques to evaluate complex 

 

Figure 1.5. Representation of multifunctional nano-based delivery vehicles. Figure 

reprinted with permission from reference 72. 
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nanodelivery systems has been limited. MALDI-MSI has been utilized to evaluate 

liposomal carriers,90,91 but observations were made solely regarding the cargo delivery, and 

not the effects of the entire nanodelivery complex. Utilizing our group’s previous imaging 

techniques, we seek to implore MSI to evaluate complex nanodelivery systems in vivo. 

Dual-mode imaging has been previously implored for evaluating combination inorganic 

and organic therapeutics92 as well as biological molecules containing inorganic 

substituents,93,94 but has yet to be exploited for the evaluation of nanodelivery systems. 

MALDI-MSI, unlike LDI and LA-ICP-MS, can be used to evaluate components of 

nanodelivery vehicles that are not readily ionizable, such as biological molecules. MALDI-

MS utilizes the same physical principles of LDI-MS, but in addition, samples are co-

crystalized with a matrix, generally a weak acid, that allows for the absorbance of the 337 

or 355 nm laser wavelength.61,95 The mixture is then irradiated by the pulsed laser which 

catalyzes the desorption of the matrix-analyte mixture into a gaseous plume.96 This 

additional step allows molecules that are not conductive (as AuNPs are) to accept the laser 

energy and successfully ionize. The matrix additionally protects analyte molecules from 

the laser energy and subsequently keeps them intact, dubbing MALDI a “soft ionization 

technique.” 

In this dissertation, I will demonstrate the development of a dual-mode mass 

spectrometry imaging method to investigate the distribution of nanoparticle-based delivery 

vehicles and their biochemical changes in treated mouse tissues. I will further demonstrate 

how this method can be used to evaluate the efficacy and side effects of nanodelivery 

vehicles upon delivering its cargo. Because this method is based on mass spectrometry 
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methods, it will be applicable for evaluating other nanodelivery systems with a variety of 

cargos in the future. 

1.6 Dissertation Overview 

Nanoparticle-based systems have become extremely prevalent in biomedically relevant 

applications.19 It is therefore important to develop analytical tools that can assess the 

distribution, accumulation, stability, and side effects of these materials along with their 

efficacy as therapeutics. Mass spectrometry has been used to successfully monitor the 

uptake and distribution of AuNPs in a variety of biological systems. LDI-MS is used to 

detect the intact ligands of AuNPs,65 while ICP-MS provides quantitative information 

regarding the gold core. Both of these technique can additionally be used to evaluate the 

same information about AuNPs in a spatially-relevant context via mass spectrometry 

imaging.40,55,58 In this dissertation, new analytical techniques combing MALDI, LDI, and 

ICP-MS will be designed to monitor the uptake, accumulation, excretion, and biochemical  

effects of AuNPs and AuNP-based nanodelivery vehicles. 

First, in Chapter 2, I will illustrate the development of a dual-mode imaging method to 

track the distribution of a nanocarrier system and the biochemical effects of its deliverable 

cargo. LA-ICP-MS imaging along with MALDI-MSI imaging has been utilized to evaluate 

organic and inorganic constituents of biologically relevant molecules.80,85 Applying this 

methodology, we designed an imaging workflow utilizing both MSI techniques to evaluate 

the distribution of a nanodelivery vehicle containing an AuNP carrier and an siRNA cargo 

in a mouse spleen tissue.  Our method utilizes the strong correlation between Fe signals in 

LA-ICP-MS and heme B signals in MALDI-MS to overlay the images from the two 

modalities for comparison. We observed via MALDI-MSI that the majority of the predicted 
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biochemical changes were occurring as expected in in the white pulp of the spleen. 

However, we found through LA-ICP-MS analyses the AuNP carrier was accumulating in 

the red pulp of the spleen, indicating the biochemical changes are occurring independently 

of the carrier distribution. This information is only accessible by combining the imaging 

modalities. 

In Chapter 3, I will further employ this method to evaluate the correlation between 

NPSC carrier and cargo delivery in different tissue types. Upon ICP-MS analysis, NPSCs 

are found to accumulate mostly in tissues involved in the mononuclear phagocyte system 

(MPS), i.e. the liver and spleen. We evaluated these tissues by MALDI-MSI to determine 

how many predicted biochemical changes are occurring and in what sub-organ regions. In 

contrast we evaluated NPSCs with non-interfering siRNA to confirm that biochemical 

changes were arising from the active siRNA cargo. Based on these results, we determined 

NPSCs successfully deliver an siRNA cargo and subsequently knock down a pathway with 

known biochemical responses. We then evaluated the tissues by LA-ICP-MS to determine 

which sub-organ regions the gold carrier distributes to. Utilizing both qualitative and 

quantitative measures, we found that the majority of the observed changes in both the liver 

and spleen are occurring where the carrier is not. Conversely, some unexpected 

biochemical changes were found to be correlated with the gold carrier.  

In Chapter 4, we further evaluate the implications of these biochemical changes by 

exploring the lipid fluctuations that arise from the various NPSC components. Using 

MALDI-MS, we evaluated the lipid changes that were occurring in tissues upon injection 

with NPSCs containing an active siRNA, NPSCs containing an inactive siRNA, and pure 

AuNPs with no other constituents. Trends were observed for each of the nanomaterial-
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injected tissues. These results demonstrate the power of our dual-mode imaging method to 

evaluate nanodelivery vehicles comprehensively. Additional evaluations will be conducted 

to determine the specific biological meaning and origins of these unpredicted changes. 

In Chapter 5, I will discuss a method developed to quantitatively measure the cellular 

uptake and adhesion of AuNPs in cells. Utilizing LDI-MS, we found optimal laser fluencies 

that can be used to selectively desorb surface-bound AuNPs in in-tact cells. Comparing 

these signals to total NP signals obtained by LDI-MS or ICP-MS, we quantified the amount 

of cell-surface bound versus internalized AuNPs. This method was found to be applicable 

to many different cell types and in theory could be utilized to determine the internalization 

of any LDI- active NPs.  

Finally, in Chapter 6, I will summarize the work that was completed towards my 

dissertation and  discuss the possibilities for future experiments focusing on: 1) the 

advancement of analytical techniques to evaluate nanodelivery vehicles and 2) the role 

surface charge plays in distribution, accumulation, and excretion of AuNPs.  
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CHAPTER 2 

DUAL MASS SPECTROMETRIC TISSUE IMAGING OF NANOCARRIER 

DISTRIBUTIONS AND THEIR BIOCHEMICAL EFFECTS 

Majority of this chapter is published: Sikora, K. N.; Hardie, J. M.; Castellanos-García, L. 

J.; Liu, Y.; Reinhardt, B. M.; Farkas, M. E.; Rotello, V. M.; Vachet, R. W. Anal Chem 

2020, 92, 2011-2018. 

Abstract: 

Nanomaterial-based drug delivery vehicles are able to deliver therapeutics in a 

controlled, targeted manner. Currently, however, there are limited analytical methods that 

can detect both nanomaterial distributions and their biochemical effects concurrently. In 

this study, we demonstrate that matrix assisted laser desorption/ionization mass 

spectrometry imaging (MALDI-MSI) and laser ablation inductively coupled plasma mass 

spectrometry imaging (LA-ICP-MSI) can be used together to obtain nanomaterial 

distributions and biochemical consequences. These studies employ nanoparticle-stabilized 

capsules (NPSCs) loaded with siRNA as a testbed. MALDI-MSI experiments on spleen 

tissues from intravenously injected mice indicate that NPSCs loaded with TNF-α-specific 

siRNA cause changes to lipid composition in white pulp regions of the spleen, as 

anticipated, based on pathways known to be affected by TNF-α, whereas NPSCs loaded 

with scrambled siRNA do not cause the predicted changes. Interestingly, LA-ICP-MSI 

experiments reveal that the NPSCs primarily localize in the red pulp, suggesting that the 

observed changes in lipid composition are due to diffusive rather than localized effects on 

TNF-α production. Such information is only accessible by combining data from the two 
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modalities, which we accomplish by using the heme signals from MALDI-MSI and Fe 

signals from LA-ICP-MSI to overlay the images. Several unexpected changes in lipid 

composition also occur in regions where the NPSCs are found, suggesting that the NPSCs 

themselves can influence tissue biochemistry as well.   

2.1 Introduction 

Nanomaterials have been widely employed over the past two decades for therapeutic 

delivery1 due to their tunable size, structure, and physical properties.2 Nanomaterial-based 

drug delivery systems, generally directed by macromolecular self-assembly, provide a 

great deal of tunability for delivery purposes.3 Nanoparticles (NPs) can be designed to carry 

drugs/cargo either on their surfaces or in their interiors.4 Other molecules, such as lipids, 

can be incorporated to improve cargo loading.5,6 The versatility of these systems allows for 

delivery of a range of therapeutic cargos, including siRNA,7–9 hydrophobic drugs,10,11 

proteins,12 and combination therapies,13,14 often at safer and more effective dosages than 

those used for the corresponding therapeutics alone.4 While nano-based delivery systems 

have great potential, there is a need for analytical tools to map their biodistributions and 

the biochemical changes they may cause in vivo to fully assess their effectiveness. 

Obtaining site-specific information about carriers and their biochemical effects is 

challenging. Fluorescence microscopy is the most commonly utilized technique for 

evaluating the biodistribution of nano-based delivery vehicles because of its accessibility 

and excellent spatial resolution. This technique, however, is limited in its ability to identify 

biochemical changes, and some nanomaterials do not readily lend themselves to being 

tracked by fluorescence. Liquid chromatography coupled with mass spectrometry (LC-

MS) is a powerful tool to determine biochemical changes that arise upon injection of nano-
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based drug delivery systems,15 but LC-MS does not readily provide spatial information. 

Spatial context is essential for understanding the direct and indirect biochemical effects of 

the nanocarrier in relation to its distribution. Sub-organ distributions in the liver and spleen, 

for example, can reveal how the reticuloendothelial system responds to the presence of 

nanomaterials.16,17 

Mass spectrometry imaging (MSI) has the potential to provide needed site-specific 

information for nano-based drug delivery systems and their biochemical effects due to its 

‘universal’ detection capability. MALDI-based MSI has emerged as a powerful tool for 

determining the distributions of a wide range of compounds, including small molecules,18,19 

lipids,20 drugs and their metabolites,21 and peptides and proteins22 in biological samples 

such as tissues, cell cultures, and even whole organisms.21,23,24 Using MALDI-MSI to study 

the biodistributions of nano-based delivery vehicles, however, has been quite limited. In 

one example the distribution of a liposomal carrier, loaded with a fluorophore, was 

monitored by MALDI-MSI,25 and in another, MALDI-MSI was used to determine the 

distribution of liposomal-conjugated doxorubicin in 3D cell culture.26 In no instances have 

nano-based drug delivery carriers and their corresponding biochemical effects been site-

specifically monitored together in the same tissue. 

While MALDI-MSI techniques have not been commonly applied to monitor the 

distribution of nano-based delivery systems, laser ablation inductively coupled plasma 

(LA-ICP) MSI16,17,27,28 and laser desorption ionization MSI techniques29–31 have been used 

for inorganic-based NP systems. Together, MALDI-MSI and LA-ICP-MSI can provide 

complementary information about the biodistributions of molecules that have both 

inorganic and organic components. Recent work has demonstrated the benefits of 
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combining MALDI-MS and LA-ICP-MS imaging techniques to evaluate the inorganic and 

organic portions of small molecule drugs,32 enzymes and their potential regulators,33 as 

well as uptake of arsenic-containing lipids in a fruit fly model.34 When used together, the 

two techniques have even greater potential to reveal the sub-organ biodistributions of nano-

based drug delivery systems while at the same time monitoring any biochemical effects 

caused by the presence of these systems.  

Here, we describe a dual-mode imaging approach based on MALDI-MS and LA-ICP-

MS for monitoring the distributions and biochemical effects of a nano-based drug-delivery 

system. For proof of concept, we use NP stabilized capsules (NPSCs) loaded with tumor 

necrosis factor alpha (TNF-α)-targeting small interfering RNA (siRNA) as a test-bed 

material (Figure 2.1). NPSCs are gold NP-based nanocarriers that have been used to deliver 

proteins, small molecules, and siRNA directly to the cytoplasm of cells.7,11,12,14,35 NPSCs 

bearing anti-TNF-α siRNA have been shown to result in knock-down in vitro and in vivo.7 

Separate studies show that the reduction of TNF-α results in predictable biochemical 

responses, specifically lipid changes.36 Hence, NPSCs loaded with anti-TNF-α are 

excellent system for mapping the relationship between these biochemical changes and NP 

 

Figure 2.1. NPSC composition and AuNP-ligand structure. Arginine-based ligands (arginine 

shown in red) are conjugated to the AuNPs. The Arg-AuNPs are emulsified with linoleic acid 

and allowed to associate with the siRNA cargo. 
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carrier distributions. By utilizing MALDI-MSI to monitor the predicted, altered lipid 

composition and LA-ICP-MS to monitor the NP carrier, we can determine whether 

biochemical changes occur only at sites of delivery agent accumulation or more broadly. 

When used together, the two imaging techniques reveal both local and systemic changes 

caused by anti-TNF-α-loaded NPSCs, highlighting the power of this dual-mode imaging 

approach. 

2.2 Results and Discussion 

2.2.1 MALDI-MS imaging of spleen tissues from control mice and mice injected with 

NPSCs 

The spleen was chosen for imaging because high concentrations of gold are measured 

by ICP-MS in this organ after injection of the NPSCs into mice (Table 2.1). In addition, 

this tissue has three distinct sub-organ regions with different cell types, including the white 

pulp that is rich in macrophages that produce TNF-α. We focused on the analysis of lipids 

because dysregulation of the lipidome is an indicator of variations in TNF-α 

production.37,38 

Table 2.1. ICP-MS analyses of TNF-α and scrambled NPSC-injected mouse tissues. All 

concentrations are reported as the average among three mice. Error is reported as standard 

deviation. 

Tissue Type 
Gold Concentration for  

TNF-α NPSC mice (ppb) 

Gold Concentration for 

Scrambled NPSC mice (ppb) 

Spleen 26000 ± 2000 20000 ± 3000 

Liver 23000 ± 3000 20000 ± 3000 

Kidney 220 ± 20 310 ± 10 

Lung 3500 ± 900 3000 ± 400 

Heart 900 ± 500 890 ± 200 

Blood 150 ± 40 70 ± 40 

Small Intestine 90 ± 20 160 ± 20 

Brain 10 ± 1 20 ± 10 



26 

 

Table 2.2. Characteristic lipid ions in the spleen of anti-TNF-α NPSC-injected mice.  

 

Lipid I.D.a Detecte

d m/z 
Ion(s) 

Increased (+) or 

Decreased (-)in  

NPSC-Injected 

Mouse Tissues 

Change as 

Predicted? 

b 

ROC 

AUCc 

Spleen 

Region 

LPC (16:0) 
496.3 

518.4 

[M + H+]  

[M + Na+] 
(+) Yes 

0.745 

0.684 
White Pulp 

LPC (18:0) 524.4 [M + H+] (+) Yes 0.682 White Pulp 

LPC (p-18:0) 508.6 [M + H+] (-) No 0.306 Red Pulp 

LPC (18:2) 520.2 [M + H+] None Yes 0.501 White Pulp 

LPC (20:4) 544.3 [M + H+] (-) No 0.345 Red Pulp 

PC (30:0) 706.6 [M + H+] None Yes 0.550 White Pulp 

PC (32:0) 
734.5 

772.5 

[M + H+] 

[M + K+] 
(+) No 0.724 White Pulp 

PC (p-32:0) 756.5 [M + Na+] (+) Yes 0.706 White Pulp 

PC (34:0) 762.6 [M + H+] (+) Yes 0.785 White Pulp 

PC (p-34:0) 746.6 [M + H+] (+) Yes 0.692 White Pulp 

PC (34:1) 
760.6 

798.6 

[M + H+] 

[M + K+] 
None Yes 

0.418 

0.616 
White Pulp 

PC (p-34:1) 744.6 [M + H+] None Yes 0.446 White Pulp 

PC (34:2) 780.5 [M + Na+] None Yes 0.450 White Pulp 

PC (34:3) 756.6 [M + H+] (+) No 0.718 White Pulp 

PC (p-36:5) 
786.6 

802.5 

[M + Na+] 

[M + K+] 
(+) Yes 

0.721 

0.733 
White Pulp 

PC (p-36:4) 
788.6 

804.5 

[M + Na+] 

[M + K+] 
(+) Yes 0.684 White Pulp 

PC (p-36:2) 

770.6 

792.6 

808.5 

[M + H+]  

[M + Na+]  

[M + K+] 

(+) Yes 

0.730 

0.754 

0.733 

White Pulp 

PC (36:0)d 

790.6 

812.6 

 828.5 

[M + H+]  

[M + Na+]  

[M + K+] 

(+) Yes 

0.695 

0.752 

0.704 

White Pulp 

PC (p-38:6)d 

790.6 

812.6 

828.5 

[M + H+]  

[M + Na+]  

[M + K+] 

(+) Yes 

0.695 

0.752 

0.704 

White Pulp 

PC (p-38:5) 
792.5 

830.5 

[M + H+] 

[M + K+] 
(+) Yes 

0.754 

0.786 
White Pulp 

PC (p-38:4) 

794.7  

816.6  

832.5 

[M + H+]  

[M + Na+]  

[M + K+] 

(+) Yes 

0.737 

0.682 

0.733 

White Pulp 

PC (p-40:5) 
820.6, 

858.6 

[M + H+],  

[M + K+] 
(+) Yes 

0.715 

0.716 
White Pulp 

2H OH Cer 

(d18:1/20:0) 

632.5 

650.5 

[M – H2O + K+] 

 [M + K+] 
(-) Yes 

0.258 

0.343 
Red Pulp 
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a The included lipids were measured in separate imaging experiments of spleen tissue slices from 

three different mice. A combination of exact mass determination from post-acquisition calibration, 

LIPIDMAPS, and MS/MS were used to identify each lipid. (Abbreviations: LPC – 

lysophosphatidylcholine; PC – phosphatidylcholine; Cer – ceramide; SM – sphingomyelin; PE – 

phosphatidylethanolamine; CAR – carnitine; “p-” – plasmalogen; HG – headgroup) b Changes 

correlated to previously reported lipidomics data.36 c ROC AUCs were determined using SCiLS lab 

software. Values represent anti-TNF-α NPSC tissues vs. control tissues. Values greater than 0.65 

and less than 0.35 were considered significantly different. d These lipids are not distinguishable by 

MS/MS. 

2H Cer 

(d18:1/25:1) 
681.7 [M + NH4

+] (-) Yes 0.331 Red Pulp 

2H Cer 

(d18:1/20:1) 
632.5 [M + K+] (-) No 0.343 Red Pulp 

SM (d18:1/17:0) 
741.6 

757.6 

[M + Na+] 

[M + K+] 
(+) Yes 

0.714 

0.759 
White Pulp 

SM (d18:1/20:0) 759.6 [M + H+] (+) Yes 0.767 White Pulp 

SM (d18:1/21:1) 
771.6 

809.6 

[M + H+]  

[M + K+] 
(+) Yes 

0.734 

0.709 
Both 

SM (d18:1/23:2) 819.6 [M + Na+] (-) Yes 0.283 White Pulp 

SM (d18:1/24:0) 853.7 [M + K+] (+) Yes 0.740 White Pulp 

SM (d18:1/24:3) 
809.6 

847.6 

[M + H+] 

[M + K+] 
(+) No 

0.709 

0.703 
Both 

PE (26:4) 497.2 [M – HG + K+] (+) Yes 0.745 Both 

PE (p-34:3) 557.5 [M – HG + H+] (+) Yes 0.664 Red Pulp 

PE (p-34:2) 
559.5 

 581.5 

[M – HG + H+] 

[M – HG + Na+] 
None No 0.476 Both 

PE (p-34:1)d  583.5 [M – HG + H+] (-) No 0.324 Red Pulp 

PE (p-36:4)d 583.5 
 [M – HG + 

Na+]  
(-) No 0.324 Red Pulp 

PE (p-34:1)d  732.5 [M + H+] (+) Yes 0.661 White Pulp 

PE (p-36:4)d 724.5  [M + Na+] (+) Yes 0.661 White Pulp 

PE (p-36:3) 585.5 [M – HG + H+] (+) Yes 0.693 Red Pulp 

PE (38:2) 669.5 [M – HG + K+] (+) Yes 0.653 Red Pulp 

PE (38:1)d 671.5 [M – HG + K+] None No 0.546 Red Pulp 

PE (p-40:5)d 671.5 [M – HG + K+] None No 0.546 Red Pulp 

CAR (16:0) 400.4 [M + H+] (-) Yes 0.293 White Pulp 

CAR (18:1) 426.6 [M + H+] (-) Yes 0.318 White Pulp 
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Using MALDI-MSI, 52 identifiable lipids were detected in positive mode in separate 

imaging experiments (a complete list of lipids can be found in Table A.1 in the Appendix), 

with 44 of these having been previously shown to correlate with TNF-α levels (Table 2.2).36 

Relative to tissues from control mice, some lipid levels from NPSC-injected mice undergo 

statistically significant increases (e.g. Figures 2.2a & 2.2d) or decreases (e.g. Figures 2.2b 

& 2.2e), while others remain the same (e.g. Figures 2.2c & 2.2f) according to both ROC 

curves and box-and-whisker plots (Figures 2.3-2.5). As an example, relative ion 

abundances for phosphatidylcholine (PC) (p-40:5), where “p” indicates a plasmalogen 

species (Figure 2.2a), results in an AUC of 0.715 when comparing tissues from control and 

NPSC-treated mice (Figure 2.3), indicating that the level of this lipid increases 

significantly. A similar conclusion is obtained from ion abundance box-and-whisker plots 

 

Figure 2.2. Representative images of lipid responses in NPSC-injected mouse spleen tissues 

(right in each image pair) compared to control tissues (left in each image pair). Panels (a) and 

(d) are examples of lipids predicted to increase in the spleen upon TNF-α knockdown. Panels 

(b) and (e) are examples of lipids predicted to decrease in the spleen upon TNF-α knockdown. 

Panels (c) and (f) are examples of lipids predicted to retain consistent levels upon TNF-α 

knockdown.36  
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(Figure 2.5). In contrast, carnitine (CAR) (16:0) (Figure 2.2b) has an AUC value of 0.293, 

indicating a significant decrease in the level of this lipid between the control and NPSC-

treated tissues. To check if the AuNPs themselves were affecting lipid ionization 

efficiencies in the MALDI experiments, control experiments were performed with 

biologically relevant concentrations of AuNPs. Lipid levels were found to be relatively 

unaffected by the presence of AuNPs even at concentrations above those detected in mouse 

tissues (Figure 2.6).  

Of the 44 measured lipids that have known responses in serum to TNF-α knockdown, 

we find that 75% respond as predicted in the spleen tissues (Table 2.2), indicating that 

MALDI-MSI can provide data that are consistent with previous lipidomics experiments 

from serum samples.36 The concentration of phosphatidylethanolamine (PE) (p-34:3), for 

example, has been shown to increase when TNF-α is knocked down, and indeed, we 

observe a clear increase in the signal of this lipid (Figure 2.2d). Likewise, the concentration 

of ceramide (Cer) (d18:1/20:0) decreases upon TNF-α knockdown, and we observe the 

same effect in our MALDI-MSI data (Figure 2.2e). Other lipids, such as PC (34:2), were 

 

Figure 2.3 Acquired ROC curve for m/z 820.6 (PC (p-40:5) + H+). An ROC AUC of 0.715 

indicates that m/z 820.6 is significantly different in intensity between the control and NPSC-

injected mouse tissues. 
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Figure 2.4. Example ROC curves for theoretical data, illustrating the statistical meaning of 

the area under the curve (AUC) values. Tissue 1 and 2 are arbitrarily selected; for our 

analyses, “Tissue 1” represents the control tissue and “Tissue 2” represents the NPSC-treated 

tissue. The Gaussians represent the signal abundance distributions for each tissue type (x-

axis) at a selected m/z value. The y-axis represents the number of pixels found at each 

abundance threshold. For example, in (a) if the threshold is set to 50% relative abundance, 

there are approximately half of the total pixels correlated to Tissue 1 below the threshold and 

half of the total pixels correlated to Tissue 2 above the threshold, making this particular m/z 

value is a successful classifier for the two tissue types. In (b), at a threshold of 70% relative 

abundance, there are almost an equal number of pixels correlated to Tissue 1 and Tissue 2 

both above and below the threshold, indicating that this m/z value is not a viable classifier 

for the two tissue types. The ROC curve is formed by plotting the coordinates for the true 

positive rates (TPR) (i.e. the number of Tissue 2 pixels found above the threshold, divided 

by the total number of Tissue 2 pixels) versus the false positive rates (FPR) (i.e. the number 

of Tissue 1 pixels found above the threshold, divided by the total number of Tissue 1 pixels) 
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for every threshold (red line in each graph) across the relative signal abundancies ranging 

from 0% to 100% Each point on an ROC curve is the result of the FPR vs. TPR for each set 

threshold point. The area under the ROC curve (AUC) that results from this analysis is used 

to assess the validity of the m/z as a distinctive biomarker between the two tissue types. (a) 

For tissues with distinguishable Gaussian distributions, the false positive rate (FPR) will 

remain low as the true positive rate (TPR) increases because there is very little overlap in 

their relative abundancies. An ROC AUC close to 1 indicates that a given m/z value is able 

to successfully classify Tissue 2 when compared to Tissue 1. (b) An ROC AUC close to 0.5 

indicates that the m/z value is not able to distinguish Tissue 2 from Tissue 1 and cannot be 

used as a binary classifier. (c) An ROC AUC greater than 0.65 typically indicates that the 

abundance distribution of a given m/z value is significantly increased in Tissue 2 as 

compared to Tissue 1. (d) An ROC AUC less than 0.35 typically indicates that the abundance 

distribution of a given m/z value is significantly decreased in Tissue 2 as compared to Tissue 

1. 

 

 

Figure 2.5. Example ion abundance box-and-whisker plot of m/z 820.6 (PC (p-40:5) + H+). 

The highest and lowest bars represent the maximum distribution, while the upper, middle, and 

lower lines of the box represent first quartile, median, and third quartile, respectively. Analytes 

that have greater medians for NPSC-injected mice were considered significantly different. 
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not expected to change, and that is what we observe (Figure 2.2c). Of the remaining 11 

lipids that do not respond as expected (e.g. PC (32:0), LPC p-18:0, and PE p-34:2 in Figure 

2.7), their changes could be due to relatively low signal, differences between spleen and 

serum biochemistry, or the NPSC carrier itself. 

To validate that our imaging method successfully monitors lipid changes caused by 

TNF-α knockdown from the NPSC injection, we also imaged tissues from mice injected 

 

Figure 2.6. MALDI-MS signal of lipids in the presence of AuNPs. Representative lipids of 

different polarities (positive – PC; neutral – PG; negative – PS) were measured in combination 

with DHB as a matrix and increasing concentrations of AuNPs. Lipid intensities were 

normalized to the intensity of the [M+H]+ peak of the DHB matrix in each spectrum. Each lipid 

intensity was calculated from the average of ten measurements acquired from three sample 

replicates. Error bars represent the standard deviation of 30 measurements. AuNP concentration 

was calculated by dividing Au concentrations (measured by ICP-MS) by the average number of 

Au atoms in each NP (~200).97 Even at AuNP concentrations 10-fold higher than those detected 

in NPSC spleen tissue (represented by the red line at ~600 nM, calculated from Table S1) the 

particles did not significantly affect lipid ionization, suggesting that all lipid level increases are 

unrelated to the presence of AuNPs. 
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with NPSCs containing scrambled siRNA that does not knock-down TNF-α. Of the 

detected lipids in the scrambled siRNA experiments, only eight change in a manner 

predicted for TNF-α knockdown (Table 2.3), as opposed to the 33 observed to change in 

the NPSCs with siRNA specific for TNF-α. A majority of the lipids have no significant 

changes between control mice and those injected with scrambled siRNA containing NPSCs 

(Table 2.3 & Figure 2.8). This control experiment indicates that the lipid changes observed 

after injecting the NPSCs with TNF-α specific siRNA (Table 2.2) are caused by TNF-α 

knockdown. The differences in lipid signals after TNF-α knockdown also highlight the fact 

that the AuNPs themselves are not influencing lipid signal as the total amount of gold in 

the spleen is comparable for mice injected with the TNF-α specific NPSCs and those 

injected with scrambled siRNA (Table 2.1). Interestingly, five of the 11 unexpected lipid 

changes that are observed upon TNF-α knockdown are also observed in the mice treated 

with scrambled siRNA, perhaps suggesting that the NPSC carrier itself is causing a 

biochemical response in the spleen tissue. The origin of these lipid changes will be further 

explored in future experiments.  

  

 

Figure 2.7. Example images of lipids that exhibit unexpected changes between the NPSC-

injected mouse spleen (in the right of each image set) compared to the control tissue (in the left 

of each image set).98 Panel (a) represents an unexpected increase, (b) an unexpected decrease, 

and (c) and unexpected lack of change between tissues types.  
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Table 2.3. Characteristic lipid ions in the spleen of scrambled NPSC-injected mice. 

 

 

Lipid I.D.a Detected 

m/z 
Ion(s) 

(+) or (-) in  

Scrambled 

NPSC-Injected 

Mouse Tissue 

ROC 

AUCc 

Change a Predicted 

Increase/Decrease for 

TNF NPSCs? 

LPC (16:0) 
496.3 

518.4 

[M + H+]  

[M + Na+] 
None 

0.484 

0.542 
No 

LPC (18:0) 524.4 [M + H+] None 0.515 No 

LPC (p-18:0) 508.6 [M + H+] - - N/A 

LPC (18:2) 520.2 [M + H+] None 0.553 No 

LPC (20:4) 544.3 [M + H+] None  0.488 No 

PC (30:0) 706.6 [M + H+] None 0.515 No 

PC (32:0) 
734.5 

772.5 

[M + H+] 

[M + K+] 
None 

0.590 

0.504 
No 

PC (p-32:0) 756.5 [M + Na+] (+) 0.652 Yes 

PC (34:0) 762.6 [M + H+] (+) 0.773 Yes 

PC (p-34:0) 746.6 [M + H+] (+) 0.686 Yes 

PC (34:1) 
760.6 

798.6 

[M + H+] 

[M + K+] 
None 0.501 No 

PC (p-34:1) 744.6 [M + H+] (+) 0.683 No 

PC (34:2) 780.5 [M + Na+] None 0.478 No 

PC (34:3) 756.6 [M + H+] (+) 0.682 No 

PC (p-36:5) 
786.6 

802.5 

[M + Na+] 

[M + K+] 
None 

0.482 

0.604 
No 

PC (p-36:4) 
788.6 

804.5 

[M + Na+] 

[M + K+] 
(+) 

0.689 

0.688 
Yes 

PC (p-36:2) 

770.6 

792.6 

808.5 

[M + H+]  

[M + Na+]  

[M + K+] 

None 

N/A 

N/A 

0.510 

No 

PC (36:0)d 

790.6 

812.6 

 828.5 

[M + H+]  

[M + Na+]  

[M + K+] 

(+) 

0.785 

0.708 

0.652 

Yes 

PC (p-38:6)d 

790.6 

812.6 

828.5 

[M + H+]  

[M + Na+]  

[M + K+] 

(+) 

0.785 

0.708 

0.652 

Yes 

PC (p-38:5) 
792.5 

830.5 

[M + H+] 

[M + K+] 
None 

N/A 

0.490 
No 

PC (p-38:4) 

794.7  

816.6  

832.5 

[M + H+]  

[M + Na+]  

[M + K+] 

- - N/A 

PC (p-40:5) 
820.6 

858.6 

[M + H+],  

[M + K+] 
None 0.426 No 

2H OH Cer 

(d18:1/20:0) 

632.5 

650.5 

[M – H2O + K+] 

 [M + K+] 
None 

0.575 

0.437 
No 
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While lipid levels largely correspond with previous results, completely new 

information is obtained about the locations of these lipid level changes, highlighting the 

value of MALDI-MSI. MALDI-MSI of heme B distributions (Figure 2.9) allow us to 

readily distinguish between the red pulp and white pulp of the spleen, which are sub-organ 

regions that were confirmed by traditional histology (Figure 2.10). Heme B signals, which 

are a proxy for hemoglobin, are high in the vascularized red pulp and very low in the 

immune-cell rich white pulp. The sub-organ distributions of the measured lipid changes 

2H Cer (d18:1/25:1) 681.7 [M + NH4
+] None 0.527 No 

2H Cer (d18:1/20:1) 632.5 [M + K+] None 0.565 No 

SM (d18:1/17:0) 
741.6 

757.6 

[M + Na+] 

[M + K+] 
None 

0.479 

0.635 
No 

SM (d18:1/20:0) 759.6 [M + H+] None 0.627 No 

SM (d18:1/21:1) 
771.6 

809.6 

[M + H+]  

[M + K+] 
(+) 

0.689 

0.673 
Yes 

SM (d18:1/23:2) 819.6 [M + Na+] None 0.627 No 

SM (d18:1/24:0) 853.7 [M + K+] - - N/A 

SM (d18:1/24:3) 
809.6 

847.6 

[M + H+] 

[M + K+] 
(+) 

0.798 

0.777 
No 

PE (26:4) 497.2 [M – HG + K+] (+) 0.669 Yes 

PE (p-34:3) 557.5 [M – HG + H+] None 0.531 No 

PE (p-34:2) 
559.5 

 581.5 

[M – HG + H+] 

[M – HG + Na+] 
None 

N/A 

0.583 
No 

PE (p-34:1)d  583.5 [M – HG + H+] None 0.468 No 

PE (p-36:4)d 583.5  [M – HG + Na+]  None 0.468 No 

PE (p-34:1) 732.5 [M + H+] None 0.523 No 

PE (p-36:4) 724.5  [M + Na+] None 0.469 No 

PE (p-36:3) 585.5 [M – HG + H+] None 0.626 No 

PE (38:2) 669.5 [M – HG + K+] - - N/A 

PE (38:1)d 671.5 [M – HG + K+] None 0.583 No 

PE (p-40:5)d 671.5 [M – HG + K+] None 0.583 No 

CAR (16:0) 400.4 [M + H+] None 0.508 No 

CAR (18:1) 426.6 [M + H+] None 0.420 No 
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provide new insight about the cell types that undergo changes upon TNF-α knockdown. 

The levels of 26 of the 44 lipids increase in the NPSC-treated mice (Table 2.2), and the 

vast majority (77%) of these increases are found in the white pulp (e.g. Figure 2.9a).  

Of the 8 lipids that show no change in abundance, 63% of these are in the white pulp 

(e.g. Figure 2.9c and 2.9f). In contrast, of the 10 lipids that decrease in abundance, only 

30% of these are found exclusively in the white pulp as illustrated in Figure 2.9b. More 

interestingly, of the 33 lipids that respond to TNF-α as predicted, 79% of these responses 

occur exclusively in the white pulp, whereas 15% occur in the red pulp (e.g. Figures 2.9d 

& 2.9e) and 6% occur in both regions. This prevalence of lipid level changes in the white 

 

Figure 2.8. Example images for scrambled siRNA NPSC-injected mouse spleen tissues. The 

same lipids that exhibit changes between the TNF-α siRNA NPSC-injected mouse spleen 

compared to the control tissue in Figure 2 & 3, exhibit no changes between the scrambled 

siRNA NPSC-injected mouse spleen (in the right of each image set) compared to the control (in 

the left of each image set). 
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pulp likely reflects the fact that TNF-α is produced by immune-related macrophages, which 

are a primary component of the white pulp. Of the 11 lipids that do not respond to TNF-α 

knockdown as expected, only two are exclusively found in the white pulp, whereas the 

remainder are found in the red pulp or both regions (Figure 2.11). Together, these data 

provide new sub-organ locational information about lipid responses to TNF-α knockdown 

and hint at other intriguing changes that occur when TNF-α knockdown is accomplished 

using nano-based delivery agents. 

 
 

Figure 2.9. Example images of lipid responses in NPSC-injected mouse spleen tissues (right in 

each image pair) compared to control tissues (left in each image pair) with heme B overlays to 

determine sub-organ distribution. Heme B is indicated by red. Regions of high co-localization 

between the lipid and heme signals appear in yellow, whereas those with low or no co-

localization appear in green. Panels (a), (b), (c), and (f) are example images of lipids that 

respond to the NPSCs in the white pulp of the spleen tissues, as indicated by their intense green 

color. In panel (f), only 22% of the control tissue lipids and 23% of the NPSC-injected lipids 

overlap with the heme peaks. Panels (d) and (e) are example images of lipids that respond to 

NPSCs in the red pulp of the spleen as indicated by their intense yellow color. In panel (d), 76% 

of the control tissue lipids and 85% of the NPSC-injected tissue lipids overlap with the heme 

peaks. In panel (e), 76% of the control tissue lipids and 71% of the NPSC-injected tissue lipids 

overlap with the heme peaks. 
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2.2.2 LA-ICP-MS imaging of spleen tissues from control mice and mice injected with 

NPSCs 

To determine whether the observed lipid changes are systemic or co-localized with 

regions of NPSC accumulation, we also measured the distribution of gold in the tissue 

 

Figure 2.11. Example images of lipid responses in NPSC-injected mouse spleen tissues (right 

in each image pair) compared to control tissues (left in each image pair) with heme B overlays 

to determine sub-organ distribution. Heme B is indicated by red. Regions of high co-localization 

between the lipid and heme signals appear in yellow, whereas with low or no co-localization 

appear in green. Panel (a) is a representative image of lipids that respond to NPSCs in the red 

pulp of the spleen as indicated by the intense yellow color. In panel (a), 76% of control lipids 

and 72% of NPSC-injected lipids were colocalized with the heme peaks.  

 

 

Figure 2.10. H&E stain of a mouse spleen tissue, indicating red and white pulp regions. The 

figure on the left is a representative image of the red and white pulp of a spleen. The white pulp 

regions are circled in a white dotted outline and the red pulp is the region outside of the dotted 

lines. The figure on the right is a zoomed in portion of the same spleen tissue shown on the left. 

The white dotted outline is representative of the white pulp. The region between the red and 

white dotted outline is the marginal zone. Everything outside of the red dotted line is the red 

pulp. 
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slices using LA-ICP-MSI. Previous work from our group has shown that AuNPs similar to 

those present in the NPSCs are stable for up to 48 h in vivo and in spleen tissues,16,17,39,40 

making gold a good marker for these nanomaterials. A spleen tissue slice, immediately 

adjacent to the one used for MALDI-MSI analysis, was used for LA-ICP-MSI analysis. Fe 

levels in LA-ICP-MS images provide a convenient means of distinguishing between the 

red and white pulp regions of the spleen because blood flow is very different in these 

regions (Figure 2.12). When the LA-ICP-MS images of Fe and Au are overlaid, we find 

that Au is primarily found in the red pulp (Figure 2.12). When the Au and Fe levels are 

considered on a pixel-by-pixel basis, we find that about 90% of the Au is found in the red 

pulp. This distribution of Au is similar to what was found in previous LA-ICP-MS imaging 

results for AuNPs with positively-charged surface coatings.16,17,39 

Because the majority of Fe in blood is associated with hemoglobin, Fe distributions in 

LA-ICP-MS images can be correlated with heme distributions from MALDI-MSI images, 

enabling an overlay of images from the two modalities (Figure 2.13). Such correlations 

allow us to compare the distributions of Au and lipid signals to determine if the lipid 

changes co-localize with the NPSCs. From these comparisons, we find that the majority of 

lipid changes occur in regions that have low gold concentrations. As an example, the 

 
Figure 2.12. LA-ICP-MS images showing the distributions of iron (left) and gold (right) in a 

spleen tissue slice from an NPSC-injected mouse. The overlaid image (center) contains 83% 

co-registered (white) pixels, indicating that gold is primarily distributed in the red pulp region 

of the spleen where iron signals are high. 
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distribution of the lipid PC (36:0) has minimal overlap with the gold distribution (Figure 

2.14). Indeed, as indicated earlier, almost 80% of the predicted lipid changes occur in the 

white pulp where the gold content is almost 10-fold lower than in the red pulp. In many 

cases, predicted lipid changes that do occur in the red pulp, such as PE (p-34:3), also appear 

not to be dependent on gold levels, based on the poor overlap of lipid signal increases and 

Au signals (Figure 2.15). These observations suggest that the TNF-α-induced lipid changes 

are systemic and are not occurring where the NPSCs ultimately localize. This systemic 

effect likely arises because the NPSCs circulate for 48 h before the mice are sacrificed, 

providing ample time for siRNA to result in TNF-α knock-down and cause the observed 

changes in lipid levels. The ability to draw correlations between nanomaterial location and 

 
Figure 2.13. LA-ICP-MSI and MALDI-MSI image overlays of iron and heme B distributions 

to correlate the two imaging modalities. These analytes are markers for hemoglobin, which has 

a high concentration in the vascularized red pulp of the spleen. In the overlaid images, 70% of 

the signal pixels are yellow, indicating the expected high co-localization of iron and heme B in 

the red pulp. 
 

 
Figure 2.14. MALDI-MSI and LA-ICP-MSI image overlays of a lipid (i.e. PC 36:0) that 

changes upon NPSC injection and gold from the NPSCs, illustrating that the lipid changes occur 

in regions low in gold. In the overlaid images, only 34% of the signal pixels are yellow, 

indicating relatively how co-localization between the lipid of interest and gold. 
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the resulting biochemical effect is uniquely possible with the combined imaging approach 

described here. 

Another important feature of combining the two imaging modalities is that we obtain 

intriguing site-specific information about lipids that do not change as predicted upon TNF-

α knockdown. Of the 11 lipids whose levels change in an unexpected fashion, seven 

exclusively undergo changes in the red pulp, which has high concentrations of NPSCs 

(Figure 2.11a), and two more undergo changes in the red and white pulp. When These 

observations suggest that the unexpected changes may arise from the presence of the 

NPSCs themselves. Future work will seek to further understand these biochemical changes 

by evaluating the inflammatory properties/effects of the NPSC carrier components 

themselves. 

2.3 Conclusions 

We have developed a powerful method to monitor and correlate the sub-organ 

distributions of a NP-based delivery system and its cargo-induced biochemical effects. Our 

approach relies on LA-ICP-MSI to track the inorganic components of a nano-based 

delivery system and MALDI-MS to examine changes in biochemistry caused by the 

delivery system. When the two imaging modalities are used together, we are able to 

 

Figure 2.15. MALDI-MSI and LA-ICP-MSI overlays of a lipid that is primarily in the red pulp 

and gold. The low number of yellow pixels indicates that the gold increases are not correlated 

with the lipid increases in the red pulp. 
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evaluate if the biochemical effects are localized with the delivery vehicle or occur more 

diffusively. A key feature of our described approach utilizes the strong correlation between 

Fe signals in LA-ICP-MS and heme signals in MALDI-MS that allow images from the two 

modalities to be overlaid and directly compared. Upon using this new approach to image 

spleen tissues from mice injected with TNF-α siRNA-bearing NPSCs, we also obtain new 

biological information. Specifically, we observe that changes in the lipidome that occur 

with decreased TNF-α levels are primarily localized in the white pulp of the spleen. In 

addition, we find that several lipids have unexpected changes in their abundances, the vast 

majority of which occur in the red pulp where concentrations of NPSCs are highest, 

suggesting that changes to these lipids are caused by the NPSCs themselves. Control 

experiments with NPSCs containing scrambled siRNA are consistent with the NPSCs 

themselves having an effect on lipid levels. Future work will investigate how the individual 

components of the NPSCs influence lipid levels. We predict that the dual-mode imaging 

approach described here will be beneficial for the development of nano-based drug delivery 

systems by providing access to sub-organ biodistributions for carriers and their 

biochemical effect. Such information should facilitate the design of systems that target 

desired tissues while minimizing unwanted side effects.  

2.4 Experimental 

2.4.1 Chemicals and Materials.  

2,5-dihydroxybenzoic acid (DHB), arginine, 1-pentanthiol, and linoleic acid were 

purchased from Sigma-Aldrich (St. Louis, MO). Chloroauric acid for gold nanoparticle 

synthesis was bought from Strem Chemicals Inc. (Newburyport, MA). siRNA targeting 

TNF-α with the sequence: 5′-GUCUCAGCCUCUUCUCAUUCCUGct-3′ (sense strand) 
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was synthesized by Sigma-Aldrich. Scramble siRNA with the sequence: 5′-

UUCUCCGAACGUGUCACGU-3′ (sense strand) was purchased from Life Technologies 

(Carlsbad, CA). Phosphate-buffered saline (PBS) was purchased from Fisher Scientific. 

Indium tin oxide (ITO) conductive slides were purchased from Delta Technologies 

(Loveland, CO). All other chemicals were purchased from Sigma-Aldrich or Fisher 

Scientific and used as received unless otherwise specified.  

2.4.2 Nanoparticle and Nanocapsule Synthesis 

Arginine-functionalized AuNPs (Arg-AuNPs) and NPSCs were synthesized according 

to a previous report.11 In brief, 1-pentanethiol protected AuNPs (Au-C5) with ~2 nm core 

diameters were synthesized using the Brust-Sciffrin two-phase synthesis.41 Arginine-

functionalized thiol ligands were synthesized based on a previous report.42 They were then 

conjugated to the AuNP core by the Murray place-exchange method.43 To form the NPSCs, 

1 μL linoleic acid was combined with 1 μM Arg-AuNPs in PBS. Emulsions were formed 

by using an amalgamator at 5000 rpm for 100 s. 10 µL of the emulsion was combined with 

a mixture of 2.5 μM Arg-AuNPs and 1 μM siRNA (90 μL in 5 mM phosphate buffer). The 

mixture was incubated for 10 min at room temperature. 

2.4.3 Mouse Experiments 

All animal protocols were approved by the University of Massachusetts Amherst 

Institutional Animal Care and Use Committee (IACUC), which is guided by the U.S. 

Animal Welfare Act and U.S. Public Health Service Policy. Female Balb/c mice (8-week-

old) were obtained from Charles River Laboratories, Inc. (Wilmington, MA) and housed 

in controlled climates (22 ± 2 °C temperature, 12 h light/dark daily cycle) with free access 

to food and water. The mice were randomly divided into control and treated groups. Each 
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was injected with 200 μL of either PBS or 2.5 μM of NPSCs via the tail vein. After 48 h, 

mice were sacrificed via carbon dioxide inhalation and cervical dislocation. Mouse tissues 

were immediately extracted, flash frozen in liquid nitrogen, and then kept at -80 °C until 

used for MS imaging. Using a LEICA CM1850 cryostat, flash-frozen spleen tissues were 

sliced to 12 μm, thaw-mounted onto ITO slides (MALDI-MS) or glass slides (LA-ICP-

MS) and desiccated under vacuum for 1 h. For the MALDI-MS imaging experiments, a 

Bruker ImagePrep apparatus was used to spray a 25 mg/mL 2,5-DHB solution (1:1 

methanol:water) onto the tissues. 

2.4.4 MALDI Imaging  

MALDI-MS imaging experiments were conducted on a Bruker ultrafleXtreme 

MALDI-TOF/TOF at 50 μm resolution. The laser offset was set to 60%. All experiments 

were performed on at least three different sets of tissue sections to ensure reproducibility. 

MS/MS experiments were conducted using the LIFT cell with collision-induced 

dissociation. Compound identification was performed using MS/MS and/or accurate m/z 

measurements after internal standard alignment post-acquisition. Internal standards of m/z 

273.04 (2DHB – 2H2O + H+) and m/z 772.57 (PC (32:0) + K+) were used. 

2.4.5 LA-ICP-MS Imaging  

LA-ICP-MS experiments were conducted on a PerkinElmer NEXION 300 ICP-MS 

using a Teledyne CETAC LSX-213 G2 laser ablation system attached to the ICP-MS via 

Teflon tubing. Tissues were ablated via line scanning with a spot size of 50 μm, scan rate 

of 15 μm/s, 10 Hz laser frequency, 10 seconds of shutter delay, and a carrier He gas flow 

of 0.6 L/min. Images were reconstructed, as described in our previous work,16,17 by 

performing data reduction to produce an image with 50 μm resolution. In short, raw data  
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Figure 2.16. Data reduction process to produce pixels for each line of data obtained from LA-ICP-

MS experiments. (a) Example raw LA-ICP-MS data for gold (Au), iron (Fe), and zinc (Zn) obtained 

from a single line scan of the tissue of interest, with the indicated time representing the time after 

the 15 µm/s laser scan begins. (b) The raw data is converted into pixelated data by binning 33 data 

points to generate a single 50 μm x 50 μm pixel, as represented by each data point. Tissue edges 

can be identified by the shift from noise to signal at ~60 seconds and the shift from signal to noise 

at ~260 seconds. 

were binned into pixelated data by averaging the 33 data points needed to create a single 

50 x 50 μm pixel (see Figure 2.16 for details and Figure 2.17 for an example). These raw 

data were analyzed and reconstructed using a custom script written in Python. Because the 

zinc signal is relatively constant throughout spleen tissues (e.g. Figures 2.16 & 2.17), each 

metal of interest (i.e. iron, gold) was normalized to zinc distributions to account for folds 

or tears in the tissues that could give rise to “hot spots.” 

2.4.6 Pixel Counting and Analysis for Overlaid Images 

All overlaid images (Figures 2.8, 2.9, 2.11-2.15) were uploaded to ImageJ where they 

were converted into their RGB components. Each filter (red, green blue) was then 

converted into a text file. On an RGB scale of 0-255, we found that the background cutoff 

was at 40 for all tissues at all filters, based on the intensity of the pixel regions that were 

clearly located outside of the tissue area. Therefore, signals were found to be within the 

40-255 region for every filter. Each individual red pixel was then multiplied by each 

individual green pixel to produce the results for the yellow overlay (red x green = yellow). 

To determine the number of pixels that were overlaid in yellow we counted those with a  
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Figure 2.17. LA-ICP-MS image generation and signal analysis for NPSC-injected and control 

mouse spleen. Raw images obtained for Au, Fe, and Zn for (a) NPSC-injected and (b) control 

mouse spleen tissues were generated using the method described in the main text and in Figure S-

1. (c) Example raw data for the line indicated in the control tissue shown in (b), displaying the 

signals for Au, Fe, and Zn as function of time after beginning the laser scan. (d) Example binned 

data from the same control tissue in (c). It can be seen from the abundances of elements in both 

Figures 2.16 and (c & d) that Zn remains relatively constant over the entirety of the tissue. (e) 

Example histograms for the intensity distributions for Au, Fe, and Zn throughout the entire tissue 

for the NPSC-injected tissue slice shown in (a). Au and Fe both have two broad distributions, 

whereas Zn only has one narrow one, which is consistent with it having a relatively constant 

distribution across the tissue. (f) Averages and standard deviations for the Au, Fe, and Zn signals 

shown in (e). 
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value above the threshold of the background (40) times the highest possible intensity (255) 

for a minimum value of 10,200. The maximum was then set at 65,025 (255 x 255). 

Anything below the threshold of 10,200 was considered a non-colocalized pixel. The total 

number of yellow (overlaid) pixels were then divided by the number of red or green pixels, 

depending which was smaller (the smaller number of pixels is the greatest number of total 

pixels that could  be overlapped between the two filters) to determine the percent of overlap 

between the analytes of interest.  

2.4.7 Statistical Analysis  

SCiLS Lab 2015b was used to determine significant differences between tissue images. 

Baseline subtraction was conducted using the TopHat method, which is an operator used 

in mathematical morphology for image analysis.44 Baseline subtraction is followed by total 

ion count (TIC) normalization, peak picking, and discriminative value determination using 

both receiver operating characteristic (ROC) curves (Figure 2.4) and ion abundance box-

and-whisker plots (Figure 2.5). ROC curves are used to assess the performance of particular 

m/z values as binary classifiers for comparative tissues. ROC curves of the pooled data 

from given images were used to identify significant changes in ion signals between control 

and treated tissues. An ROC area under the curve (AUC) threshold of greater than 0.65 or 

lower than 0.35 was used to identify significant differences between tissues (see Figures 

2.16 & 2.17),45–47 and differences for a given lipid are indicated if the AUC thresholds are 

surpassed for tissue images from three separate mice. Ion abundance box plots were also 

used in combination with ROCs to determine the degree of difference between pooled sets 

of data from given tissue images by comparing both the range and median points of the 

compared lipid peaks (Figure 2.5).  
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CHAPTER 3 

NANODELIVERY VEHICLES GENERATE BIOCHEMICAL CHANGES 

INDEPENDENT OF CARRIER ACCUMULATION AS REVEALED BY MASS 

SPECTROMETRY IMAGING 

Abstract: 

Nanodelivery vehicles are widely investigated for the controlled delivery of 

therapeutics. To assess more fully the efficacy of possible nanodelivery agents, it is 

essential to understand where the vehicles accumulate and to reveal their site-specific 

biochemical effects. Here, we use a dual-mode mass spectrometry imaging (MSI) method 

to evaluate the distributions and biochemical effects of anti-TNFα nanoparticle stabilized 

capsules (NPSCs) in mice. We find that expected biochemical changes occur at sites away 

from where the nanomaterials accumulate. In particular, TNFα-specific lipid biomarkers 

change as expected in the white pulp region of the spleen, while the NPSCs accumulate in 

the spatially isolated red pulp region of the spleen. Similarly, in the liver, lipid biomarker 

changes are found in connective tissue, bile ducts, and veins, whereas the NPSCs 

accumulate primarily in the parenchyma. Unexpectedly, we also find biochemical changes 

that are associated with the nanomaterials themselves, demonstrating the power of 

MALDI-MS imaging to reveal markers of possible side effects of the nanodelivery agent. 

This comprehensive assessment using MSI provides spatial context to nanomaterial 

distributions and efficacy that cannot be easily achieved with other imaging methods or 

non-spatially resolved measurement tools. 
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3.1 Introduction 

Nanodelivery vehicles are attractive platforms for distributing therapeutics in a 

controlled and targeted manner.1,2 Drugs can be encapsulated in a variety of ways,3 such as 

part of an inorganic nanoparticle complex or a lipid bilayer droplet, and these strategies not 

only allow for the controlled circulation of therapeutics, but also create the potential for 

more efficacious therapies through dose reduction and directed delivery.1,2,4 Inorganic 

nanomaterials are attractive for drug delivery applications due to their high stability, unique 

physical and chemical properties, and the exquisite synthetic control over their surface 

chemistry.2,5 The tunability of these modular systems provides many opportunities to 

deliver various cargos, including siRNA,6–8 hydrophobic drugs,9,10 and proteins.11  

A frequent challenge that is encountered when developing nanodelivery vehicles is 

controlling where particles distribute in vivo, so that they can have the greatest efficacy.12 

Unfortunately, studies focused on anti-cancer nanodelivery vehicles, for instance, report 

extremely low success rates (median, 0.7%) in reaching target tumor sites.13 Instead, most 

nanodelivery vehicles are found to distribute to the mononuclear phagocytic system (MPS), 

predominantly the liver, spleen, and kidney.13–16 While delivery to tumors is apparently 

inefficient and nanodelivery vehicle levels in MPS-related tissues are typically high, 

studies rarely address the biochemical changes that occur in vivo upon injection of these 

materials. An assessment of these biochemical changes, and not just their biodistributions, 

is necessary to evaluate the efficacy of these nanodelivery vehicles. 

Given that higher organisms have sophisticated biochemical machinery to process 

foreign bodies, it is possible that nanodelivery drugs could cause a biochemical effect that 

is not localized with their accumulation sites. For example, macrophages, which can 
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identify nanomaterials as foreign bodies, interact with T cells to elicit immune responses 

in their target organs (e.g. spleen), but often the generated responses can be in separate sub-

organ regions from where the original foreign body was taken up by macrophages.17 It is 

therefore important to assess if nanomaterials and their cargo can induce biochemical 

changes at sites distant from where they accumulate. The ability of nanomaterials to 

generate a distant biochemical response could suggest an alternate/indirect means of 

therapy, especially given the inefficiency with which anti-cancer nanodelivery agents 

accumulate in tumors. 

To assess the possibility that nanodelivery systems can elicit biochemical effects distant 

from their accumulation sites, we have applied mass spectrometry (MS) imaging methods 

to site-specifically track the in vivo distributions of nanodelivery systems and their effects 

 
Figure 3.1. Nanoparticle stabilized capsule (NPSC) design and arginine AuNP ligand structure. 

AuNPs are emulsified with linoleic acid and the arginine headgroup forms a stable 

macrostructure by interacting with the negatively charged siRNA cargo. 
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on the underlying biochemistry. Specifically, we use laser ablation-inductively coupled 

plasma mass spectrometry (LA-ICP-MS)18–21 and matrix-assisted laser 

desorption/ionization MS (MALDI-MS)22,23 based imaging approaches to monitor the sub-

organ biodistributions and biochemical effects of a gold nanoparticle-based delivery 

platform. As a testbed nanodelivery system, we used gold nanoparticle stabilized capsules 

(NPSCs) (Figure 3.1), which have the demonstrated ability to deliver proteins, siRNA, and 

small molecule drugs to the cytoplasm of cells.6,9,11,24,25 TNF-α-targeting siRNA was 

utilized as the cargo in the current study as NPSCs with this siRNA have been successfully 

used to knockdown this cytokine in vitro and in vivo.6 Moreover, TNF-α suppression 

produces predictable changes in serum lipid levels,26 providing a convenient set of 

biomolecules to track via MALDI-MS imaging.  

Using these two MS-based imaging methods, we find that nanodelivery agents can 

produce the intended biochemical effect in a different location than where the 

nanomaterials themselves accumulate. Moreover, the ability of MALDI-MS imaging to 

measure site-specific changes in lipid levels provides a rich set of new biochemical insight 

into how nanodelivery vehicles themselves influence inflammation pathway, as 

exemplified by changes in glucosylceramide levels that correlate with the NPSC 

distributions. 

3.2 Results and Discussion 

ICP-MS measurements of tissue homogenates of mice injected with NPSCs containing 

TNF-α targeting siRNA (TNF-α NPSCs) reveal that the nanocarriers predominantly 

distribute to the liver and spleen tissues (Figure 3.2). This in vivo distribution pattern is 

similar to how other positively charged nanomaterials distribute.13,18,27–29 Liver and spleen 
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tissues were thus selected for MS imaging. The distributions of lipid levels in tissues were 

determined by MALDI-MSI as a means of monitoring pathways that are known to be 

affected by TNF-α knockdown,26 and distributions of Au levels in tissues were determined 

by LA-ICP-MSI as a means of tracking NPSC accumulation sites. 

3.2.1 Distribution and colocalization of nanocarrier and biochemical changes in the 

spleen 

MALDI-MS of spleen tissue sections measured 52 different lipids, 44 of which 

responded to TNF-α in a predictable manner. Utilizing the area under the curve (AUC) of 

receiver operating characteristic (ROC) curves and ion abundance box-and-whisker plots, 

lipids were evaluated as successful binary classifiers between the treated and control 
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Figure 3.2. ICP-MS analysis of gold in digested NPSC-injected mouse tissues. All reported 

concentrations are the average of three mice. Error is reported as standard deviation 
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tissues.22,30,31 Based on the measured signals of the 44 lipids from at least three different 

tissues, 33 lipids are found to change as predicted in the spleens of TNF-α NPSC-injected 

mice when compared to control tissues (Table 3.1). By using the signal for heme B, which 

is a biomarker for the red pulp of the spleen,32 the distributions of lipid changes can be 

classified as occurring in the white pulp (no heme B signal) or red pulp. For example, PE 

(p-34:1) and PC (p-40:5), which are plasmalogens known to be involved in anti-

inflammatory and anti-oxidant responses in mammalian tissues,33 increase in the 

lymphoid-rich white pulp (Figure 3.3a and b). Lipids signals that change in this 

lymphocyte-rich region of the spleen may be indicative of a downstream immunological 

response from the NPSCs cargo delivery. Conversely, PE (38:2), which is an unsaturated 

phosphatidylethanolamine, is known to be involved in membrane curvature and fluidity 

during membrane fusion,34 increases mostly in the red pulp (Figure 3.3c). Differentiating 

the sub-organ distributions of these specific biomarkers is important to better illustrate 

whether anti-inflammatory responses are occurring (i.e. in the splenic white pulp)35 versus 

biochemical responses to cellular uptake (i.e. macrophages in the red pulp).18,35 Overall,  

 

Figure 3.3. MALDI-MS images of predicted lipid responses (green pixels) in TNF-α NPSC-

injected mouse spleen tissues (right in each image pair) compared to control spleen tissues (left 

in each image pair). Lipid images are over laid with heme B (red pixels) to determine sub-organ 

distribution. Areas of high colocalization between a lipid and Heme B are indicated by yellow 

pixels. Panels (a) and (b) are representative images of lipids that respond in the white pulp of 

TNF-α NPSC spleen tissues. Panel (c) is a representative image of a lipid that responds in the 

red pulp. 
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Table 3.1. Detected lipid changes in spleen tissues of mice injected with TNF-α-targeting 

siRNA NPSCs, scrambled siRNA NPSCs, or arginine AuNPs as compared to control 

mouse spleen tissues. Lipid responses in the TNF-α NPSC column are highlighted in green 

for “predicted” responses and in red for “unexpected” responses. Lipids are highlighted in 

scrambled NPSCs or arginine AuNP column if they share a response with the TNF-α 

column. (Abbreviations: LPC – lysophosphatidylcholine; PC – phosphatidylcholine; Cer – 

ceramide; SM – sphingomyelin; PE – phosphatidylethanolamine; CAR – carnitine; “p-” – 

plasmalogen) 

 
TNF-α 

NPSCs 

Scrambled 

NPSCs 

Arginine 

AuNPs 

Lipid I.D. 
Detected 

m/z 

(+) or (-) 

compared to 

control 

(+) or (-) 

compared to 

control 

(+) or (-) 

compared to 

control 

LPC (16:0) 
496.3 

518.4 
(+) None None 

LPC (18:0) 524.4 (+) None None 

LPC (p-18:0) 508.6 (-) (-) None 

LPC (18:2) 520.2 None None None 

LPC (20:4) 544.3 (-) None  (-) 

PC (30:0) 706.6 None None None 

PC (32:0) 
734.5 

772.5 
(+) None (+) 

PC (p-32:0) 756.5 (+) (+) None 

PC (34:0) 762.6 (+) (+) None 

PC (p-34:0) 746.6 (+) (+) None 

PC (34:1) 
760.6 

798.6 
None None None 

PC (p-34:1) 744.6 None (+) None 

PC (34:2) 780.5 None None None 

PC (34:3) 756.6 (+) (+) None 

PC (p-36:5) 
786.6 

802.5 
(+) None None 

PC (p-36:4) 
788.6 

804.5 
(+) (+) None 

PC (p-36:2) 

770.6 

792.6 

808.5 

(+) None None 

PC (36:0)d 

790.6 

812.6 

828.5 

(+) (+) None 
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PC (p-38:6)d 
790.6 

828.5 
(+) (+) None 

PC (p-38:5) 
792.5 

830.5 
(+) None None 

PC (p-38:4) 

794.7  

816.6  

832.5 

(+) (-) None 

PC (p-40:5) 
820.6 

858.6 
(+) None None 

2H OH Cer 

(d18:1/20:0) 
650.5 (-) None None 

2H Cer (d18:1/25:1) 681.7 (-) None None 

2H Cer (d18:1/20:1) 632.5 (-) None None 

Glucosylceramide 806.2 (+) (+) (+) 

SM (d18:1/17:0) 
741.6 

757.6 
(+) None None 

SM (d18:1/20:0) 759.6 (+) None None 

SM (d18:1/21:1) 
771.6 

809.6 
(+) (+) None 

SM (d18:1/23:2) 819.6 (-) None None 

SM (d18:1/24:0) 853.7 (+) (-) None 

SM (d18:1/24:3) 
809.6 

847.6 
(+) (+) (+) 

PE (26:4) 497.2 (+) (+) None 

PE (p-34:3) 557.5 (+) None (+) 

PE (p-34:2) 
559.5 

581.5 
None None None 

PE (p-34:1)d  583.5 (-) None None 

PE (p-36:4)d 583.5 (-) None None 

PE (p-34:1) 732.5 (+) None None 

PE (p-36:4) 724.5 (+) None None 

PE (p-36:3) 585.5 (+) None None 

PE (38:2) 669.5 (+) (-) None 

PE (38:1)d 671.5 None None None 

PE (p-40:5)d 671.5 None None None 

CAR (16:0) 400.4 (-) None (+) 

CAR (18:1) 426.6 (-) None (+) 
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79% of the 33 predicted lipid changes are found in the white pulp of the spleen tissue. 

These MSI data indicate that the majority of the lipid responses are due to the efficacious 

delivery of the anti-inflammatory siRNA therapeutic to the appropriate cell types. 

To ensure that these lipid changes arise from biochemical changes induced by TNF-α 

knockdown, and not the NPSC carrier itself, mice were also injected with scrambled (non-

functional) siRNA-containing NPSCs (scrambled NPSCs) and the free arginine-

functionalized NPs (arginine AuNPs) that comprise the capsules. Of the 44 detected lipids,  

only 11 and five have significantly altered levels in the spleens of mice injected with 

scrambled NPSCs, and arginine NPs, respectively (Table 3.1), indicating that the majority 

of the lipid changes seen in mice injected with TNF-α specific NPSCs are due to TNF-α-

targeted knockdown. In mice injected with the scrambled NPSCs, most lipids behave like 

PC (p-40:5) (Figure 3.4). Their signal levels do not change significantly compared to the 

control, regardless of whether they are found in the white pulp or red pulp. 

 

 

Figure 3.4. MALDI-MS images of PC (p-40:5) response (green pixels) in TNF-α and 

scrambled NPSC-injected mouse spleen tissues compared to control spleen tissues. Lipid 

images are over laid with heme B (red pixels) to determine sub-organ distribution. When 

compared to the control tissue, the TNF-α NPSC exhibits a ROC AUC of 0.810 and the 

scrambled NPSC had an ROC AUC of 0.610. 
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LA-ICP-MS imaging was used to investigate the distribution in the spleen of the TNF-

α NPSCs themselves (Figure 3.5). In these images, Fe signals were used to discern the 

blood-rich red pulp from the white pulp (Figure 3.5b), as has been done in several previous 

studies.18–20 A quick visual comparison of the Au (Figure 3.5c) and Fe distributions indicate 

that the two metals have similar distributions, and this similarity is even more apparent 

from the overlaid images (Figure 3.5d). Based on a quantitative pixel analysis of the 

overlaid Au and Fe images in Figure 3.5d, a Pearson correlation analysis indicates a 67% 

correlation between the Au and Fe distributions. LA-ICP-MS imaging analysis of 3 spleen 

tissues from 3 mice lead to an average correlation of 65%. Overall, these results indicate 

that the Au carrier predominantly accumulates in the red pulp of the spleen. A very similar 

observation is made for spleen tissues from mice injected with scrambled NPSCs. The 

NPSCs accumulate mostly in the red pulp of the spleen (Figure 3.6). An average correlation 

of 43% between Au and Fe is found for the scrambled NPSCs. 

 
Figure 3.5. Optical and LA-ICP-MS images of TNF-α NPSC-injected mouse spleen. (a) Optical 

camera images from Teledyne CETAC LSX-213 G2 laser ablation system. (b) 

Reconstructed 50 μm LA-ICP-MS image of gold, single color scale. (c) Gold (green) and iron 

(red) LA-ICP-MS overlay images. Yellow pixels indicate analyte overlap. (d) Reconstructed 50 

μm LA-ICP-MS image of iron, single color scale. 
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While Au primarily accumulates in the red pulp, most (79%) predicted lipid changes 

due to TNF-α knockdown occur in the white pulp of the spleen (e.g. Figure 3.3), indicating 

that the intended biochemical effect occurs in a different location than where the NPSCs 

accumulate. To confirm these results quantitatively, the LA-ICP-MS and MALDI-MS 

images were co-registered based on previous reports,36,37 and correlations were calculated 

between Au and each lipid. Based on these correlation analyses, 25 of the 33 lipids that 

change as expected negatively correlate with the distribution of the NPSCs (Figure 3.7), 

whereas only eight of them positively correlate with the NPSCs. Clearly, most of the TNF-

α knockdown related changes occur independently of the nanodelivery vehicle distribution.  

3.2.2 Distribution and colocalization of nanocarrier and biochemical changes in the 

liver 

NPSC and lipid distributions were also assessed in the liver due to the high gold content 

in this tissue (Figure 3.2).  In the liver, 40 TNF-α-specific lipids are measured by MALDI-

MS, and 18 of these 40 lipids undergo the expected change (Table 3.2). Fewer lipids in the 

 

Figure 3.6. Optical and LA-ICP-MS images of scrambled NPSC-injected mouse spleen. (a) 

Optical camera images from Teledyne CETAC LSX-213 G2 laser ablation system. (b) 

Reconstructed 50 μm LA-ICP-MS image of gold, single color scale. (c) Gold (green) and iron 

(red) LA-ICP-MS overlay images. Yellow pixels indicate analyte overlap. (d) Reconstructed 50 

μm LA-ICP-MS image of iron, single color scale. 
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liver are observed to change as expected, in comparison to the spleen, in part due to lower 

overall lipid  signals in the liver.  Only nine and five of these 40  lipids  undergo significant 

changes in mice that are injected with the scrambled NPSCs and arginine AuNPs,  

respectively, indicating that the lipid changes are again primarily due to TNF-α  

knockdown. Unlike in the spleen, which has visually apparent sub-organ regions, the lipid 

distributions in the liver are not as easily classified into different regions sub-organ regions 

(Figure 3.8). LA-ICP-MS images reveal that Au has a punctate distribution in the liver 

(Figure 3.9a and b). Previous work has shown that positively-charged AuNPs accumulate  

 

Figure 3.7. Correlation plot of MALDI-MSI lipid distributions compared to LA-ICP-MS gold 

distributions in NPSC spleen tissue. Lipids are separated by class from left to right: 

phosphatidylcholines, carnitines, lysophosphatidylcholines, sphingomyelins, 

phosphatidylethanolamines, ceramides. Lipids with a value close to +1 have a strong positive 

correlation with gold distribution, lipids with a value close to -1 have a strong negative 

correlation with gold distribution. Lipids with close to zero have no significant correlation with 

gold. 
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Table 3.2. Detected lipid changes in liver tissues of mice injected with TNF-α-targeting 

siRNA NPSCs, scrambled siRNA NPSCs, or arginine AuNPs as compared to control 

mouse spleen tissues. Lipid responses in the TNF-α NPSC column are highlighted in green 

for “predicted” responses and in red for “unexpected” responses. Lipids are highlighted in 

scrambled NPSCs or arginine AuNP column if they share a response with the TNF-α 

column. (Abbreviations: LPC – lysophosphatidylcholine; PC – phosphatidylcholine; Cer – 

ceramide; SM – sphingomyelin; PE – phosphatidylethanolamine; CAR – carnitine; “p-” – 

plasmalogen) 

 
TNF-α 

NPSCs 

Scrambled 

NPSCs 

Arginine 

AuNPs 

Lipid I.D. 
Detected 

m/z 

(+) or (-) 

compared to 

control 

(+) or (-) 

compared to 

control 

(+) or (-) 

compared to 

control 

LPC (16:0) 496.3 (+) None None 

LPC (18:0) 524.4 (-) None None 

LPC (p-18:0) 508.6 (-) None None 

LPC (18:2) 520.2 None None None 

LPC (20:4) 544.3 None None None 

PC (30:0) 706.6 None None None 

PC (32:0) 
734.5 

772.5 
(+) (+) None 

PC (p-32:0) 756.5 None (-) None 

PC (34:0) 784.6 (+) (+) None 

PC (p-34:0) 746.6 None None None 

PC (34:1) 760.6 None N/A N/A 

PC (p-34:1) 744.6 None None N/A 

PC (34:2) 780.5 (+) None None 

PC (34:3) 756.6 None None None 

PC (p-36:5) 
786.6 

802.5 
(+) None None 

PC (p-36:4) 788.6 (+) None None 

PC (p-36:2) 770.6 (+) None None 

PC (36:0)d 828.5 (+) None None 

PC (p-38:6)d 828.5 (+) None None 

PC (p-38:5) 
792.5 

830.5 
None None None 
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PC (p-38:4) 832.5 (+) None None 

PC (p-40:5) 
820.6 

858.6 
(+) None None 

2H OH Cer 

(d18:1/20:0) 
650.5 (-) None None 

2H Cer (d18:1/20:1) 632.5 None None None 

Glucosylceramide 806.2 (+) (+) (+) 

SM (d18:1/17:0) 
741.6 

757.6 
None None None 

SM (d18:1/21:1) 
771.6 

809.6 
(+) None None 

SM (d18:1/24:3) 
809.6 

847.6 
(+) (+) (+) 

PE (p-34:1) 732.5 (-) None None 

PE (38:1) 671.5 (-) (-) (-) 

PE (p-40:5) 671.5 (-) (-) (-) 

CAR (16:0) 400.4 (-) (-) (-) 

 

in the hepatocytes, giving rise to such a distribution,18,27 suggesting that the positively-

charged NPs used in the NPSCs studied here likely also accumulate in hepatocytes. Images 

from mice injected with scrambled NPSC liver tissues show the same punctate Au 

distribution (Figure 3.10).  

 

Figure 3.8. MALDI-MS images of predicted lipid responses in TNF-α NPSC-injected mouse 

liver tissues (right in each image pair) compared to control liver tissues (left in each image pair). 

Panels (a) and (b) are representative images of lipids that increase in TNF-α NPSC liver tissues. 

Panel (c) is a representative image of a lipid that decreases in TNF-α NPSC liver tissues. 
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When we compare the distributions of Au and the lipids that change upon TNF-α 

knockdown after co-registering the LA-ICP-MS and MALDI-MS images, we again find 

that the lipid changes mostly do not correlate with Au accumulation sites (Figure 3.11). 

The majority (13 of 18) of the predicted TNF-α induced changes occur throughout the liver 

 

Figure 3.9. Optical and LA-ICP-MS images of TNF-α NPSC mouse liver. (a) Overlay of optical 

camera image from Teledyne CETAC LSX-213 G2 laser ablation system and 25 μm LA-ICP-

MS image of gold of a TNF-α NPSCs mouse liver slice. The punctate distribution of gold has 

been previously observed for positively charged nanoparticles, indicating localization to the 

hepatocytes of the liver.17 (b) Reconstructed 50 μm LA-ICP-MS image of gold heat map. (c) 

Reconstructed 50 μm LA-ICP-MS image of gold, single color scale. (d) Gold (green) and iron 

(red) LA-ICP-MS overlay images. (e) Reconstructed 50 μm LA-ICP-MS image of iron, single 

color scale. 

 

 

Figure 3.10. Optical and LA-ICP-MS images of scrambled NPSC mouse liver. (a) Optical 

camera images from Teledyne CETAC LSX-213 G2 laser ablation system. (b) Reconstructed 

50 μm LA-ICP-MS image of gold heat map. (c) Reconstructed 50 μm LA-ICP-MS image of 

gold, single color scale. (d) Gold (green) and iron (red) LA-ICP-MS overlay images. (e) 

Reconstructed 50 μm LA-ICP-MS image of iron, single color scale. 

 



68 

 

tissue, and do not correlate strongly with the Au carrier distribution. These data suggest 

that the lipid responses also occur independently of the nanodelivery vehicle distribution 

in the liver as was observed in the spleen.  

Even though sub-organ regions of the liver are not readily apparent, some lipids are 

known to associate with certain regions of the liver (Figure 3.12),38 allowing the 

distribution of gold to be assigned to individual sub-organ regions. The NPSCs are found 

to accumulate mostly in the parenchyma (78%) and veins (22%) with none occurring in 

the bile ducts or connective tissue. These results are consistent with previous work that 

showed the accumulation of positively-charged AuNPs in the hepatocytes of the liver,18 
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NPSC Liver Lipid-Gold Correlation Plot

 

Figure 3.11. Correlation plot of MALDI-MSI lipid distributions compared to LA-ICP-MS gold 

distributions in NPSC liver tissue. Lipids are separated by class from left to right: 

phosphatidylcholines, carnitines, lysophosphatidylcholines, sphingomyelins, 

phosphatidylethanolamines, ceramides. Lipids with a value close to +1 have a strong positive 

correlation with gold distribution, lipids with a value close to -1 have a strong negative 

correlation with gold distribution. Lipids with close to zero have no significant correlation with 

gold. 
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which are found in the parenchyma. Of the TNFα-related lipid changes in the liver, most 

occur in the connective tissue (34%) and the parenchyma (32%), with some also occurring  

in the veins (18%) and bile ducts (16%). Interestingly, the connective tissue is known be 

the liver’s main source of mast cells,39 which are heavily involved in transmitting signals 

during an inflammatory response in the liver.40 Overall, like in the spleen, the effects of the 

anti-TNF-α therapy primarily occur in regions where the gold NPSC carriers are not 

accumulating. 

3.2.3 Distribution of unexpected lipid changes in tissue of NPSC-injected mice 

The dual-mode imaging method used here reveals not only that the NPSCs elicit their 

biochemical changes at locations away from where they accumulate but also that some 

biochemical changes are likely caused by the nanocarrier itself. The inherent multiplexed 

nature of MALDI-MS imaging along with the Au distributions obtained from LA-ICP-MS 

allow us to discern unexpected effects of the carrier. One lipid that changes unexpectedly 

in mice injected with TNF-α NPSCs, scrambled NPSCs, and arginine AuNPs is 

 

Figure 3.12. Example optical and MALDI-MSI liver images to classify sub-organ regions of 

liver tissue. Veins are indicated by yellow pixels, connective tissue by blue pixels, bile ducts 

by red pixels, and parenchyma by green pixels.  
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glucosylceramide. The signal for this lipid increases in both spleen and liver tissues and is 

found to positively correlate with gold distributions from tissues injected with each of the 

nanomaterial constructs. Ceramide is a pro-apoptotic mediator that glucosylceramide 

synthase (GCS) converts to the nonfunctional compound, glucosylceramide. 

Glucosylceramides are biomarkers involved in inflammation and are specifically 

associated with macrophage uptake in the liver, spleen, and kidney. Observing this lipid 

increase with all three nanomaterial constructs in both the liver and spleen suggests that 

the AuNPs themselves are causing an inflammatory response. Future work will be 

necessary to fully understand the nature of this effect.   

Utilizing this dual-mode imaging method to provide spatial context to the unexpected 

changes can help to identify their origin and biochemical significance. For example, 

glucosylceramide increased unexpectedly in TNF-α NPSC mice liver. Based on analyses 

of the scrambled NPSC and Arg-AuNP mice, this lipid also increases unexpectedly in these 

liver tissues. Utilizing co-registration analysis, glucosylceramide is found to correlate with 

gold 77% in the TNF-α NPSC liver, 93% in the scrambled NPSC liver, and 90% in the 

Arg-AuNP liver tissues (Figure 3.13). Ceramide is a pro-apoptotic mediator, which 

glucosylceramide synthase (GCS) converts to the nonfunctional compound, 

glucosylceramide.41 Glucosylceramides are biomarkers known to be involved in 

inflammation, and specifically in macrophage uptake in the liver, spleen, and kidney 

tissues,42 therefore correlating greatly with the gold carrier across all tissue types suggests 

that the AuNP itself is having an inflammatory response in all three tissue types. This 

assessment utilizing dual-mode imaging and registration provides a more thorough 
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evaluation of the effects of the nanomaterials themselves and is a powerful way to evaluate 

both the efficacy and side effects of nanomaterials in vivo. 

a)

b)

c)

 

Figure 3.13. LA-ICP-MS gold (Au) (left-most column) and MALDI-MS glucosylceramide 

(Glc) (middle column) overlaid in a combined binary mask (right-most column) in TNF-α NPSC 

(a), scrambled NPSC (b), and arginine AuNP (c) liver tissues. In the Au and Glc figures, a value 

of 0 (blue) indicates no signal and a value of 1 (red) indicates true analyte signal above the noise. 

In the combined mask, a value of 0 (blue) indicates no signal from either analyte, a value of 1 

(red) indicates signal from either Au or Glc, and a value of 2 (green) indicates signal from both 

Au and Glc. 

 



72 

 

3.3 Conclusions 

MS imaging techniques have been employed to monitor the distribution and co-

localization of a nanodelivery system and its biochemical effect in various tissue types. 

Using these methods, we demonstrate that the majority of the expected biochemical 

changes occur in regions distant from where the nanodelivery system accumulates. 

Specifically, we find that anti-TNFα NPSCs cause the expected changes in lipid 

biomarkers primarily in the white pulp of the spleen, whereas the NPSCs themselves 

accumulate in the red pulp. Similarly, we find that anti-TNFα NPSCs elicit the expected 

changes in liver lipid biomarkers in veins, connective tissue, and bile ducts, while the 

NPSCs accumulate mostly in the parenchyma. These observations are important because 

they demonstrate that nanodelivery vehicles can generate the desired biochemical 

responses even though they may not accumulate in the desired location. This ability of 

nanodelivery agents suggests an indirect means of therapy, which could be particularly 

important for anti-cancer nanodelivery agents that accumulate inefficiently in tumors. 

Another important result from the work described here is that information-rich MALDI-

MS imaging is capable of identifying unexpected changes in tissue biochemistry that are 

caused by the presence of nanodelivery vehicles. Such new insight provides a means of 

understanding and possibly addressing potential side effects that are caused by 

nanodelivery systems. 

3.4 Experimental 

3.4.1 Synthesis of Nanoparticles and Nanoparticle Stabilized Capsules 

Arginine-functionalized AuNPs (Arg-AuNPs) and NPSCs were synthesized 

according to a previous report.22 Briefly, 1-pentanethiol protected AuNPs (Au-C5) were 
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synthesized via the Brust-Sciffrin two-phase synthesis.43 Arg-AuNPs were then 

synthesized by the Murray place-exchange method.44 NPSCs were generated by 

emulsifying 1 uL linoleic acid with 1 uM Arg-AuNPs in phosphate buffer. A 2.5 uM aliquot 

mixture was then combined with 1 uM of siRNA. The mixture was then incubated at room 

temperature before injection. 

3.4.2 Animal Experiments and Tissue Preparation 

All animal protocols were approved by the University of Massachusetts Amherst 

Institutional Animal Care and Use Committee (IACUC), guided by the U.S. Animal 

Welfare Act and U.S. Public Health Service Policy. Balb/c mice (female, 8-week-old) were 

obtained from Charles River Laboratories, Inc. (Wilmington, MA). Mice were held in 

controlled climates (22 ± 2 °C temperature, 12 h light/dark daily cycle) with free access to 

food and water. Mice were randomly selected for control and nanomaterial treatment. Each 

mouse was tail-vein-injected with 200 μL of either PBS, 2.5 μM of NPSCs, or 2.5 μM of 

Arg-AuNPs. After 48 h of particle circulation, mice were sacrificed via carbon dioxide 

inhalation and cervical dislocation. Mouse tissues were promptly removed, flash frozen in 

liquid nitrogen, and stored at -80 °C until slicing for MS imaging.  

Flash-frozen tissues were sectioned into 12 μm slices via a LEICA CMM1850 cryostat, 

thaw-mounted onto ITO slides (MALDI-MS) or glass slides (LA-ICP-MS), and desiccated 

under vacuum for 1 h. Bruker ImagePrep apparatus was used to spray a 25 mg/mL 2,5-

DHB solution (1:1 methanol:water) onto the tissues intended for MALDI imaging analysis. 

3.4.3 Dual-Mode Imaging Analysis 

MALDI-MSI was conducted using a Bruker ultrafleXtreme MALDI-TOF/TOF 

instrument at 50 μm resolution. All experiments were performed at least three different sets 
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of tissues and all treated tissues (NPSC or Arg-AuNP-injected) were run simultaneously 

with control tissues to ensure reproducibility. MS/MS experiments were run via LIFT cell 

with collision-induced dissociation to confirm biomolecule identities. 

LA-ICP-MS imaging was conducted using PerkinElmer NEXION 300 ICP-MS 

coupled with a Teledyne CETAC LSX-213 G2 laser ablation system which was attached 

to the ICP-MS via Teflon tubing. Tissues were ablated at a spot size of either 50 or 25 μm 

with a15 μm/s scan rate, 10 Hz laser frequency, 0.6 L/min He carrier gas flow, and 10 s 

shutter delay. Images were reconstructed according to previous reports.18,22,27  

3.4.4 Statistical Evaluation 

MALDI-MSI images were normalized and processed in SCiLS Lab 2015b, as 

previously reported.22 In brief, baseline subtraction was conducted using the TopHat, 

followed by total ion count (TIC) normalization, peak picking, and discriminative value 

determination using both receiver operating characteristic (ROC) curves and ion 

abundance box-and-whisker plots. ROC area under the curve (AUC) thresholds of greater 

than 0.65 for analyte increases or lower than 0.35 for analyte decreases were used 

distinguish significant differences between tissues. 

3.4.5 Correlation Plot Calculations 

Correlation plot calculations were made by Laura Castellanos in Python using 

Pearson’s correlation analysis. Briefly, MALDI-MS and LA-ICP-MS data were 

transformed into the same scale. Images were then overlaid using non-linear co-registration 

with the MALDI set as the fixed image and the LA-ICP-MS image set as the moving image. 

Once tissues were properly co-registered on a pixel-by-pixel scale, Pearson’s correlation 

was conducted for each analyte against each other to assess the strength of association 
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between the two variables with -1 being an absolute negative correlation, +1 being an 

absolute positive correlation, and 0 being no correlation. 
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CHAPTER 4 

MASS SPECTROMETRY IMAGING REVEALS UNEXPECTED 

BIOCHEMICAL EFFECTS OF NANO-BASED DRUG DELIVERY VEHICLES 

4.1 Introduction 

Nanodelivery vehicles are dynamic systems, containing many functional parts in 

addition to an active therapeutic (Figure 1.5).1,2 For instance, the nanoparticle stabilized 

capsules (NPSCs) introduced in Chapters 2 & 3 are composed of a gold nanoparticle 

(AuNP)-based shell, a fatty acid droplet core, and an siRNA targeting a specific pathway 

(Figure 4.1).3,4 The siRNA is the active constituent of the delivery vehicle, with a predicted 

biochemical response, however, the other portions of the nanodelivery vehicle, while not 

targeting a specific pathway, are not necessarily inactive and may still affect biological 

systems they encounter. It is therefore important to not only evaluate how these materials 

distribute in vivo, but also determine what biochemical role the vehicles themselves have 

when distributed to their target sites.  

 

Figure 4.1. Nanoparticle stabilized capsule components. 
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Various “-omics” focusing on proteins, genes, and lipids, can be exploited to rapidly 

evaluate the health of an organism. Lipidomics is particularly attractive for assessing 

biochemical status due to the high concentration of lipids in vivo as well as the many 

signaling, inflammatory, and disease pathways that lipids are involved in.5 Lipidomic 

studies have previously been utilized to evaluate the dysregulation of lipids in various 

tissues as a marker of inflammation and disease,6–8 but without spatial context, these studies 

are limited in the information they provide. As mentioned in sections 2.1 and 3.1, it is 

important to provide spatial context to the accumulation of both the nanomaterial and 

biochemical changes of the deliverable therapeutic. Although the delivery vehicle may be 

residing in one sub-organ region, the therapeutic-induced biochemical effects may be 

occurring in a different sub-organ region, independently of the carrier distribution. This 

information is a key aspect for assessing not only which regions and biochemical pathways 

are being affected by the delivered therapeutic, but also can better illustrate the efficacy of 

the nanodelivery vehicle itself in the tissue it distributes to 

Mass spectrometry imaging (MSI) methods provide a platform to rapidly monitor 

hundreds of lipids simultaneously while also providing site-specific information in affected 

tissues.9 Dual-mode mass spectrometry imaging is especially attractive for evaluating the 

biochemical effect of nanodelivery vehicles due to the ability to assess the correlation 

between carrier distribution and subsequent biochemical effects in a site-specific manner.10  

As shown in Chapters 2 & 3, the spatial correlation between predicted lipid responses 

and nanocarrier distributions in NPSC-injected mice tissues has been thoroughly evaluated. 

Through these studies, most predicted changes were qualitatively and quantitatively 

determined to be occurring independently of AuNP distribution. However, there were 
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many unpredicted lipid changes that occurred, some of which correlated strongly with the 

AuNP carrier in situ. Utilizing this imaging platform, the sources of predicted and 

unexpected biochemical changes, based on the known biochemistry of TNF-α knockdown 

and lipid metabolism, are investigated. 

4.2 Results and Discussion 

In order to evaluate the effect of the individual NPSCs components, we injected mice 

with the NPSCs containing a TNF-α-targeting siRNA, NPSCs containing a scrambled 

siRNA, as well as pure arginine gold nanoparticles (Arg AuNPs). By evaluating each of 

these increasingly less-complex systems, the roles of the TNF-α siRNA, linoleic acid 

droplet core, and Arg AuNP carrier will be assessed, respectively. As previously 

mentioned, TNF-α NPSCs predominantly accumulate in the liver and spleen tissues when 

injected in mice, which is expected based on the accumulation of nanoparticles in the 

mononuclear phagocytic system (MPS).11 ICP-MS digestion analysis reveals that  
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Figure 4.2. ICP-MS gold analysis of digestions of nanomaterial-injected mouse tissues.  
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Figure 4.3. ICP-MS gold distributions in the liver (left) and spleen (right) tissues of treated 

mice. 

 
Figure 4.4. LA-ICP-MS images of gold distribution in the spleen of TNF-α NPSC, scrambled 

NPSC, and arginine AuNP-injected mice. Note the accumulation of gold falls in the red pulp of 

all tissue types. 

 
Figure 4.5. LA-ICP-MS images of gold distribution in the liver of TNF-α NPSC, scrambled 

NPSC, and arginine AuNP-injected mice. Note the punctate distribution is consistent through 

all tissue types. 



83 

 

scrambled NPSCs and Arg AuNPs also exhibit similar distributions in tissues, with gold 

predominantly accumulating in the spleen and liver tissues (Figures 4.2 & 4.3). 

 LA-ICP-MS analysis also reveal that the gold distributes similarly in the sub-organ 

regions of the liver and spleen for all injected nanomaterials (Figures 4.4 & 4.5). In the 

spleen tissues the gold accumulates predominantly in the red pulp of the spleen (Figures 

3.5, 3.6, & 4.4) and in the liver the gold exhibits a punctate distribution indicative of 

hepatocyte accumulation (Figure 4.5).12 Due to the readily distinguishable sub-organ 

regions, LA-ICP-MS data suggest that all nanomaterial types have similar fates in vivo in 

the spleen. The component that is shared between all three conditions is the Arg AuNP 

carrier. It can therefore be inferred that the distribution of the AuNP carrier is not 

influenced by other the other working components (i.e. linoleic acid or siRNA) in the 

spleen tissues. In the liver, all three nanomaterial types distribute in similar punctate 

patterns in tissues. It is possible that these distribution patterns are the results of hepatocyte 

accumulation, however, because the hepatocytes do not cluster in a readily identifiable way 

in the liver as they do in the red and white pulp of the spleen, additional microscopy 

analysis should be conducted in order to confirm this occurrence in scrambled NPSC and 

Arg AuNP-injected mice liver tissues.  

4.2.1 Evaluating biochemical effects of NPSCs on the spleen 

In the spleen tissue, of the lipids predicted to be affected by TNF-α knockdown, 33 

lipids behave as expected in TNF-α NPSC-injected mice.10 Of these lipid changes, eight 

were found to be altered as predicted in the spleen of scrambled NPSC-injected mice and 

one in the spleen of Arg AuNP-injected mice (Table 3.1). This indicates that 76% of the 

lipid responses can be exclusively associated  with the active  siRNA knockdown.  For 
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example,  sphingomyelin (SM) (d18:1/17:0) is a lipid known to be associated with TNF-α 

knockdown and it only changes as predicted in the white pulp of TNF-α NPSC spleen 

tissues (Figure 4.6). 

Injection of TNF-α NPSCs also results in 11 unexpected changes with 64% of these 

changes occurring in the red pulp of the spleen.10 When observing the changes in the 

scrambled NPSPCs and Arg AuNP spleen tissues, we see that 5 and 4 unexpected changes 

overlap with the unexpected changes in the red pulp of the TNF-α NPSC spleen, 

respectively. For example, SM (d18:1/24:3) is a TNF-α knockdown-associated lipid that 

changes in an unexpected manner in the red pulp across all three treated tissue types (Figure 

4.7). One of the fatty acid chains of Sphingomyelin (d18:1/24:3), docosahexaenoic acid 

(DHA), is known to be a mediator of anti-inflammatory responses in tissues, including the 

spleen.13–15 An unexpected increase in a SM molecule containing this fatty acid chain 

 

Figure 4.6. MALDI images of spleen tissues of nanomaterial injected mice. Top sets of images 

show just the lipid of interest and bottom images combine the lipid with heme B to assess the 

sub-organ distribution of the lipid. Based on the minimal overlap with heme B, as indicated by 

minimal yellow pixels in the bottom set of images,10 this lipid appears to be changing in the 

white pulp of the TNF-α NPSC-injected mouse spleen.  
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across all nanomaterial types, specifically in the red pulp where the AuNP nanocarrier is 

known to distribute (Figure 4.4), may be indicative of the red pulp macrophages responding 

to the to the uptake of a foreign body (AuNPs) by neutralizing a potential immunological 

or toxicity response.16  

In another instance, lysophosphatidylcholine (LPC) (p-18:0) unexpectedly decreases in 

the red pulp of the spleen of mice injected with TNF-α and scrambled NPSCs, but not Arg 

AuNPs, suggesting this response is caused by the presence of linoleic acid. Certain LPCs  

are known to play a role in phospholipid fatty acid incorporation.17 A free fatty acid chain 

will combine with an LPC to form a double chain PC. Therefore, the depletion of this 

particular LPC may be a result of the linoleic acid incorporation to form PC molecules 

when the NPSCs accumulate in the red pulp of the spleen.  

 
Figure 4.7. MALDI images of spleen tissues of nanomaterial injected mice. Top sets of images 

show just the lipid of interest and bottom images combine the lipid with heme B to assess the 

sub-organ distribution of the lipid. Based on the high overlap with heme B, as indicated by 

intense yellow pixels in the bottom set of images,10 this lipid appears to be changing in the red 

pulp of all spleen types. 
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4.2.2 Evaluating biochemical effects of NPSCs on the liver 

In the liver, similar patterns arise when compared to the spleen in terms of the effect of 

the various nanomaterials on the tissue. Although there are fewer overall lipid changes in 

this liver, we still observe 19 lipids behave as expected in the presence of TNF-α NPSCs. 

Of these predicted lipid changes, two lipids also change as predicted in the presence of 

scrambled NPSCs, and one lipid changes in the presence of Arg AuNPs, indicating that the 

TNF-α siRNA plays the biggest role (89%) in the predicted biochemical changes in the 

liver. For example, PC (p-36:5) is known to be associated with TNF-α knockdown, and it 

only changes in the TNF-α NPSC liver tissue (Table 3.2). Because there is no single 

biochemical marker in MALDI-MSI to discern the liver sub-organ regions, like heme B in 

the spleen, correlation tables are utilized to assess the lipid distribution patterns (Figure 

4.8). The liver is then segregated into the parenchyma, veins, connective tissue, and bile 

ducts utilizing the MALDI-MS biomarkers indicated in section 3.1 and figure 3.12.  

In the correlation plots in figure 4.8, the more greatly two analytes are correlated, the 

closer their value will be to +1 or 100% correlation. The more greatly two analytes are anti-

correlated, the closer their value will be to -1 or -100% correlation. If two analytes are 

neither correlated nor anti-correlated, their value will be closer to 0 or 0 % correlation. PC 

(p-36:5) is found to be minimally correlated (-3.6%) with the gold carrier and highly 

correlated with biomarkers associated with the parenchyma (58.4%) and connective tissue 

(49.8%). Because this lipid is not altered for other nanomaterials, we can confidently say 

this change is related to TNF-α knockdown and not the gold carrier distribution in the liver. 

Additionally, although this analyte response occurs mostly in the parenchyma where the 

gold is also found, the low correlation value of PC (p-36:5) and gold indicates that the lipid 
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is still changing independently of the carrier accumulation. This site-specific information 

would have been otherwise lost in a non-imaging context. 

In the liver tissue, there are also nine lipids that change unexpectedly in the presence 

of TNF-α NPSCs. Of these nine lipids, five also behave unexpectedly in scrambled liver 

tissues and four in arginine liver tissues. For example, glucosylceramide changes 

unexpectedly across all three nanomaterial treated mice liver tissues. Ceramide is a pro-

apoptotic mediator, which glucosylceramide synthase (GCS) converts to the nonfunctional 

 

Figure 4.8. Correlation map for LA-ICP-MS analytes (Au, Fe) and MALDI-MSI analytes (lipid 

classes) with liver sub-organ regions in TNF-α NPSC-injected mice liver tissues. Correlation 

values of +1 have a dark red color. Correlation values of -1 have a dark blue color. Correlation 

values of 0 are white. 
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compound, glucosylceramide.18 Glucosylceramides are biomarkers known to be involved 

in inflammation, and specifically in macrophage uptake in the liver, spleen, and kidney 

tissues.19 This particular unexpected response has a high correlation with the gold signal 

(77%) and the parenchyma biomarker (38%) (Figure 4.8). This change in lipid response in 

the liver may be indicative of an acute inflammatory response from the uptake of the 

nanomaterials in the macrophages of these tissues.  

4.3 Conclusions 

NPSC components were evaluated by comparing the lipid profiles of TNF-α NPSCS, 

scrambled NPSCs, and arginine AuNPs in mouse spleen and liver tissues. Based on the 

analysis of lipid changes, TNF-α NPSCs produced substantially more lipid changes than 

those in the scrambled NPSC and arginine AuNP tissues for both liver and spleen tissues. 

Changes observed in scrambled NPSCs spleen tissues, indicate that the linoleic acid may 

have slight anti-inflammatory effect since eight predicted lipids related to TNF-α 

knockdown are still observed to change in the spleen of the scrambled NPSC-injected mice. 

In the liver however, fewer predicted lipid changes arise in the presence of scrambled 

NPSCs indicating less of an anti-inflammatory effect in this tissue type. Both liver and 

spleen arginine AuNP tissues only exhibited one predicted lipid changes related to TNF-α 

knockdown and therefore the AuNPs themselves do not appear to play a major role in the 

TNF-α-mediated anti-inflammatory response in either tissue. 

Conversely, many of the unpredicted changes overlap between the TNF-α NPSC, 

scrambled NPSC, and Arg AuNP-injected mice spleen and liver tissues. An unexpected 

increase of an inflammatory regulator was observed in the red pulp of the spleen in the 

presence of all nanomaterial treatments, indicating a potential response to the uptake of the 
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AuNP nanocarrier itself. There was also an unexpected increase of an inflammatory marker 

in the parenchyma of the liver in the presence of all the nanomaterial types, indicating a 

potential inflammatory effect of the Arg AuNPs in these tissues. Linoleic acid also seems 

to play a role in the anti-inflammatory response of the spleen tissues due to the significant 

number of analytes that are altered in the presence of scrambled NPSCs. These results not 

only suggest that the inactive components of NPSCs could be altering their therapeutic 

effect, but also illustrate the importance of evaluating nano-based delivery vehicles in their 

entirety.  

Utilizing our dual-mode imaging method, we can qualitatively and quantitatively 

assess the various components of nano-based delivery vehicles in vivo. The spatial context 

provided is valuable in providing biochemical context of both the predicted and 

unpredicted responses of the TNF-α siRNA, linoleic acid, and Arg AuNPs. Overall, the 

TNF-α NPSCs are affecting their treated tissues in a predicted, and localized manner. The 

changes mostly arise independently of the carriers location, however there are some 

changes that occurring where the carrier is located, and these changes may be related to the 

biochemical effect the linoleic acid and AuNPs have on the system itself. 

4.4 Experimental 

All reagents, materials, equipment, as well as methods for mouse handling, mass 

spectrometry imaging protocols, and statistical evaluation of both MALDI and LA-ICP-

MS images can be found in the cited reference.10 For additional statistical analysis and data 

processing see section 3.4. 
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CHAPTER 5 

QUANTITATIVE DIFFERENTIATION OF CELL SURFACE-BOUND AND 

INTERNALIZED CATIONIC GOLD NANOPARTICLES USING MASS 

SPECTROMETRY 

Majority of this chapter is published: Hou, S.;* Sikora, K. N.;* Tang, R.; Liu, Y.; Lee, 

Y.; Kim, S. T.; Jiang, Z.; Vachet, R. W.; Rotello, V. M ACS Nano  2016, 10(7), 6731-

6736. 

*Both authors contributed equally to this work. 

Abstract: 

Differentiation between cell surface-bound and internalized nanoparticles is 

challenging yet essential for accurately quantifying cellular uptake. Here, we describe a 

versatile mass spectrometry-based method that allows separate quantification of both cell 

surface-bound and internalized nanoparticles. This rapid method uses tuned laser fluencies 

to selectively desorb and ionize cell surface-bound cationic gold nanoparticles from intact 

cells, providing quantification of external particles. Overall nanoparticle quantities are 

obtained from the cell lysates, with subtraction of external particles from the total amount 

providing quantification of nanoparticles taken up by cells. The utility of this strategy was 

demonstrated through simultaneous quantitative determination of how cell-surface 

proteoglycans influence nanoparticle binding and uptake into cells. 

5.1  Introduction 

The ability to finely control the size,1 shape,2 and surface properties3 of nanoparticles 

(NPs) coupled with their ability to provide controlled release4,5 makes them potent carriers 
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for cellular delivery of therapeutics. The unique optical and magnetic properties of NP 

cores likewise make them important imaging reagents.6,7 The localization of these 

materials is, however, essential to their utility with efficiency of cellular uptake is a key 

figure of merit in the engineering of NPs for biomedical applications. Most strategies for 

achieving uptake, however, rely on modification of NPs with ligands designed to interact 

with specific receptors or to interact strongly with the plasma membrane.8,9 Both strategies 

will generate simultaneous cell surface adhesion and internalization, with very different 

therapeutic/imaging outcomes for these two locations. 

Despite the central importance of quantifying cellular uptake, quantitative 

differentiation of internalized and cell surface-bound NPs remains a significant 

challenge.10 In order to construct a comprehensive picture of nanoparticle adhesion and 

uptake, distribution, quantification, and multiplex tracking must all be addressed. Optical 

and microscopic techniques have been the most valuable in this regard. Confocal11 and 

fluorescence microscopy12 as well as transmission electron microscopy (TEM)13 are 

reliable methods for measuring the distribution of NPs on a cellular level. These methods 

can typically distinguish between NPs bound to the cell surface and those that have been 

internalized. In some cases, the sub-cellular distributions can also be determined, but 

simultaneous measurements of multiple NP types can be challenging. 

Quantitative measurements of NP uptake into cells rely on methods such as 

inductively-coupled plasma mass spectrometry (ICP-MS)14 and flow cytometry.15,16 These 

methods are sensitive to a wide variety of materials and provide a relatively high-

throughput, quantitative measure of NP uptake. In order to differentiate which particles are 
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actually internalized as compared to those that are simply adhering to the surface, chemical 

etching is typically performed.17,18 

Chemical etching, however, uses toxic reagents and disruptively low ionic strengths 

that limit its applicability.19 Molecular mass spectrometric techniques have the potential to 

provide quantitative information while simultaneously reporting on multiple NPs in their 

intact state. Our group has previously shown that laser desorption/ionization (LDI) MS is 

a versatile strategy that can successfully be used to detect a wide range of NPs with 

different materials and sizes. For example, LDI-MS was used to detect surface monolayers 

on quantum dots which enables monitoring of intracellular monolayer stability.20 Magnetic 

nanoparticle can also facilitate ionization when coupled with LDI-MS, which allows direct 

determination of ligand composition.21 Other examples include the imaging of carbon 

nanomaterials22 and AuNPs23 in animal tissues. Widely compatible with different NPs, 

LDI-MS has been used to determine cellular uptake24 and monitor stability of NPs in 

cells.25 We report here an extension of the LDI-MS method that uses tuned laser fluency 

to rapidly quantify cell surface-bound and internalized NPs. This LDI-MS method 

quantitatively distinguishes between cell surface-bound and internalized AuNPs through 

laser fluency absorption by the NP core that then enables desorption and ionization of the 

attached monolayers.26 

A unique benefit of utilizing this new LDI-MS method is that it capable of measuring 

multiple NPs in a single analysis due to the label-free and multiplex nature inherent to MS. 

This feature allows for the creation of specific adhesion and uptake profiles of different 

NPs. The combination of both optical and mass spectrometric methods allows for one to 

create a comprehensive picture of the uptake of various NPs in biological cells. Using the 
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LDI-MS method with cell -level optical and quantitative methods enables the quantitative 

differentiation of extra- and intracellular NP distributions (Figure 5.1). Here, we 

demonstrate the utility of the LDI-MS method through quantitative assessment of the role 

of proteoglycans in determining cellular uptake of NPs, a challenging question that requires 

effective differentiation of surface-bound and internalized NPs.  

5.2 Results and Discussion 

The hypothesis underlying our research is the laser fluency could be tuned to desorb 

and ionize monolayers from NPs attached to the outside of intact cells but unable to 

 

Figure 5.1. Workflow for quantifying total NP, cell surface-bound and internalized NPs using 

LDI-MS. 
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penetrate intact cells membrane to desorb and ionize monolayers from NPs inside the cells. 

We first determined if AuNPs could be detected on intact cells by studying two cationic 

AuNPs (Figure 5.2a). Cells were cultured on poly-lysine coated indium tin oxide (ITO) 

glass slide, so that LDI-MS analyses could be performed directly following incubation 

without further manipulation of the cells. HeLa cells (20,000 cells) were incubated with 

250 nM of AuNP 1 and AuNP 2 in serum-free media for 15 min. After incubation, the cells 

were washed and analyzed by LDI-MS. The ligand molecular ion or “mass barcodes” of 

AuNP 1 and 2 (m/z 464 and 422, respectively) are readily observed in the mass spectrum, 

as are fragment ions (loss of H2S from the ligands) and Au2+ (m/z 394) ions (Figure 5.2b). 

 

Figure 5.2. Structures of the monolayer-stabilized AuNPs used in this study and the m/z ratios 

of their molecular ions and major fragments. 
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We determined the appropriate laser fluency for selectively detecting surface-bound 

AuNPs using pulse-chase kinetics. AuNPs 1 and 2 were sequentially incubated with the 

cells, so that AuNP 1 was pushed for internalization. After removal of surface-bound AuNP 

1, AuNP 2 was added for cell surface binding, the cell samples analyzed by LDI-MS, with 

the distinct ligands on two nanoparticles allowing differentiation by LDI-MS. First, 250 

nM of AuNP 1 was incubated with HeLa cells in serum free media for 60 min. After 

incubation, the cells were extensively washed with PBS to remove any AuNP 1 that was 

still bound to the cell surface. From separate ICP-MS measurements, we found that four 

wash cycles were sufficient to remove essentially all AuNPs bound to the cell surface 

(Figure 5.3a), leaving only the internalized AuNPs. In a control experiment using a 

polylysine-coated glass slide, no signal from AuNPs was detected in LDI-MS after the 

washing step, confirming that the effect of AuNPs on the substrate after the washing step 

was negligible (Figure 5.4). After removal of cell-surface bound AuNP 1, 250 nM of AuNP 

 

Figure 5.3. Differentiation of cell surface-bound and internalized AuNPs by tuning laser 

fluency. (a) ICP-MS measurement of AuNP 1 levels in the cells after wash cycles showing 

essentially complete removal of surface-bound NPs. Paired sample t-test were performed, n=3; 

***, P<0.01; **, P<0.05; n.s., P>0.05. (b) LDI-MS quantification of two AuNPs in cell lysate 

at different AuNP 2 incubation times. Note that AuNP 1 was first incubated for 60 min and then 

the cell monolayer was washed five times before incubation with AuNP 2. One-way ANOVA 

were performed on amount of AuNP 1, n=3, P<0.01, no significant difference between different 

time points was identified. (c) LDI-MS detection of AuNPs 1 and 2 from the intact cells. All 

error bars represent the standard deviation. 
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2 was then incubated with the cells for different amounts of time to allow AuNP 2 to both 

bind to the cell surface and be taken up by the cells. As expected, a greater amount of AuNP 

2 is associated with the cells after longer incubation times, as measured by LDI-MS of the 

cell lysate (Figure 5.3b), indicating that both cell uptake and cell adherence has occurred. 

During this time the level of AuNP 1 remained unchanged due to the relatively slow rate 

of exocytosis (Figure 5.3b).27 We incubated cells with AuNP 1 for 60 min, followed by 

washing and incubation with AuNP 2, at time points that provided approximately equal 

total quantities of the two NPs (Figure 5.3b). The cells were then subjected to laser 

irradiation at different laser fluencies, and mass spectra were acquired. The signal-to-noise 

ratios (S/N) of the mass barcodes for each NP were then compared (Figure 5.3d). S/N was 

used to evaluate the level of detection, where a peak of S/N over 5 was considered 

distinguishable from background and can be used for quantification.28 Results show that 

 

Figure 5.4. LDI-MS detection of AuNPs on plain slide after washing steps. 250 nM AuNP 

1 media solution was incubated on poly-lysine coated glass slide for 30 minutes at 37 °C. 

After the incubation, the AuNP 1 solution was removed and the glass slide was washed 

with PBS for 5 times, AuNP 2 was then incubated for 30 minutes under the same condition 

and washed with PBS for one time. 
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no ion signal is measured for either AuNP at energies below 2.39 J/cm2, but as the laser 

fluency is increased to 2.42 J/cm2, AuNP 2 is selectively and reproducibly detected. In 

control experiments using washed and unwashed cells that were incubated with only a 

single NP, only the unwashed cells provided an ion signal at laser fluencies below 2.45 

J/cm2 (Figure 5.5). As the laser fluency is further increased past 2.45 J/cm2, both AuNPs 

can be detected from the intact cells, indicating that higher laser fluencies are sufficient to 

desorb and ionize NPs both inside and outside the cell. As expected, the NPs outside the 

cells are detected more efficiently at all the laser fluencies studied (Figure 5.3c), consistent 

with our initial hypothesis that the cell membrane of intact cells would hinder the 

desorption/ionization process.  

We next performed both energy depletion of cells and cell incubation at 4 °C. After 

energy depletion with sodium azide and 2-deoxyglucose, we observed both nanoparticles 

 

Figure 5.5. LDI-MS of AuNP 2 on cell monolayers before and after washing. 250 nM 

AuNP 2 was incubated with the cell monolayer for 60 minutes in serum free media at 37 

ºC. After incubation, the cell monolayer was either washed four times (washed) or one 

time (unwashed) before LDI-MS analysis. 
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at lower laser fluency than expected (Figure 5.6), potentially due to the ability of sodium 

azide to dissociate the cell membrane from the cytoskeleton.29 Chase particle AuNP 2 was 

observed at much higher levels than pulse AuNP 1 as expected, with the observation of 

some level of internalized AuNP 1 consistent with our previous finding has shown that 

energy depletion cannot prevent internalization of positively charged nanoparticles.30 For 

cells incubated at 4 °C, both surface binding and internalization of nanoparticles were 

reduced to levels that could not be quantified, presumably due to reduced binding kinetics 

and cellular activity. We also compared our method with chemical etching. After 

incubating with AuNP 1, one batch of HeLa cells were treated through I2/KI etching 

process,17 whereas another batch was washed with DPBS for five times. We found that 

cells had dramatic morphological change and reduced cell density after etching compared 

to non-etched ones (Figure 5.7a), suggesting massive cell death after chemical etching, 

presumably due to osmotic stress when using the low ionic strength required for this 

method. Gold content in the supernatant from these samples was measured and compared 

with the cell surface-bound AuNP measured by LDI-MS (Figure 5.7b). Supernatant from 

 

Figure 5.6. a) LDI-MS of HeLa cell monolayer after sequential incubation by AuNP 2 

and AuNP 1. b) LDI- MS of HeLa cells monolayers treated with 3mg/ml NaN3 and 50 

nM 2-deoxyglucose in DMEM for 30 minutes prior to sequential AuNP incubation. 
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non-etched showed agreement to LDI-MS measurement as one way-ANOVA test showed 

no significant difference. Interestingly, significantly higher amount of gold was measured 

for etched samples. Considering the loss of cells shown in Figure 5.7a, it is possible that 

some AuNPs was removed with the cells unintentionally by the etching process.  

We next quantified the cell surface-bound AuNPs using an AuNP internal standard and 

an external calibration on HepG2 cells. AuNP 1 was used as internal standard; increasing 

concentrations of AuNP 2 and a fixed concentration of AuNP 1 (100 nM) were incubated 

with cells for 15 min, during which time minimal NPs were internalized (See Figure 5.8b). 

After incubation, the intact cells were immediately analyzed by LDI-MS at the laser 

fluency (i.e. 2.42 J/cm2) that ionized only cell-surface bound AuNPs. Differences in 

 

Figure 5.7. a) Microscopic image of HeLa cells not etched (up) and etched (down) by I2/KI 

solution. Scale bars: 100µm. b) Comparisons of removal of surface-bound AuNPs via 

etching and buffer washing measured by ICP-MS. LDI-MS measurement of cell-surface 

adhered AuNP was added for further comparison. All the experiments were done with HeLa 

cells incubated with AuNP 1 for 30 minutes. The gold amount measured by ICP-MS in the 

etched and non-etched samples were converted to AuNP amount through division by 48.62 

ng gold/ pmol AuNP. One way-ANOVA (P<0.05) was performed, n=3, all error bars 

represent standard deviation. Stars above the bars indicate significance, whereas no stars 

suggest not significantly different. 
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behavior between cell types requires laser fluency calibration for different cell samples, 

adding additional experimentation. The resulting ion abundance ratios of the mass barcodes 

for AuNP 2 (m/z 422) and AuNP 1 (m/z 464) were plotted against the concentration ratio 

between the two AuNPs to generate a calibration curve (Figure 5.8a). Using this calibration 

curve, the relative amounts of AuNP 2 bound to the surface of the cell’s monolayer could 

be determined (black data points in Figure 5.8b). For each incubation time indicated, the 

internal standard (AuNP 1) was added at 100 nM (12.5 pmol) to the incubated sample and 

allowed to sit with the cells for 15 minutes before LDI-MS analysis.  For comparison, a 

fraction of the cells was also lysed after different incubation times and the total NP content 

in the cells was determined by LDI-MS (red data points in Figure 5.8b). The difference 

between the total (red data) and cell surface bound (black data) amounts allows 

determination of AuNP 2 internalized (Figure 5.8b). It is worth notice that the amount of 

 

Figure 5.8. Quantification of cell surface-bound and total AuNPs in HepG2 cells. (a) 

Calibration curve obtained for AuNP 2 (m/z 422) when using AuNP 1 (m/z 464) as the internal 

standard (b) Relative amounts (solid) and absolute amount (pmol) (dashed) of AuNPs absorbed 

on cell surface and associated with the entire cells. The absolute amount of total AuNP 2 was 

measured by ICP-MS and the absolute amount of cell surface AuNP 2 was determined using 

the calibration curve. 
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AuNP on cell surface is monotonically, which could be a reflection of cell shape and or 

surface structure modulation by exposure to positively charged AuNPs.31,32 

Having established rapid and effctive quantification of nanoparticles, we demonstrated 

the utility of this method by determining how different cell-surface proteoglycans influence 

AuNP internalization as a demonstration of the utility of our method. Wild-type Chinese 

hamster ovary (CHO) cells and two proteoglycan knockdown mutants, CHO-2 

(xylosyltransferase 1 deficient) and CHO-3 (galactosyltransferase 1 deficient) cells,33 were 

incubated with AuNP 2 and analyzed (Figure 5.9a & 5.10). No measurable cell uptake 

occurs during the first 15 minutes of incubation, providing a quantitative measure of total 

NP adsorption in these cells using ICP-MS measurements on the cells at the 15 min time 

point and using these values to correlate ion abundance ratios and the absolute NP quantity 

(see Supplementary Information for details). The data in Figure 5.9 summarize the 

 

Figure 5.9. Quantities of AuNPs associated with the different CHO cell lines. One way-

ANOVA (P<0.01) was performed, n=3, all error bars represent standard deviation. Letters 

above the bars indicate significance, in which a, b and c are in comparison with CHO, CHO2 

and CHO3 at the same time point, respectively. 
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quantitative NP distributions in the three different cell types. Three conclusions can be 

obtained from these data: 1) The NP amounts on the cell surface do not change significantly 

during the course of incubation, indicating there is a rapidly achieved equilibrium between 

cell culture media and plasma membrane. 2) The NP amounts bound to plasma membrane 

differ based on cell glycosylation. The normal CHO cells have a higher level of cell surface 

adsorption than the proteoglycan knockdown mutants, consistent with the study by Payne 

et al. that proposed the importance of negatively charged proteoglycans as binding sites for 

cationic nanomaterials.34 3) Despite the difference in particle attachment, there was no 

significant difference in cellular uptake.  Taken together, these studies provide direct 

evidence of the ability of nanoparticles to differentiate between cell surfaces based on 

glycosylation, an important issue for sensing35 and therapeutic strategies.36
 

5.3 Conclusion 

We have shown that cell surface-bound AuNPs can be selectively detected and 

quantified using LDI-MS by choosing the appropriate laser fluency for analysis. 

Combination of this method with overall NP levels obtained through ICP-MS or LDI-MS 

of the cell lysate provides quantitative values for cell surface-bound and internalized NP. 

 

Figure 5.10. LDI-MS calibration curves for AuNP 2 on the cell surface. HeLa, CHO, 

CHO 2, and CHO 3 cells were cultured on ITO-glass slide. Increasing concentrations of 

AuNP 2 were mixed with AuNP 1 (internal standard) and incubated with cells as 

described in the text. Cells on the glass slide were detected using 38.6 µJ to only detect 

AuNPs on cell surface. Molecular ions of both AuNPs were plotted against molar ratios. 
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This method is rapid, reproducible, and avoids processing conditions that complicate 

etching-based methods. Given the wide range of nanomaterials that have been shown to be 

LDI-active,23,25,37–39 this method provides a highly versatile approach to addressing the 

long-standing challenge of quantifying nanoparticle internalization, with the potential to 

increase both throughput and accuracy for fundamental and translational studies of 

nanomaterials. 

5.4 Experimental 

5.4.1 Gold Nanoparticle Synthesis  

The gold NPs and ligands were synthesized according to the previous reports.40 The 

Brust-Schiffrin two-phase synthesis method was used to synthesize 2 nm core AuNPs.41 

After that, the Murray place-exchange was used to functionalize the AuNPs.42 

5.4.2 Cell Culture and Interaction with Gold Nanoparticles 

HeLa and HepG2 cells were cultured in a humidified atmosphere (5% CO2) at 37 °C 

and grown in Dulbecco’s modified eagle’s medium (DMEM, low glucose) supplemented 

with 10% fetal bovine serum (FBS) and 1% antibiotics (100 U/ml penicillin and 100 μg/ml 

streptomycin. CHO (ATCC CCL-61), CHO 2 (pgsB-618 (ATCC CRL-2241)) and CHO 3 

(pgsA-745 (ATCC CRL-2242)) cells (20,000 cells/well) were cultured in a humidified 

atmosphere (5% CO2) at 37 °C and grown in F-12K medium supplemented with 10% fetal 

bovine serum (FBS), 1% antibiotics (100 U/ml penicillin and 100 μg/ml streptomycin) and 

1% non-essential amino acids. The cells were split into two groups, one was plated on ITO 

glass slide and the other was on 96-well plate. After 24 h of plating, the cells were washed 

three times with cold phosphate buffer saline (PBS). Then, 125 µl of serum free DMEM 

containing AuNPs was added to the cells at 37 °C. After incubation, the cells were washed 
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by cold PBS with one group analyzed directly on ITO glass slide and the other group was 

lysed for 30 min using lysis buffer (125 µl; Genlantis). 

5.4.3 LDI-MS Detection and Quantification of Gold Nanoparticles in Cell Monolayer 

ITO glass slides were coated with 0.1% poly-lysine solution for 5 minutes and then 

washed with deionized water 3 times to remove excess poly-lysine. The coated slides were 

then air dried. Open-ended Eppendorf (I.D. = 10 mm) tubes were glued to the coated slide 

on one end to generate media reservoirs for the cell culture. Planted cells on the slides were 

used for incubation with AuNPs. After incubation, the reservoirs were removed and cell 

monolayers on the substrate were analyzed by LDI-MS. All LDI-MS measurements were 

carried on a Bruker Autoflex III MALDI-TOF mass spectrometer. All mass spectra were 

acquired in the reflectron mode with an average of 100 laser shots at a repetition frequency 

at 100 Hz. The acceleration voltage was set to 19 kV. Bruker software (FlexAnalysis 

Version 3.3) was used for data analysis. At least 30 spectra were collected and averaged 

for each sample point. 

5.4.4 LDI-MS Detection and Quantification of Gold Nanoparticles in Cell Lysate 

The lysed cells containing AuNP 1 and/or AuNP 2 were centrifuged at 14,000 r.p.m. 

for 30 min. Cell pellets generated by this process were collected and washed with 60% 

acetonitrile/40% water to remove excess surfactants. Then, the pellets were transferred 

onto a 384 MTP grounded stainless steel MALDI target for LDI-MS analysis. External 

calibration curves were generated before sample analyses (See Figure S6 in Supplementary 

Information). Increasing concentrations of AuNP 2 (0, 1, 2, 5, 10 and 20 pmol) and a 

constant amount of AuNP 1 (5 pmol) were spiked into cell lysate and vortexed for 15 min. 

The resulting pellets from centrifugation were washed and analyzed by LDI-MS. The 
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intensity ratios of the molecular ions for both AuNPs were plotted against AuNP molar 

ratios to generate a calibration curve. The quantities of AuNP were then determined by 

comparing with the calibration curve. 

5.4.5 ICP-MS Sample Preparation and Measurements 

After incubation of the AuNPs with the cells, the lysed cells were digested with 0.5 ml 

of fresh aqua regia (highly corrosive; use with high caution) for 15 min. The digested 

samples were diluted to 10 ml with deionized water. A series of gold standard solutions (0, 

0.2, 0.5, 1, 2, 5, 10 and 20 ppb) were prepared in 5 % aqua regia before each experiment. 

The gold standard solutions and cell lysate samples were measured on a PerkinElmer 

Nexion ICP mass spectrometer. The instrument was operated with 1,100W radiofrequency 

power, and the nebulizer argon flow rate was optimized around 0.9 to 1.1 l/ min. 

5.4.6 Quantification of Total, Internalized, and Cell Surface-Bound AuNP 2  

After incubation and addition of the internal standard (AuNP 1), the cells are lysed for ICP-MS 

detection. The gold amount measured from the sample is denoted by X (ng). X arises from 

contributions from the gold amounts of AuNP 2 (X (AuNP 2) total) and AuNP 1 (X (AuNP 1)). 

The LDI-MS measured molar ratio between AuNP 2 and AuNP 1 is denoted by Y. Ytotal represents 

the molar ratio of the total amounts of AuNP 2 to AuNP 1. With equation (1), the absolute amount 

of total AuNP 2 with cells can be calculated. 
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Equation (2) describes the absolute amount of AuNP 2 on the cell surface. Ysurface represents 

the molar ratio of cell surface-bound AuNP 2 to AuNP 1. By subtracting AuNP 2 on cell surface 

from total amount of AuNP 2 in equation (3), absolute amount for internalization can be 

determined. 
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CHAPTER 6 

SUMMARY AND FUTURE WORK 

6.1 Dissertation Summary 

In this dissertation, mass spectrometry methods were developed to evaluate the uptake, 

distribution, accumulation, and biochemical effects of AuNPs and AuNP-based 

nanomaterials. First, we developed a method to evaluate complex nanodelivery vehicles in 

tissues. LA-ICP-MS and MALDI-MS imaging were used in combination to evaluate sub-

organ distributions of an AuNP-based delivery system and its cargo-induced biochemical 

effects. LA-ICP-MSI was utilized to track the inorganic AuNP carrier while MALDI-MS 

was utilized to determine the biochemical changes caused by the delivery of an siRNA 

cargo. Combing the two imaging modalities, biochemical effects were evaluated for 

colocalization with the delivery vehicle. Images were correlated to one another by aligning 

the Fe signals in LA-ICP-MS and heme signals in MALDI-MS.  

Through this analysis, we found new spatial information regarding the biochemical 

changes in the lipidome upon TNF-α knockdown. The predicted biochemical responses 

were found predominantly in the white pulp of the spleen. Conversely, several lipids were 

found to exhibit unexpected changes in their abundances and these were mostly located in 

red pulp of the spleen, where concentrations of the NPSCs carrier are highest, suggesting 

that changes to these lipids are caused by the NPSCs themselves.  

In combining LA-ICP-MS and MALDI imaging, the distribution of a multitude of 

inorganic delivery vehicles and their cargos’ downstream effects can be monitored in a 

spatial context in tissues without labeling or modifying the carriers. Due to the multiplex 

nature of the method, analyses of nanodelivery vehicles can be made comprehensively and 
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in situ in various sub-organ regions. This method could be especially powerful for 

assessing the efficacy and penetration of therapeutics in difficult to target tissues such as 

tumors.  However, this method is still not quantitative and therefore methods such as LC-

MS or fluorescence may be necessary as a complementary analysis method to extrapolate 

quantitative information from these particles, i.e. percent of biochemical changes. 

Additionally, the resolution is limiting and in order to assess cellular level changes, 

additional assays may also be necessary. 

After successfully developing an imaging method to correlate the distributions of 

nanodelivery vehicle and biochemical effect, we evaluated the correlation between the two 

qualitatively and quantitatively. MALDI-MSI analysis revealed the sub-organ distribution 

of predicted biochemical changes in both the spleen and liver tissues. LA-ICP-MS images 

were co-registered with the MALDI-MSI images to assess correlation values. Of the 

predicted biochemical changes that behaved as expected, 75% change where the AuNP 

carrier is not in both tissue types. NPSCs containing non-functional siRNA were also 

evaluated in the spleen and liver to confirm that the changes occurring were in-fact related 

to the TNF-α-targeting siRNA cargo. In both the liver and spleen significantly fewer lipid 

changes were observed, confirming the efficacy of the TNF-α cargo on the system. Some 

lipid responses were unexpected in the spleen and liver tissues of NPSC-injected mice. 

Utilizing our method, we found that two exemplary unexpected lipid changes were more 

greatly correlated with the gold carrier in both the liver and spleen, suggesting biochemical 

changes may be occurring due to the presence of the nanocarrier itself.  

The unexpected results from the previous chapter indicated the potential of our dual-

mode imaging method to further evaluate the specific biochemical implications of 
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nanodelivery vehicles in vivo. To assess this, we evaluated the specific lipid changes that 

occurred in the presence of fully functioning TNF-α NPSCs, scrambled NPSCs with no 

active cargo, and Arg AuNPs with no linoleic acid. Based on the degree of changes in the 

presence of each nanomaterial, we found that TNF-α  siRNA is playing the biggest role in 

altering lipids in the system. However, based on the number of changes that still occur in 

the presence of scrambled siRNA, the linoleic acid appears to have a slight role in altering 

lipids known to be correlated to TNF-α  knockdown.  

The dual-mode imaging method provides comprehensive analysis of the sub-organ 

distribution, colocalization, and biochemical effects of nanodelivery vehicles in vivo. By 

monitoring different nanomaterial types, potential side effects can be identified in a spatial 

context, providing potential biochemical basis for the arrival of these unexpected changes. 

In doing so, we found that many of the predicted effects of the NPSCs penetrate beyond 

where the carriers distribute, while many of the unpredicted effects occur where the carriers 

accumulate. This type of assessment of nanodelivery vehicles is not only valuable for 

designing safer and more efficacious materials, but also implies that simply monitoring 

nanodelivery vehicle distribution is not a comprehensive enough evaluation of these 

particles in vivo. Again, although our method has promising potential to asses nano-based 

delivery agents’ safety and efficacy, because it is neither quantitative or nor highly 

sensitive, it is necessary to use this method complementarily with other assays to better 

understand the biochemical effects. Additionally, this method is not high throughput and 

therefore can be used readily as a first-pass assessment but should be combined with higher 

throughput biochemical analysis for assessing therapeutic delivery on a larger, more 

significant scale. 
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 Finally, we described a method to quantitatively measure NP cellular uptake and 

surface adhesion using LDI-MS. The universality of this method provides a way to assess 

cellular level information regarding uptake of any LDI-active AuNP in a variety of cell 

types. Future studies regarding sub-organ specific cell types (i.e. red pulp macrophages or 

hepatocytes) with the NPs in functional nanodelivery vehicles could be conducted to 

further assess the mechanism by which these nanomaterials distribute and accumulate 

when in circulation. This method provides the means to quantitatively assess the uptake of 

many different nanoparticles simultaneously in a label-free manner. Without disturbing the 

biochemistry of the particles or the cells themselves, this method is a trustworthy way to 

evaluate and distinguish the uptake and adhesion of a multitude of nanoparticles in a variety 

of cell types. However, this method is only useful for particles that have intrinsically 

ionizable ligands, or mass barcodes, and therefore is limited by the chemistry of the 

particles themselves. In order to address this, different sample preparation methods may be 

explored to encourage particle ionization, such as adding matrix to the samples. 

The use of nanomaterials in biomedical applications provides immense potential to 

improve therapeutic delivery, but also generates a greater need for analytical tools to 

thoroughly assess the safety and efficacy of these materials in vivo. Cellular uptake of 

nanomaterials has been monitored by microscopy methods,1–3 flow cytometry,4,5 chemical 

etching,6 and  ICP-MS.7 Microscopy provides high resolution methods to reliably measure 

the cellular internalization of NPs, but is not quantitative in the case of confocal and 

transmission electron microscopy. Chemical etching and fluorescence microscopy have the 

capability of being quantitative, but not without chemical modification. Flow cytometry 

and ICP-MS are quantitative and applicable for nanomaterials with a variety of core 
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chemistries, however, these methods do not have the capability of readily distinguishing 

materials with the same core material and different molecular composition, such as varied 

ligand structures, simultaneously. With MS methods such as LDI, multiple species of NPs 

can be monitored without chemical modification due to the intrinsic mass of the 

nanomaterials. However, quantification and sample preparation are more time-intensive 

with this analytical method and require additional effort, creating a reduced throughput for 

the assessment of cellular uptake. 

Fluctuations in biological molecules in response to nanomaterials can be investigated 

using enzyme-linked immunosorbent assay (ELISA)8 and even predictive computational 

methods.9 ELISAs are limited in that they can only monitor a select few biological 

molecules at a time. Conversely, computational methods conducted in silico, are much 

more comprehensive and can probe hundreds of thousands of molecular species’ responses 

to nanomaterials in a matter of minutes. These techniques utilize molecular modeling to 

assess potential toxicity and inflammatory responses of nanomaterials when they interact 

with certain cell types (i.e. immunological, endothelial, etc.) by assessing the quantitative 

structure-activity relationship of the interaction of particles with these cells and biological 

molecules. This enables the enormous pool of potential biomolecular responses to be 

concentrated down into to a select focal group of relevant species, however this method is 

still just predictive and complementary to the experimental assessment of biochemical 

responses in vivo. LC-MS analyses, i.e. proteomics,10,11 lipidomics,12 and 

metabolomics,12,13 although not as rapid as computational approaches, can also assess 

hundreds of biomolecular responses to nanomaterials through quantitative, multiplex 

detection, but this technique is limited in the spatial context of these changes. Utilizing 
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MALDI-MS, hundreds of biological species can be monitored in tandem and in situ, 

providing spatial context to many biochemical responses, however this method is not as 

reliable of a quantitative analytical tool and therefore is limited to qualitative assessment 

of biological changes. 

Site-specific information of nanomaterial distributions is typically obtained through 

methods such as magnetic resonance imaging (MRI),14 surface plasmon resonance 

(SPR),15,16 Raman spectroscopy,17 and fluorescence microscopy.18–20 These methods are 

sensitive and high throughput, however their uses are limited by the chemical properties of 

the materials themselves and therefore cannot be universally applied to all nanomaterial 

types. LA-ICP-MS is a sensitive analytical tool that can be applied to a variety of inorganic-

based nanomaterials. Additionally, LA-ICP-MS allows for other biologically-relevant 

inorganic molecules, such as iron and zinc, to be detected simultaneously to provide 

additional spatial and biological context to the nanomaterial distributions. As with LDI and 

MALDI, LA-ICP-MS is also limited by the capability of rapid quantification and therefore 

cannot be high throughput. These methods do however have the capability of providing 

valuable first-pass,  multiplex and spatial, information regarding nanomaterials in vivo. 

Overall, the findings of this dissertation illustrate the capacity of LDI, MALDI, and 

LA-ICP-MS methods to comprehensively monitor the uptake, fate, and biochemical effect 

of nano-based delivery vehicles in vivo. The next section outlines areas in which these 

methods can be expanded upon for additional applications. 
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6.2 Future Directions 

In the following sections, proposed experiments utilizing the previously developed 

mass spectrometric analytical techniques will be described for additional AuNP and AuNP-

based nanomaterial analyses. 

6.2.1 Tracking Carrier, Cargo, and Biochemical Effects Using Dual-Mode MSI 

Tracking and evaluating nanodelivery vehicles is of utmost importance in assessing 

their efficacy in biomedical applications. Our methods have been successfully utilized to 

better understand the accumulation of these vehicles, the biochemical effects they have in 

vivo, and how these two aspects are correlated to one another. An additional aspect to 

understanding these vehicles will be monitoring where the cargo itself is localizing. siRNA 

is not an ideal candidate for this analysis due to the rapid degradation of the molecules in 

vivo, however our NPSC system has the capability of encapsulating hydrophobic drugs that 

can then be monitored by MALDI-MSI analysis.  

Tamoxifen (Figure 6.1), a known chemotherapeutic,21 is suitable for advancing our 

Tamoxifen (Prodrug)

N-Desmethyltamoxifen

4-Hydroxytamoxifen

(Afimoxifene)

Endoxifen (Active Form)

 

Figure 6.1. Structure and metabolic pathway of tamoxifen to active form, endoxifen. The 

specific liver P450 enzymes involved in the metabolism pathway are indicated on the arrows. 
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analytical technique towards the simultaneous monitoring of carrier, cargo, and 

biochemical effect. This molecule has been previously detected in tissues via MALDI-MS 

analysis22 and therefore can be easily incorporated into our previously developed dual-

mode imaging technique. Tamoxifen is a pro-drug that needs to be metabolized in the liver 

into its active form endoxifen, which can occur through two different pathways involving 

liver P450 enzymes (Figure 6.1).21,23 Tamoxifen’s metabolites have been successfully 

detected by other MS techniques and therefore have the potential to be detected by MALDI 

methods.24 Knowing that our NPSC systems accumulate in the liver, we can utilize our 

dual-mode method to further evaluate how encapsulating this cargo into NPSCs affects the 

distribution of the drug and potentially its metabolites with respect to the carrier, as well 

as any biochemical changes that arise. 

6.2.2 Mass Spectrometric Analysis of the Circulation and Excretion of Charged 

AuNPs 

Some work has been done by our group to evaluate the role that charge plays on AuNP 

distribution,25,26 but little is known about the fate of AuNP of various charges as they  

TTMATEGCOOH ZW
 

Figure 6.2. Structure of negatively (TEGCOOH), zwitterionic  (ZW), and positively (TTMA) 

charged AuNPs. 
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Figure 6.3. Gold accumulation in mouse tissues over time for TTMA, TEGCOOH, and ZW 

AuNPs. Quantitative measurements made by ICP-MS analysis of digested mouse tissues.  



120 

 

circulate in vivo. To evaluate this, AuNPs of 3 surface charges: positive, zwitterionic, 

negative (Figure 6.2), were injected into mice and they were sacrificed after either one or 

six days. Tissues were then extracted and digested by ICP-MS analysis to determine the 

accumulation of AuNPs in the tissues over time. As can be seen in Figure 6.3, AuNPs 

accumulate differently in mouse tissues over time based on their surface charges. For 

instance, zwitterionic NPs, which are known to exhibit a “stealth” effect in biological 

systems,27 have the greatest shift of accumulation in the blood between day 1 and day 6. 

This is expected based on the prediction that these nanomaterials circulate longer in the 

blood than those that are positively or negatively charged.  

 The results obtained in Figure 6.4, which shows a mass balance of all the tissues that 

were digested and analyzed by ICP-MS, also indicates that surface charge dictates how 

quickly gold is excreted from tissues over time. It appears that while ZW and TTMA 

particles are consistently lost through excretion, TEGCOOH particles exhibit minimal 

changes over time. To further evaluate this, urine and feces excretions were collected from  

 

Figure 6.4. Mass balance of gold accumulation in all TEGCOOH, ZW, and TTMA AuNP 

tissues analyzed by ICP-MS. 
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Figure 6.5. ICP-MS analyses of Au in feces for (a) TTMA, (b) TEGCOOH, and (c) ZW AuNPs, 

over time. 
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Figure 6.6. ICP-MS analyses of Au in urine for (a) TTMA, (b) TEGCOOH, and (c) ZW AuNPs, 

over time. 
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mice over the course of the six days before sacrifice. As can be seen in Figures 6.5 & 6.6, 

surface charge also dictates to which secretory pathway (urinary or hepatobiliary) AuNPs 

favor. TTMA AuNPs seem to heavily favor consistent excretion through the hepatobiliary 

system as seen in Figure 6.5a whereas TEGCOOH particles seem to be minimally excreted 

through the feces (Figure 6.5b). Zwitterionic particles interestingly, exhibit a spike in gold 

excretion through the feces between day 1 and day 4. This further confirms the longer 

circulation of these particles in vivo.  

 Urine analysis (Figure 6.6) provides less conclusive information regarding the 

excretion of particles through the urinary system and will need to be repeated. However, 

some preliminary experiments were conducted using previously developed AuNP stability 

assays,28,29 and it was found that the ligands of TTMA intact AuNPs can be readily detected 

by LDI-MS (Figure 6.6). Future work could evaluate whether excreted TTMA AuNPs are 

in-tact over time in both urine and feces excretions. This could provide insight into if and 

how nanomaterials are degraded circulating in vivo. 

Additionally, MSI experiments can be conducted to determine how the AuNPs 

distribute in the sub-organ regions of tissues over time. Preliminary LA-ICP-MS 

experiments have been conducted to assess the changes in sub-organ gold distribution in 

liver, kidney, and spleen tissues. Combining this imaging modality with LDI-MS,30 the 

stability of AuNP particles within sub-organ regions of various tissue types over time can 

be evaluated. Finally, MALDI-MSI methods can be utilized to evaluate how biochemical 

markers, such as lipids, peptides, and proteins, are changing in response to the circulation 

over time. In combination, this data will thoroughly examine the effect AuNP surface 

charge has on circulation, accumulation, stability, and excretion over time.  
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